
© Copyright 2008 
Ting Li 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



The Extension of the Vitality Model and Its Application  

 

 

Ting Li 

                                                       

A thesis 
submitted in partial fulfillment of the 

requirements for the degree of 

 

Master of Science 

 

                                                       

University of Washington 

 

2008 

 

Program Authorized to Offer Degree: 
Quantitative Ecology and Resource Management  

 

 

 

 

                                                          
 
 
 



  
University of Washington 

Graduate School 

 

 

This is to certify that I have examined this copy of a master’s thesis by 

 

                                                             

Ting Li 

 

                                                             

and have found that it is complete and satisfactory in all respects, 
and that any and all revisions required by the final 

examining committee have been made. 

 

 

Committee Members: 

 

_____________________________________________________ 
James J. Anderson 

 

_____________________________________________________ 
Vincent F. Gallucci 

 

Date:__________________________________ 

 
 



 
In presenting this thesis in partial fulfillment of the requirements for a 
master’s degree at the University of Washington, I agree that the Library 
shall make its copies freely available for inspection. I further agree that 
extensive copying of this thesis is allowable only for scholarly purposes, 
consistent with “fair use” as prescribed in the U.S. Copyright Law. Any 
other reproduction for any purposes or by any means shall not be allowed 
without my written permission. 

 

                                                  Signature ______________________                 

                                                    Date _________________________ 

 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 



University of Washington 

Abstract 

The Extension of the Vitality Model and Its Application 

Ting Li 
Chair of the Supervisory Committee: 

Professor James J. Anderson 
Quantitative Ecology and Resource Management 

 

Anderson (2000, 2008) developed a model of vitality to characterize the properties of 

survival system. In this thesis, I extend to Anderson’s vitality model by adding initial 

distribution to vitality, which makes the model more realistic. A Gaussian and gamma 

initial distribution are discussed here. A new algorithm for estimating parameters 

based on simulated annealing is presented, which allows us to explore the properties 

of population through their vitality parameters. Comparisons of the refined model and 

Anderson’s model based both on simulation and real animal survival data leads to an 

issue of model selection. Finally, the model is applied to human survival data, leading 

to insights related to survival improvement and mortality plateau.   
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Introduction 

Individuals even within a population are different at birth and differentiate further 

over time because of their unique experiences and innate capabilities. These 

differences are generically attributed to heterogeneity, which is an important factor in 

determining features of population survival. These include the time to starvation, 

response to stress, expected life span and mortality plateaus which is a widely 

observed tendency for mortality level off or even decline at old ages (Carey et.al 1992, 

Vaupel et.al 1994, 1998). In the biological context of survival analysis, one of the 

most important organizing principles is adaptive evolution by natural selection that 

rests on heterogeneity: genetic variation, differential survival or reproduction. Unlike 

evolutionary theories of demography, the lifelong heterogeneity theories related to 

mortality do not rest upon such well-established principles of biology. For a long time, 

survival models lacked a mechanistic basis for incorporating heterogeneity. The 

classical population-level models, which are usually described by differential 

equations, express mortality in terms of rates acting on homogeneous among a 

category. Thus, it makes this kind of models incapable of capturing the large 

variations between individuals. An alternative method is to use an Individual Based 

Model (IBM) tracking population traits at individual level. However, IBMs also lack a 

standard way to represent the variation and are often difficult to calibrate with the 

limited data available on population dynamics. 
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Recently, many new survival models have been developed to describe a demographic 

stochasticity in which variability in survival and reproduction rates are expressed as 

random events within population age classes (e.g., May 1973; Fox and Kendall 2002; 

Engen et al.2003; Boyce et al. 2006; Lande et al. 2006). They all somehow discuss the 

need to consider heterogeneity explicitly. In their opinion, mortality plateau is the 

result of statistical variation among a population in which weak individuals die at 

early ages while strong ones survive longer, finally leading to a decline of mortality 

rate at old ages. Heterogeneity may be expressed in the mortality rate of a Gompertz 

model by identifying individual rate coefficients of subpopulations (Yashin 2001, 

Service 2000). They did realize the importance of heterogeneity, however, their 

approaches are problematic because, once deaths occur, the hazard composition of a 

heterogeneous sample changes (Zens and Peart 2003). The issue is not trivial. The 

level of biases in interpreting models and data depend on how heterogeneity is 

formulated. Also, they classify heterogeneity in a way of genetic variation and 

environmental variation (Service 2000). Those definitions make it very hard to 

separate one kind of variation from the other especially when both are evolving with 

time. Last but not least, those models do not explicitly considers the processes that 

produce heterogeneity, and how the population structure changes as the individuals 

grow and die. Therefore, they cannot well explain the hidden mechanism with which 

we are mainly concerned.    

Generally speaking, what we are concerned with is how to properly embed 
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heterogeneity into a survival model, so that it can help to clarify the internal 

mechanisms that lead to death. In our research context, heterogeneity among 

population is represented in one of two ways. The existing variation is the variation 

that is observed at a given time and is due to genetic heterogeneity and differences in 

life experience before the observation. The other is evolving variation which is 

developed as the individuals grow old and are exposed to variable environments after 

the observation. If the observation time is made at birth day, existing variation is due 

only to intrinsic or genetic differences, while evolving variation reflects subsequent 

differentiation. Existing variation describes a kind of static heterogeneity, while 

evolving variation reflects how a population becomes more heterogeneous with time 

due to variable experiences. It is believed that both of these are very important in 

mortality modeling, especially when the goal is not only to fit data, but to explore the 

real process of heterogeneity evolving with time. An idea survival model should be 

able to capture both heterogeneities.  

For representing the latter variation, a totally new vitality model of fitting survival 

curves was initially published in a paper by Anderson in 1992 and further expanded in 

2000 (See model detail in Appendix A: Background on Vitality Model). The vitality 

model for survival is a method that characterizes the complex interactions between 

external and internal processes by a quantity called “vitality” which denotes the 

remaining survival capacity of an organism. Each individual begins with an initial 

vitality, v0, and dies when its vitality reaches zero (fig. 1). The random trajectory of 
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vitality, v, between v0 and 0 is described by the Wiener process: 

                                             tdv dt = −ρ + σε                                                       (1) 

where ρ is the mean value of the rate of vitality loss, σ is the magnitude of the 

stochastic component. 

The two parameters ρ  and σ are set to be constant within a population level. Then an 

analytical solution is obtainable if at t=0 the population distribution is homogeneous, 

i.e. with all the individuals having the same initial vitality 0v . Thus, a survival model 

is expressed (Anderson 2000):  

 2

1 2 1( ) ( ) ( ) (1 ) exp (1 ) exp( )v a
rl t l t l t rt rt kt

ss t s t
     = = Φ − − Φ − + −          

  (2) 

Where ( )l t  is the survival rate and 0r v= ρ , 0s v= σ are normalized drift and 

variation parameters respectively. ( )Φ g  is the cumulative distribution function of 

normal distribution. Then 

        2

1 2 1( ) (1 ) exp (1 )v
rl t rt rt

ss t s t
     = Φ − − Φ − +          

                       (3) 

gives the vitality-based survival and  

                                                     ( ) exp( )al t kt= −                                                 (4) 
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is the accidental mortality related survival described by a Poisson process where k is 

the accidental mortality rate. Model described by eq. (2) is called a Dirac delta model 

since the initial distribution starts as Dirac delta function with point source or a 3-

parameter model determined by r, s and k.  

 

 

 

 

 

Figure 1: Depicts individual vitality trajectories (eq. (1)) and survival (eq. (3)).  
 

The heterogeneity is described as the variation of vitality evolving with time. As 

stated above, there are two basic assumptions for this model, the constant vitality 

parameters r and s, and identical starting point for initial vitality within a population.  

This model provides a reasonable characterization of heterogeneity in survival. But 

because of the assumption of identical initial condition, the existing variance 

mentioned above is not accounted for in this model.   

The limitations of Anderson’s model 

Early as 2004, Steinsaltz and Evans (2004) pointed out the limitations of Anderson’s 
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model with a statement that convergence and other properties of models that relied on 

Weiner processes may depend on initial distributions. The hazard rate in this mortality 

process is shaped by the initial distribution and the way it slowly fades away. More 

importantly, they concluded that the fundamental question in biodemograhy, the 

mortality plateau, has something to do with the quasistationary distribution whose 

shape is determined by the initial distribution. Quasistationay distribution is the 

limiting distribution that the process will gradually approach and is a generic feature 

of Markov model (Aalen and Gjessing 2001, Steinsaltz and Evans 2007). When a 

process reaches its quasistationay distribution, it will have a constant hazard rate of 

transition. This means that although the probability mass is continuously being 

drained from the transient space, nevertheless the remaining probability distribution 

on this space converges to a limiting distribution (Aalen and Gjessing 2001). That 

stage of constant hazard corresponds to the mortality plateau. Steinsaltz and Evans 

(2004) showed that, given enough time, and under certain conditions, the transient 

state will converge to the quasistationary distribution regardless of the initial 

distribution. And the initial distribution will determine the shape of the limiting 

distribution. Thus, the assumption of identical initial distribution may not only violate 

the reality of a natural population but also fail to reveal some important properties that 

particularly help to understand how the heterogeneity evolves as well as the 

fundamental question pertaining to mortality plateau.    

Anderson’s model has been applied to many survival data of different animal species. 
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Although the model fits most of data well, it has difficulties capturing the early life 

curvature for some species. Fig. 2 gives an example of the model fitted to fruit fly 

survival data from Carey’s study of Ceratitis capitata (1998). We fell that it fit poorly 

in the early life stages because it does not account for initial variation. Anderson et al. 

(2008) also applied this model to a study of starvation time of yellow perch (Letcher 

et al. 1996). Different treatments (starvation) were used to predict survival through 

vitality parameters. Fish are divided into three groups by size. For the first two groups 

with smaller size, prediction equations developed from Anderson’s model seem to fit 

data well, but they fail for the fish group of large size. One possible explanation of 

this undesirable performance is the neglect of initial variation existing at the 

beginning of treatment stage. We believe that large size group fish are more 

heterogeneous than the other two groups initially, thus the 3-parameter model is not 

able to capture the big initial heterogeneity. To solve this problem, it is necessary to 

consider extensions of this basic vitality model by weakening the assumptions and 

integrating initial variation into it.      
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Figure 2: Anderson’s model fits to a fruitfly survival data from Carey’s study of 
Ceratitis capitata (1998)   

It is the goal of my work to present several extensions of Anderson’s vitality model 

that account for further heterogeneity and to develop routines that are able to estimate 

parameters for quantifying the roles of heterogeneity and intrinsic change in 

determining vitality distribution and, consequently, the final survival rate. 
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Chapter I: Introducing Initial Vitality Distribution 

Vitality distribution 

Since heterogeneity is represented through vitality, I begin by discussing the vitality 

distribution. At a given time t, the probability of a vitality v given the initial vitality v0 

is defined by equation (3) as derived from the Wiener Process, equation (1), (Chhikara 

and Folks 1989). Death is represented by an absorbing boundary at v = 0, which 

represents the removal of individuals from the cohort at the zero boundary. 

2 2
0 0 0

0 2 2 2

( ) 2 ( )1( , | ,0) exp exp
2 22v

v v t v v v tp v t v
t tt

ρ ρ ρ
σ σ σσ π

    − + + +
= − − −    

    
    (5) 

Previously (Anderson 2000, 2008), a Dirac delta function was assigned to initial 

vitality v0 which guaranteed all individuals in the cohort get the same initial vitality. 

This is not realistic, since a combination of genetic variation and variable prenatal 

conditions cause organisms to be intrinsically different even at birth. Therefore, we 

introduce an initial distribution for vitality.  

In order to import reasonable and meaningful initial distribution, one must first 

understand which distributions are likely. Since the vitality density (3) evolves from a 

Dirac delta function spike, first spreads into a Gaussian-like shape, and then into a 

quasi-stable gamma-like distribution that is finally absorbed into the zero-vitality 

boundary (Aalen and Gjessing 2001) (fig.3), the Gaussian and gamma distribution are 

good choices for the initial distribution v0 that complements the natural evolution of 
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vitality. If the beginning time of observation is picked up as an early time of a cohort, 

the initial vitality tends to be normal like. The gamma distribution implies more 

asymmetry among a population: with death occurring, most individuals have low 

vitality while a few have high vitality. This usually occurs at a later time, when death 

has “filtered” a population. Below, we’ll focus on those two kinds of initial vitality 

distributions and understand how they affect the resulting survival curve.  
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Figure 3: vitality distribution evolving with time. In eq. (5) vitality density evolves 
from a Dirac distribution at day 0 into a Gaussian distribution over days 2 through 6 
and into a gamma-like distribution by day 9. With time, the area under the curve 
diminishes by loss of vitality into the zero-boundary  

General framework for including an initial distribution 

Basically, there are two approaches that could be used to derive the vitality based 
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survival function from the Wiener process. One is based on the first arrival time, 

while the other one is directly derived from the vitality distribution. 

An important result known about the Wiener process is the distribution of times when 

the process first hits zero. This is referred to as the first arrival time distribution (fig.1). 

According to our definitions, survival rate at time t is just the survival fraction of total 

population at time t, and is equivalent to the probability that the individual vitality 

does not hit zero by time t. Since the cumulative density function of first arrival time 

( )F t  gives the probability that individual vitality hits zero by time t, the vitality based 

survival rate ( )vl t  is expressed as:  

0 0 0

( ) 1 ( )

1 ( )

1 ( | ) ( )

vl t F t

f t dt

f t v p v dv

= −

= −

= −

∫
∫

                                  (6) 

Here ( )f t  is the marginal distribution of first arrival time while 0( | )f t v is the 

conditional distribution, and 0( )p v  is the initial distribution of 0v . 

The conditional distribution of first arrival time:  

( )2
02/30

0 2( | ) exp
22

v tvf t v t
t

ρ
σσ π

−
 −

= − 
 
 

                        (7) 

is an inverse Gaussian distribution derived directly from Wiener Process eq.(1) . 

(Aalen and Gjessing 2001)  
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The other method directly from the vitality distribution is relatively simple and easily 

to be understood. 0( | )vl t v is actually the conditional distribution by introducing initial 

vitality to non-normalized version of eq. (3). Then the marginal probability is given 

by integrating 0v  from 0 to infinity,  

0 0 0( ) ( | ) ( )v vl t l t v p v dv= ∫                                             (8) 

Initial Gaussian distribution  

We consider introducing a Gaussian initial distribution for vitality in this section that 

assumes: 2
0 ( , )v N µ τ: . Here we adopt the first method using first arrival time, 

because we are able to get an analytical solution from this method.  

2
0

2
( )

2
0

1( )
2

v

p v e
µ

τ

πτ

−
−

= , which is normally distributed here. Then following eq. (6) and 

(7), 

( )

( )

0 0 0

2 2
03/ 20 0

02 2

22 2
2 2 3/ 2

2 2

( ) ( | ) ( )

( )exp
2 2 2

( ) exp
2( )2

f t f t v p v dv

v tv vt dv
t

t
t

t

ρ µ
πστ σ τ

µ ρτ ρ σ µ τ σ
τ σπ

−

−

=

 − −
= − − 

 
 

 −+
= + − 

 + 

∫

∫              (9) 

Together with eq. (6) and (9): 
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2

2 2 2

4 22 2 2 2

( ) 1 ( )

2
2 2exp

vl t F t

tt
t t

τ ρ µ ρµ ρ τ ρ µρ σ
σ στ σ τ σ

= −

 
− − −    −

= Φ − + Φ     
+ +      

 

    (10) 

Let r ρ
µ

= , s σ
µ

=  and u τ
µ

=                                                                                      (11)                                   

2

2 2 2

4 22 2 2 2

2 11 2 2( ) expv

u r rtrt u r r sl t
s su s t u s t

 
− − −    −

= Φ − + Φ     
+ +      

 

                              (12) 

is the vitality based survival rate with normalized parameters where r, s and u are 

normalized parameters and u represents the standard deviation of the initial 

distribution of vitality which is a totally new parameter.   

It should be noted that when we calculate the marginal distribution of f(t), v0 is 

integrated over the whole real space from minus infinity to plus infinity instead of just 

positive line, which violates the biologically meaningful assumption that vitality 

should be positive. Thus, the estimates of parameters might be biased when the initial 

standard deviation of v0 gets big. For small u, eg. (0, 0.35), most (over 95%) 

individuals drawn from distribution 2
0 (1, )v N u:  have positive initial vitality v0, 

indicating that we generally do not need to be worried about bias in this situation. 

Figure 4 below shows clearly that skewness happens when u is bigger than 0.35. 

Moreover, when the standard deviation is beyond 0.35, we tend to believe a gamma 

initial distribution would be more proper here. This observation, however, also 
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suggests that the initial Gaussian distribution is transitioning to gamma naturally and 

it is necessary to consider both distributions. We will further discuss the connection 

between those distributions and their effect on the survival curve. Also, this bias 

caused by inappropriate integrating range is discussed in the section of simulation.   
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Figure 4: initial standard deviation for v0 (truncating at v0>0) vs. actual standard 
deviation u from initial Gaussian distribution 

Initial gamma Distribution 

A gamma distribution for 0v  is considered in this section. Unlike the initial Gaussian 

distribution, there is no explicit form for the marginal distribution of first arrival time 

and vitality density. Therefore we need to use different methods. We use the second 
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approach mentioned before that derives the equation directly.   

In a non-normalized version of equation 3), vitality-related survival rate is expressed 

as: 

*
* *0
0 02

21 1( ) ( ) exp ( )v
vl t v t v t

t t
ρρ ρ
σσ σ

     = Φ − − Φ − +     
     

                (13) 

here *
0v  denotes the initial vitality. 

The parameters are normalized by dividing the mean of initial vitality *
0v . That is,  

*
0/r vρ= , *

0/s vσ=  and * *
0 0 0/v v v= : 

0
0 0 02

21 1( | ) ( ) exp ( )v
rvl t v v rt v rt
ss t s t

     = Φ − − Φ − +     
     

               (14) 

In this scenario, * *
0 0 0/v v v=  is assumed to have a gamma distribution with mean equal 

1: 2
0 ~ ( , )v gamma shape w scale u= = . To have the restriction of mean, 2 1u w× = . 

Thus, w  is set to be 21/ u . It is noticed that by definition, the normalized standard 

deviation of initial vitality for gamma model is ( ) 1/ 22 41/ u u u × =  , and the non-

scaled standard deviation of initial vitality τ equals *
0u v× , which is consistent with 

Gaussian model.   
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22
02

0 0 0

2 20
0 0 0 02

/2 1/
1/ 10

0 0 0 02 2

( ) ( | ) ( )

21 1( ) exp ( ) ( ,1/ , )

21 1 (1/ )( ) exp ( )
(1/ )

v v

v uu
u

l t l t v f v dv

rvv rt v rt gamma v u u dv
ss t s t

rv u ev rt v rt v dv
s us t s t

−
−

=

     = Φ − − Φ − +     
     

     = Φ − − Φ − +      Γ     

∫

∫

∫

 (15) 

Unfortunately, there is no explicit form for the integral; however, we can estimate the 

parameters numerically.  

Still, I need to point out the restriction I put on the initial gamma distribution of 0v  

would not lose any generality. We assume the normalized initial vitality 

2 2
0 ~ ( 1/ , )v gamma shape u scale u= =  with mean equaling 1 and standard error equaling 

u . Then, the original *
0v *

0 0v v= ×  implies * 2 * 2
0 0~ ( 1/ , )v gamma shape u scale v u= = ×  with 

mean equaling *
0v  and standard error equaling *

0v u τ× = . Actually, *
0v  and τ  could 

be any reasonable values. (see Appendix B).  

 

Together with accidental survival part, total survival function 

equals ( ) ( ) ( )v al t l t l t= (16)  for both Gaussian and gamma initial distribution and 

( ) kt
al t e−=  is the same as that in Anderson’s 3-parameter model. 

This new survival function incorporating initial vitality distribution has four 

parameters including r, s, k and u. So it is called 4-parameter model distinct from the 

original 3-parameter model. Or we can call them Gaussian model and gamma model 
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separately comparing to the name of Dirac delta model.  

Effects of different initial vitality distribution on survival curve 

Now, we have two models, an initial Gaussian distribution model and an initial 

gamma distribution model. (The original 3-parameter model is a special case of initial 

Gaussian model setting u = 0.) Fig. 4 below could well explain their different effects 

to shape a survival curve. r, s and k are set to be the same for the two models, u is 

within a range of 0 to 0.35 for Gaussian model and a range of 0.35 to 0.7 for gamma 

model.  

As the model changes from a Gaussian initial to a gamma initial, the survival curve 

becomes steeper in the beginning and flatter in the end, and different curves crossed 

each other around the 35% mortality time. Fig.5 shows that a population with large 

initial variance will be frailer at early times, but have higher survival at older ages as 

comparing to a small initial variance population. Also notice that the curve from 

Gaussian model with u = 0.35 is very close to the gamma model with u = 0.35 which 

makes much sense, since a gamma model with small u tends to have a normal-like 

shape similar to that of Gaussian model at u = 0.35. This result supports the former 

hypothesis.    

Fig. 6 gives another way to look at the relationship between the initial variation and 

the survival rate by fixing the time. That is each line in fig. 6 represents the change of 

survival rate at a given time as a function of u, the standard deviation of initial 
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distribution. In order to compare the behavior, lines are drawn from both Gaussian 

initial and gamma initial model with u ranging from 0 to 0.7. Clearly, for earlier age 

(t=10), survival rate from both models declines with increasing u, while for later age 

(t=40), the trend reverses. And at middle age (around time 22), the lines are relatively 

flat, indicating the contribution of different initial variation to middle age survival is 

difficult to differentiate. All of the information reported above is essentially the same 

as fig. 5 that small initial variation favors early age population but becomes less 

beneficial for old age population. What’re new in fig. 6 are the differences between 

the lines from Gaussian model and those from gamma model, especially when u is 

large. It appears that the line from Gaussian is below gamma line at early age, but 

turns to be above gamma line at middle age, although there is no big difference at old 

age. As it has been discussed before, bias affects the Gaussian model at large values of 

u. This again underlines the preferability of using gamma initial distribution. We still 

prefer to use Gaussian model for small u is because it is much easier to calculate 

Gaussian model than gamma model. This will be further discussed in the next chapter.      
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Figure 5:  Survival curves from Gaussian and gamma model with different initial 
stand deviation parameters.  
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Figure 6: Fix time survival rate. Survival rate changes with initial standard deviation 
at fixed time point for initial Gaussian and gamma distribution separately. The upper 
lines are at time 10, the middle ones are at time 22 and the bottom ones are at time 40. 
Solid line: Gaussian initial distribution, dash line: gamma initial distribution. This 
curve can not be generated entirely from fig. 5.  
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Chapter II: Parameter Estimation and Model Selection 

In this chapter, we develop a routine to estimate the four parameters of model (eq. 

(16)). For a given survival curve, the goal is to derive the values of parameters that 

provides the best fit to the curve. If the survival rate is changed into a likelihood 

function, the problem becomes an MLE optimization. For the former 3-parameter 

model (eq. (2)), Salinger et al. (2003) developed a routine based on Newton-Ralphson 

method. However, this method is highly dependent on the choice of initial parameter 

values since it is easy to fall into a local minimum instead of a global optimal solution. 

Salinger et al. successfully established a constraint equation for the initial values 

using the time to 50% mortality. However, this approach fails when it is applied to the 

new model, and an alternative optimization method is required. Currently, one of the 

popular well-developed approaches that could be used for searching global 

optimization is simulated annealing (Kirkpatrick et al., 1983). I choose to use it and it 

does produce good estimates for the 4-parameter models.  

Another issue with much survival data is that it is interval-censored; that is the 

mortalities are counted at the end of each time period rather than continuously. 

Salinger et al (2003) dealt with this issue by considering the incremental mortality 

probability as the likelihood function. We choose to retain their approach. Salinger et 

al (2003) estimated standard errors by examining the estimated variance matrix. 

Specifically, standard errors are obtained by taking the square root of the diagonal 

elements in the inverse of the Hessian of the negative log-likelihood, evaluated at the 
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parameter estimates (cf. Kendall and Stuart, 1997, Section 18.26). 

Simulated Annealing 

Simulated annealing was developed by Kirkpatrick et al. (1983). It is a Monte Carlo 

method introduced by Metropolis et al. (1953) based on the theory of statistical 

mechanics. The idea comes from a process of condensed matter physics in which a 

solid material in melded to a liquid phase and then slowly cooled. The heating 

arranges the molecules randomly and the cooling rearranges them into a perfect 

crystal. Application of simulated annealing to optimization problems is based on the 

analogy between the state of each molecule and the state of each parameter that 

affects the energy function (analogous to the cost function in the optimization 

problem) to be minimized. The parameter values are randomly perturbed, and the 

probability of accepting the perturbed cost function is determined by the Metropolis 

criterion, 

1 , 0
( )

,T

if
P

e otherwise
∆Φ

−

∆Φ ≤∆Φ = 


                                        (17) 

where ∆Φ is the change in the cost function due to the perturbation, and T is the 

current system temperature, which is a control parameter. To be specific, 

( ) ( )f new parameters f old parameters∆Φ = − , where f  is the cost function to be 

minimized. As the search iterations progress, the temperature parameter T is reduced 

according to what is known as the “temperature schedule”. Providing that the starting 
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maximum temperature is sufficiently high and the temperature T is lowered slowly, 

the algorithm is guaranteed to reach the global minimum or a point close to the global 

minimum of the cost function. However, the choice of temperature schedule including 

the star temperature and the way to lower it down is somewhat arbitrary and depends 

on the specific cost function. Find the most efficient schedule requires some 

experimentation.  

Implementation of the simulated annealing algorithm is relatively straightforward. I 

follow the implementation described by Corana et al. (1987) and define constraints to 

insure that the parameters locate in their allowable range, like positive real line.  

Fig. 7 shows a simplified flow chart of the modified simulated annealing algorithm. 

Starting with a given set of initial parameters and a high initial temperature T ( 310= ), 

the cost function is then calculated and recorded. The current parameters are then 

randomly perturbed within the boundary, like choosing a random variable from 

uniform (0, 1) and then moving a step proportion to that variable. The cost function is 

computed, and the probability of accepting the new parameters is determined by 

eq.(17). After TN  (10× number of parameters) step adjustments, the temperature T is 

then reduced by a constant factor Tr (=0.85). The loop terminates when the differences 

between the recent Nε (=4) values of minima are less than a tolerance 5( 10 )ε =  and 

the parameter changes are less than 0.1%. These criteria help guarantee that the global 

minimum is reached.  
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ranges each along one coordinate direction

Accept or reject each point according to the
Metropois criterion (12).
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Figure 7: flow chart of simulated annealing. 
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Simulation and Model Comparison  

To understand the fourth parameter u and evaluate the performance of the new 4-

parameter models with initial Gaussian and gamma vitality distributions separately, I 

conducted simulations and compared results with the 3-parameter model based on 

AIC.  

Each distribution is created using a vitality process. Each individual in a population 

was assumed to have a vitality 0v at time 0, where 0v  is drawn from 2(1, )N u  and 

gamma (shape= 21/ u , scale= 2u ) distribution for the Gaussian and gamma case 

respectively. The vitality for each individual was calculated for a single time step by 

the following equation. 

1t t a av v r s W−= − + ×           t=1,2,3….            15) 

where W is the white noise calculated by selecting a random number from a normal 

distribution. Death time *t  is recorded for each individual when tv  hits zero or an 

accidental mortality happens with a probability of 1-
*kte− . Thus, we have generated a 

survival curve for a population.  

Each distribution represents a population with 10000 members. The r value used to 

generate the distributions is 0.05, and the s and k value are controlled as 0.1 and 0.005 

separately. Finally, we allow u to range from 0.01 to 0.6 for Gaussian initial and from 

0.4 to 0.7 for gamma initial distribution. 
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Simulation Results  

Both table in Appendix C and fig. 8 below show the simulation results. The first 7 

simulations are generated from Gaussian initial distribution with u from 0.05 to 0.5. It 

appears that the estimates of r and s are relatively similar to each other for 3- and 4-

parameter models across all the 7 simulations. Among the range of u from 0.05 to 0.3, 

the parameters estimated by 4-parameter Gaussian model are close to the actual 

values, but bias becomes significant with the increase of u. As mentioned in the 

previous section, some bias is inevitable for Gaussian model due to the inappropriate 

range for the integration. Consistent with former discussion, parameter estimates from 

simulation behave relatively stable when u is less than 0.35, but bias dominates after 

then. Also, as the increase of initial variation, r decreases, but k is raised to 

compensate the bias from both r and u. At the same time, since the true initial 

distribution is Gaussian, although estimated r, s and k are close to the true values, the 

gamma model tends to overestimate u and performs not as good as the Gaussian 

model. 

The last five simulations are from the gamma initial distribution with u equaling 0.4, 

0.5, 0.577, 0.632 and 0.7 respectively. Apparently, in this situation, the gamma model 

fits data better than the other two models and parameters estimated from it are closer 

to the actual ones. Both 3-parameter and 4-parameter Gaussian models seem unable to 

capture the big initial variation, as values for r are decreased and values for k 

increased in order to obtain the fit.  
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I must point out the gamma model underestimates r and s across all values of u. The 

possible reason for this is that the numerical algorithm generating survival curves 

does not adequately represent the Brownian process. There is a slice different from 

the generating survival curve and the curve calculated from survival function directly. 

This discrepancy might be responsible for the underestimation.   

Former work has shown that the vitality distribution evolving with time changes from 

a normal-like to a gamma-like distribution. It is indicated that the normal-like 

distribution corresponds to a spread term (standard deviation) ranging from 0 to 0.35 

while a gamma-like distribution corresponds to a range of 0.35 to 0.7. Therefore, it is 

not surprising that the 4-parameter Gaussian model behaves better over a range of u 

from 0.05 to 0.3 under this explanation but loses to the gamma model when u is large. 

Introducing a gamma initial distribution for 0v  is one way to correct the bias as would 

be expected.  
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Figure 8: estimated parameters versus actual values of initial standard deviation u for 
3-parameter model, 4-parameter Gaussian model and 4-parameter gamma model. 

Model Comparison and Model Selection 

From a purely mathematical view, AIC would be a good criterion to conduct model 

comparison and model selection. Based on AIC (Burnham and Anderson 2002) 

reported in Appendix C, among the range of small u (0-0.05), the 3-parameter model 

is good enough to capture the survival information, as indicated by the smaller AIC 

value compared to the 4-parameter models. But, as u increases, the 4-parameter 
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models outperform the 3-parameter model, as expected. Under the condition of true 

initial distribution of Gaussian, although bias turns out as the actual initial standard 

deviation u gets big, the Gaussian model still performs better than both 3-parameter 

model and gamma model. Furthermore, it appears that the bigger the u is, the better 

the Gaussian model performs over the 3-parameter model. When using gamma as the 

actual initial distribution of sampling, the gamma model unsurprisingly performs 

better than both the other two models, not only with lower AIC, but also with more 

accurate parameters estimates.  

Thus, 4-parameter models are necessary improvements of vitality based survival 

model for the populations with a large variance in initial vitality. 

However, the biology of survival is beyond mathematics of survival, so that selecting 

the appropriate model to represent a real survival curve is not straightforward and 

fitting models to data do require some judgment. Intuitively, when the curve has a 

very flat beginning stage, the 3-parameter model together with Salinger’s algorithm is 

preferred due to simplicity and time efficiency. If the starting stage is steep, this 

implies that the population’s initial variation is significant, and Gaussian or gamma 

models should be preferred. As a general guideline, AIC is a good quantitative 

indicator to make decision among models: generally, the model with lowest (most 

negative) AIC after fitting will be the most appropriate. However, there are some 

special situations we need to be concerned. Examples are presented below to give 

some idea of model selection. Data are from previous research on: giant tortoise 
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(Bourn, 1978), tortoise (Hellgren, 2007), fruit fly (Carey, 1998), turtle (Gibbons, 

1982), and bird (Deevey, 1947). First, 3-parameter model and Gaussian model are 

applied to those data at the same time. If u is bigger than 0.28, a good rule of thumb is 

to consider using the gamma model also. Results are list in Table 1. 

The first example is from two giant tortoise researches (Bourn, 1978 and Hellgren, 

2000) that we compared the mortality of two kinds of tortoise. Curve fitting to the 

first species has a very small u (0.022377) leading to a preference for 3-parameter 

model. But, for the second species, 3-parameter model produces a negative estimate 

for r, which contradicts the biologically meaningful hypothesis that the average 

vitality for a population should decline with time. This is another big advantage for 

applying 4-parameter model. It is easy to control the range of the parameter space 

searched with simulated annealing. And because of adding a new parameter, the loss 

of changing r from negative to positive could be compensated by u without sacrificing 

too much goodness of fitting indicated by AIC. Other examples like turtle and 

lapwing seem exposed to the same issue and are “corrected” by the 4-parameter 

model. In these examples, the 4-parameter model is preferred with positive r despite 

the fact that the 3-parameter model provides lower AIC values. Thus, model selection 

based on their AIC doesn’t always hold.   

The 3-parameter model is ultimately just a special case of 4-parameter Gaussian 

model with u fixed at zero. Since u is a meaningful parameter, it can be argued that it 

should be retained in any situation. When u is small, although the AIC value from 3-
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parameter model is lower than that from 4-parameter Gaussian model, the estimated 

parameters r, s and k are essentially the same, which means 3-parameter model could 

be replaced by 4-parameter models under most conditions. The main reason we 

reserve the 3-parameter model is the simplicity and efficiency of the parameter 

estimation procedure. Also, we may want to compare 4-parameter models with it to 

check the accuracy of parameter estimation, specifically for small u. 

The second example with issue in selecting models is illustrated with the med fly data. 

It is a nice example showing how the values of u influence the AIC but not model 

selection. Small u corresponds with a better fitting for 3-parameter model while big u 

prefers a 4-parameter model based on AIC only. A examining of results from 

estimation tells that the parameters from 4-parameter Gaussian are almost the same as 

those from 3-parameter model. Using 4-parameter Gaussian, we do not lose any 

quality of the fit, but we gain more information with additional parameter u. We have 

displayed the second species of fruit fly of this example in the introduction section to 

reveal the limitation of 3-parameter model. It is noted that the 4-parameter allows for 

curvature in early life history where the 3-parameter model is incapable of achieving. 

It always makes a straight line decline in survival in the early life. The 4-parameter 

model gives a gradual humped decline: a concave shape in early life. Thus, the 

amount of early life humping may be an indication of heterogeneity in initial 

distribution. 
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It is interesting to look at the last example about the survivorship rate of various birds. 

The parameters estimated with 4-parameter model are quite different from those 

estimated with 3-parameter model. I doubt it is because the available data points are 

too few and the second available survival rate is no bigger than 60% for each curve. 

However, 4-parameter model seems to behave better in this case with lower AIC 

value and more important, it doesn’t have an artificial flat stage comparing to 3-

parameter model. Moreover, this example is chosen not only to exhibit how to select 

model, but also set as an example of how to compare the mortality of two populations 

based on vitality model parameters. Take British robin and starling as example, which 

two experience similar life history. The second population survives better than the 

first one with a smaller r and k, which could be explained as starling is superior to 

British Robin both in the loss rate of living capacity and accidental mortality rate. The 

first population is also more heterogeneous indicating by a larger s and u. Since 

vitality models provide options to decompose survival into four meaningful parts, it 

simplexes the system and gives a more efficient way to look at the system.  

 

Based on the simulation results in Appendix C, it could be may argued that, using the 

gamma model reduces the overall risk of being biased, since it is relatively stable 

except for a slight overestimation of u when the initial variation is small. I partly 

agree with these statements, but simplicity and efficiency would be other things to 

consider. Specifically, it is easier and faster to compute the parameters for the 

Gaussian model, while calculating gamma model would take much more efforts. Until 
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a better method is found to work with the gamma model, I would prefer to adopt the 

Gaussian model first and consider the gamma model when the estimate for u is large 

enough like>0.25.  

Summary of Conclusions     

Figure 9 shows the fit of survival curves to data. It is hard to distinguish visually 

between the 3- and 4-parameter models in most cases. But for the fruitflies and birds 

cases, 4-parameter model is obviously better than the 3-parameter model. However, in 

some situations 3- and 4-parameter model have very different parameter values, 

particularly in the case when r<0 in the 3-parameter model. Thus, I conclude that in 

most situation it is better to fit data with the 4-parameter Gaussian model first, and use 

gamma model only when u is relative big (e.g. >0.25). The 3-parameter model may be 

conducted to check the accuracy. If there is any disagreement, we should generally 

trust 4-parameter models more than the 3-parameter model. 

   
 



 
 

 

Table 1: Parameter estimation from various species of animal survival data  
 

 3-para model 4-para Gaussian model 
 r1 S1 k1 AIC r2 s2 k2 u2 AIC 
Bourn(1978),giant tortoise   
Tortoise.giant 0.052 0.103 0.027 -80.1 0.052 0.102 0.028 0.012 -78.3 
Tortoise.hermann.f -0.174 0.608 0.125 -187.7 0.000 0.521 0.087 0.284 -189.9
Carey(1998),drosophila reproduction)   
Fruitfly.f 33.000 2.893 0.000 -112.2 33.013 2.892 0.000 0.001 -110.2
Fruitfly.g 6.286 0.461 2.547 -591.7 6.674 0.008 1.519 0.231 -661.8
Gibbons(1982),turtle   
Turtle -0.757 0.367 0.256 -134.0 0.058 0.008 0.252 0.024 -132.6
Deevey(1947), agregate   
Blackbird 0.562 0.989 0.055 -74.9 0.002 0.982 0.376 0.259 -78.6 
thrush  0.637 0.935 0.057 -65.8 0.000 0.838 0.491 0.269 -68.4 
robin.b (British Robin) 0.673 0.743 0.052 -55.7 0.195 0.230 0.694 0.190 -80.0 
starling 0.561 0.756 0.110 -62.4 0.160 0.157 0.671 0.010 -74.5 
lawping -1.155 1.047 0.388 -117.8 0.086 0.009 0.425 0.017 -95.5 
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Figure 9: Model fit to survival curves of different animals. X-axis: time (year) and y-axis: 
survival rate. Solid line: 4-parameter model Gaussian model, dash line: 3-parameter 
model. 
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Figure 10: Model fit to survival curves of different animals. X-axis: time (year) and y-
axis: survival rate. Solid line: 4-parameter model Gaussian model, dash line: 3-parameter 
model (cont.). 
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Chapter III: Application to Human Mortality Data 

Demographers have made great effort to understand population survival dynamics of 

humans. A major focus in these studies has been to discover biological patterns of the life 

span of individuals (Carnes and Olshansky 1993). Since 1970s, demographers realized 

the importance of population heterogeneity in estimating life expectancy and rates of 

aging (Vaupel et al. 1979; Vaupel et al. 1998). A foundation of biodemography, the 

Gompertz law of mortality (Gompertz 1825), describes mortality rate, ux, as an 

exponentially increasing function of age x, such that bx
xu ae= where a and b are intercept 

and slope constants. However, observations indicate that at old age the mortality rate 

decelerates, or plateaus, in many populations from flies to humans (Cary et al. 1992; 

Vapel et al. 1998; Gavrilov and Garilova 2003; Rauser et al. 2006). To reconcile the 

disconnect between the Gompertz model and observations a number of studies have 

proposed a demographic heterogeneity characterized by subpopulations with distinct 

Gompertz coefficients, which produce mortality rate plateaus when the weak cohorts die 

early and the stronger subpopulations remain (Carey 1997; Service 2000; Carnes and 

Olshansky 2001; Miyo and Charlesworth 2004; Wu et al. 2006). The view of introducing 

heterogeneity made models more realistic, helping correct the bias from estimation of life 

table (Vaupel et al. 1979) and characterize the properties of data from observation. But 

the ways of representing heterogeneity by those models are inadequate to consider the 

dynamics producing heterogeneity. Thus, they are unable to display how the population 

structure changes with heterogeneity.   

We apply the vitality model to explore how heterogeneity in vitality may provide an 
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alternative framework in which to view the complex process in human survival patterns. 

Therefore, we not only want to fit the survival data, but also try to explain some 

important features characterizing mortality rate. Due to the abundance of data available in 

demography, applying the vitality model to human mortality data did reveal something 

interesting and fundamental patterns that have not been considered previously.  

Parameter Estimation  

National-level mortality data of Denmark from Human Mortality Database (Wilmoth and 

Shkolnikov) are used. Data are organized by cohort with birth year from 1835-1895 and 

life period from age 0 to age 110. For each cohort, we left-truncate life survival curve by 

every 10 year. For example, 9 survival curves are generated from the cohort with birth 

year at 1885, corresponding to age ranges 0-110, 10-110, 20-110, 30-110, 40-110, 50-110, 

60-110, 70-110, and 80-110 separately. I fit vitality model to each curve respectively. The 

Gaussian initial model is implemented to the first 7 curves while gamma initial model is 

applied to the last two since old age population tend to have large variation and are more 

likely to have a gamma initial distribution. Figure 10 shows the fitting results for cohort 

with birth year at 1885. Except for the first curve, vitality model fits the data quite well 

especially for the old ages. I suggest that the failure of fitting early age is because the 

accidental mortality (i.e. age independent) rate in infants is much higher than the average 

accidental mortality of adults. Since our model assumes the average accidental mortality 

is a constant among the age range of fitting curve, it fails to capture this big gap. Possibly, 

early life mortality could be the result of different r, s and k parameters as well as an 

initial distribution. Typically, demographic models fit curves like the Gompertz curve to 
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adult populations and disregard the very-young. Some of the improved models are 

designed to fit the early age data by making subpopulations characterized with different 

parameters (Yashin, et al. 2001). Similar method may be adopted with a vitality model, 

but it is out of the scope of this thesis. However, almost perfect fitting for later ages really 

indicates much information. Table 2 lists the parameters estimated from vitality model of 

cohort 1885.  
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Figure 11: fitting results for truncated survival curves from Danish cohort data with birth 
year at 1885. The Gaussian was fit for the first 7 curves and the gamma model for the last 
two oldest curves.   
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Figure 12: fitting results for truncated survival curves from Danish cohort data with birth 
year at 1885. The Gaussian was fit for the first 7 curves and the gamma model for the last 
two oldest curves (cont.).   

 



 
 
 

41 

 

60 70 80 90 100

0.
0

0.
4

0.
8

time

Su
rv

iv
al

 ra
te

from age 60 to age 110+

70 80 90 100 110

0.
0

0.
4

0.
8

time
Su

rv
iv

al
 ra

te

from age 70 to age 110+

 

80 90 100 110

0.
0

0.
4

0.
8

time

Su
rv

iv
al

 ra
te

from age 80 to age 110+

 

Figure 13: fitting results for truncated survival curves from Danish cohort data with birth 
year at 1885. The Gaussian was fit for the first 7 curves and the gamma model for the last 
two oldest curves.   
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Table 2: parameter estimates for cohort 1885 (standard errors of the estimates are listed in 

brackets) 

age 0-110 10-110 20-110 30-110 40-110 50-110 60-110 70-110 80-110 

r 
0.012  

(6E-6) 

0.015 

(8E-6) 

0.017 

(2E-5)

0.020 

(2E-5) 

0.025 

(4E-5) 

0.033 

(7E-5)

0.044 

(1E-4) 

0.060 

(5E-4) 

0.076 

(6E-4) 

s 
0.003 

(2E-4) 

0.002 

(8E-4) 

0.004 

(2E-4)

0.003 

(4E-4) 

0.003 

(5E-4) 

0.003 

(8E-4)

0.020 

(9E-4) 

0.046 

(8E-4) 

0.043 

(7E-4) 

k 
0.010 

(5E-5) 

0.005 

(4E-5) 

0.006 

(4E-5)

0.006 

(5E-5) 

0.007 

(6E-5) 

0.010 

(1E-4)

0.018 

(2E-4) 

0.042 

(3E-4) 

0.114 

(3E-4) 

u 
0.098 

(1E-4) 

0.137 

(1E-4) 

0.176 

(1E-4)

0.193 

(2E-4) 

0.236 

(2E-4) 

0.283 

(3E-4)

0.317 

(5E-4) 

0.349 

(1E-3) 

0.354 

(2E-3) 

 

The Pattern of r 

Noticed from the first two plots of Figure 11 that estimated r is increased as the starting 

age goes up and log(r) is nearly linearly against age. In vitality model, /r vρ= is the 

normalized average vitality loss. v is the average vitality at beginning time for vitality, 

while ρ  is the absolute average vitality loss, which is proposed (Anderson et al 2008), 

may represent the average decreasing rate of cell function contributing to accumulated 

damage of body. According to basic model assumption, ρ is constant across the fitting 
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range, but ρ might be different as the left truncation age of the data is altered. Under the 

assumption that the initial vitality is described by a Diric delta function, so all individuals 

are identical at birth, the average vitality v  as a function of age (T) is 

( )

( )

* * *
2
** *0

* *
* * *

2
0 ** *

1 2 1exp,

1 2 1, exp

v

v

rT r rT
vp v T dv

ss T s T
v rT

rT r rTp v T dv
ss T s T

∞

∞

    − −Φ + Φ −    
    = = −

    − −Φ − Φ −    
    

∫

∫
                             16) 

where r∗  and s∗ are the parameters of a survival curve beginning with point source of 

vitality (Anderson et. Al. 2008). Here we use r and s estimated from curve starting at age 

10 to approximate r∗  and s∗ , since the initial variation is small at early age groups. Thus, 

we are capable of estimating tv at each starting age as the average initial value of vitality 

for each curve. Then tρ  is recovered following the relationship of t t tv rρ = × . 

Specifically in this example, t means the starting age and tρ  is the absolute average rate 

of vitality loss, which is a constant over the curve starting from age t to age 110. Shown 

by fig. 11(3), tρ  is flat at early starting age, but begins dropping around age 60. As 

tρ somehow represents the average rate of senescence, the decline may be a sign of 

average senescence slowing down at older ages.          
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Figure 14: Parameter r and estimated ρ from Denmark’s human survival data with cohort 
1835,1845,1855,1865, 1875, 1885 and 1895. The original and log scale r against initial 
age comparing among cohorts are shown in plot 1 and 2separately. Plot 3 is the absolute 
parameter ρ changing with starting age, while plot 4 indicates the average ρ vs. cohort 
years.   

 

The Pattern of u 

Similar to r, tu  standing for the standard deviation of the initial distribution of vitality in 

the model is also ascending with the increase of initial age (fig. 12). Using the same 
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approach, tτ  could be recovered from t tv u×  which represents the absolute standard 

deviation of initial vitality. However, the declining trend of tτ  seems contradictive with 

the trend of tu (fig. 12). Either tu  or tτ  might be considered as a representation of the 

biological variation of a population. There is a debate about the age-specific pattern of 

genetic variation among population. Some drosophila experiments report that the 

variation was relatively high at early and intermediate ages and then declined at older 

ages (Promislow et al. 1996, Pletcher et al. 1998), which appears to be favored by the 

trend of tτ . But Service (2000) argued that the decline of variation that had been 

observed in those experiments was an artifact of heterogeneity and the real variation 

should keep increasing until approach to an asymptotic value. He further stated the reason 

of this contradiction was the individuals who survive to old ages were not truly 

representative of their cohorts. Thus, “observations of the surviving population cannot be 

directly translated into conclusions about the behavior or characteristics of the individuals 

who made up the original population”(Vaupel and Yashin 1985). Back to our vitality 

model, remember that the stage of quasistationary distribution mentioned before where 

the mortality rate is a constant and the distribution of vitality converges to a limiting 

distribution. Probably, this is not the most appropriate statement. A better way is that 

when the process reaches its quasistationary distribution, as the dying of individuals from 

the population, the probability mass of vitality is continuously dropping off, but when we 

renormalized the probability mass to 1, the distribution stays stable as the quasistationary 

one. Thus, the real pattern of age-specific variation should behave like u that goes up and 

hits an asymptotical value which is the variation of the limiting distribution of the process 
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(Aalen and Gjessing 20001). What we can observe in population variation is usually the 

trend of τ . Intuitively, this disconnection between real variation and observing variation 

is caused by the shrink of population size which is the same idea of Service (2000) that 

the available survival population at old ages may be only a part of the truly population. 

By somehow, we can still catch the real variation in some experiments when death is not 

significantly occurring. A review of gerontological studies shows that the variability of a 

majority of biological and cognitive health indicators tends to increase with age. (Nelson 

et al. 1992) Likewise, a longitudinal study of blood pressure among nearly 4000 men 

over a 40-year period found increasing variability with increasing age. (Tate et al. 1995) 

These empirical results on age-related variability are compatible with what we got and 

even confirm our explanation of the pattern of parameters. Notice that Zens and Peart 

(2003) have discussed the need of considering hazard functions that account and readjust 

for the remaining population. But the vitality model does this automatically.  

It seems that the features of vitality model itself solves the contradiction between u and τ , 

and the shape of u is understood. In this paragraph, we’ll look in detail how the shape of 

τ in fig.12 (2) is produced. A simulation is conducted using the similar values of 

parameters to the human mortality data. The simulation is just like what we did in chapter 

II that thousands of vitality trajectories are created and we directly calculate the variation 

of vitality distribution at each time point. This gives the simulation value of τ shown in 

fig. 13(2). τ increases in the early and intermediate ages but falls down at old ages, which 

is consistent with the observation in many experiments (Promislow et al. 1996, Pletcher 

et al. 1998). Comparing fig. 12 (2) with fig.13 (2), τ estimated from real data doesn’t 

capture the early increase trend. One possible explanation is the overestimate of u as well 
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asτ starting at early ages. Look at fig. 10, the fitting results for truncated survival curves 

from Danish cohort data with birth year at 1885. It seems like the model did not fit data 

that well for the first four plots (starting at age 0, 10, 20, 30.) comparing to the last five. 

The fitting curves are a little bit under the real curves, which could be a sign of 

overestimate. Check fig. 5 in chapter I: the bigger the u is, the steeper the curve is at the 

beginning. And u is quite sensitive for the bias; therefore a little deviation will cause a 

significant change of u. That is why there is not an early increase of τ of human data.   
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Figure 15: Parameter u and τ estimated from Denmark’s human survival data with cohort 
1835,1845,1855,1865, 1875, 1885 and 1895. 
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Figure 16: calculation τ  from simulation. The first plot shows directly how we calculate 

τ at each time point from vitality trajectories. The second plot is the simulation results. 

The Pattern of s and k 

The pattern of s and k is a little different. Both s and k are relatively stable if starting at an 

early age, but suddenly increase to a high level at older beginning ages. For t t tv sσ = ×  

the absolute magnitude of the stochastic term, there has a slowly ascending trend at old 

ages as shown in fig. 14 (2). For k, indicating the accidental mortality rate, a reviewing of 

U.S. monthly vital statistics report, advance report of final mortality statistics over a 

period of 1977 to 1995 clearly shows that the death rate caused by accidents, homicide 

and suicide has a dramatic increase around age 75 after following a flat beginning, which 

is almost perfectly implied by this vitality model. Reports from year 1979 and 1995 are 

listed in Table 3. Mortality is expressed as the number of death every 100,000 people.   

 

 

 



 
 
 

49 

 

Table 3: Monthly Vital Statistics Report, Report of Final Mortality Statistics, 1995 

Accidental mortality by age (every 100,000 people) 

age 0-1 1-4 5-14 15-24 25-34 35-44 45-54 55-64 65-74 75-84 85+ 

1979 31.5 26.5 16.1 62.6 45.7 38.4 39.4 43.5 58.8 117.8 276 

1995 20.5 14.5 9.3 38.5 32.9 33.5 29.8 31.9 44.8 98.4 268.2

 

One common characteristic among parameters is a significant altering of structure 

happening after age 60. There might be some fundamental change pertaining to either the 

process or the organism function for old population, which have something to do with the 

hypothesized mortality plateau. As we mentioned before, the vitality distribution 

converges to its quasistationary distribution at old ages. This has been proved to be a 

natural way that leads to mortality plateaus by the structure of Winner process itself. 

We’ll further discuss it later.    
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Figure 17: Parameter estimation from Denmark’s human survival data with cohort 
1835,1845,1855,1865, 1875, 1885 and 1895. The original and log scale s and k against 
initial age comparing among cohorts are shown in plot 1, 2, 5 and 6 separately. Plot 3 is 
the absolute parameter σ changing with starting age, while plot 4 indicates the average 
σ  vs. cohort years. Plot 7 describes the trend of k as the increasing of cohort years. Each 
line is fixed at a starting age.   
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Figure 18: Parameter estimation from Denmark’s human survival data with cohort 
1835,1845,1855,1865, 1875, 1885 and 1895. The original and log scale s and k against 
initial age comparing among cohorts are shown in plot 1, 2, 5 and 6 separately. Plot 3 is 
the absolute parameter σ changing with starting age, while plot 4 indicates the average 
σ  vs. cohort years. Plot 7 describes the trend of k as the increasing of cohort years. Each 
line is fixed at a starting age (cont.).   
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Comparison across Cohorts  

Almost the same patterns of estimated parameters have been observed from the data of 

cohort 1835, 1845, 1855, 1865, 1875 and 1895. Comparing parameters across cohort 

years will also reveal something interesting. Fig. 11, 12 and 14 shows parameters 

estimated from truncated survival curves of different cohort years. In Fig. 11 (2), the lines 

of log(r) are well arranged from top to bottom corresponding to cohort from year 1835 to 

1895, and the differences of log(r) among cohorts are more significant for older ages than 

younger ages. While in fig. 11 (4), the average ρ of each cohort are plotted against cohort 

years. A linear descent is strongly suggested by a high R-squared and low p-value. Since 

r and ρ mainly characterize the normalized and absolute decline rate of organism’s living 

ability respectively, both these plots imply human’s survival capability has been 

significantly improved through years, especially for old ages.  

 

Comparing k starting at the same age across cohorts also displays the similar trend that 

the accidental mortality is declined year by year, which is also consistent with table 4. 

Fig.14 (7) gives a distinct way to view this trend by showing k declines with cohort year 

for fixed starting ages. Looking at the average σ  against cohort years in fig.14 (4), there 

is a decreasing trend but is not significant suggested by a p-value equaling 0.063. 

Because parameter τ and normalized u mainly determine the heterogeneity of a 

population, as shown by fig. 12(1) and (2), no obvious tendency among cohorts for τ and 

u demonstrates that the variance among population is not significantly decided by year. 
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However, ρ , r together with k are good enough to indicate the survival improvement 

which has been confirmed by many demographic studies (Yashin, et al. 2001).  

In this section, we apply vitality model to fit human survival data, which incorporates 

parameters directly related to qualitative features such as capacity of living, age-specific 

pattern of variation among population and accidental mortality. The quantitative analysis 

shows that the observed trends in human survival can be well explained in terms of the 

pattern of parameters estimated from vitality model. 

Mortality Plateau 

One of the most interesting problems in demographical studies is related to mortality 

plateau which is believed to be critical for explaining the dynamics of senescence. 

Mortality plateau, as being defined several times previously, is one fundamental problem 

that the supposedly tenets of ageing, namely the exponential growth of mortality rates 

proposed by Gompertz (1825), may fail to describe the behavior of observed populations 

adequately (Weitz and Evans 2001). More specifically, studies using populations or 

“cohorts” of different animals and humans demonstrate that mortality rates tend to level 

off and even decease at later stages of life, known as mortality plateaus (Carey et al. 1992; 

Vaupel et al. 1994, 1998). There are at least two possible explanations for this 

phenomenon: the heterogeneity hypothesis and the individual-risk hypothesis (Khazaeli 

et al. 1995). According to the heterogeneity hypothesis, the deceleration is a statistical 

effect of selection through the attrition of mortality. Because the more frail tend to die at 

younger ages, survivors to older ages tend to have favorable health endowments and 

healthy lifestyle. For the individual-risk hypothesis, the age-related increase of mortality 
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risk for individuals slows down at older ages, which leads to the decline of mortality. 

Since the vitality model is a simple representation of the complex system and the 

essential process of ageing and death, the most attractive application would be having 

something to do with mortality plateau. 

 

First, in some degree, the vitality model does favor the first explanation that 

heterogeneity among population naturally shapes the survival curve as well as the 

mortality rate plateaus. The way we represent heterogeneity automatically allows some 

individuals die early and some survive longer. Early as 2001, Weitz and Fraser have 

successfully shown the mathematical fundamental of producing mortality plateaus by 

Winner process based model. In their paper, they proposed a similar model to Anderson’s 

3-parameter model, only didn’t consider accidental mortality. Without applying to any 

real data, they expressed the hazard rate analytically and displayed that the mortality 

plateau was physically achieved under different conditions of parameters. Certainly, we 

could conduct similar analysis and finally end up with the similar results. The new hazard 

rate of our 4-parameter model would be the similar expression as Weitz and Evans’ only 

plus a constant accidental mortality k, which would not change the shape of hazard rate. 

Here, the important point is that our vitality model creates an approach to exhibit the 

mechanism of heterogeneity evolving through ages that could cause a mortality plateau. 

Secondly, let’s look at our process in a deeper way through quasistationary distribution. 

The stage that the hazard rate is stabilized shown by Weitz and Fraser (2001) is the time 

the vitality distribution reaches its quasistationary distribution, the time the shape of the 

probability mass is stable, and the time the level of distribution sinks proportionately at 
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every location. Then, “the mortality rate, of course, will also approach the mortality rate 

averaged over this distribution. In other word, the mortality rate stops increasing, not 

because we have selected out the exceptional subset of the population, but because the 

condition of the survivors is reflective of their being survivors, even though they started 

out the same as everyone else.” (Steinsaltz and Evans 2003). Thus, although we adapt an 

approach of heterogeneity to explain mortality plateau, our way is a little different with 

the heterogeneity hypothesis proposed before. We neither characterize the variation 

between populations or select population as time went through. Instead, we only model 

the heterogeneity within a population and show how it evolves with time. It turns out the 

mortality plateau will naturally achieve under the way we represent heterogeneity.  

Finally, besides considering model structure only, applying model to real human survival 

data suggests something more. Look at the Fig. 11 (3) that the absolute rate of vitality 

loss ρ against starting ages. A decline happens around age 60 among all the cohorts. As 

stated above, the drop of ρ is a sign of deceleration of average mortality as well as the 

average rate of senescence. Purely following the parameter estimation from data, 

mortality plateau presents itself. However, the explanation for the decline of average rate 

of vitality loss is not able to recognize one hypothesis from the other. That is both 

hypotheses could conduct the decreasing of ρ . Our heterogeneity hypothesis assumes 

that the achievement of quasistationary distribution brings down the average loss rate of 

vitality at old ages, while individual-risk hypothesis supposes the functional senescence 

slowing down for each individual contributes to a total decline. Technically, those two 

hypotheses do not conflict with each other at all. Although the structure of vitality model 

supports the heterogeneity hypothesis, it does not exclude the second hypothesis. There is 
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a possibility that the combination of those two hypotheses forces the formation of 

mortality plateau.  

 

Mortality plateau is still a mystery; however our vitality model makes a good progress to 

explain it. At least, it provides a way to measure the possible hypotheses.  

Discussion  

Summary of model 

In this thesis, I propose new extensions to the vitality model developed by Anderson 

(1992, 2000) that add several components to characterize the initial variation of a 

population. The original vitality model allows heterogeneity within the population as it 

evolves with age but assumes that the population is homogeneous at the beginning of the 

survival curve. However, the initial differences among individuals are also important that 

relate to vital properties of population including inborn genetic heterogeneity and current 

status of variation that determines the population based mortality in future. Because of 

being able to represent this initial variance, it allows us to divide a population’s life 

history into distinct stages, where each stage can be independent of its past states, since 

the beginning status of each stage has been parameterized by u. In another sense, the 

initial components u also contain the information of former status and could be a 

summary of heterogeneity evolving with time previous to observing time. Thus, 

introducing initial distribution into vitality model is not only a matter of modeling but 
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meaningfully helps to better understand the mechanism of how heterogeneity shapes a 

population’s survival curve.  

 

Here we naturally chose two kinds of initial distribution: Gaussian and gamma, as 

revealed by the hidden properties of the model itself. Also, in a more general sense, 

Gaussian is the most common distribution for assembling individuals. And the 

distribution of vitality tends to stabilize into a gamma distribution pointed by Aalen et al. 

(2001). The model has successfully implemented Gaussian and gamma functions as the 

representation of vitality distribution at the beginning of stages. However, it has been 

shown by Aalen (2001) that if the variation is big enough, vitality will reach a 

quasistationary distribution. I did not model the transition between Gaussian and gamma 

to quansistationary distribution, and more important, discuss how the initial distribution 

will affect the shape quasistationary distribution.       

Fitting algorithm  

As stated in this thesis, simulated annealing has been used as the mainly algorithm to 

estimate those parameters. Simulated annealing, as one of those optimization methods 

that allows jump out of the local optimal values, seems to work well for the vitality 

model. But the biggest problem for this approach is about timing. Since simulated 

annealing is a search based method, it is inevitably time consuming. Usually, using a 

conventional laptop computer, it takes 15 minutes to get a result from a Gaussian initial 

model comparing to a Newton-Ralphson related method that only uses 5 seconds. For 

gamma initial model, it is even worse and could take as long as 1 day for one 
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convergence due to the numerical integral. The ideal algorithm should be like Sailinger’s 

approach, having some restrictions on initial parameter estimation that would increase the 

speed a lot, but further work is still needed to explore it.  

 

Another thing need to be noticed is the choice of algorithm parameters that control the 

search process, like the value of initial temperature and the proportion of temperature 

reduction at each round. It is quite possible that if those parameters are not carefully 

chosen, the algorithm doesn’t guarantee to converge to the right answer. Unfortunately, 

there is no explicit form to follow and the algorithm parameters may vary as the 

optimization function changes. Therefore, we can only pick up those values by 

experiment.  

 

Application to human survival data 

The successful application of vitality model to demographic data has explained some 

important features characterizing survival dynamics in human population, such as the age 

pattern of survival improvement. Of course, we could do something more using vitality 

model. If there are enough data available, we are able to comparing survival situation 

across country, sex, race and et al. based on their vitality parameters.  

The most attractive application would be related to the explanation of mortality rate 

plateaus. We have shown somehow, both the model structure and data exploring will 

naturally lead to a mortality plateau. Although this model demonstrates why an aging 
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process should exhibit mortality plateaus, it does not claim to uncover the fundamental 

causes of aging.  

 

However, the way we use vitality model prove that it could be far more than fitting to 

data, but a simple way to represent the complex system and reveal the essential process of 

aging and death.  

Further application and final thoughts 

It has been noted numerous times that the reason we want to introduce vitality model is to 

find something fundamental in survival mechanism among different species of animals 

including humans. This model is in many ways an ideal construct. It subsumes various 

mechanisms into a single measure of vitality that leads the natural question of how the 

vitality parameters are correlated with body size, environmental conditions and even 

genetic differences, if at all. One application of this model is to relate environmental 

effects or outer treatments to survival through vitality parameters. That is looking at how 

the external forces change vitality parameters that finally shape the survival curve. 

Anderson (2000, 2008) has done excellent jobs on discussing those relationships. 

However, we still need more data both laboratory and natural to complete this system 

including considering initial distribution into model. 

  

A considerable number of literatures support the hypothesis that gradual cumulative 

physiological degradation, such as oxidative damage at the cellular level results in 

organism ageing and eventual catastrophic collapse leading to death. If the concept of 
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vitality is valid, the process occurs in a similar manner can be linked to a cellular 

measurement. Therefore, the advanced application could come down to a level of cell and 

even gene expression.   

 

In another view, as we discussed above, the heterogeneity causing mortality plateaus 

reveal the idea that the condition of the survivors is reflective of their being survivors. 

This is somehow a sense of natural selection. If we could further explore how the vitality 

relates to natural selection thus leading to evolution, this model would have great value. 

Thus, we believe, although great effort is still needed to consummate our vitality model, 

it has perspective future both in micro and macro application.  
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Appendix A: Background on Vitality Model  

Traditionally, differential equations are widely used to model survive rate. However, this 

method has its biggest shortcoming that it ignores the nature heterogeneity among 

population including the initial birth variances and the differences involving further over 

time. Heterogeneity is one of the most important properties for a population which is 

believed to be significant to issues of population regulation, extinction and evolution. 

Several ways have been developed to deal with heterogeneity such as Individual Based 

Model that tracks population traits at individual level. But even significant progress has 

been made in developing IBMs, they still lack a standardized approach for representing 

heterogeneity. A totally new vitality model for fitting survival cures was initially 

published in a paper by Anderson in 2000. The vitality model for survival is a method by 

which to characterize the complex interactions between external and internal processes of 

a given organism. It has two components, one based on past history and related to vitality, 

and the other one independent of past history and representing accidental mortality.  

For vitality-dependent part, each organism within a population is born with a certain 

amount of vitality 0v . Vitality, denoting the remaining survival capacity of an organism, is 

a real positive number that evolves with age as a continuous Wiener process. The rate of 

vitality loss is described by Equation (1) 

                    tdv dt = −ρ + σε                                 (1)  

where ρ and σ are the magnitudes of the deterministic (drift) and stochastic (spread) rates 

of change of vitality, t is age, and tε is a white noise process that spreads the distribution. 

When an organism’s vitality reaches zero it dies.  
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Since the value of the initial vitality of any organism is an unknown quantity, it makes 

sense to normalize the vitality and parameters ρ andσ by the initial vitality 0v .  

0/v v v=   0r v= ρ   0s v= σ                     (2) 

This creates two new parameters r and s, the normalized rate of vitality drift and the 

normalized rate of spread.    

At a given time t, the probability of a vitality v  is defined by equation 3) given the initial 

vitality 0v . This equation requires all the members of the population have the same initial 

vitality, describing by a Dirac delta function ( )0v vδ − .  

  ( ) ( ) ( )2 2

0 2 2 2

1 11 2, ,0 exp exp
2 22v

v rt v rt rp v t v
ts ts ss tπ

    − + + +
 = − − − +   

        
       (3)  

Integrating equation (3) over the allowable range of vitality(0, ∞ ) gives the probability of 

survival based on vitality. 

For vitality-invariant part, the probability of survival dues to accidental mortality is a 

Poisson process and defined in equation 4).  

                   ( ) kt
aP t e−=                                       (4) 

The probability of survival for a population is the product of the probability of survival 

based on vitality and the probability of survival due to accidental mortality. The explicit 

formula is shown in equation 5) 

  ( ) ( )2

1 2 1( ) ( ) ( ) 1 exp 1 kt
v a

rl t P t P t rt rt e
ss t s t

−     = = Φ − − Φ − +          
       (5) 
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Appendix B: the shape of gamma distribution with restriction mean=1 
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Appendix C: Table for simulation results (standard errors in parentheses) 

    r s k u AIC 

actual para 0.050  0.100  0.005  0.050  NA 

3-para 
0.047 

(0.001) 
0.097 

(0.004) 
0.005 

(0.001)  NA -503.5  

4-para Gaussian 
0.047 

(0.001) 
0.097 

(0.003) 
0.005 

(0.001)  
0.049 

(0.002)  -499.4  

Simulation 1  
Gaussian 

4-para gamma 
0.046 

(0.001) 
0.090 

(0.003) 
0.005 

(0.001)  
0.141 

(0.002)  -416.7  

actual para 0.050  0.100  0.005  0.100  NA 

3-para  
0.047 

(0.001) 
0.097 

(0.003) 
0.006 

(0.001)  NA -498.3  

4-para Gaussian 
0.048 

(0.001) 
0.094 

(0.003) 
0.006 

(0.001)  
0.109 

(0.003)  -500.8  

Simulation 2 
Gaussian 

4-para gamma 
0.049 

(0.001) 
0.078 

(0.004) 
0.003 

(0.001)  
0.262 

(0.003)  -479.6  

actual para 0.050  0.100  0.005  0.200  NA 

3-para 
0.046 

(0.001) 
0.100 

(0.003) 
0.008 

(0.001)  NA -474.2  

4-para Gaussian 
0.048 

(0.001) 
0.090 

(0.003) 
0.005 

(0.001)  
0.226 

(0.006)  -495.3  

Simulation 3 
Gaussian 

4-para gamma 
0.048 

(0.001) 
0.071 

(0.002) 
0.005 

(0.001)  
0.339 

(0.005)  -478.9  

actual para 0.050  0.100  0.005  0.300  NA 

3-para 
0.045 

(0.001) 
0.111 

(0.004) 
0.009 

(0.001)  NA -440.9  

4-para Gaussian 
0.048 

(0.001) 
0.097 

(0.004) 
0.005 

(0.001)  
0.264 

(0.022)  -482.5  

Simulation 4 
Gaussian 

4-para gamma 
0.048 

(0.001) 
0.082 

(0.003) 
0.004 

(0.001)  
0.367 

(0.004)  -471.4  

actual para 0.050  0.100  0.005  0.350  NA Simulation 5 
Gaussian 

3-para 
0.042 

(0.001) 
0.117 

(0.004) 
0.014 

(0.002)  NA -478.0  
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4-para Gaussian 
0.046 

(0.001) 
0.107 

(0.004) 
0.008 

(0.001)  
0.273 

(0.020)  -517.1  
 

4-para gamma 
0.047 

(0.001) 
0.089 

(0.003) 
0.007 

(0.001)  
0.379 

(0.006)  -491.1  

actual para 0.050  0.100  0.005  0.400  NA 

3-para 
0.037 

(0.001) 
0.096 

(0.005) 
0.017 

(0.002)  NA -471.4  

4-para Gaussian 
0.040 

(0.001) 
0.085 

(0.005) 
0.012 

(0.002)  
0.271 

(0.021)  -509.1  

Simulation 6 
Gaussian 

4-para gamma 
0.044 

(0.001) 
0.078 

(0.002) 
0.005 

(0.001)  
0.401 

(0.010)  -455.5  

actual para 0.050  0.100  0.005  0.500  NA 

3-para 
0.036 

(0.001) 
0.108 

(0.005) 
0.019 

(0.002)  NA -453.9  

4-para Gaussian 
0.040 

(0.001) 
0.098 

(0.005) 
0.014 

(0.002)  
0.277 

(0.020)  -478.8  

Simulation 7 
Gaussian 

4-para gamma 
0.045 

(0.001) 
0.078 

(0.006) 
0.006 

(0.001)  
0.481 

(0.001)  -469.2  

actual para 0.050  0.100  0.005  0.400  NA 

3-para 
0.044 

(0.001) 
0.120 

(0.005) 
0.012 

(0.002)  NA -455.3  

4-para Gaussian 
0.048 

(0.001) 
0.109 

(0.005) 
0.005 

(0.002)  
0.285 

(0.005)  -498.5  

Simulation 8 
gamma 

4-para gamma 
0.048 

(0.001) 
0.087 

(0.006) 
0.005 

(0.002)  
0.395 

(0.002)  -499.4  

actual para 0.050  0.100  0.005  0.500  NA 

3-para 
0.036 

(0.001) 
0.126 

(0.005) 
0.020 

(0.007)  NA -433.7  

4-para Gaussian 
0.046 

(0.001) 
0.130 

(0.005) 
0.005 

(0.002)  
0.324 

(0.005)  -444.3  

Simulation 9 
gamma 

4-para gamma 
0.047 

(0.001) 
0.093 

(0.007) 
0.005 

(0.002)  
0.504 

(0.002)  -470.8  

Simulation 10 actual para 0.050  0.100  0.005  0.577  NA 
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3-para 
0.034 

(0.005) 
0.124 

(0.022) 
0.022 

(0.007)  NA -463.6  

4-para Gaussian 
0.039 

(0.001) 
0.117 

(0.007) 
0.015 

(0.002)  
0.286 

(0.007)  -490.2  

gamma 

4-para gamma 
0.044 

(0.001) 
0.062 

(0.007) 
0.008 

(0.003)  
0.585 

(0.004)  -491.0  

actual para 0.050  0.100  0.005  0.632  NA 

3-para 
0.028 

(0.006) 
0.133 

(0.026) 
0.026 

(0.008)  NA -422.2  

4-para Gaussian 
0.035 

(0.006) 
0.125 

(0.027) 
0.018 

(0.008)  
0.294 

(0.001)  -438.4  

Simulation 11 
gamma 

4-para gamma 
0.046 

(0.001) 
0.078 

(0.008) 
0.004 

(0.002)  
0.640 

(0.006)  -464.4  

actual para 0.050  0.100  0.005  0.707  NA 

3-para 
0.022 

(0.008) 
0.143 

(0.044) 
0.032 

(0.009)  NA -497.6  

4-para Gaussian 
0.023 

(0.008) 
0.115 

(0.044) 
0.035 

(0.009)  
0.268 

(0.001)  -512.8  

Simulation 12 
 gamma 

4-para gamma 
0.049 

(0.001) 
0.093 

(0.009) 
0.005 

(0.002)  
0.712 

(0.004)  -513.1  

 

 


