A Study to Determine Seasonal Effects of Transporting Fish from the Snake River to Optimize a Transportation Strategy

Fish Ecology Division
Northwest Fisheries Science Center
NOAA Fisheries

Benjamin Sandford ben.sandford@noaa.gov
Steve Smith, Tiffani Marsh
Dam Route Concept

- Spillway/Not Detected
- Bypass/Detected – Transport (T) or Bypass (B)
- Turbine/Not Detected
What is SAR?

Smolt-to-Adult Return %

A major component of the salmonid life-cycle.
SAR Ratio

- Consider transported, bypassed migrant, and never-bypassed migrant groups

 - **Question**: Once fish are in the bypass system on a particular day, is it better to transport them or return them to the river?

 - $T_{(SAR)}:B_{(SAR)} > 1.0$ indicates that among LGR-detected fish, those transported returned at a higher rate than those bypassed

 - Alternative standards for other questions consider never-detected group as well – not discussed here
How and Why Do SARs and SAR Ratios Vary Within Migration Seasons?

• Data – Caveats

• “Descriptive” Models – Estimated smooth curves describing SARs for transported (T) and bypassed (B) fish through time
 – Derived curves for T:B ratios

• Results – A Few Detailed, Mostly Summary
Caveats

• Analyses are:
 • Mostly based on available (adventitious) data
 • Restricted by dates of adventitious data
 • Descriptive of patterns in SARs through time within seasons
 • Based on in-river migrants that were bypassed
 • Subject to confounding of mortality and straying
 • Limited by small numbers of adult returns for some years

• Analyses are not:
 • Based on planned, designed experiments
 • Able to shed much light on transport early in the season, 2006-2012
 • Prescriptive for transport on particular dates or under particular conditions
 • Based on non-bypassed in-river migrants fish (C0), because date of passage must be known
 • Able to determine effects of transport on straying
Data

- Daily estimates of smolt-to-adult return rates (SARs)
 - Four groups of smolts for each species/rear-type/MY:
 - Smolts collected and transported from LGR and smolts bypassed there and returned to the tailrace
 - Smolts tagged upstream from LGR or at LGR
 - Count numbers of PIT-tagged smolts at LGR in each group each day (J_i)
 - Count numbers of adults that return to LGR from each daily smolt group (A_i)

- Estimated SAR for day i: $\widehat{SAR}_i = \frac{A_i}{J_i}$
Descriptive Analysis

• Models describe patterns through time:
 • Fit a suite of Poisson log-linear regression models
 SAR is (potentially) a function of
 - Migration group (transported or bypassed at LGR)
 - Tagging location (upstream of LGR or at LGR)
 - Date of LGR passage (day of year)
 - Two-way and three-way interactions of above
Descriptive Analysis

• Models describe patterns through time:
 • Fit a suite of Poisson log-linear regression models
 SAR is (potentially) a function of
 - Migration group (transported or in-river migrant)
 - Tagging location (upstream of LGR or at LGR)
 - Date of LGR passage (day of year)
 - Two-way and three-way interactions of above

• Model-average (qAICc) estimated SARs
 • Derive T:B ratio curves and 95% confidence envelopes
Descriptive Analysis

• Models describe patterns through time:
 - Fit a suite of Poisson log-linear regression models
 SAR is (potentially) a function of
 - Migration group (transported or in-river migrant)
 - Tagging location (upstream of LGR or at LGR)
 - Date of LGR passage (day of year)
 - Two-way and three-way interactions of above

• Model-average (qAICc) estimated SARs
 - Derive T:B ratio curves and 95% confidence envelopes

• Assess model-averaged T:B
Results
MY 2009 - Tagged Upstream of Lower
Transported or Bypassed at Lower Granite Dam

Wild Chinook

- Transported
- Bypassed

Date at LGR

Hatchery Chinook

- Transported
- Bypassed

Date at LGR

Wild Steelhead

- Transported
- Bypassed

Date at LGR

Hatchery Steelhead

- Transported
- Bypassed

Date at LGR
MY 2010 - Tagged Upstream of Lower
Transported or Bypassed at Lower Granite Dam

Wild Chinook

Hatchery Chinook

Wild Steelhead

Hatchery Steelhead

Date at LGR
Wild Chinook 2009

Transported or Bypassed at Lower Granite Dam

Based only on tagged above LGR

Based only on tagged at LGR

SAR(%) for tagged above LGR

SAR(%) for tagged at LGR

Date at LGR

T:B Ratio

Based only on tagged above LGR (Adults: 76; 187)

Based only on tagged at LGR (Adults: 216; 96)

Smolt Passage Index

Date at LGR

T:B Ratio

NOAA Fisheries
Wild Chinook 2010
Transported or Bypassed at Lower Granite Dam
Based only on tagged above LGR
Date at LGR
SAR(%) for tagged above LGR
Transported
Bypassed
April 1
May 1
May 15
Jun 1
Date at LGR
SAR(%) for tagged at LGR
Transported
Bypassed
April 1
May 1
May 15
Jun 1
Date at LGR
T:B Ratio
Based only on tagged above LGR (Adults: 58; 65)
Based only on tagged at LGR (Adults: 80; 58)
Smolt Passage Index
Date at LGR
Wild Chinook Salmon - Lower Granite Dam

Summary of Model-Averaged T:B Values (Descriptive)
Standard = 1.0 (C1; Bypassed)

<table>
<thead>
<tr>
<th>Based only on Fish Tagged Above LGR</th>
<th>15 Apr</th>
<th>01 May</th>
<th>15 May</th>
<th>01 Jun</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006 above only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007 above only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008 above only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009 above only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010 above only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011 above only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010 above only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Based only on Fish Tagged At LGR</th>
<th>15 Apr</th>
<th>01 May</th>
<th>15 May</th>
<th>01 Jun</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006 at only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007 at only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008 at only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009 at only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010 at only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011 at only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012 at only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Wild Steelhead 2009
Transported or Bypassed at Lower Granite Dam

Based only on tagged above LGR
Transported
Bypassed

April 1
May 1
May 15
Jun 1
Date at LGR

Based only on tagged at LGR
Transported
Bypassed

April 1
May 1
May 15
Jun 1
Date at LGR

T:B Ratio
Based only on tagged above LGR (Adults: 53 ; 81)
Based only on tagged at LGR (Adults: 296 ; 157)
Smolt Passage Index

Date at LGR
Wild Steelhead 2010

Transported or Bypassed at Lower Granite Dam

Based only on tagged above LGR

Based only on tagged at LGR

T:B Ratio

Based only on tagged above LGR (Adults: 59 ; 43)

Based only on tagged at LGR (Adults: 198 ; 140)

Smolt Passage Index

Date at LGR
Wild Steelhead - Lower Granite Dam

Summary of Model-Averaged T:B Values (Descriptive)
Standard = 1.0 (C1; Bypassed)

Based only on Fish Tagged Above LGR

<table>
<thead>
<tr>
<th>Year</th>
<th>15 Apr</th>
<th>01 May</th>
<th>15 May</th>
<th>01 Jun</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006 above</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007 above</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008 above</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009 above</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010 above</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011 above</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012 above</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Based only on Fish Tagged At LGR

<table>
<thead>
<tr>
<th>Year</th>
<th>15 Apr</th>
<th>01 May</th>
<th>15 May</th>
<th>01 Jun</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006 at</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007 at</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008 at</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009 at</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010 at</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011 at</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012 at</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

15 May
01 Jun
Next Steps

• Do All Analyses for Little Goose Dam and for Lower Monumental Dam, if sufficient data
 - Further evaluate different standards for non-transport comparison (done but not presented here)

• Ultimate goal: Identify factors that can be used to make transport/in-river strategy in real time
 - Collect data on environmental covariates (freshwater, estuary, saltwater) that might affect T:B
 - Statistically evaluate models that explain patterns in SAR, not just describe
 - Develop decision criteria
Acknowledgements

- Co-authors, Rich Zabel
- U.S. Army Corps of Engineers for funding
- Agencies and Staff who PIT-tagged these fish
- PTAGIS Database
Questions?