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A state-space model is a model for two parallel time series, one unobservable series, the
state process, nt, and one observable series, the observation process, ct (West and Harrison
1997). It is usually assumed that given the past state nt�1, nt is independent of all other
previous states (the state process is �rst order Markovian) and given nt, ct is independent
of all other states.

The observation process is a length L vector of estimated recoveries of tagged �sh by
�sheries in each of L non-overlapping areas during the weeks t=1,2,: : :,T. The state process
is a corresponding vector of unobservable abundances of the cohort in each of the L areas
during the weeks t=0,1,: : :,T. The time period 0 represents the beginning of the harvest
season (generally late June to early July) and T=16 (early to mid-October). The spatial
framework, i.e., the L areas, is a line along the west coast of North America from southern
Oregon to northern British Columbia that is partitioned into L non-overlapping segments
(L=12 in the application). The particular form of the SSM is

ntjnt�1 = MtStnt�1 +wt (1)

ctjnt = Htnt + vt (2)

St, Mt, and Ht are L by L survival, movement, and harvest matrices. Both St and Ht are
diagonal matrices| survival and harvest in one area has no e�ect on survival and harvest in
another area during the same time period. The state process error component, wt, is a L by
1 vector following a multivariate normal distribution with mean zero and covariance matrix
�w;t. Similarly the observation process error component, vt, is L by 1 and multivariate
normal with mean zero and covariance matrix �v;t. The covariance matrices �w;t and �v;t

are functions of the proportions in St, Mt, Ht as well as the abundance and are based on
approximations to the variances and covariances for sums of multinomial random variables.

The general structure of the SSM can be concisely partitioned into three modules, ini-
tial distribution, survival/mortality, and movement. It is this exibility that has led to
considerable experimentation and generated suggestions by biologists to evaluate di�erent
theories.

Initial distribution

To begin the process, the initial state vector, n0, is found by �rst calculating the expected
number of �sh alive. A known number, R, of tagged salmon leave the freshwater natal
area (e.g., a hatchery) and, assuming independence between the �sh, the expected number
surviving to the beginning of the harvest season is R�i;s, where �i;s is the unknown survival
rate. The survivors are assumed to distribute themselves along the line segment according
to a (scaled) beta(�i;�, �i;�). The expected numbers per area are used to construct n0.
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Survival and mortality

For the survival matrix St (and relatedly the harvest matrix Ht) there are three parameters,
�s;qU:S:, �s;qCanada, and �s;n. The �rst two are catchability coe�cients found in the Baranov
catch equations (Ricker 1975). The diagonal elements of St are the probabilities of surviving
�shing related and natural forces of mortality. In particular, for probabilities of survival
from time t to t + 1 for an area a in U.S. waters and an area b in Canadian waters are

St+1[a; a](U:S:) = exp [�N � Fa;t(U:S:)]

St+1[b; b](Canada) = exp [�N � Fb;t(Canada)]

where

Fa;t(U:S:) = �s;qU:S:
E�orta;t

c1(aR � aL)

Fb;t(Canada) = �s;qCanada
E�ortb;t

c1(bR � bL)

N = c2�s;n

The terms c1 and c2 are scaling constants that keep the parameter estimates of a roughly
similar magnitude as other estimates; in the application c1=50,000 and c2=0.001. The terms
aR�aL and bR�bL are the lengths of �shing areas a and b, thus scaling the e�ort measure to
e�ort per unit length; e.g. 500 units of e�ort in a short segment should have greater impact
that 500 units spread across a longer segment. The parameter �s;n is the natural mortality,
assumed constant between time periods. For the �rst time period, t = 1, 100% survival is
assumed (S1=I, an identity matrix).

The harvest in the �nal time period is treated di�erently. There is no or minimal ocean
�shing taking place at this time, thus no information about abundance. To arti�cially force
the �sh into the terminal area by or before this �nal period, the �nal period harvest rate
is �xed at 100% for all areas. Since the negative log likelihood function includes a term
of squared di�erences between observed and estimated catches, this complete harvest rate
penalizes model parameters that result in very many �sh left at sea.

Movement

The jth column of the movement matrix at time t, Mt, is a vector of probabilities (summing
to 1.0) for movement from the j area to any of the L areas. The probability for moving
from area i to area j is based on an individual �sh movement model, which assumes that
the probability distribution for the location at time t + 1 of a �sh at location pt at time t
is a beta(�(pt; t), �(t)). The � parameter is a function of time and location while the �
parameter depends on time alone. The formulation is made in terms of the expected value
and the parameter �:

� = (pt + 0:01)

"
exp (c3 � �m;� t=c4)

1:0 + exp (c3 � �m;� t=c4)

#
(3)
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� = c5�m;�

exp(c3 � t2=T )

1 + exp(c3 � t2=T )
(4)

The constant 0.01 has the e�ect of allowing � to move away from the natal area early in the
�shing season. The constants c4 and c5 are for scaling parameter estimates. The parameter
� is then found by:

� = ��=(1� �)

The expected value of the next location, �, is a product of the current location and a
multiplier� 1.0 (a logit function), that early in the time period (t near 0) is made arbitrarily
near to 1.0 by choosing c3 appropriately; in the application c3=4.6, with t = 0, the multiplier
is 0.99. As time increases the multiplier shrinks towards zero, which is the location on the
line of the natal area. Movement beyond the natal area, whether north or south of the natal
area, is not allowed, assuming the freshwater inuence will attract the �sh back to spawn.
Nor is movement outside the line segment (to the far north or south) allowed| thus the
system is closed.

The variance of the next location, �2, equals �(1��)=(�+1��). It tends to increase in
time, but is bounded above by �(1� �) and can therefore decrease as � changes with time.

Given the beta distribution for the individual �sh at pt, the probability of movement
from an area a to an area b is found by double integration. The outer integral is over the
area a, assuming a uniform probability distribution for �sh in the area. Conditional on a
given location in a, the inner integral evaluates the beta distribution over the the area b.

Parameter estimation

The total number of unknown parameters is eight; i.e., � = (�i;s,�i;�, �i;�, �s;qU:S:, �s;qCanada,
�s;n, �m;�, �m;�), where three are related to the initial abundance and spatial distribution,
three to survival, and two to movement. The Kalman �lter is used to evaluate the likelihood
with respect to � and maximum likelihood estimates can be calculated. Conditional on
maximum likelihood estimates of � and the observation process, smoothed estimates of
abundance, E(ntj�̂; c1; : : : ; cT ), may be calculated using the recursive Kalman smoothing
algorithm (Shumway (1988)).

In the application six of the eight parameters are estimated and two are �xed, namely
�i;�=2.0 and �i;n=0.0. Setting �i;� to 2.0 still allows considerable exibility in the initial
distribution. The natural mortality parameter, �i;n, is at times highly correlated with the
initial survival parameter, �i;s and thus di�cult to estimate. With T=16 weeks, the natural
mortality is assumed to be relatively slight for these maturing adult �sh. The survival matrix
in this case is simply related to the previous period harvest matrix in this case: St+1=I�Ht.
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Table 1: MLEs and Empirical Bayes (EB) estimates of SSM parameters for six cohorts of
coho salmon. The estimated standard errors for the mles and the standard deviations of the
posterior distributions of �j
̂; Ck are in the smaller type.

�i;s �i;� �s;qUS �s;qCanada �m;� �m;�2

Year MLE EB MLE EB MLE EB MLE EB MLE EB MLE EB
1986 5.37 5.36 2.26 2.26 7.12 7.06 3.88 3.89 30.83 30.80 2.47 2.57

0.04 0.04 0.03 0.03 0.29 0.33 0.06 0.07 0.24 0.23 0.27 0.29

1987 1.42 1.42 1.97 1.99 3.51 3.65 4.03 4.02 42.79 42.55 10.01 10.88
0.03 0.03 0.09 0.08 0.42 0.43 0.23 0.23 0.71 0.88 20.24 8.60

1988 6.53 6.53 2.41 2.38 4.71 4.75 3.14 3.15 27.37 27.40 1.40 1.41
0.05 0.05 0.04 0.04 0.24 0.26 0.07 0.07 0.25 0.26 0.12 0.12

1989 4.28 4.28 2.12 2.13 12.75 12.74 10.20 10.18 37.35 37.33 0.95 0.98
0.05 0.05 0.03 0.03 0.46 0.47 0.21 0.20 0.39 0.42 0.11 0.12

1990 2.42 2.42 2.72 2.72 19.87 20.06 3.46 3.47 31.20 30.99 55.97 24.01
0.04 0.04 0.06 0.06 1.02 1.02 0.09 0.09 0.33 0.45 24.54 14.11

1991 5.74 5.74 2.94 2.92 16.77 16.67 2.96 2.97 31.07 31.07 22.95 21.85
0.05 0.05 0.05 0.05 0.83 0.91 0.06 0.06 0.21 0.21 4.85 4.16
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