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While general patterns in the juvenile outmigration of Pacific salmon are well known, the 

proximate mechanisms informing migration in individuals are still poorly understood. This thesis 

describes a complex of individually-based bioenergetic and migration initiation models and their 

application to fall Chinook salmon.  We used the Wisconsin bioenergetics model combined with 

PIT tag and temperature data to model the growth of individual fish within the rearing habitat. 

We then created and tested a series of mechanistic models of migration initiation using 

individual fish mass and growth efficiency as proximate triggers of migration. We examined the 

performance of these models using CPUE data and maximum likelihood optimization methods 

and found that the model with both fish mass and growth efficiency as possible trigger methods 

performed the best; we refer to this model as the Mass-Growth model. To further test this model, 

we then created a correlative model of migration initiation which we refer to as the Age-Growth 

model. We found the predictions of the Mass-Growth and Age-Growth models to be comparable. 

We then applied the Mass-Growth and bioenergetic models to PIT data from ocean-type and 

reservoir-type fall Chinook to examine possible triggers that result in the two different life 

history strategies when fish enter Lower Granite Reservoir. Our models predicted that reservoir-

type fish were more likely to initiate migration later and at smaller sizes than ocean-type fish, 



 
 

and that the proximate triggers for migration were more likely to be reversed for reservoir-type 

fish after they entered Lower Granite Reservoir. We determined that the stratified temperature 

regime in Lower Granite Reservoir was the primary cause of the reversal of modeled migration 

triggers; for this reason, we then assert that the cool-water pools in Snake and Columbia River 

reservoirs provide temperature refuges with favorable growing conditions that result in slower-

growing fall Chinook salmon following a reservoir-type life history. 
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Chapter 1: Introduction 

 

1.1 Background and Chinook Life History 

 Migration plays a central role in the life history of anadromous salmon. Chinook salmon 

(Oncorhynchus tshawytscha) rear in riverine habitats, then migrate as subyearling or yearling 

juveniles through riverine and estuarine habitats to the ocean (Quinn 2005). There are several 

distinct life history types present in Chinook salmon in the Snake River basin, characterized by 

differences in timing of their juvenile outmigration and the return migration as adults (Quinn 

2005, Waples et al. 1991, Connor et al. 2005). Spring-summer Chinook spawn and rear in small 

order streams in tributaries of the Snake River (Matthews and Waples 1991) and follow a 

“stream-type” life history characterized by rearing for a full year in the spawning habitat and 

migrating in early to mid spring as age-1 smolts (Healy 1991). Fall Chinook spawn and rear in 

the main stem of the Snake River and in the lower reaches of some Snake River tributaries 

(Connor et al. 2003a) and generally have been assumed to follow an “ocean-type” life history 

(NMFS 1992) wherein juveniles rear for only a few months after emergence from the gravel and 

migrate in the summer as age-0 smolts (Healy 1991). However, it has recently been discovered 

that significant numbers of fall Chinook juveniles arrest their seaward migration and overwinter 

in reservoirs on the Snake and Columbia Rivers, then resume migration and enter the ocean in 

early spring as age 1 smolts (Connor et al. 2005). Connor termed this life history strategy 
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“reservoir-type.” As there were no dams on the Snake or Columbia rivers prior to the 1950s, the 

development of this reservoir-type life history is likely fairly recent (Connor et al. 2005). 

The reservoir-type life history has not yet been well-studied, and the mechanisms that 

result in the reservoir-type life history as opposed to the ocean-type life history are not fully 

understood. However, it appears that the reservoir-type life history has become consequential to 

the fall Chinook population spawning in the Snake River basin (Connor et al. 2005, Williams et 

al. 2008). Work by Connor has revealed that a significant proportion of the overall population 

currently follows the reservoir-type life history. The percentage of juvenile Chinook that follow 

the reservoir-type life history seems to be quite variable, ranging from 1% to 25% depending on 

specific subpopulation in the Snake River and year (Connor et al. 2002); the percentage of 

returning adults that were reservoir-type juveniles is also quite variable, but averages 41% for 

wild fish and 51% for hatchery fish (Connor et al. 2005). Additionally, the reservoir-type life 

history appears to result in higher smolt-to-adult return rates than the ocean-type life history, as 

predicted by optimal life history models (Williams et al. 2008) and demonstrated by return rates 

(Connor et al. 2005). These studies demonstrate that reservoir-type fall Chinook have become a 

significant component of the Snake River population, and make clear the importance of gaining 

an understanding of this life history to efforts to restore the Snake River population of fall 

Chinook salmon. Snake River fall Chinook salmon are listed as threatened under the Endangered 

Species Act (NMFS 1992), and over the last several decades significant resources have been 

allocated to research and efforts to restore and protect fall Chinook salmon, as well as other 

populations of salmon in the Columbia River basin. Many agencies and stakeholders hold an 

interest in preserving Columbia River salmon; numerous federal and state government agencies 

are tasked with managing various aspects of the river and its resources, and many academic, 
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private, and tribal agencies contribute to research and management efforts as well. More than $7 

billion has been spent in total in efforts to research, protect and manage salmon and restore runs 

to their historical sizes (Williams 2008). This Master’s research intends to contribute to these 

efforts to understand and restore salmon populations, specifically fall Chinook salmon. The 

primary goal of this research is to investigate what factors influence migratory decision-making 

in individual fall Chinook juveniles, and to relate these factors to the ocean-type and reservoir-

type life histories to gain a deeper understanding of the mechanisms controlling life history and 

how individual fish may follow one or the other. While the exact mechanisms underlying the life 

histories observed in Snake River fall Chinook salmon are unknown, there is a great deal of prior 

research in salmonid ecology and Columbia River basin dynamics that provides a background 

and framework for this research. 

The single most important factor affecting salmon life history in the Snake and Columbia 

Rivers is anthropogenic modification of the river habitat. Since the beginning of the 20th century, 

numerous dams have been built on the Snake and Columbia Rivers and their tributaries 

(Williams 2008). The largest dams on the mainstem Snake and Columbia Rivers that lie between 

fall Chinook spawning habitat and the ocean were built starting in the 1950s. Currently, fall 

Chinook must pass eight dams to reach the ocean: Lower Granite, Little Goose, Lower 

Monumental, and Ice Harbor dams on the Snake River, and McNary, John Day, The Dalles, and 

Bonneville dams on the Columbia River (Figure 1.1). The creation of these dams has had 

numerous direct and indirect effects on Chinook salmon. Direct effects on salmon include 

impeding and slowing the migration of both adults and juveniles (Williams 2008), direct 

mortality of outmigrating juveniles due to turbine blade strikes (Deng et al. 2011), and denying 

access to salmon spawning habitat via inundating spawning habitat under reservoirs and blocking 
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access to spawning reaches via impassable dams (Williams 2008). Juvenile fall Chinook salmon 

in the Snake River incur significant direct mortality during their outmigration due to turbine 

blade strikes. Fish passing through the powerhouse of a single dam generally incur around 10% 

mortality (Deng et al. 2011); since fall Chinook must migrate past eight dams, this mortality has 

the potential to be very costly. Significant research and resources have gone into designing and 

building various redirection and bypass systems to prevent juvenile salmon from passing through 

turbine passageways, but none of these systems is completely effective (Johnson and Dauble 

2006). Dam construction has also resulted in changing and limiting the spawning habitat 

available to fall Chinook salmon in the Snake River (Dauble and Geist 2000). Brownlee Dam, 

constructed in the middle Snake in 1958, is impassable to salmon and blocked access of the 

Snake River fall Chinook population to their historical spawning grounds near Marsing, Idaho 

(Connor et al. 2005, Williams 2008). Today, fall Chinook salmon are confined to spawning in 

the lower 224 km of the Snake River; since much of the lower Snake is inundated by reservoirs, 

only 163 km of this reach is usable for spawning, most of it located in the reach of the Snake 

River from Hell’s Canyon Dam to Lewiston, Idaho (Dauble and Geist 2000, Dauble et al. 2003, 

Connor et al. 2005). While few data are available on the quality of the original spawning and 

rearing habitat, Connor and Burge (2003) concluded that the temperature regime was slightly 

warmer than that observed currently in the portion of the Snake River upstream of Lower Granite 

Reservoir. It is uncertain how productivity and suitability for growth of the current rearing 

habitat compare to the original habitat, but Connor and Burge (2003) speculated that growth was 

faster in the Marsing reach, and recent research has concluded that portions of the Marsing reach 

are still suitable rearing habitat (Dauble et al. 2003). Similarly, recent research has also found 

that suitable Chinook salmon spawning habitat still remains above impassable dams on the 
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Columbia River (Hanrahan et al. 2004). Hydrosystem operations significantly affect the 

suitability and extent of the current spawning habitat (Williams 2008); reservoir drawdown can 

have the effect of increasing available spawning habitat (Tiffan et al. 2006) and flow release 

schedules are timed to manage temperature regimes for redd and fry survival (Dauble et al. 2003, 

Williams 2008, Yates et al. 2008). 

The construction of the hydropower system has also had numerous indirect effects on 

Snake River salmon. Dam construction has created reservoir habitat suitable for native and 

invasive salmon predators (Petersen and DeAngelis 2000, Harvey and Kareiva 2005, Waples et 

al. 2007); this has had a potentially large impact on the predation mortality migrating juvenile 

salmon face in the Columbia River. Modeling has shown that migrating salmon face a gauntlet of 

predators, where predation mortality varies depending on the distance salmon must migrate, 

predator density, and the migration rate of the salmon (Petersen and DeAngelis 2000, Anderson 

et al. 2005). Reservoirs created by Snake and Columbia dams can increase predator density by 

providing suitable habitat for native species (Petersen and DeAngelis 2000) and invasive species 

such as lake trout (Harvey and Kareiva 2005, Carey et al. 2011). These changes in predator 

regime are complicated, and their impacts on salmon are not easy to manage (Fritts and Pearsons 

2008, Carey et al. 2011). 

  Another, potentially more important, indirect effect dam construction has had on Snake 

and Columbia River salmon is that the dams have radically altered temperature and flow regimes 

through much of the river (Connor et al. 2005). Changes in the hydrosystem resulting from dam 

construction have resulted in lower survival and increased travel time for migrating fall Chinook 

juveniles; research has linked these changes to increased water temperature, decreased flow, and 

decreased turbidity (Smith et al. 2003). William Connor and others have hypothesized that water 
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temperature also plays an important role in determining the outmigration timing of fall chinook 

(Connor et al. 2003a, Connor and Burge 2003); prior work has linked temperature and associated 

growth opportunity to life history variability in Chinook salmon (Brannon et al. 2004). 

Laboratory studies have demonstrated that salmon react to changes in water temperature by 

increasing activity levels and propensity for movement, showing that there definitely are 

proximate linkages between temperature and salmon behavior (Bellgraph et al. 2009). Field and 

laboratory studies have also shown that juvenile Chinook salmon behaviorally thermoregulate by 

choosing specific temperature ranges in reservoirs or in stratified laboratory tanks (Sauter et al. 

2001, Tiffan et al. 2009). However, the physiological mechanisms by which temperature 

influences migration, and ultimately, life history, are unknown. In summation, while the 

mechanisms which govern migration and life history in salmonids are incompletely understood, 

temperature, flow, and growth have all been identified as important in previous research on 

salmonid life history (Hutchings and Jones 1998, Metcalfe 1998, McCormick et al. 1998, Thorpe 

et al. 1998, Morinville and Rasmussen 2003, Mangel and Satterthwaite 2008, Sykes et al. 2009), 

and changes in these environmental and biological characteristics stemming from dam 

construction are thought to have played an important role in the recent emergence of the 

reservoir-type life history (Connor et al. 2005, Williams et al. 2008). Our research is focused on 

using numerical modeling methods to test individually-based mechanistic linkages between 

water temperature, fish growth, and life history. We created a complex of models to simulate the 

growth, bioenergetics, and movement of fall Chinook juveniles from the rearing habitat to Lower 

Granite Dam, using data on water temperature in the free-flowing river and the reservoir and data 

from tagged fall Chinook; these models were created by applying theory from previous research 

on salmonid life history.  
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1.2 Prior Models of Salmonid Migration 

 The most widely accepted theory for the existence of migratory behavior posits that such 

behavior must provide a fitness advantage over a non-migratory behavior pattern (Gross 1987). 

Consequently, a common method of modeling migration has been via maximization models that 

track fitness (or fitness proxies such as foraging efficiency) over multiple habitats and predict 

migration based on strategies that maximize the statistics being modeled (Thorpe et al. 1998, 

Werner and Gilliam 1984). This modeling process is based on how natural selection operates; the 

model assumes that selective pressures direct behavior into the most optimal schema (Gross 

1987). Habitat shifts of rearing juvenile salmon have been modeled using this approach (Jager et 

al. 1997), however, while this modeling approach incorporates the ultimate reasons for 

migration, it does not necessarily capture the proximate mechanisms that are directing migration 

in individuals (Metcalfe 1998, Thorpe et al. 1998). It only makes sense to conjecture that fitness 

may be informing an individual’s migration in the case of small-scale habitat shifts where an 

individual can sample the habitats available, such as shifting between surface orientation and 

bottom orientation in a lake (Werner et al. 1983). Anadromous salmon migrate thousands of 

miles through diverse habitats (Quinn 2005); an individual salmon has no firsthand knowledge of 

what the conditions are or what its fitness will be in those habitats. Furthermore, the reservoir-

type life history currently observed in Snake River fall Chinook has emerged very recently, so a 

modeling process that implies behavior optimization over evolutionary timescales is not ideal.  

 Rather, we focus on modeling the proximate mechanisms informing migratory decision-

making. Since an individual salmon has no foreknowledge of the fitness outcome a decision will 

produce, it must make these decisions using locally obtained information. Models of the 
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cognitive process of decision-making demonstrate that the brain interprets sensory information 

via statistical processes to extract signal from noise and to determine if the signal satisfies a 

criterion to initiate behavior (Bogacz 2007, Gold and Shadlen 2007). In the context of fish 

migration, while the predisposition to migrate may be partially under the control of genetics, 

most salmonids display a continuum of potential life history strategies and an individual must 

make a selection of when (or if) to migrate. The proper timing of this decision has significant 

impact on the individual’s fitness, as migrating when the fish is physiologically unprepared or 

environmental conditions are unfavorable is very costly (Hansen 1987, McCormick et al. 1998). 

Many prior models of salmonid life history utilize threshold processes in these important 

physiological and environmental variables to time important transitions such as initiation of 

migration (Metcalfe 1998, Thorpe et al. 1998, Mangel and Satterthwaite 2008), smoltification 

(Metcalfe 1998, Thorpe et al. 1998, Mangel and Satterthwaite 2008), and maturation (Hutchings 

and Jones 1998, Thorpe et al. 1998). These threshold models of behavior are not incompatible 

with fitness maximization models; if the proximate mechanism governing migration is thresholds 

in physiological and environmental variables, then the ultimate mechanism becomes the genetic 

factors that govern the magnitude of the thresholds and the fish’s perception of the relevant 

variables, which can be modified by evolutionary forces (Metcalfe 1998, Thorpe et al. 1998). 

 Metcalfe (1998) and Thorpe et al. (1998) developed one of the most complete 

mechanistic models of Atlantic salmon life history to date. Their model proposes that growth rate 

and energetic status are the primary determinants of migration. The model is also notable in that 

it proposes that an individual’s decision of which life history strategy to follow occurs 

significantly prior to migration; in Thorpe et al.’s model, an individual salmon parr will decide in 

August whether or not to migrate the following spring. The fish uses its current mass and growth 
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rate to project its mass at the time of migration. If the fish’s projected mass is greater than the 

‘emigration threshold,’ then the fish will decide to migrate and enter a pre-migratory behavior 

pattern characterized by high metabolic rate and rapid growth in preparation for the migration 

and smolt transformation (Thorpe et al. 1998). If the fish’s projected mass does not meet the 

emigration threshold, then the fish is modeled to instead adopt a conservative feeding strategy 

and not migrate the next year. There is considerable empirical evidence to support this model of 

Atlantic salmon life history (references in Thorpe et al. 1998 and Metcalfe 1998); for instance, 

the smolt transformation and maturation are processes that take months and start significantly 

before either migration or reproduction, but not in all fish – i.e., according to Thorpe et al.’s 

model, differences in behavior are observed because some fish begin to prepare for the transition 

after they decided to migrate or mature during the relevant decision window.  

 Mangel and Satterthwaite (2008) adapted the model and theory from Thorpe et al. (1998) 

to describe age at return migration in Coho salmon and smolting migration in steelhead trout. 

Their modeling demonstrated that in coho salmon, different ages at return would be favored 

depending both on individual growth parameter and on environmental resource distribution. 

They also modeled the juvenile life history of central California steelhead trout; they modeled 

growth using a von Bertalanffy function and used the theory from Thorpe et al. and survival 

estimates to select optimal threshold sizes for smoltification and the resulting expected life 

histories for steelhead trout. They then examined how potential scenarios for anthropogenic 

modification of the habitat and climate change would impact modeled optimal thresholds for 

smoltification, and demonstrated how different temperature or food availability scenarios could 

produce different optimal juvenile life histories. 
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1.3 Modeling Strategy 

 The goal of this thesis is to develop an individually-based mechanistic model of the early 

stages of migration for juvenile fall Chinook in the Snake River using theory developed by prior 

researchers (especially Thorpe et al. 1998 and Mangel and Satterthwaite 2008). Prior research 

has indicated that bioenergetics, including fish mass and growth rate, are critical to successful 

migration and smolting in salmonids, and these statistics have figured highly in previous 

threshold-based models of salmon migration (Thorpe et al. 1998). Therefore, bioenergetics and 

the environmental factors that affect it are also at the core of our modeling, and we apply much 

of the theoretical framework developed by Thorpe et al. in our models. However, several aspects 

of Snake River fall Chinook necessitated departures from Thorpe et al.’s theories. 

 Thorpe et al.’s (1998) model of decision-making in Atlantic salmon proposes that 

individuals make their decisions about which life history strategy to follow months before the 

transition in question actually occurs. This model works well for Atlantic salmon (Thorpe et al. 

1998), which rear for one or more years before initiating migration and smoltification 

(McCormick et al.1998). However, ocean-type fall Chinook in the Snake River emerge in late 

spring, grow rapidly, and then initiate migration and smoltification only a few months later in 

late summer (Waples et al. 1991). This compressed time schedule does not allow for a decision 

window very much prior to initiation of migration, and we treat the decision to migrate and the 

initiation of migration as the same event in our modeling of fall Chinook. 

 A second complication involved in modeling Snake River fall Chinook is the fact that 

Snake River temperatures can reach lethal levels. Temperatures above about 20 degrees Celsius 

cause significant thermal stress to Chinook salmon, resulting in disruption of physiological 

processes and refuge-seeking behavior (Connor et al. 2003a, Richter and Kolmes 2005). The 
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incipient lethal temperature for Chinook salmon is about 25 degrees Celsius (Richter and Kolmes 

2005). Daily mean temperatures in the free-flowing portion of the Snake River routinely reach 

20 degrees Celsius in July and August and in some years can even reach above 24 degrees 

(Anderson 2000, this thesis). In Thorpe et al.’s model, the only consideration for initiation of 

migration is the attainment of a growth or size threshold; while their model accounts for reduced 

feeding and activity during winter dormancy, there is no consideration for what a fish will do if 

growth becomes negative during the growth season. We propose that there is a second 

mechanism that can initiate migration; if the environment becomes so hostile that growth is 

negative, fish will be forced to initiate migration regardless of whether or not they have reached 

the growth/size threshold. Anecdotal evidence wherein Connor observed that juvenile fall 

Chinook tended to leave the nearshore of the riverine rearing habitat when river temperatures 

exceeded 18 degrees Celsius supports this hypothesis (Connor et al. 2002). Additionally, a 

previous model of fall Chinook salmon in the Sacramento River also incorporated mechanisms 

for juvenile salmon to respond to hostile warm temperatures by seeking a cooler refuge (Jager et 

al. 1997); however, this model used simple threshold water temperatures as the trigger, while in 

our model, we test physiological mechanisms via thresholds in bioenergetic statistics. 

 Lastly, while Thorpe et al. (1998) and Mangel and Satterthwaite (2008) used von 

Bertalanffy growth models, we use the Wisconsin bioenergetics model (Hanson et al. 1997) 

since it better suits our individually–based approach. Since we are explicitly modeling the 

migration of Chinook and Chinook do not mature as parr, we are also ignoring the portions of the 

Thorpe et al. model that pertain to precocious maturation. Mangel and Satterthwaite (2008) have 

stated that it is difficult to determine which growth statistics - lipid or total mass, absolute or rate 

parameters - are most important to the fish’s assessment and decision process; in light of this 
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uncertainty, we created a several mechanistic and correlative models attempting to explain 

initiation of migration using a variety of energetic statistics, but chiefly fish mass, growth rate, 

and growth efficiency. 

We here present the terminology we will use to distinguish the components of our models 

and data through the remainder of this thesis. We divide the habitat of the Snake River into two 

broad reaches for the purposes of our modeling. We define the reach of the Snake River from 

Hell’s Canyon Dam to the confluence with the Clearwater River as the free-flowing ‘River’ 

portion of the Snake River habitat, and the reach from the confluence of the Snake and 

Clearwater Rivers to Lower Granite Dam as the ‘Reservoir’ reach of the Snake River. We 

assume the environmental conditions within each reach are homogenous, meaning our habitat 

model is a simple compartment model, with two compartments: the ‘River’ and the ‘Reservoir.’ 

We will elaborate on the reasons for this decision in section 2.2.1 of this thesis.  Figure 1.2 

displays the region of the Snake River habitat used in this study, with the relevant features 

labeled.  

We define the times and locations of juvenile fish life history transitions based on these 

broad habitat delineations. The individual fish data for our modeling comes from a study 

conducted by Connor (Connor et al. 2005) from 1992-2000 in which many wild fall Chinook 

were sampled and tagged with PIT (Passive Integrated Transponder) tags. We define the day a 

fish is tagged as time T0. Some of the fish were recaptured within the rearing habitat and 

detected or recaptured at Lower Granite Dam and at dams further downstream on the Snake and 

Columbia rivers. We define the day a fish is recaptured by Connor within the ‘River’ reach as 

time T1, the day a fish is recaptured or detected at Lower Granite Dam as time T3, and capture 

dates at downstream dams as time T4. To simplify our modeling, we assume that all fish within 
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the rearing habitat (the ‘River’ reach) are parr and non-migratory; this assumption is supported 

by the fact that most fish recaptured within the ‘River’ reach were recaptured at the tagging 

location (Connor et al. 2003a). We define the day a fish transitions from the ‘River’ reach to the 

‘Reservoir’ reach as time T2; in our models, this is the initiation of migration. There is no point 

of data that directly corresponds to T2; there is a juvenile fish trap near the confluence of the 

Snake and Clearwater Rivers maintained by the Idaho Department of Fish and Game (Marvin 

and Nighbor 2009), but exceedingly few fall Chinook are captured in the trap. We also do not 

explicitly model distance or the exact location of individual fish; since our habitat model is a 

compartment model, all fish within each reach experience the same environmental conditions 

regardless of their exact position within the reach. We also treat the transition of fish from the 

‘River’ box to the ‘Reservoir’ box at time T2 as instantaneous, meaning that as soon as fish 

initiate migration at time T2 they enter the reservoir. This assumption is supported by evidence 

that Chinook juveniles migrate very rapidly in the free-flowing portion of the Snake River, then 

slow down when they reach the reservoir (Connor et al. 2003a). Figure 1.3 displays the locations 

of points T0-T4 on the habitat map from Figure 1.2; Figure 1.4 displays a simplified, iconic 

version. We will use the layout from Figure 1.4 through the remainder of this thesis to illustrate 

and organize the components of our data and models. 
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1.4 Chapter 1 Figures 

Figure 1.1 

 
Map of the Columbia River Basin showing the locations of the major dams on the Columbia 
River and its tributaries. Fall Chinook salmon in the Snake River must migrate past Lower 
Granite Dam, Bonneville Dam, and all the dams in between.  



 

Figure 1.2 

 

The portion of the Snake River habitat relevant to this study. Labeled are the Snake and 
Clearwater Rivers, the major dams mentioned in this thesis, and the confluence of the Snake and 
Clearwater Rivers. The two dashed boxes indicate the broad habitat regions modeled in this 
thesis. 
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The portion of the Snake River habitat relevant to this study. Labeled are the Snake and 
the major dams mentioned in this thesis, and the confluence of the Snake and 

Clearwater Rivers. The two dashed boxes indicate the broad habitat regions modeled in this 

 

 

The portion of the Snake River habitat relevant to this study. Labeled are the Snake and 
the major dams mentioned in this thesis, and the confluence of the Snake and 

Clearwater Rivers. The two dashed boxes indicate the broad habitat regions modeled in this 



 

Figure 1.3 

 

The habitat and the locations of the critical points in time of
our data and models. Points T0 and T1 (tagging and in
locations within the ‘River’ reach of the Snake River. Point T2 (initiation of migration) is the 
point where a fish transitions from the ‘River’ reach to the ‘Reservoir’ reach. Point T3 (recapture 
or detection at Lower Granite Dam) is the point where a fish passes Lower Granite Dam. Point 
T4 (other recapture or detection) is the point where a fish passes dams downstream of Low
Granite Dam (not shown on map).
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The habitat and the locations of the critical points in time of juvenile fall Chinook life history in 
our data and models. Points T0 and T1 (tagging and in-river recapture) occur at many sampling 
locations within the ‘River’ reach of the Snake River. Point T2 (initiation of migration) is the 

ions from the ‘River’ reach to the ‘Reservoir’ reach. Point T3 (recapture 
or detection at Lower Granite Dam) is the point where a fish passes Lower Granite Dam. Point 
T4 (other recapture or detection) is the point where a fish passes dams downstream of Low
Granite Dam (not shown on map). 

 

 

juvenile fall Chinook life history in 
river recapture) occur at many sampling 

locations within the ‘River’ reach of the Snake River. Point T2 (initiation of migration) is the 
ions from the ‘River’ reach to the ‘Reservoir’ reach. Point T3 (recapture 

or detection at Lower Granite Dam) is the point where a fish passes Lower Granite Dam. Point 
T4 (other recapture or detection) is the point where a fish passes dams downstream of Lower 



 

Figure 1.4 

 

A simplified, iconic representation of the Snake River habitat used in our model. The main 
habitat features and the critical points in time in our models and data are labeled.
  

17 
 

A simplified, iconic representation of the Snake River habitat used in our model. The main 
habitat features and the critical points in time in our models and data are labeled.

 

A simplified, iconic representation of the Snake River habitat used in our model. The main 
habitat features and the critical points in time in our models and data are labeled. 
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Chapter 2: Bioenergetic Models and Thermal Wall Model 

 

2.1 Introduction 

 The first step in our life history modeling of juvenile Chinook was to build an 

individually-based bioenergetic model and parameterize it for use with our data. We chose to use 

the Wisconsin bioenergetics model (Hanson et al. 1997) as the core of our growth model; this 

model has been parameterized specifically for Chinook salmon (Stewart and Ibarra 1991) and 

used extensively for modeling salmonids in freshwater environments (Beer 1993, Madenjian et 

al. 2009). From data, we have dates of tagging and recapture within the ‘River’ reach (denoted as 

T0 and T1 respectively) as well as the fish’s mass at those dates (denoted as M0 and M1) for a 

number of fish; in this chapter, we describe how we used the bioenergetics model to model 

growth within the ‘River’ reach (denoted as G1) and describe a model of migration initiation that 

predicts T2 based on G1 (Figure 2.1). This model of migration initiation applies theory from 

Morinville and Rasmussen (2003). Morinville and Rasmussen proposed that growth efficiency 

may be an important determinant of life history in salmonids by providing an index of how much 

benefit an individual is receiving from its current habitat. The migration model we describe in 

this chapter, which we term the Thermal Wall model, incorporates this theory; the Thermal Wall 

model assumes that positive growth efficiency indicates that an individual is benefiting from its 

current habitat and will continue rearing. We propose that zero growth efficiency is the threshold 
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which indicates an individual is no longer benefitting from its habitat; thus the Thermal Wall 

model predicts that fish will initiate migration once their growth efficiency falls below zero. 

Henceforth, in this chapter and subsequent chapters in this thesis, whenever we refer to an 

important statistic that comes from data, it will be in red, while any statistic coming from a 

model will be in blue. 

 

2.2 Methods 

2.2.1 Overview of Data 

Environmental Data 

 As discussed in section 1.3, we represent the habitat occupied by fall Chinook in the 

Snake River as a compartment model with two primary compartments (Figure 1.3). Temperature 

and flow data was sourced from the USGS gauge near Anatone, WA (USGS 13334300) for the 

’River’ reach of the model. Daily mean temperatures in degrees Celsius and flows in cubic feet 

per second from the Anatone gauge were assumed to adequately describe the reach of the Snake 

River from Hell’s Canyon Dam (river kilometer 399) to the confluence with the Clearwater 

River (river kilometer 224), the entirety of the ‘River’ reach. This also contains the reach of the 

mainstem Snake River used by spawning and rearing fall Chinook salmon (Connor et al. 2002). 

Figure 2.2 provides yearly plots of the water temperature recorded at the Anatone gauge over the 

rearing season of juvenile fall Chinook salmon. While the Clearwater River is not a compartment 

of our habitat model, input from the Clearwater River at the confluence of the Snake and 

Clearwater Rivers has a large impact on the thermal regime of Lower Granite Reservoir (Cook et 

al. 2006). For this reason, we use the temperature differential between the Clearwater River and 

the ‘River’ reach of the Snake River as one index of thermal stratification in Lower Granite 



20 
 

 
 

Reservoir. Temperature and flow data for the Clearwater River were taken from the USGS gage 

at Peck, Idaho (USGS 13341050) and was assumed to describe adequately the temperature of the 

Clearwater River at the confluence with the Snake River. Daily mean temperature data for the 

Lower Granite Reservoir (the ‘Reservoir’ reach) was taken from the DART database maintained 

by Columbia Basin Research of the University of Washington. This data contains separate 

temperature readings from Lower Granite Dam forebay, tailrace, and scroll case. Data for the 

forebay and tailrace readings begins in 1995, so for the years 1992-1994 the only temperature 

measure available for the Lower Granite Reservoir is the scroll case measure. During the 

summer, the scroll case temperature reading is generally the coolest while the forebay reading is 

generally the warmest, so for periods where both readings are available we use the difference 

between the two as a second index of thermal stratification in the reservoir. 

 Missing values in temperature or flow data from the USGS datasets were filled in by 

interpolating linearly between the values on either end of the gap. Since most gaps in the data 

were only one or two days, and there were only two gaps longer than one week over the nine 

years of data, this simple method is sufficient to repair the data. Small gaps in the temperature 

data from Lower Granite Dam were repaired in the same manner; however, no readings were 

taken at Lower Granite Dam during the winter, and this gap cannot be repaired by interpolation 

both because it is too long and because it contains the yearly temperature minimum. Since all of 

our modeling takes place in late spring and summer, it was decided to ignore the missing winter 

data. 
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PIT Tag Data 

 The data to enable our individually based model come from records of fish tagged with 

passive integrated transponder (PIT) tags in the Snake River. We retrieved records of juvenile 

Fall Chinook salmon tagged by William Connor (Connor et al. 2005) in the years 1991-2000 

from the PTAGIS database of the Pacific States Marine Fish Commission. Some records were 

unusable for various reasons, but a total of 75,969 individual fish records over the nine year 

period were deemed usable. Of these fish, 58,314 fish were hatchery-reared and released into the 

Snake River rearing habitat by Connor; 17,655 fish were captured by Connor from the rearing 

habitat and are presumed to be wild. In our modeling, we preferentially use the wild fish. In 

some analyses where sample sizes were too small, we expanded the sample size by including the 

hatchery reared fish; it will be noted where this is the case. Subsets of these fish were detected or 

recaptured one or more times; Tables 2.1 and 2.2 provide summaries of the numbers of tagged 

wild fish and tagging date and size recorded at tagging by year of the study. In our modeling, we 

term the day a fish is tagged as tagging date T0 (Figure 1.3). 

 The fish tagged by Connor are ideal for this study because they were captured from the 

wild. Connor captured and tagged rearing fish in the Snake and Clearwater rivers (Connor et al. 

2002). This sampling method results in a mixture of wild and hatchery origin fish, and for most 

fish their true origin cannot be determined since many hatchery fish released at small size are not 

adipose fin-clipped. However, since all of these fish were captured in-river and not taken directly 

from hatcheries, we assume that all of these fish have reared in the wild. Thus, even though we 

have excluded from our modeling any fish that could be determined to be of hatchery origin, the 

remaining sample which we have assumed to be of wild origin likely still contains some 
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hatchery-spawned individuals; we assume that this portion of hatchery individuals are similar 

enough to the wild individuals that they do not adversely impact our modeling. 

Connor conducted beach seines weekly at multiple sampling sites spanning the reach of 

the Snake River from river kilometer 224 (upper end of Lower Granite Reservoir) to river 

kilometer 397 (Hell’s Canyon Dam). Connor sampled each year starting in April when fall 

Chinook begin to emerge from the gravel and ending on a site-by-site basis when no juvenile 

Chinook were captured in consecutive samples at a particular site, typically in late June to early 

July (Connor et al. 2002, Connor et al. 2005). Connor PIT tagged all juvenile Chinook longer 

than 60 millimeters and released them back into the river on the same day they were captured. 

Tagging date and length at tagging were recorded for all fish; weight at tagging was recorded for 

10,713 fish of the 17,655 wild fish.   

Tagged fish could then be detected by PIT tag detectors located in the juvenile fish 

bypass systems and in sampling at the juvenile fish facilities at dams on the Snake and Columbia 

rivers and a handful of other sampling sites. Sampling effort and schedule varied by location and 

by year; additionally, the structure and operations at each dam as well as river conditions affect 

detection and survival probabilities (Muir et al. 2001, Connor et al. 2002). Table 2.3 summarizes 

the distribution of detections. Besides being detected, some fish were recaptured and measured at 

the juvenile fish facilities at dams. Recapture and detection at Lower Granite Dam in particular 

are important components in our modeling; we refer to the date of such recapture or detection as 

T3 (Figure 1.3). Recapture and detection at other dams downstream of Lower Granite have some 

use in our modeling, and we term the date of such events as T4 (Figure 1.3). Additionally, 

Connor recaptured some fish that had previously been tagged in his sampling.  In our modeling, 

we refer to the date a fish is recaptured in-river as T1 (Figure 1.3). Most recapture events have 



23 
 

 
 

fish length, but as with tagging data, weight at recapture is only available in a portion of the 

recapture data. 

 

CPUE Data 

 To supplement the PIT tag data, we requested records of the catch per unit effort (CPUE 

henceforth) from Connor. Connor conducted a large-scale study of juvenile fall Chinook in the 

Snake River from 1992 to 2000. The study sampled many sites along the Snake River by beach 

seining and tagging juvenile Chinook (Connor et al. 2002 and 2005). All of the fish tagged were 

labeled with Connor’s tag code (WPC) in the PTAGIS database; however, not all sites were 

sampled in the same manner. Some sites were sampled on a regular basis (referred to as 

permanent sites); other sites were sampled on an irregular basis (referred to as supplemental 

sites) (Connor et al. 2003). Connor provided us with CPUE data for permanent sites, but the data 

was unavailable for supplemental sites. Additionally, no complete record of sampling sites and 

dates sampled was available for the supplemental sites. 
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2.2.2 Wisconsin Model 

 The Wisconsin Model (Hansen et al. 1997) is a generalized bioenergetics model 

encompassing a family of equations intended to simulate the different components of 

bioenergetics in different species. This model simulates the physiological processes of an 

individual fish, yielding a daily estimate of energy the fish has available for growth (or 

potentially negative growth). The model follows the general energy balance framework: 

� � � � �� � � � 	 � 
� 

In this formulation, G refers to the total energy available for growth, C is the total energetic 

intake from consumption, R is the energy lost to metabolism and activity, F and U are the energy 

lost to egestion and excretion respectively, and S is the energy lost to specific dynamic action 

(SDA), the cost of digestion. For each of the components listed above, the Wisconsin model has 

several potential equations for use with different species or under different assumptions. 

 For the consumption term of the bioenergetics model, we used equation set 3 from the 

Wisconsin model (Hanson et al. 1997), parameterized for Chinook salmon by Stewart and Ibarra 

(1991). This equation set follows the form: 

� � ��
� � � � � � ����� 

��
� � 0.303 � ������.� ! 

� � " 0.36 � $1
1 � 0.36 � �$1 � 1�& � " 0.01 � $2

1 � 0.01 � �$2 � 1�& 

$1 � ()�.**+ ��,�����
-.���!�/   $2 � ()0.*0*!���*�,�����
-.���/ 

In this formulation, Cmax is the theoretical maximum consumption rate of the organism in grams 

per gram of fish per day, T is a function that describes the temperature dependence of 

consumption, P is an estimate of the fish’s consumption rate (represented as a proportion of the 
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theoretical maximum), and Eprey is the energy density of the prey the salmon consumes, in joules 

per gram. 

 We used equation set 1 for the respiration term of the bioenergetics model (Hanson et al. 

1997, Stewart and Ibarra 1991). This equation set follows the form: 

� � 1 � � � 2 

1 � 0.00264 � ������.�0  

� � (��.�+404�,�����
-.��� 

2 � (��.��5*�678� 

9�$ � �9.7 � �����.05� � (��.�*�!�,�����
-.��� when temperature ≤ 25ºC 

9�$ � �9.7 � �����.05� � (��.�*�!��!�  when temperature > 25ºC 

In this formulation, B is the basal metabolic rate in joules per day, T is a function that describes 

the temperature dependence of respiration, and A is an adjustment for the organism’s activity 

level. We modified the activity function, however, in order to align the two halves of the 

function (which uses separate equations for temperatures above and below 25 degrees Celsius for 

Chinook salmon). Instead of using: (mass0.13) we used: 9.7*(mass0.13)*e(0.0405*25) for the upper 

half of the function. Since 25 degrees Celsius is very near the lethal limit for Chinook salmon 

(Richter and Kolmes 2005, Geist et al. 2009) and temperatures rarely go above this level in the 

Snake River, we assume this change had no significant impact on the outcome of our modeling. 
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 We used equation set 2 for the egestion and excretion terms of the bioenergetics model 

(Hanson et al. 1997, Stewart and Ibarra 1991). These equation sets follow the form: 

� � �0.212 � �(<=(>�?@>(��.���� � (��.+50��.+4� � � 

	 � �0.0314 � �(<=(>�?@>(�.!4� � (���.�AA��.+4� � �� � �� 

In this formulation, F is the energy lost to egestion in joules per day, U is the energy lost to 

excretion, and C is the total energy intake from consumption. The equation for SDA follows the 

following form: 


 � 0.172 � �� � �� 

In this formulation, C is the total energy consumed and F is the total energy lost to egestion. As 

the equations demonstrate, F is calculated as a temperature-dependant proportion of the total 

energy consumed, while U is calculated as a temperature-dependant proportion of the total 

energy assimilated, and S is calculated as a constant proportion of the total energy assimilated. 

 

Explanation of Growth Model Operation 

 To model the growth of a fish, we combine the Wisconsin model with our compartment 

model of the habitat. The Wisconsin model takes as inputs a fish’s mass and energy density, the 

fish’s consumption rate, the temperature, and diet energy density and returns the fish’s modeled 

daily growth. A fish’s initial mass comes from the PIT tag dataset; we term the fish’s mass at 

tagging (T0) as M0. We determine the compartment of the habitat the fish occupies to get the 

daily mean temperatures the fish experiences. We determine the fish’s energy density and the 

diet energy density from prior research and estimations using PIT data. We fit consumption rate 

individually for fish with a T1 data point and use a model to estimate consumption rate for 

others. By combining these components, the Wisconsin model produces daily estimates of 
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growth of an individual fish. By incrementing the fish’s mass by the amount of growth predicted 

by the model in each daily timestep, the mass of a fish can be modeled over time.  

 From the PIT tag dataset, we have the date a fish was tagged and released, its mass 

(potentially converted from length) on that date, and the reach in which it was located. We also 

have the daily mean temperature on that date and the surrounding dates from the environmental 

dataset. Assuming estimates for consumption rate and the diet energy density, individual fish can 

be modeled. For example, assume a hypothetical fish capture and tagged in the Snake River on 

June 1st 1995 (T0), weighed 10 grams (M0). From the environmental dataset, we know that the 

daily mean temperature of the Snake River was 14.5 degrees Celsius on June 1st 1995. Assuming 

the fish’s consumption rate (P) was 0.6 and that the prey energy density was 5400 joules per 

gram, then the Wisconsin model predicts a growth increment for June 1st of 0.339 grams (Figure 

2.3a). The fish then starts at 10.339 grams on June 2nd, the temperature on June 2nd is read in and 

the growth increment for June 2nd is modeled (Figure 2.3b). This process can be repeated in 

forward or in reverse given temperature data and assumptions on the habitat, consumption rate, 

and diet (Figure 2.3c). 

 

2.2.3 Assumptions and Sub-Components 

Weight to Length Conversion 

 The Wisconsin model requires mass as an input, but for a large portion of our tagging and 

recapture data points only fork length is available. Therefore, we used a weight-to-length 

relationship to convert lengths into masses where necessary. N. Beer (personal communication, 

unpublished data) fitted the following weight-to-length model for juvenile fall Chinook in the 

Snake River: 
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This model closely fits the weight to length relationship seen in the juvenile Chinook in this 

study (Figure 2.4). 10,713 wild fish had both weight and length recorded at tagging; fork length 

at tagging ranges from 60 mm to slightly over 120 mm, and mass at tagging from 2 g to more 

than 30 g. The weight-to-length conversion model describes 94% of the variance observed in this 

data, so we assumed that weights derived from converted lengths were suitable for use in our 

modeling for fish that do not have weight recorded at tagging. 

 

Consumption Rate 

  Since the Wisconsin model requires a consumption rate (P) as an input, and we had no 

independent estimate of consumption rate, we used records of fish that were recaptured to 

iteratively generate estimates of consumption rates. We assumed that fish that were recaptured 

by Connor’s beach seining (a T1 data point was present) had not migrated out of the Snake River 

reach in between release and recapture; therefore, for those fish recaptured within the Snake 

River, we have a known start weight and end weight from the PIT tag data and a known 

temperature history. We had estimates of prey energy density from literature values (described 

below), leaving consumption rate as the only unknown remaining. For these fish we modeled 

growth over the period between release and recapture, iterating over a range of consumption 

rates. The two-decimal consumption rate that produced a modeled final mass closest to the 

recapture mass was selected as an individual’s consumption rate and assumed to be constant over 

the period modeled. A total of 2,447 fish recaptured within the Snake River could be fitted with a 

consumption rate. In addition, 62 fish had strong negative growth and could not be fitted closely 

under any of the prey energy density values tested. Since the model cannot fit a consumption rate 
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below 0, these fish were assumed to be sick or otherwise strongly affected by some non-

bioenergetic factor and were excluded from future simulations. Even though the theoretical 

maximum value of consumption rate is 1.00, the model will fit consumption rates above 1 

without issue. 

 

Energy Density 

 The Wisconsin model requires as inputs estimates of the energy density of the fish and its 

prey. We used the following linear equation to generate a juvenile salmon’s energy density based 

on its mass: 

����E
-F� � 5764 � ����� � 0.5266� 

This relationship was calculated for juvenile fall Chinook by N. Beer at Columbia Basin 

Research (unpublished data). 

 We generated estimates of prey energy density from two studies of diet composition of 

juvenile Snake River Chinook and literature energy density values for prey taxa (Curet 1993, 

Muir and Coley 1996). Curet (1993) provided calorific estimates of the taxa he identified in his 

study of diet contents, but he did not provide the wet weight/ dry weight ratio necessary to 

convert his units into joules per gram wet weight required in the Wisconsin model (Hanson et al. 

1997). Therefore, literature values of wet-to-dry weight ratios were necessary to produce an 

estimate of prey energy density (Table 2.4). The overall estimate of the energy density of the diet 

of juvenile Chinook we generated from Curet (1993) is 4,371 joules per gram of prey. Muir and 

Coley (1996) also conducted a study of the diet of juvenile Fall Chinook from the Snake River, 

but they did not provide any calorific estimates, so we used literature values for energy density to 

produce a second estimate of the energy density of the juvenile salmon diet (Table 2.5). The 
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overall estimate of the energy density of the juvenile fall Chinook diet we generated from Muir 

and Coley (1996) is 3,992 joules per gram of prey. 

 We assumed that all fish consumed the same diet, so we needed to select a single value 

for prey energy density. We selected a prey energy density by using the Wisconsin model to 

estimate consumption rates using test values of prey energy density. Individual consumption 

rates were fitted for the 2,447 fish for which a T1 data point was present for each of the prey 

energy density values tested. First, the two estimates of prey energy density generated from 

Curet (1993) and Muir and Coley (1996) were used to generate distributions of consumption 

rates (Figures 2.5, 2.6). Both of the resulting distributions had a large number of consumption 

rates fitted above the theoretical maximum- 19.7% of all consumption rates in the 4,371 (Curet) 

distribution and 30.9% in the 3,992 (Muir and Coley) distribution. The distributions produced 

from these estimates of prey energy density are clearly fitting far outside the bounds of the 

model, as the tail of the main distribution easily surpasses 150% consumption in both. However, 

prior research using bioenergetic models to fit growth of fishes feeding in freshwater lakes have 

found similar results, with fitted consumption rates exceeding theoretical maximum rates 

(Luecke and Brandt 1993, Stockwell et al. 1999). These researchers concluded that the salmonids 

they modeled have the ability to reduce the water content of Cladoceran prey in the mouth or the 

foregut, thus effectively increasing the energy density of the diet. For this reason, rather than use 

either of the prey energy density estimates generated from the diet analyses and literature values, 

we decided to fit a prey energy density that produced a small percentage of fitted consumption 

rates above 1. 5400 joules per gram was selected because it is a round number that results in only 

1.6% of fish fitted with over 100% consumption (Figure 2.7), and because this estimate was used 

in prior modeling of fall Chinook conducted by N. Beer at Columbia Basin Research (Beer 
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1998). Note that while the value used for prey energy density changes the fitted consumption rate 

for individuals, it affects all individuals equally; i.e., each individual’s growth rate is known and 

comes directly from data, so the relationship between fitted consumption rates of different 

individuals remains the same regardless of the prey energy density used. 

 

2.2.4 Thermal Wall Model 

 The first model of migration we created to test our hypothesis that hostile environmental 

factors will cause juvenile salmon to initiate migration. Temperatures above 21 degrees Celsius 

cause severe thermal stress to Chinook salmon (Richter and Kolmes 2005), and peak summer 

temperatures usually reach this level in the Snake River. Since we use the equation sets of the 

Wisconsin model designed to simulate the effects of temperature on bioenergetics, we use the 

growth statistics produced by the Wisconsin model as an indicator of how temperature is 

affecting the physiology of the salmon. Our ‘Thermal Wall’ model of migration initiation states 

that an individual salmon will initiate migration when its growth efficiency falls below zero; we 

denote the date of migration initiation T2, and refer to a T2 predicted by the Thermal Wall model 

as T2b. Since the Thermal Wall model relies completely on the Wisconsin model, we confined 

our testing of the Thermal Wall model to only those 2,385 fish for which an individual 

consumption rate could be fitted. 

 We initially modeled T2b as the first day when a fish’s growth efficiency fell below zero; 

however, in some years, brief temperature spikes lasting only a day or two could produce 

modeled migration much earlier than in other years. To explore the resulting predictions, we also 

tested a version of the Thermal Wall model that would predict T2b after a predetermined number 

of continuous days of below-zero growth. We somewhat arbitrarily settled on five days as the 
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limit for this version of the model, as this was longer than most of the short temperature spikes 

and also limited exposure to very high temperatures to no more than a few days. 

 

 

Response Variables 

 While growth magnitude is produced directly by the Wisconsin model and is the most 

obvious variable to examine with regards to determining when growth reaches zero, we used 

growth efficiency as our primary indicator metric for the Thermal Wall model. In theory 

proposed by Morinville and Rasmussen (2003), growth efficiency provides an indicator of how 

well an individual is performing within its current habitat; they propose that fish that perform 

inefficiently may be more likely to initiate migration. In the Thermal Wall model, we slightly 

redefine this theory to instead propose that growth efficiency can provide an indicator of when 

the current habitat becomes hostile to an individual. This is incorporated into our zero threshold; 

when growth or growth efficiency fall below zero, an individual can no longer grow and the 

Thermal Wall model predicts that it will initiate migration. We defined growth efficiency as 

energy available for growth divided by total energy consumed, or: 

��HHIJI�KJ� � �
� 

We chose this metric because it displays a strong signal when growth approaches and falls below 

zero with increasing temperature and because of its use in prior studies (Morinville and 

Rasmussen 2003). Due to our model assumptions, energy density of the salmon diet remains 

constant across time and for all individuals, and while consumption rates are fitted on an 

individual basis, they remain constant over time for each individual for the duration of the 

rearing period. Therefore, the only inputs to the Wisconsin model that remain variable on an 
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individual basis are mass and temperature. Over the size ranges seen in our data, the Wisconsin 

model is insensitive to changes in mass relative to changes in temperature, as an order of 

magnitude change in mass only results in a 5% change in growth efficiency, while a change over 

the range of temperatures commonly seen in the Snake River during spring and summer results 

in a change of orders of magnitude in growth efficiency (Figure 2.8). Since temperature has the 

largest impact on the bioenergetic model, we chose metrics based on how they responded to 

temperature. Over the course of the spring-summer period when fall Chinook are rearing, 

temperatures in the Snake River increase in a linear manner (Anderson 2000). Growth magnitude 

varies very little across temperatures from 10-20 degrees Celsius, and then declines at higher 

temperatures (Figure 2.9). Energy consumed displays the same pattern, and the result of 

combining the two curves into growth efficiency is a steepening of the curve as it declines at 

high temperatures (Figure 2.10). Since the signal in growth efficiency when growth is 

approaching zero is very strong, we used it as the metric informing the Thermal Wall model. 

 

Validating Model Predictions 

 Unfortunately, as very few fall Chinook are captured at the juvenile fish trap at the 

confluence of the Snake and Clearwater Rivers, there is no data point for the initiation of 

migration (T2) in the PIT tag dataset with which to compare the T2b predicted by the Thermal 

Wall model. What we do have for 2,385 individual Chinook is a date of recapture within the 

‘river’ reach (denoted as T1). Connor et al. (2003) in their study of migration of fall Chinook 

assumed that this date was the date that Chinook initiated migration in order to estimate travel 

time from the rearing grounds to Lower Granite Dam. However, since these fish are recaptured 

within the rearing habitat, we do not make this assumption; instead, we assume T1 is a date when 
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the fish was known to be in the rearing habitat and has not yet initiated migration. 534 of these 

2,385 fish are also detected or recaptured while passing Lower Granite Dam (denoted as T3). 

Since these fish have left the rearing habitat, we know that the initiation of migration took place 

prior to T3.  So, for the subset of 534 fish for which both a T1 and a T3 data point are present, 

there is a range of valid T2 dates between T1 and T3. By comparing modeled T2b for these fish 

with this range, T2b can be determined to be valid or invalid for each fish. 

 A second method to examine the validity of modeled T2b dates is to compare the 

distributional properties of T1 dates and CPUE data. On a yearly basis, both T1 and CPUE 

display a normal distribution. We assume that the distribution begins to climb as fish in the 

rearing habitat grow into the tagging size threshold of 60mm, and then begins to decline as fish 

initiate migration and leave the rearing habitat. Thus, if the model of migration initiation is 

accurate, we expect it to predict an increase in migration aligning with the decline observed in 

recapture and CPUE data. Lastly, the decline in CPUE and recapture data to zero is indicative of 

the true end of the rearing season, as Connor continued sampling for two weeks after the last fish 

was capture to ensure that he sampled the entire rearing season (Connor et al. 2003); therefore, if 

the model is accurate, it should predict a mean migration date prior to the date of the last 

recorded recapture.  

 

Modeling Process 

 The first step in modeling these fish was to fit a consumption rate (P) using the mass of 

the fish at T0 and T1 and the temperature history of the Snake River between those dates (Figure 

2.11). Once a fish’s consumption rate was determined, its daily growth was modeled and its 

growth efficiency tracked until growth efficiency fell below zero (Figure 2.12), or in the case of 
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the 5-day alternative, until its growth efficiency fell below 0 for 5 consecutive days (Figure 

2.13). According to the Thermal Wall model, this date is the date of migration initiation T2b. 

After T2b, the model predicts that the fish enters Lower Granite Reservoir; we treat the transition 

from the ‘River’ reach to the ‘Reservoir’ reach as instantaneous. If growth in the reservoir is then 

modeled, the model then uses temperature data from the reservoir instead of the Snake River; 

however, we did not model in-reservoir growth in our validation of the Thermal Wall model. 

 

2.3 Results 

2.3.1 Validation of the Thermal Wall Model 

 The relative timing of the rearing season and thus the distributions of tagging, passage, 

and modeled migration varied by year, so yearly data was examined individually. Additionally, 

the total of 534 fish used to test the Thermal Wall model was not distributed evenly across years 

(Table 2.6). Years with fewer than 30 fish were excluded from analysis; these years were 1992, 

1996, and 2000, with 2, 22, and 0 fish respectively. The Thermal Wall model with the one day 

alternative predicted a very compact period for initiation of migration. Within each year, greater 

than 90% of fish modeled were predicted to initiate migration within a one-week period, with a 

handful of early outliers (Figure 2.14). There were few or no late outliers. The Thermal Wall 

model with the five day alternative predicted a slightly more widely distributed period of 

initiation of migration (Figure 2.15). Since the only difference from the one-day alternative is 

that fish will initiate migration four or more days later under the five day alternative, the mean 

migration date is also later (Table 2.6). 

 Significant numbers of modeled fish were modeled with an invalid T2b (Table 2.7). A 

T2b modeled to occur prior to T1 was invalid due to predicting migration too early; a T2b 
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modeled to occur after T3 was invalid due to predicting migration too late. Overall, the Thermal 

Wall model tends to predict migration late. While there are early predictions, the number seldom 

exceeds 10% of all fish in a given year (Table 2.7). There are very many late predictions, with 

many years exceeding 50% of all T2bs invalidated (Table 2.7). The Thermal Wall model with 

the five-day alternative predicts slightly fewer early migrants, but at the cost of predicting many 

more late migrants. Additionally, the mean migration date in 1993, 1996, and 1999 is later than 

the mean T3 date in both versions of the Thermal Wall model (Table 2.6). The cumulative plots 

of T2b and T3 display how T2b is late compared to T3 (Figures 2.14 and 2.15); portions of the 

plot where cumulative T3 crosses above cumulative T2b indicate many late migrants predicted at 

that time. 

 Comparisons of CPUE data and T2b predicted by the Thermal Wall model also reveal a 

general trend of late prediction of migration (Figures 2.16 and 2.17). As a decline in CPUE is 

indicative of fish leaving the rearing habitat, we would expect the model to predict the bulk of 

migration initiation over this period. Instead, in every year but 1994, the vast majority of fish are 

not predicted to initiate migration until very late in the CPUE distribution, or even until several 

weeks after the end of the CPUE data (Figure 2.16). Using the five-day alternative instead of the 

one-day alternative makes the fits even later; fish in 1994 are now predicted not to migrate until 

the tail of the CPUE distribution, and in most other years, the bulk of migrants are not predicted 

to leave until several weeks after the end of the CPUE data (Figure 2.17). Lastly, the decline in 

CPUE data to zero indicates that very few fish remain in the rearing habitat at that time; the 

Thermal Wall model instead predicts that the bulk of the population remains in the rearing 

habitat until that time or later. 
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2.3.1 Sensitivity Analysis of the Thermal Wall Model 

 The Thermal Wall model produces very compact distributions of initiation of migration 

within years due to the mechanics of growth efficiency. As growth efficiency is produced from 

the Wisconsin model, the factors that impact growth efficiency are the inputs to the Wisconsin 

model – temperature, diet energy density, fish mass, and fish consumption rate (P). Within a 

given year, all fish experience the same temperature regime and we assume that all fish consume 

the same diet; therefore, the only factors that vary on an individual basis are fish mass and 

consumption rate. Assuming that temperature increases linearly through the rearing season, 

individual fish mass and consumption rate affect the temperature at which growth efficiency 

drops below zero, and thus the predicted date of T2b. The Wisconsin Model is not very sensitive 

to changes in fish mass, so changes in mass do not have much effect on resulting T2b (Figures 

2.18, 2.19). The majority of fish captured within the ‘River’ reach of the Snake River are 

between 1 and 10 grams in mass; a change of this magnitude in mass results in just a 3 day 

difference in predicted T2b (Figure 2.19). Consumption rate has a much larger impact on 

predicted T2b, but only when consumption is low (Figures 2.20, 2.21). A change in consumption 

rate from 1.0 to 0.4 results in a 13 day difference in predicted T2b, while a change from 0.4 to 

0.2 results in a 49 day difference (Figure 2.21). 

 

2.4 Discussion 

 The sensitivity analysis of the Thermal Wall model shows why it predicts such a compact 

period of migration initiation within years. Changes in fish mass have little effect on the modeled 

day of migration initiation, and while very low consumption rates do have a large impact, only a 

small proportion of fish are fitted with a consumption rate below 0.4 (Figure 2.7). This results in 
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the majority of the population reaching the zero-growth threshold at about the same time, and is 

the reason why we termed this model the ‘Thermal Wall’ model.  

 The validation of the Thermal Wall model reveals that it is not predicting migration at the 

time the data suggests the fish are migrating. The model produces very many ‘late’ predictions; 

these predictions are direct evidence of a failure to predict migration, as the fish were known 

from data to have already passed through Lower Granite Reservoir before the model even 

predicts the fish to leave the free-flowing portion of the Snake River. Additionally, the 

distributional properties of both CPUE data and T3 suggest that the initiation of migration is a 

much more gradual distribution than predicted by the Thermal Wall model. The CPUE 

distributions all have a gradual decline from peak CPUE lasting more than a month (Figures 

2.16, 2.17), and cumulative passage of Lower Granite Dam takes generally about 2 months 

before the bulk of the population has passed (Figures 2.14, 2.15). We concluded that the Thermal 

Wall model was not sufficient to describe initiation of migration in fall Chinook salmon, and that 

most fish were initiating migration via a different mechanism. We then proceeded to create 

another model to examine a growth efficiency threshold with a relaxed assumption on the value 

of the threshold as well as threshold mass as potential triggers of migration. 
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2.5 Chapter 2 Tables 

Table 2.1 
 
Distribution of fish tagged, detected, and recaptured by year. Since fish could be recaptured more 
than once, the total number of recaptures is also included. 
 

Year # Tagged # Detected # Recaptured Total Recaptures 

1992 1010 68 83 88 

1993 1404 393 388 477 

1994 2344 340 455 599 

1995 6603 3479 945 1104 

1996 465 203 100 120 

1997 641 223 165 196 

1998 2058 1024 449 522 

1999 1917 1062 342 394 

2000 1213 507 147 189 
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Table 2.2 
 
Mean and standard deviations by year of tagging date and fork length at tagging for wild fall 
Chinook in the Snake River. Minimum size for tagging was 60 mm fork length. 
 

Year Mean Tag Date Tag Date SD Mean Tag Length Tag Length SD 

1992 24 May 10 days 72 mm 11 mm 

1993 13 June 13 days 75 mm 13 mm 

1994 2 June 10 days 74 mm 12 mm 

1995 4 June 6 days 72 mm 7 mm 

1996 6 June 23 days 75 mm 13 mm 

1997 14 June 14 days 77 mm 13 mm 

1998 31 May 15 days 74 mm 11 mm 

1999 5 June 12 days 75 mm 11 mm 

2000 25 May 14 days 76 mm 12 mm 
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Table 2.3 
 
Distribution of detections of wild juvenile fall Chinook by dam and by year. Total Detected = 
total number of fish detected in that year; numbers of detections at the various locations are not 
additive since fish can be detected at more than one location. LGD = Lower Granite Dam, LGS = 
Little Goose Dam, LMN = Lower Monumental Dam, IHA = Ice Harbor Dam, MCN = McNary 
Dam, JDA = John Day Dam, BON = Bonneville Dam, Traps = Snake and Clearwater River 
juvenile traps. 
 

Year Total Detected LGD LGS LMN IHA MCN JDA BON Traps 

1992 68 39 20 0 0 9 0 0 1 

1993 393 270 68 54 0 40 0 0 3 

1994 340 202 60 64 0 52 5 0 1 

1995 3479 2097 1344 1303 0 946 31 11 0 

1996 203 145 76 45 0 27 2 1 0 

1997 223 135 106 47 0 32 2 2 0 

1998 1024 571 631 295 0 217 75 19 1 

1999 1062 608 544 364 0 142 73 40 0 

2000 507 336 269 145 2 142 31 11 1 

Total 7299 4403 3118 2317 2 1607 219 84 7 
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Table 2.4 

Summary of the diet composition from Curet (1993) and energy density estimates derived from 
it. %TD is the percent of the total diet by mass of each prey taxon. DW ED is the energy density 
of ash-free dry weight in joules per gram converted from Curet (1993). %DW is the percent ash 
free dry weight of wet weight from literature values. 20% was used for taxon where a source 
could not be found and the percent total diet was less than five percent. Source is the source for 
the %DW value. For those entries with (order) or (subclass), a literature value for the next 
highest taxonomic group was used instead of the group listed under Prey Taxon. WW ED is the 
energy density in joules per gram wet weight calculated from DW ED and %DW. 
 
Prey Taxon %TD DW ED %DW Source WW ED 

Collembola <0.01 23998 20.0 NA 4800 
Chironomidae/Simuliidae 0.25 21388 17.0 Groot 1995 (order) 3636 
Cecidomyiidae <0.01 19886 17.0 Groot 1995 (order) 3381 
Ceratopogonidae <0.01 19924 17.0 Groot 1995 (order) 3387 
Coleoptera <0.01 19585 23.7 Chen 2003 3094 
Drosophilidae <0.01 20920 17.0 Groot 1995 (order) 3556 
Ephemeroptera 0.33 25172 23.0 Hanson 1997 5789 
Homoptera 0.03 21334 20.0 NA 4267 
Cicadellidae <0.01 21489 20.0 NA 4298 
Isoptera <0.01 21757 20.0 NA 4351 
Hodotermitidae <0.01 41840 20.0 NA 8368 
Odonata <0.01 23135 22.8 Groot 1995 5275 
Hymenoptera <0.01 23745 20.0 NA 4749 
Plecoptera <0.01 21365 20.0 NA 4273 
Psocoptera <0.01 20920 20.0 NA 4184 
Thysanoptera <0.01 21525 20.0 NA 4305 
Thripidae <0.01 14428 20.0 NA 2886 
Trichoptera 0.01 20068 20.7 Groot 1995 4154 
unknown insects <0.01 20969 20.0 NA 4194 
insect parts 0.02 21090 20.0 NA 4218 
Amphipoda <0.01 16348 26.0 Hanson 1997 4250 
Annelida <0.01 19416 18.2 Groot 1995 (subclass) 3534 
Araneae <0.01 19819 20.0 NA 3964 
Copepoda <0.01 22985 19.6 Groot 1995 4505 
Cladocera 0.11 20590 11.0 Hanson 1997 2265 
Hirudinea <0.01 20477 20.0 Hanson 1997 4095 
Hydracarina <0.01 21429 20.0 NA 4286 
Isopoda 0.03 11863 20.0 NA 2373 
larval fish 0.19 21493 21.0 Groot 1995 4514 
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Table 2.5 

Summary of the diet composition from Muir and Coley (1996) and the literature values of energy 
density used to estimate energy density of the juvenile salmon diet. %TD is the percent of the 
total diet for each taxon from Muir and Coley (1996). WW ED is the literature value for energy 
density in joules per gram wet weight used for the analysis, and Source is the source for the 
literature value. For those taxa with Curet (1993) listed as source, no estimate of wet mass/dry 
mass ratio was available, so a value of 0.2 was used to produce an estimate of wet mass energy 
density from the dry mass energy densities provided by Curet (1993). 
 
Prey Taxon %TD WW ED Source 

Diptera 0.44 3859 Groot 1995 
Coleoptera 0.16 5010 Chen 2003 
Homoptera 0.02 4267 Curet 1993 
Hymenoptera 0.08 4748 Curet 1993 
Thysanoptera 0.01 4305 Curet 1993 
Trichoptera 0.03 4554 Groot 1995 
Amphipoda 0.22 3582 Groot 1995 
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Table 2.6 

Summary of the results of the Thermal Wall model, shown by year. # Fish is the number of 
individual fish used to test the model in a given year. Mean T2b (1D) and Var (1D) are the mean 
and variance of the day of year of the predicted T2b produced by the Thermal Wall model with 
the one day alternative; Mean T2b (5D) and Var (5D) are the mean and variance of the predicted 
T2b produced with the five day alternative. Mean T1 and Mean T3 are the mean in-river 
recapture date and recapture/detection date at Lower Granite Dam for the fish in that year. 
 

Year # Fish Mean T2b 

(1D) 

Var (1D) Mean T2b 

(5D) 

Var (5D) Mean T1 Mean T3 

1992 2 173.5 0.5 177.5 0.5 141 184 
1993 30 205.5 299.9 210.4 272.4 152.2 204.4 
1994 34 177.9 24.3 191.8 25.8 146 202.2 
1995 103 199.8 37.4 203.9 35.7 150.5 207.6 
1996 22 196.2 255.3 201.6 259.7 144.8 199.2 
1997 82 196.2 149.7 201.3 150.1 162.1 205.5 
1998 187 185.9 69.6 190.7 74.4 157.7 201.8 
1999 74 203.2 5.9 211.2 6.2 153.2 198.1 
2000 0 - - - - - - 
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Table 2.7 

Summary of the validation of the Thermal Wall model, shown by year. # Fish is the number of 
individual fish used to test the model in a given year. % T2b Before T1 (1D) and (5D) are the 
percentage of individual fish fitted with a T2b prior to the date of T1 under the one-day and five-
day alternatives of the Thermal Wall model; i.e., the fish was modeled to begin migration before 
a point where it was known to be in the rearing habitat, an ‘early’ invalid prediction. % T2b 
After T3 (1D) and (5D) are the percentage of individual fish fitted with a T2b after the date of T3 
under the one-day and five-day alternatives of the Thermal Wall model; i.e., the fish was 
modeled to initiate migration after it was known to pass Lower Granite Dam, a ‘late’ invalid 
prediction. 
 

Year # Fish % T2b Before 

T1 (1D) 

% T2b After 

T3 (1D) 

% T2b Before 

T1 (5D) 

% T2b After 

T3 (5D) 

1992 2 0% 0% 0% 0% 
1993 30 13% 50% 7% 57% 
1994 34 0% 6% 0% 38% 
1995 103 1% 36% 1% 45% 
1996 22 5% 50% 5% 55% 
1997 82 10% 45% 0% 52% 
1998 187 14% 22% 7% 30% 
1999 74 0% 57% 0% 72% 
2000 0 - - - - 

  



 

2.6 Chapter 2 Figures 

Figure 2.1  

A depiction of the major modeling and data components presented in chapter 2 of this thesis 
within the iconic schema introduced in figure 1.3. Values from data are in red, components 
produced by models are in blue. Note that as there is no direct value for
presented in black. T0 and T1 are the dates of tagging and in
M0 and M1 are the recorded mass on those dates. In combination with environmental data, the 
Wisconsin model is used to model growth for fi
growth G1. G1 is then used in our Thermal Wall model of migration initiation to yield a modeled 
migration initiation date, T2. 
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A depiction of the major modeling and data components presented in chapter 2 of this thesis 
within the iconic schema introduced in figure 1.3. Values from data are in red, components 
produced by models are in blue. Note that as there is no direct value for T2 from data, it is 

are the dates of tagging and in-river recapture from PIT tag data, 
are the recorded mass on those dates. In combination with environmental data, the 

Wisconsin model is used to model growth for fish for which all data is present, yielding modeled 
is then used in our Thermal Wall model of migration initiation to yield a modeled 

 

 

A depiction of the major modeling and data components presented in chapter 2 of this thesis 
within the iconic schema introduced in figure 1.3. Values from data are in red, components 

T2 from data, it is 
river recapture from PIT tag data, 

are the recorded mass on those dates. In combination with environmental data, the 
sh for which all data is present, yielding modeled 

is then used in our Thermal Wall model of migration initiation to yield a modeled 
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Figure 2.2 

Graph of daily mean water temperature recorded at the USGS gauge at Anatone, WA from April 
through August for the nine years of the study. Water temperatures during the rearing season of 
Snake River fall Chinook vary from around 8 degrees Celsius to more than 24 degrees Celsius. 
Temperatures start low at the beginning of the rearing season and peak in early to mid August. 
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Figure 2.3a  

 
Depiction of the operation of the growth model. Values from data are in black, modeled values 
are in red. The first step is initialization of the model with data, which produces an estimate of 
the growth for the first day. 
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Figure 2.3b  

 

Depiction of the operation of the growth model. Values from data are in black, modeled values 
are in red. The modeled growth is added to the initial mass to yield the mass on day two. The 
mass on day two is then fed back into the Wisconsin model along with the temperature on day 
two of the simulation to generate the growth on day two. 
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Figure 2.3c

 

 

Depiction of the operation of the growth model. Values from data are in black, modeled values 
are in red. Modeled growth is continually added to mass to generate modeled mass. 
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Figure 2.4  

Distribution of weight and length values for 10,713 fish for which both length and weight was 
recorded at tagging. The weight-to-length relationship used to interconvert lengths and weights is 
shown in black. 
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Figure 2.5  

Distribution of consumption rates (P) generated using the Wisconsin model and a prey energy 
density of 4,371 joules per gram. This prey energy density was generated from a diet analysis 
performed by Curet (1993). This distribution of consumption rates has mean 0.754 and variance 
0.109, and 19.7% of all fish are fitted with a consumption rate greater than 1. 
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Figure 2.6  

Distribution of consumption rates (P) generated using the Wisconsin model and a prey energy 
density of 3,992 joules per gram. This prey energy density was generated from a diet analysis 
performed by Muir and Coley (1996). This distribution of consumption rates has mean 0.837 and 
variance 0.137, and 30.9% of all fish are fitted with a consumption rate greater than 1. 
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Figure 2.7 

Distribution of consumption rates (P) generated using the Wisconsin model and a prey energy 
density of 5,300 joules per gram. This prey energy density was selected to produce less than 5% 
of fish fitted above 1. This distribution of consumption rates has mean 0.564 and variance 0.045 
and 1.6% of all fish are fitted with a consumption rate greater than 1. 
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Figure 2.8  

Contour plot of growth efficiency across varying temperature and mass. Prey energy density was 
held constant at 5400 joules per gram and consumption rate was held constant at 0.7. Spring and 
summer temperatures in the Snake River generally range from 10-24 degrees Celsius (Anderson 
2000). Over that range of temperatures, growth efficiency declines with increasing temperatures. 
Growth efficiency also declines with increasing mass or length. 
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Figure 2.9  

Relationships between total energy consumed (C) and total energy available for growth (G) and 
temperature in the Wisconsin model. Mass was held constant at 10 grams, prey energy density at 
5400 joules per gram, and consumption rate at 0.7. Both curves follow similar relationships of 
little change from 10-20 degrees to steep decline from 20-24 degrees. Note that energy applied to 
growth passes zero near 21 degrees Celsius. 
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Figure 2.10  

Relationship between growth efficiency and temperature (Mass was held at 10g, prey energy 
density at 5400 j/g, and P at 0.7). This relationship is monotonic over the temperature range 
experienced by rearing fall Chinook; it declines slowly from 10-20 degrees, then sharply from 20 
degrees and higher. Note that growth efficiency is equal to zero when energy applied to growth 
is equal to zero (Figure 2.8). 
  



58 
 

 
 

Figure 2.11  

Plots depicting the process of fitting a consumption rate for an individual fish. T0, M0, T1, M1, 
and the temperature in the Snake River over that period are used to fit a consumption rate (P). 
The fitted daily masses are shown between T0 and T1. 
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Figure 2.12  

Plots depicting the process of generating a fish’s growth efficiency data and predicting the 
initiation of migration via the Thermal Wall model. The previously estimated consumption rate 
is used to model the fish beyond T1 and the fish’s growth efficiency is tracked until it falls below 
zero, at which point the model predicts T2b. 
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Figure 2.13  

Plots depicting the process of predicting the initiation of migration via the Thermal Wall model 
with the 5 day alternative. The previously estimated consumption rate is used to model the fish 
beyond T1 and the fish’s growth efficiency is tracked until it falls below zero for five 
consecutive days, at which point the model predicts T2b. For clarity, growth efficiencies below 
zero are in red. 
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Figure 2.14  

 

Yearly cumulative plots of the day of year of observed T1 and T3 and modeled T2b using the 
Thermal Wall model with the one day alternative. 
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Figure 2.15  

 

Yearly cumulative plots of the day of year of observed T1 and T3 and modeled T2b using the 
Thermal Wall model with the five day alternative. 
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Figure 2.16  

 

Yearly plots of CPUE from Connor’s beach seining and number of fish modeled to initiate 
migration (T2b) using the Thermal Wall model with the one day alternative. Connor sampled on 
a weekly basis, so CPUE data from all sites sampled in a given week is averaged on a weekly 
basis. 
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Figure 2.17 

 

Yearly plots of CPUE from Connor’s beach seining and number of fish modeled to initiate 
migration (T2b) using the Thermal Wall model with the five day alternative. Connor sampled on 
a weekly basis, so CPUE data from all sites sampled in a given week is averaged on a weekly 
basis. 
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Figure 2.18  

Plot depicting how the growth efficiency – temperature relationship responds to changes in fish 
mass. Prey energy density was held at 5400 joules/gram, and consumption rate (P) at 0.5. The 
critical temperature (the point where the growth efficiency curve crosses zero) is 20.7 degrees for 
a 1 gram fish, 20.2 degrees for a 10 gram fish, and 19.8 degrees for a 30 gram fish. 
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Figure 2.19  

Plot depicting how changes in the critical temperature resulting from changes in mass produce 
different predicted T2b dates in the Thermal Wall model (the one-day alternative was used here). 
The temperatures used are temperatures from the ‘River’ reach in 1995. A mass of 1 gram 
resulted in T2b on day 203 (July 22nd), a mass of 10 grams resulted in T2b on day 200 (July 19), 
and a mass of 30 grams resulted in T2b on day 199 (July 18).  
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Figure 2.20  

Plot depicting how the growth efficiency – temperature relationship responds to changes in fish 
consumption rate (P). Prey energy density was held at 5400 joules/gram, and mass at 10 grams. 
The critical temperature (the point where the growth efficiency curve crosses zero) is 21.1 
degrees for P of 1.0, 20.7 degrees for a P of 0.7, 19.7 degrees for a P of 0.4, 18.4 degrees for a P 
of 0.3, and 14.5 degrees for a P of 0.2. 
  



68 
 

 
 

Figure 2.21  

Plot depicting how changes in consumption rate produce different predicted T2b dates in the 
Thermal Wall model (the one-day alternative was used here). The temperatures used are 
temperatures from the ‘River’ reach in 1995. A P of 1.0 resulted in T2b on day 212 (July 31), a P 
of 0.7 resulted in T2b on day 203 (July 22), a P of 0.4 resulted in T2b on day 199 (July 18), a P 
of 0.3 resulted in T2b on day 189 (July 8), and a P of 0.2 resulted in T2b on day 150 (May 30).  
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Chapter 3: Mass-Growth Model of Migration Initiation 

 

3.1 Introduction 

 After the Thermal Wall model was found to be inadequate to explain migration initiation, 

the second modeling project we undertook was the creation of a mechanistic model of migration 

initiation incorporating the theory proposed by Thorpe et al. (1998) and Mangel and 

Satterthwaite (2008). This mechanistic model uses the growth model we created in Chapter 2 to 

model the growth of individual fish, then predicts initiation of migration T2 when a fish’s 

modeled mass passes a mass threshold. We refer to this model as the ‘Mass-Growth’ model, and 

we denote T2 predicted by this model as T2m. We tested several versions of the Mass-Growth 

model; in the first version a threshold mass was the only trigger for migration; in the second 

version both threshold mass and threshold growth efficiency could trigger migration; lastly, we 

modified the second version with a more complex catchability coefficient to improve fits. 

 

3.2 Methods 

3.2.1 Modeling Consumption Rate 

 The first step in the construction of the Mass-Growth model was expanding our original 

growth model to support modeling more fish. As described in section 2.2.3 of this thesis, we 

fitted consumption rates (P) individually for fish for which all of T0, M0, T1 and M1 data points 
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were present. Only a small percentage of all fish had a T1 and M1 data point, limiting the 

number of fish which could be modeled in this way. The method we use to fit the Mass-Growth 

model requires growth data for all fish tagged at a subset of tagging locations, including fish for 

which no T1 or M1 data is present. In order to model the growth of these fish, we needed a 

method to estimate consumption rate other than by a direct fit. We tested a multivariate linear 

model regressing fitted consumption rates (P) against T0, M0, and environmental data to attempt 

to create a model to predict P for fish lacking T1 and M1 data. 

 A total of 2,385 individual fish had a fitted consumption rate and were used to fit the 

linear model. We started with a full model including as predictors every piece of data available 

to fish with only a T0 and M0 data point from the PIT tag dataset. These data comprise T0 and 

M0 from the PIT tag data, the temperature and CPUE at the tag location on T0, and the river 

kilometer of the tag location. Additionally, squared terms were included for temperature and 

CPUE to allow for a potential nonlinear relationship, and interaction terms between T0 and M0, 

temperature, and CPUE were included. Tables 3.1 and 3.2 show a summary of the full model fit 

and the ANOVA table of the full model fit. To reach a parsimonious model, we used sequential 

deletion; the least explanatory predictor was removed from the model sequentially until 

removing another predictor would result in an increase in Akaike’s Information Criterion (AIC) 

estimate of greater than two. The predictors removed from the model were, in sequence: T0-

CPUE interaction term, and T0-M0 interaction term. Tables 3.3 and 3.4 show a summary and 

ANOVA table of the reduced model. 

 While there are statistically significant relationships between most of the predictor 

variables and fitted consumption rate, overall the available data does not explain enough of the 

variation in fitted consumption rate to be useful for making accurate predictions. The total 
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adjusted R2 of both the full and reduced models are only 0.12; we decided that this model was 

inadequate to predict consumption rates for use in our modeling. As a fallback option, we 

decided to use the mean value of all fitted consumption rates (0.564) for any fish which did not 

have an individual fit. 

 

3.2.2 Mass-Growth Model of Migration 

 To facilitate confronting our models of the migration initiation of juvenile fall Chinook 

with our data, we created a generalized modeling framework to model the number of tagged fish 

present in the rearing habitat over time. This model has the following structure: 

1i i i iN N T L−= + −  

In this formulation, Ni is the number of tagged fish at large within the rearing habitat on day i, so 

Ni-1 is the number of fish that were present within the rearing habitat on the previous day. Ti is 

the number of fish tagged and released back into the rearing habitat on day i, and Li is the 

number of fish that initiate migration and leave the habitat on day i. Ti is generated from the T0 

data points of individual fish and is an external forcing. Li is generated by our models of 

migration initiation, described below. We use Ni to validate the model by comparing it to CPUE 

data. We assume that Ni is related to CPUE via the following relationship: 

i iCPUE N cc= ×  

In this formulation, Ni is directly proportional to CPUEi, and catchability coefficient cc describes 

the relationship between the two. We then test the model fit by comparing CPUEi produced by 

the model to CPUEi from data. 
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3.2.3 CPUE and PIT Data 

 CPUE data was only available for a subset of all sites sampled by William Connor. Some 

sites were sampled on a regular basis, others were sampled on an irregular basis (Connor et al. 

2003). CPUE data is available for a subset of sites that were sampled on a weekly basis. The set 

of sites sampled each year is not exactly the same, but CPUE data is available for 10-14 sites in 

each year of data from 1992 to 2000. These sites were sampled and CPUE recorded on a weekly 

basis, with subsets of sites sampled on different days of the week. To yield a single estimate of 

CPUE, the CPUE recorded at all sites was averaged over each weekly sampling period. The days 

between each weekly mean were then backfilled by linear interpolation between the mean CPUE 

points. Both averaged data points and interpolated points were used to verify model results, but 

averaged data points were weighted three times heavier than interpolated points. 

 For the individual fish data used in the Mass-Growth model, we used all fish tagged at 

the river kilometers for which CPUE data is available in each year. As the CPUE data is derived 

from initial capture and recapture of these fish (fish too small to be PIT tagged were not included 

in CPUE data, William Connor, personal comm.), the CPUE data reflects the presence of these 

fish in the rearing habitat. By using this subset of the PIT data to run the model, the CPUE data 

can provide an accurate indicator of how well the Mass-Growth model is predicting the 

movement of the fish. As described in section 3.2.1, many of the fish tagged at these sampling 

locations lack a T1 and M1 data point; they only have a T0 and M0 data point. For these fish, the 

mean of fitted consumption rates is used in the growth model. 
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3.2.4 Mass Only Model 

 The first version of the model we tested used only mass to trigger migration. For ease of 

reference through the rest of this chapter, we will refer to this version of the model as the Mass 

Only Model. Growth of all fish was modeled from tagging through the end of the rearing season; 

when an individual’s mass passed a critical mass, that fish was modeled to initiate migration. So, 

for this version of the mass-growth model, the leaving function Li follows the following 

structure: 

( )
max

[ ]

[ , ]
j

i

fish j

L mass j i Mcrit= >∑  

In this formulation, the number of fish leaving on day i (Li) is equal to the sum of all fish j for 

which their modeled mass on day i is greater than the critical mass, Mcrit. Mass is a matrix of 

modeled masses with two dimensions; dimension j is the individual fish modeled, and dimension 

i is time, in days. Mcrit simulates a genetic threshold size which must be surpassed for a fish to 

decide to initiate migration, as proposed in Thorpe et al. (1998). The theory in Thorpe et al. 

(1998) proposes that, as a genetically controlled threshold, the magnitude of the threshold likely 

varies among individuals due to variation in genes; however, to support parameter estimation via 

optimization fitting, we treat Mcrit as a constant for all fish within a given year. 

 

3.2.5 Mass and Growth Efficiency Model 

 We then created a second version of the model in which either mass or growth efficiency 

could trigger migration. For ease of reference, we will refer to this version of the model as the 

Mass & Growth Model through the remainder of this chapter. Both mass and growth efficiency 

were modeled for all fish from tagging through the end of the rearing season; an individual 
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would be modeled to initiate migration when its mass was greater than a critical mass or when its 

growth efficiency was less than a critical growth efficiency. The leaving function Li for this 

model follows the following form: 

( ) ( )
max max

[ ] [ ]

[ , ] [ , ]
j j

i

fish j fish j

L mass j i Mcrit growtheff j i Gcrit
   

= > + <   
   
∑ ∑  

In this formulation, the first term of the leaving function is identical to that in the mass only 

version of the model. However, there is also a second term with a similar structure to the first to 

account for fish leaving due to the growth efficiency threshold. The total number of fish leaving 

on day i is equal to the sum of all fish for which their modeled mass is greater than the critical 

mass Mcrit, plus the sum of all fish for which their modeled growth efficiency on day i is less 

than the critical growth efficiency, Gcrit. In order to prevent double counting, any fish that 

initiated migration by the mass threshold was ineligible to initiate migration by the growth 

efficiency threshold. Again, Mcrit and Gcrit are fitted as constant parameters for all fish in a 

given year. 

 

 

 

 

3.2.6 Adding a Mass-Based Covariate to the Catchability Model 

 Model fits of both versions of the Mass-Growth model tended to underestimate CPUE in 

the early portion of the season, so the catchability portion of the model was expanded to include 

a term that modifies catchability depending on the mean mass of the population of fish in the 
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rearing habitat. For ease of reference, we will refer to this version of the model as the Mass, 

Growth, & Catchability Model. This expanded catchability term has the following structure: 

max

[ ]

[ , ]

max

Bj

fish j
i i

mass j i

CPUE N cc
j

  
  
  = × ×  
     

∑
 

In this formulation, the term inside the inner set of parenthesis calculates the mean mass of all 

fish present in the rearing habitat on day i. The term sums the mass of fish on day i across all fish 

j, then divides by the number of fish j to yield the mean mass. Exponential parameter B then 

describes how mean mass impacts the catchability coefficient cc. If B is zero, then population 

mass has no impact on catchability. If B is larger than zero, then increasing population mass will 

result in increasing catchability. If B is less than zero, then increasing population mass will 

reduce catchability. 

 

3.2.7 Maximum Likelihood Parameter Estimation 

 We used a maximum likelihood method to estimate the parameters on a yearly basis for 

each version of the model. For the maximum likelihood implementation of our model, we 

assumed that the deviations between observed CPUE and CPUE predicted by our model come 

from a Gaussian distribution with mean 0 and variance σ. Thus, for our model: 

...observed iCPUE N cc ε= × × +  

Modeled CPUE is generated from the modeled number of fish in river Ni and the catchability 

term cc, as well as the additional mass catchability term in one version of the model. Then, for 

each day i, a deviation ε between modeled and observed CPUE is generated. For each deviation 

ε, the likelihood that the deviation came from Gaussian distribution with mean 0 and variance σ 



76 
 

 
 

is then calculated. The negative log of these likelihoods is then taken, to yield negative log 

likelihood. Due to the log transform, these negative log likelihoods are additive; the sum of the 

negative log likelihoods for each day i yields a single estimate of negative log likelihood for a 

given set of parameters. The negative log likelihood is then minimized via an iterative parameter 

estimation process to yield a single maximum likelihood parameter set. 

We tested three versions of the Mass-Growth model. The first version tested was the 

Mass-Only Model: a mass-only leaving function with a constant catchability coefficient. The 

second was the Mass & Growth Model: a mass and growth efficiency driven leaving function 

with constant catchability. The last version tested was the Mass, Growth, & Catchability Model: 

both a mass and growth efficiency driven leaving function and a mass-varying catchability 

coefficient. The optim function from the stats package in the statistical computing language ‘R’ 

was used for the minimization process. The optim function implements several different 

minimization methods; for the parameter estimations of the Mass Only and Mass & Growth 

versions of the model, the Nelder-Mead method (Nelder and Mead 1965) was used as the 

primary method, with the L-BFGS-B (Byrd et al. 1995) method being used if the Nelder-Mead 

method had difficulty converging. The Nelder-Mead method is unbounded, so it searches the 

entire parameter space. The L-BFGS-B method is bounded; bounds were selected to be as large 

as possible, but often had to be tweaked to reach convergence. For the parameter estimation of 

the Mass, Growth & Catchability version of the model, the L-BFGS-B method was the primary 

method used, with the Nelder-Mead as a fallback if the L-BFGS-B method did not converge. The 

starting parameters used for the optimizations were: 10 grams for Mcrit, 0.0 joules G/C for Gcrit, 

0.02 for cc, -1 for B if the mass-varying catchability coefficient was used, and 2 for σ. In some 
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years for some versions of the model these starting parameters were modified slightly if optim 

had difficulty converging. 

 

3.3 Results 

3.3.1 Mass Only Model 

 Table 3.5 presents the results of the maximum likelihood parameter estimation of the 

Mass Only Model (mass driven leaving, constant catchability). The Nelder-Mead optimization 

method (Nelder and Mead 1965) was used for most years; in 1994 and 1996, the Nelder-Mead 

method had difficulty converging and the L-BFGS-B method (Byrd et al. 1995) was used 

instead. Fitted Mcrit values are fairly consistent across years (Table 3.5), ranging from 3.13 

grams to 6.74 grams. The average fitted Mcrit is 4.99 grams. Fitted catchability coefficients vary 

relatively more across years, ranging from 0.0088 to 0.0867. The mean fitted catchability 

coefficient is 0.0316. Fitted σ is an index of how close the fit is to the observed data; in most 

years fitted σ is less than one, but in 1998 and 2000 a larger fitted σ indicates a poorer fit. The 

theory behind the model states that achieving a critical mass is the trigger for migration; 

therefore, fish that were larger than fitted Mcrit at tagging are evidence of a model failure, as 

these fish have clearly not yet initiated migration even though they are larger than the threshold 

mass. Significant numbers of fish were larger than Mcrit at tagging in each year of data (Table 

3.5), ranging up to half of the fish modeled in some years. 

In most years, the Mass Only version of the Mass-Growth Model does an adequate job of 

fitting observed CPUE data (Figures 3.1, 3.2); however, some years have noticeably poor fits. In 

1993 and 1996, many fish are modeled to never grow larger than the growth threshold for 

migration Mcrit, resulting in the modeled CPUE distribution never reaching close to zero. In the 
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other years this is only true for a handful of fish, and the modeled CPUE distribution approaches 

zero at the same time as the observed CPUE distribution. Additionally, in most years the fitted 

CPUE distribution lags slightly behind the observed CPUE distribution. This effect is most 

visible in 1997. Observed CPUE data displays mostly monotonic patterns with little jaggedness 

in the pattern of CPUE over time; however, model fits display significant jaggedness (Figures 

3.1, 3.2). This is largely due to the large proportion of fish that were larger than fitted Mcrit 

values at tagging. Due to the stratified nature of sampling, sampling events tend to be clustered 

together in blocks of three to four days, with spaces of several days with no sampling between 

each cluster. After each sampling event, many fish which were larger than Mcrit at tagging are 

then modeled to immediately initiate migration. This leads to jaggedness in modeled CPUE 

values; modeled CPUE tends to climb rapidly due to a sampling event, then rapidly drop after 

the sampling event. 

 Modeled leaving illustrates how the large number of fish larger than Mcrit at 

tagging leads to jagged modeled CPUE (Figures 3.3, 3.4). Distributions of modeled leaving dates 

(T2m) predicted by the Mass Only model are very spiky. While these leaving distributions are 

located within the declining portion of the CPUE data, which the Thermal Wall model was 

unable to achieve, this spikiness is a symptom of a high rate of model failure with regards to 

fitted Mcrit values being smaller than the mass of many fish at tagging.  

 

3.3.2 Mass & Growth Model 

 Table 3.6 presents the results of the maximum likelihood parameter estimation of the 

Mass & Growth model (mass and growth efficiency leaving, constant catchability). The Nelder-

Mead optimization method (Nelder and Mead 1965) was used for most years; in 1995 and 1997, 
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the Nelder-Mead method had difficulty converging and the L-BFGS-B method (Byrd et al. 1995) 

was used instead. While a maximum likelihood fit was found for 2000, the nature of the fitted 

parameter values and the distributions of the fit are markedly different from the other years. We 

concluded that the fit for 2000 was not working very well and attempted to find a local minimum 

with parameters closer to those fitted in other years, but we were unsuccessful. Fitted Mcrit 

values are fairly consistent across years (Table 3.6), with the exception of 1996 and 2000. Fitted 

Mcrit values range from 9.19 grams to 12.53 grams excluding 1996 and 2000, with those years 

fitted at 7.86 grams and 5.54 grams respectively. The average fitted Mcrit is 9.79 grams. Fitted 

Gcrit values are also very consistent, with the exception of 1994 and 1996. Fitted Gcrit ranges 

from 0.30 to 0.41 excluding 1994 and 1996, with 1994 fitted at -0.015 and 1996 at 0.16. As in 

the Mass Only version of the Mass-Growth model, fitted catchability coefficients vary relatively 

more across years, ranging from 0.0034 to 0.09. The mean fitted catchability coefficient is 

0.0236. Fitted σ again follows a similar pattern as in the Mass Only version of the Mass-Growth 

model; in most years fitted σ is less than one, but in 1998 and 2000 a larger fitted σ indicates a 

poorer fit. As fitted Mcrit values were much larger in this version of the model than in the mass-

only version, many fewer fish were larger than Mcrit at tagging in each year of data (Table 3.6). 

The one exception is 2000, which is fitted with the same Mcrit as in the mass-only version of the 

Mass-Growth model (Table 3.5). 

The Mass & Growth version of the Mass-Growth model does a better job of fitting 

observed CPUE data than the Mass Only version. The problem of jagged fits observed in the 

Mass Only fits is mostly absent in the Mass & Growth fits (Figures 3.5, 3.6). This is largely due 

to the much larger fitted Mcrit values, which lead to many fewer fish being larger than fitted 

Mcrit at tagging (Table 3.6). Additionally, the problem observed in the Mass Only version of the 
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model with some fish never modeled to initiate migration is absent in the Mass & Growth 

version of the model. The growth efficiency leaving term of the Mass-Growth model behaves in 

the same manner as the Thermal Wall model; the only difference is that the critical growth 

efficiency Gcrit is free to be fitted at any value in the Mass-Growth model, where it was 

constrained to zero in the Thermal Wall model. Since temperature strongly impacts the growth 

efficiency of all fish as discussed in Chapter 2 of this thesis, Gcrit-initiated leaving tends to be 

tightly grouped into short periods. As discussed in Chapter 2, temperature increases over the 

rearing season resulting in generally declining growth efficiency. This results in Gcrit acting in 

the same manner as the Thermal Wall model, where beyond a certain date temperature will drive 

the growth efficiency of virtually all fish below the threshold and no fish will be modeled to 

remain in the river. This solves the problem of some fish being modeled to never migrate, but it 

introduces another problem as in some years Gcrit-driven leaving produces a poor fit of the tail 

of the CPUE distribution. This is especially visible in 1993 and 1998 (Figures 3.5, 3.6), where 

modeled CPUE rapidly drops to near zero after the peak of the distribution, while the observed 

CPUE distribution declines much more gradually. Jaggedness is then observed in the fitted 

CPUE distributions, resulting from small numbers of tagged fish being captured and released 

back into the river, then immediately initiating migration due to the Gcrit threshold. There are 

clearly still some fish in the river at this point, as evidenced by the observed CPUE distributions 

and records of tagged fish, but the model has predicted that virtually no fish should remain in the 

river, so this can be considered a partial failure of the fit.  

Examination of the leaving distributions predicted by the fitted Mcrit and Gcrit values 

illustrates the differences between how the two leaving processes operate (Figures 3.7, 3.8). As 

in the Thermal Wall model, Gcrit driven leaving displays a very spiky distribution, with leaving 
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packed into short periods of a few days. In contrast, Mcrit driven leaving displays a much more 

diffuse distribution, with fish growing into the threshold gradually. Additionally, the percentage 

of fish that initiate migration by the two processes varies greatly depending on the year (Table 

3.8). For most years, the majority of fish initiate migration due to the Gcrit threshold; only in 

1996 and 2000 do majorities of fish initiate migration due to the Mcrit threshold. This Gcrit-

dominated leaving is very visible in the leaving distributions (Figure 3.7, 3.8). 

 

3.3.3 Mass, Growth & Catchability Model 

 Table 3.7 presents the results of the maximum likelihood parameter estimation of the 

Mass, Growth & Catchability Model (mass and growth efficiency driven leaving, mass-varying 

catchability). The L-BFGS-B optimization method (Byrd et al. 1995) was used for every year 

except 2000, for which the Nelder-Mead (Nelder and Mead 1965) optimization method was 

used. Achieving convergence was much more difficult for this version of the model, and starting 

parameters had to be modified slightly for most years. Unlike the previous versions of the model, 

the maximum likelihood fit for 2000 was not markedly different from the other years. Fitted 

Mcrit values seem to break into two groups, with some years fitted around 7.5 grams and other 

years fitted near 11 grams (Table 3.7). Fitted Mcrit values range from 7.36 grams to 11.53 

grams; the average fitted Mcrit is 9.44 grams. Fitted Gcrit values are very consistent, with the 

exception of 1994 and 1996 again. Fitted Gcrit ranges from 0.27 to 0.4 excluding 1994 and 1996, 

with 1994 fitted at -0.015 and 1996 at 0.049. As in the other versions of the Mass-Growth model, 

fitted catchability coefficients vary relatively more across years, ranging from 0.015 to 0.19. The 

mean fitted catchability coefficient is 0.102. Fitted B is fairly consistent, ranging from -0.46 to -

1.82, with a mean of -0.99. Fitted σ again follows a similar pattern as in the other versions of the 
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Mass-Growth model; in most years fitted σ is less than one, but in 1998 and 2000 a larger fitted 

σ indicates a poorer fit. Fitted Mcrit values were larger in this version of the model than in the 

Mass Only version but smaller than in the Mass & Growth version. Some fish were larger than 

Mcrit at tagging in each year of data, ranging as high as 19% of all fish modeled in 1995. 

 The Mass, Growth & Catchability version of the Mass-Growth Model produces the best 

fits of observed CPUE data of the three versions tested. Where both of the previous versions of 

the model produced fits that tended to lag behind observed CPUE in the early part of the 

distribution (Figures 3.1, 3.2 and 3.5, 3.6), this problem is much lessened in the fits produced 

using the mass-varying catchability coefficient (Figures 3.9, 3.10). The mass exponential term B 

in the catchability coefficient has the effect of increasing modeled catchability in the early 

portion of the rearing season, improving the model’s ability to match the observed increases in 

CPUE. Since the fitted value of B is negative in all years, catchability in this version of the 

model declines as fish mass increases. The mean population mass tends to increase over the 

rearing season, leading to declining catchability (Figures 3.13, 3.14). Modeled mass and 

catchability tend to be quite spiky near the end of the rearing season; this is because the number 

of fish remaining in the habitat is very low, and the tagging or migration of even a handful of fish 

can have a large impact on the mean population mass. Leaving distributions produced by this 

version of the model are similar to those produced by the Mass & Growth model; Mcrit-driven 

leaving tends to follow a more gradual distribution spread out across the rearing season, while 

Gcrit-driven leaving is compacted into short periods with many fish leaving at once (Figures 

3.11, 3.12). Since fitted Mcrit values are significantly lower than those in the Mass & Growth 

version of the model, the percentages of fish that initiate leaving by the two processes is much 
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more even (Table 3.8). Gcrit-driven leaving is dominant in 1992, 1993, and 1998; Mcrit-driven 

leaving is dominant in 1996; the remaining years show a balance of the two processes. 

  While overall the fits produced by this version of the model are better, some of the 

problems present in the previous versions persist. In particular, Gcrit-driven leaving still 

produces a poor fit of the tail of the CPUE distribution in many years. Gcrit as a leaving process 

produces compact leaving distributions where many fish are modeled to initiate migration at 

once (Figures 3.11, 3.12), and due to how growth efficiency changes over the rearing season, 

past a certain point in the rearing season Gcrit-driven leaving will drive all fish out of the rearing 

habitat. This produces a sharp decline to zero at the tail of most of the modeled CPUE 

distributions, while observed CPUE distributions mostly show a much more gradual decline. In 

1993 and 1998 this phenomenon has the largest impact on the fit; modeled CPUE declines 

sharply to zero several weeks before observed CPUE does, and there are even several tagging 

events after Gcrit driven leaving has driven all fish from the rearing habitat, leading to brief 

spikes in modeled CPUE.  

 

3.4 Discussion 

3.4.1 Observed Problems 

The largest problems observed in the fits of the three versions of the Mass-Growth model 

were fitted Mcrit values smaller than the mass of many fish at tagging and a tendency for Gcrit-

driven leaving to drive modeled fish out of the rearing habitat before observed CPUE reaches 

zero. The Mass Only version suffered the most from large number of fish with tagging mass 

larger than fitted Mcrit values. In every year fitted, twenty to fifty percent of all fish were larger 

at tagging than the fitted Mcrit (Table 3.5). Each of these fish can be considered a model failure; 
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our model proposes that reaching the Mcrit threshold is the trigger for migration; therefore any 

fish that has grown larger than Mcrit and has not yet initiated migration is evidence that the 

Mcrit threshold fitted is in error. If the model were working perfectly, we would expect no fish in 

the rearing habitat to be larger than Mcrit, and therefore no fish could be captured and tagged 

with a larger mass than Mcrit. This being the ideal outcome, no model is a perfect representation 

of reality and the Mass-Growth model is no exception. For reasons including parsimony and ease 

of estimating the parameter, our model fits Mcrit as a single value constant for all fish; however, 

as a representation of a genetic threshold, the theory motivating the model suggests that there 

would most likely be significant variability in Mcrit on an individual basis corresponding with 

genetic variability in the population (Thorpe et al. 1998). In this case, what the Mass-Growth 

model is actually fitting is the population mean of the individual Mcrit values. Some rate of 

failure would be expected under this circumstance, as some fish will have a true mass threshold 

larger than the fitted Mcrit, and they could be captured and tagged after they have grown larger 

than the fitted Mcrit but before they have reached their individual threshold. However, the very 

high rate of failure displayed by the Mass Only version of the Mass-Growth model is almost 

certainly evidence that the fitted Mcrit thresholds are too low. The two versions of the model 

with both mass-driven leaving and growth efficiency-driven leaving have significantly higher 

fitted Mcrit values and correspondingly a much lower rate of failure with respect to tagging 

masses larger than the fitted Mcrit values. For this reason, we conclude that the Mass Only 

version of the Mass-Growth model is insufficient to explain migration in juvenile Chinook, and 

both mass and growth efficiency thresholds are necessary. 

 Both the Mass & Growth and the Mass, Growth & Catchability versions of the model 

display a tendency for Gcrit-driven leaving to drive modeled fish out of the rearing habitat 
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before observed CPUE reaches zero. As discussed in section 3.3, this is especially visible in the 

fits for 1993 and 1998 in both versions of the model (Figures 3.5, 3.6 and 3.9, 3.10). The Gcrit 

parameter behaves as the Thermal Wall model, discussed in the sensitivity analysis in section 

2.3.2; due to the increasing trend in temperature over the course of the rearing season, eventually 

the growth efficiency of all fish will fall below Gcrit. Gcrit-driven leaving thus acts as a 

termination of the rearing season, forcing all fish to initiate migration with an abrupt, large 

migration pulse (Figures 3.7, 3.8 and 3.11, 3.12). In contrast, observed CPUE distributions 

display gradual declines, sometimes with a marked tail. Again, assumptions and simplifications 

we have made in our modeling are likely responsible for the difficulty the Mass-Growth model 

has in fitting a gradual tail. Gcrit affects the majority of the population at once because many of 

the factors that determine individual growth efficiency are constant across fish in our modeling. 

In reality, individual growth efficiencies are affected by individual variation in temperature 

experience and consumption rate, and genetic variation in Gcrit.  

In our modeling, we use only the daily mean temperature from a single source to describe 

the temperature experience of all fish. In reality, there is spatial and diurnal variation in 

temperature through the reach of the Snake River used as rearing habitat by fall Chinook 

(Anderson 2000, Cook et al. 2006). Additionally, in the nearshore habitat used by rearing 

juvenile Chinook, the salmon are vulnerable to being caught in entrapment pools caused by 

anthropogenic modification of flow rates (Geist et al. 2010). Temperatures within entrapment 

pools vary much more than temperatures within the river (Geist et al. 2010). These variations in 

individual temperature experience will affect each fish’s growth efficiency, resulting in greater 

variation in when individual fish pass the growth efficiency threshold Gcrit than captured by our 

modeling. 
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While we fit individual consumption rates for any fish for which a T1 and M1 data point 

is present, many fish used in the Mass-Growth model did not have a T1 and M1 data point. Since 

our multivariate linear model of consumption rate was unsatisfactory, we used the mean fitted 

consumption rate for all of these fish. Unfortunately, this assumption removes much individual 

variation in growth rate and growth efficiency, which results in less variation in migration dates 

predicted by Gcrit. 

Lastly, similarly to our modeling of Mcrit, we model Gcrit as a constant parameter for all 

fish. However, we employ Thorpe et al.’s (1998) theory that the triggering mechanisms driving 

migratory behavior are under genetic control, and as a representation of a genetically-determined 

threshold, Gcrit in reality will vary according to an individual’s genetic makeup. Since the Mass-

Growth model can only estimate a single, constant value for Gcrit, this genetic variability is not 

modeled. This individual variation in temperature experience, consumption rate, and Gcrit 

threshold which the Mass-Growth model does not capture would all work to spread out the 

migration dates predicted by the Gcrit threshold. If such improvements could be made to the 

model, the large pulse that the model currently predicts would be more dispersed, greatly 

improving the model’s ability to fit a gradual tail in the observed CPUE distribution. 

The last question arising from the model fits concerns the fitted relationship between fish 

mass and catchability in the Mass, Growth & Catchability version of the model. In every year 

fitted, the fitted relationship predicts decreasing catchability with increasing mass (Figures 3.13, 

3.14). While no prior studies explicitly evaluate the relationship between catchability and fish 

mass with beach seine gear, a study examining catchability of juvenile salmonids with 

electrofishing gear found a positive relationship between fish mass and catchability (Ruiz and 

Laplanche 2010). The mass coefficient B was added to the model to address the tendency for 
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model fits to lag behind observed CPUE, but it is possible that a different factor is impacting 

catchability, or even some factor other than catchability may be responsible for the lagging fits. 

The fitted mass-catchability relationship cannot be discounted entirely however, because 

catchability relationships are known to vary widely depending on the gear type and fishing 

method used (Arreguin-Sanchez 1996). It is likely that differences between beach seine and 

electrofishing processes could result in opposite relationships between fish mass and 

catchability; in electrofishing, larger fish are more vulnerable due to the physics of the fishing 

gear- the waveform generated by the electric probes intersects larger bodies more frequently, 

resulting in a more severe stun effect. In contrast, beach seining has very different sampling 

dynamics. In a large habitat such as the mainstem Snake River, habitat nearer to shore is easier to 

sample, and habitat further from shore is comparatively more difficult due to increasing depth 

and a longer cast distance. Additionally, fish can see the oncoming net and attempt to escape it; 

fish with a faster swimming speed are better able to escape the net. If larger fish tend to occupy 

rearing habitat farther from shore or are better able to escape the net, then the negative 

relationship fitted between fish mass and catchability in our model is likely accurate. 

 

 3.4.2 Overall Performance 

The Mass Only version of the Mass-Growth model produced reasonable fits of observed 

CPUE data for some years; notably, the AIC scores for 1993 and 1995 compare favorably to the 

other models (Table 3.9). However, the fits produced for many other years had notable problems, 

and this version had a high rate of model failure with many fish larger at tagging than the low 

fitted Mcrit values. Ultimately, due to the model failures, we conclude that a mass threshold 

alone is insufficient to describe migration initiation in fall Chinook in the Snake River. Both the 
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Mass & Growth and the Mass, Growth & Catchability versions of the Mass-Growth model 

produced much better fits of observed CPUE data with fewer systemic problems with the fits. 

However, modifying the catchability term of the model significantly changed the fitted values of 

the other parameters and the distributions of fish that initiated migration via the two processes. 

With a constant catchability term, fitted Mcrit values were quite large, averaging 9.79 grams 

(Table 3.6). While these large Mcrit values resulted in a low rate of failure with regards to fish 

being larger than Mcrit at tagging, it also resulted in the mass-driven leaving process being 

unimportant to overall migration, as most fish initiated migration via the Gcrit process (Table 

3.8). Using a mass-varying catchability term resulted in smaller fitted Mcrit values, averaging 

9.44 grams, but produced little change in fitted Gcrit values. This results in the two parameters 

being equally important to the overall migration pattern, with one or the other process producing 

a majority of migrants depending on the year. These lower fitted Mcrit values do produce a 

slightly higher failure rate with fish larger than Mcrit at tagging, but overall the failure rate is 

much more acceptable, with less than ten percent of all fish larger at tagging than their fitted 

Mcrit (Table 3.7). 

The quality of the fits produced and the low rate of failure lead us to select the Mass, 

Growth & Catchability version of the Mass-Growth model as the most successful version. For 

most years, the AIC scores produced by this model are superior to those of the other versions 

(Table 3.9); the largest exceptions are 1998 and 2000, which are not fitted well by any version of 

the Mass-Growth model. The model produces very consistent estimates for the critical growth 

efficiency initiating migration. With the exception of two years, the fitted values of Gcrit suggest 

that growth efficiencies between 0.3 and 0.4 are a trigger for migration. The fitted values of the 

mass threshold are more ambiguous; some years seem to cluster around 7.5 grams, while others 
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cluster around 11 grams. It is interesting to note that the three years with the lowest fitted Mcrit 

values- 1995, 1997, and 1998- are also three years when Connor released significant numbers of 

tagged subyearling hatchery fish into the Snake River rearing habitat in a study related to his 

study of wild fall Chinook. In 1995, 7,681 hatchery subyearlings were released; in 1997, 29,783 

were released, and 25,470 were released in 1998. No hatchery subyearlings were released by 

Connor in the other years. These three years also have the lowest fitted Mcrit values, at 7.61, 

7.36, and 7.60. These values are markedly lower than the fitted Mcrit values for the other years 

(with the exception of 1996); it is possible that amplified density dependent effects resulting 

from the large number of hatchery subyearlings released reduced the optimal mass for migration. 

The end result of combining the mass-driven and growth-efficiency driven leaving 

processes into one leaving function is a fairly constant, low-level amount of fish initiating 

migration through the bulk of the rearing season, capped by large pulses of migration at the end 

of the rearing season. Depending on whether the constant or mass-varying catchability term is 

used, the dynamics of the two processes change. If the constant catchability term is used (Mass 

& Growth Model), the number of fish migrating in the diffuse portion of the season (produced by 

Mcrit) is insignificant compared to the large leaving pulses at the end (produced by Gcrit). If the 

mass-varying catchability term is used (Mass, Growth & Catchability Model), the number of fish 

leaving by the two processes is much more balanced, though one or the other can be dominant 

depending on the year. 
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3.5 Chapter 3 Tables 

Table 3.1 

Summary table of the full model with all predictors for the multivariate linear model of fitted 
consumption rate (P). T0 is the day of year a fish was tagged, M0 is the fish’s mass at tagging, 
T0 RKM is the river kilometer the fish was tagged at, T0 CPUE is the catch per unit effort 
recorded at the site and day on which the fish was tagged, CPUE^2 is a squared term of CPUE, 
T0 Temp is the daily mean Snake River temperature on the day the fish was tagged, Temp^2 is a 
squared term of temperature, and T0:M0, T0:CPUE and T0:Temp are interaction terms. Year 
effects are estimated as offsets from the base year (1992). The T-statistics of T0 Temp, T0:M0 
and T0:CPUE and the year offset for 1993 are not significant at the 0.05 level; the slope 
coefficients of all other terms are significantly different from zero. The total adjusted R2 is 0.12. 
 
Predictor Estimate Std. Error T P 

Y-Intercept -1.516 0.398 -3.81 0.00014 

T0 0.0169 0.00337 5.01 5.8e-7 

M0 -0.0627 0.0295 -2.13 0.0335 

T0 RKM 0.000894 0.000114 7.78 1.1e-14 

T0 CPUE 0.00849 0.00360 2.36 0.019 

CPUE^2 -0.000028 0.0000095 -2.96 0.0031 

T0 Temp 0.0631 0.0418 1.51 0.13 

Temp^2 0.00571 0.00194 2.95 0.0032 

Year (1993) 0.0142 0.0338 0.42 0.67 

Year (1994) 0.157 0.0290 5.40 7.6e-8 

Year (1995) 0.0761 0.0319 2.39 0.017 

Year (1996) 0.169 0.0399 4.24 2.3e-5 

Year (1997) 0.0955 0.0335 2.85 0.0043 

Year (1998) 0.0626 0.0315 1.99 0.047 

Year (1999) 0.120 0.0338 5.91 3.7e-9 

Year (2000) 0.166 0.0369 4.50 7.2e-6 

T0:M0 0.000333 0.000186 1.79 0.073 

T0:CPUE -0.000041 0.000024 -1.71 0.087 

T0:Temp -0.00132 0.000259 -5.11 3.6e-7 

R^2:   0.1288 Adjusted R^2:   0.1222  
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Table 3.2 

ANOVA Table of the full model with all predictors for the multivariate linear model of fitted 
consumption rate (P). The table includes a list of the predictor variables, the degrees of freedom 
used by each predictor, the sum of squares and mean sum of squares explained by each predictor, 
the resulting F statistics and the P values of the F statistics. T0 is the day of year a fish was 
tagged, M0 is the fish’s mass at tagging, T0 RKM is the river kilometer the fish was tagged at, 
T0 CPUE is the catch per unit effort recorded at the site and day on which the fish was tagged, 
CPUE^2 is a squared term of CPUE, T0 Temp is the daily mean Snake River temperature on the 
day the fish was tagged, Temp^2 is a squared term of temperature, Year is a year effect, and 
T0:M0, T0:CPUE and T0:Temp are interaction terms. The F-statistics of T0, Temp^2, T0:M0 
and T0:CPUE are not significant at the 0.05 level, all other predictors are statistically significant. 
All predictors combined explain 13.715 of 106.453 total variance in the response variable, fitted 
consumption rate (P). 
 

Predictor D.F. SS Mean SS F P 

T0 1 0.00000236 0.00000236 0.0001 0.994 

M0 1 0.377 0.377 9.614 0.00195 

T0 RKM 1 3.296 3.296 84.088 < 2.2e-16 

T0 CPUE 1 0.406 0.406 10.345 0.00131 

CPUE^2 1 0.831 0.831 21.206 4.34e-6 

T0 Temp 1 0.309 0.309 7.889 0.00501 

Temp^2 1 0.116 0.116 2.959 0.0855 

Year 8 7.303 0.913 23.290 < 2.2e-16 

T0:M0 1 0.009 0.009 0.224 0.636 

T0:CPUE 1 0.046 0.046 1.180 0.278 

T0:Temp 1 1.022 1.022 26.074 3.55e-7 

Error 2366 92.738 0.039   

Total 2384 106.453    
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Table 3.3 

Summary table of the reduced multivariate linear model of fitted consumption rate (P), produced 
by sequential deletion from the full model. T0 is the day of year a fish was tagged, M0 is the 
fish’s mass at tagging, T0 RKM is the river kilometer the fish was tagged at, T0 CPUE is the 
catch per unit effort recorded at the site and day on which the fish was tagged, CPUE^2 is a 
squared term of CPUE, T0 Temp is the daily mean Snake River temperature on the day the fish 
was tagged, Temp^2 is a squared term of temperature, and T0:Temp is an interaction term. Year 
effects are estimated as offsets from the base year (1992). The T-statistics of T0 Temp and the 
year offsets for 1993 and 1998 are not significant at the 0.05 level; the slope coefficients of all 
other terms are significantly different from zero. The total adjusted R2 is 0.12. 
 

Predictor Estimate Std. Error T P 

Y-Intercept -1.410 0.395 -3.57 0.00037 

T0 0.0158 0.00334 4.74 2.3e-6 

M0 -0.00998 0.0236 -4.24 2.4e-6 

T0 RKM 0.000939 0.000111 8.44 < 2e-16 

T0 CPUE 0.00218 0.000789 2.76 0.0058 

CPUE^2 -0.000027 0.0000095 -2.81 0.0050 

T0 Temp 0.0464 0.0407 1.14 0.25 

Temp^2 0.00545 0.00193 2.82 0.0048 

Year (1993) 0.0108 0.0336 0.32 0.75 

Year (1994) 0.154 0.0290 5.31 1.2e-7 

Year (1995) 0.0703 0.0317 2.23 0.026 

Year (1996) 0.164 0.0398 4.12 3.9e-5 

Year (1997) 0.0918 0.0334 2.75 0.0061 

Year (1998) 0.0612 0.0315 1.94 0.052 

Year (1999) 0.195 0.0334 5.83 6.3e-9 

Year (2000) 0.167 0.0363 4.6 4.4e-6 

T0:Temp -0.00117 0.000250 -4.68 3.1e-6 

R^2:   0.1268 Adjusted R^2:   0.1209  
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Table 3.4 

ANOVA Table of the reduced multivariate linear model of fitted consumption rate (P), produced 
by sequential deletion from the full model. The table includes a list of the predictor variables, the 
degrees of freedom used by each predictor, the sum of squares and mean sum of squares 
explained by each predictor, the resulting F statistics and the P values of the F statistics. T0 is the 
day of year a fish was tagged, M0 is the fish’s mass at tagging, T0 RKM is the river kilometer 
the fish was tagged at, T0 CPUE is the catch per unit effort recorded at the site and day on which 
the fish was tagged, CPUE^2 is a squared term of CPUE, T0 Temp is the daily mean Snake 
River temperature on the day the fish was tagged, Temp^2 is a squared term of temperature, 
Year is a year effect, and T0:Temp is an interaction term. The F-statistics of T0 and Temp^2 are 
not significant at the 0.05 level, all other predictors are statistically significant. All predictors 
combined explain 13.496 of 106.453 total variance in the response variable, fitted consumption 
rate (P). 
 

Predictor D.F. SS Mean SS F P 

T0 1 0.00000236 0.00000236 0.0001 0.994 

M0 1 0.377 0.377 9.614 0.00195 

T0 RKM 1 3.296 3.296 84.088 < 2.2e-16 

T0 CPUE 1 0.406 0.406 10.345 0.00131 

CPUE^2 1 0.831 0.831 21.206 4.34e-6 

T0 Temp 1 0.309 0.309 7.889 0.00501 

Temp^2 1 0.116 0.116 2.959 0.0855 

Year 8 7.303 0.913 23.290 < 2.2e-16 

T0:Temp 1 0.858 0.858 21.860 3.10e-6 

Error 2366 92.738 0.039   

Total 2384 106.453    
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Table 3.5 

Table of yearly fitted parameter values for the Mass Only version of the Mass-Growth model 
(mass driven leaving function, constant catchability coefficient). Year is the year modeled, # Fish 
is the number of individual fish tagged at the sites sampled in CPUE data and used to fit the 
model. # Fitted P is the number of individual fish which had a T1 and M1 data point and had an 
individually fitted consumption rate; other fish used the mean consumption rate. Fitted Mcrit, cc, 
and σ are the parameters of the Mass-Growth model estimated via maximum likelihood. Method 
is the optimization method used to reach the fit; N-M refers to the Nelder-Mead method (Nelder 
and Mead 1965), L-BFGS-B is the method of Byrd et al. 1995. # T0 > Mcrit is the number of 
fish which had a larger mass at tagging than the critical mass for migration, which is a model 
failure; the model predicts that these fish initiate migration immediately after tagging, leading to 
spikiness in the modeled CPUE fits. 
  

Year # Fish # Fitted P Fitted Mcrit Fitted cc Fitted σ Method # T0 > Mcrit 

1992 633 43 3.13 g 0.0358 0.964 N-M 358 

1993 751 141 4.53 g 0.0178 0.633 N-M 324 

1994 1177 213 4.68 g 0.0088 0.548 L-BFGS-B 494 

1995 692 144 5.83 g 0.0227 0.661 N-M 207 

1996 389 61 6.74 g 0.0162 0.01 L-BFGS-B 83 

1997 291 54 4.38 g 0.0348 0.574 N-M 146 

1998 1298 203 4.17 g 0.0461 1.734 N-M 665 

1999 1129 221 5.90 g 0.0151 0.803 N-M 220 

2000 1078 142 5.54 g 0.0867 3.958 N-M 356 

 

  



95 
 

 
 

Table 3.6 

Table of yearly fitted parameter values for the Mass & Growth version of the Mass-Growth 
model (mass and growth efficiency leaving function, constant catchability coefficient). Year is 
the year modeled, # Fish is the number of individual fish tagged at the sites sampled in CPUE 
data and used to fit the model; the number is the same as in Table 3.5. The number of fish with a 
fitted consumption rate is also the same as in Table 3.5; it has been omitted from this table. Fitted 
Mcrit, Gcrit, cc, and σ are the parameters of the Mass-Growth model estimated via maximum 
likelihood. Method is the optimization method used to reach the fit; N-M refers to the Nelder-
Mead method (Nelder and Mead 1965), L-BFGS-B is the method of Byrd et al. 1995. # T0 > 
Mcrit is the number of fish which had a larger mass at tagging than the critical mass for 
migration, which is a model failure; the model predicts that these fish initiate migration 
immediately after tagging, leading to spikiness in the modeled CPUE fits. 
 
Year # Fish Fitted Mcrit Fitted Gcrit Fitted cc Fitted σ Method # T0 > Mcrit 

1992 633 10.74 g 0.36 0.019 0.69 N-M 11 

1993 751 11.29 g 0.34 0.011 0.71 N-M 69 

1994 1177 12.53 g -0.015 0.0034 0.43 N-M 41 

1995 692 9.19 g 0.37 0.018 0.77 L-BFGS-B 83 

1996 389 7.86 g 0.16 0.012 0.23 N-M 59 

1997 291 11.08 g 0.30 0.010 0.41 L-BFGS-B 7 

1998 1298 9.49 g 0.41 0.040 2.52 N-M 84 

1999 1129 10.39 g 0.37 0.0090 1.33 N-M 47 

2000 1078 5.54 g 0.35 0.090 3.95 N-M 356 
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Table 3.7 

Table of yearly fitted parameter values for the Mass, Growth & Catchability version of the Mass-
Growth model (mass and growth efficiency leaving function, mass-varying catchability 
coefficient). Year is the year modeled; # Fish and # Fitted P have been omitted from this table, as 
they are the same as in Table 3.5. Fitted Mcrit, Gcrit, cc, B, and σ are the parameters of the 
Mass-Growth model estimated via maximum likelihood. Method is the optimization method 
used to reach the fit; N-M refers to the Nelder-Mead method (Nelder and Mead 1965), L-BFGS-
B is the method of Byrd et al. 1995. # T0 > Mcrit is the number of fish which had a larger mass 
at tagging than the critical mass for migration, which is a model failure; the model predicts that 
these fish initiate migration immediately after tagging, leading to spikiness in the modeled CPUE 
fits. 
 

Year Fitted Mcrit Fitted Gcrit Fitted cc Fitted B Fitted σ Method #T0>Mcrit 

1992 10.0 0.35 0.044 -0.91 0.70 L-BFGS-B 13 

1993 11.53 0.34 0.025 -0.99 0.72 L-BFGS-B 64 

1994 10.61 -0.015 0.015 -1.15 0.33 L-BFGS-B 82 

1995 7.61 0.37 0.087 -1.30 0.66 L-BFGS-B 131 

1996 8.23 0.049 0.065 -1.82 0.18 L-BFGS-B 53 

1997 7.36 0.27 0.10 -0.88 0.31 L-BFGS-B 49 

1998 7.60 0.40 0.19 -0.63 3.98 L-BFGS-B 154 

1999 10.61 0.30 0.19 -0.46 0.58 L-BFGS-B 40 

2000 11.44 0.34 0.20 -0.77 4.43 N-M 50 
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Table 3.8 

Table showing the percentage of fish that initiated migration via Mcrit and via Gcrit in the two 
versions of the model with both thresholds present. In both versions of the model with a mass 
and growth driven leaving function, a fish can initiate migration by either growing larger than 
Mcrit or by having its growth efficiency fall below Gcrit. Since each fish initiates migration only 
once, the first threshold criteria met becomes the mechanism to initiate migration for an 
individual fish. The columns % Mcrit and % Gcrit show the percentage of all fish modeled in 
each year and model run for which the relevant threshold was the mechanism that resulted in 
migration initiation. 
 

 Mass & Growth Model Mass, Growth & Catchability Model 

Year % Mcrit % Gcrit % Mcrit % Gcrit 

1992 0% 100% 4% 96% 

1993 6% 94% 5% 95% 

1994 14% 86% 24% 76% 

1995 26% 74% 41% 59% 

1996 81% 19% 82% 18% 

1997 26% 75% 70% 30% 

1998 3% 97% 8% 92% 

1999 27% 73% 76% 24% 

2000 71% 29% 16% 84% 

 

  



98 
 

 
 

Table 3.9 

Table showing the AIC scores of the maximum likelihood fitted models for each year and all 
three versions of the Mass-Growth Model. 
 

Year Mass Only AIC Mass & Growth AIC Mass, Growth & Catchability AIC 

1992 308.1 237.2 275.6 

1993 306.6 339.2 412.2 

1994 239.8 172.6 89.2 

1995 275.8 352.5 305.1 

1996 516.9 1.0 -60.2 

1997 135.2 140.5 72.8 

1998 498.4 598.1 649.0 

1999 352.0 499.2 291.6 

2000 766.6 774.6 805.5 
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3.6 Chapter 3 Figures 

Figure 3.1 

 

Yearly plots showing observed CPUE and modeled CPUE produced by the Mass Only version of 
the Mass-Growth model (mass driven leaving, constant catchability) for the years 1992-1995. 
Model parameters were estimated independently for each year via a maximum likelihood 
method. Modeled CPUE tracks observed CPUE fairly well in most years. In 1993 and 1996, 
many fish are never modeled to grow larger than Mcrit and are thus modeled to never initiate 
migration, resulting in modeled CPUE distributions not approaching zero when observed CPUE 
distributions are approaching zero. 
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Figure 3.2 

 

Yearly plots showing observed CPUE and modeled CPUE produced by the Mass Only version of 
the Mass-Growth model (mass driven leaving, constant catchability) for the years 1996-2000.  
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Figure 3.3 

Yearly plots showing observed CPUE and modeled T2m distributions produced by the Mass 
Only version of the Mass-Growth model (mass driven leaving function, constant catchability) for 
the years 1992-1995. Leaving occurs within the CPUE distribution as opposed to after the end of 
the distribution like the T2b produced by the Thermal Wall model. Distributions of T2m tend to 
be very spiky due to low fitted Mcrit thresholds; many fish are larger than Mcrit at tagging, 
leading to spikes in modeled T2m coinciding with sampling events where many fish were tagged 
and then modeled to immediately initiate migration. 
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Figure 3.4 

 

Yearly plots showing observed CPUE and modeled T2m distributions produced by the Mass 
Only version of the Mass-Growth model (mass driven leaving function, constant catchability) for 
the years 1996-2000.   
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Figure 3.5 

 

Yearly plots showing observed CPUE and modeled CPUE produced by the Mass & Growth 
version of the Mass-Growth model (mass and growth efficiency driven leaving, constant 
catchability) for the years 1992-1995. Model parameters were estimated independently for each 
year via a maximum likelihood method. Modeled CPUE tracks observed CPUE fairly well in 
most years. 
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Figure 3.6 

 

Yearly plots showing observed CPUE and modeled CPUE produced by the Mass & Growth 
version of the Mass-Growth model (mass and growth efficiency driven leaving, constant 
catchability) for the years 1996-2000.   
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Figure 3.7 

 

Yearly plots showing observed CPUE and modeled T2m distributions produced by the Mass & 
Growth version of the Mass-Growth model (mass and growth efficiency driven leaving, constant 
catchability) of the years 1992-1995. T2m is broken into separate distributions of fish that 
initiated migration due to growing larger than Mcrit and fish that left due to growth efficiency 
falling below Gcrit. The leaving distributions are proportional to each other, but not directly 
proportional to CPUE.  
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Figure 3.8 

 

Yearly plots showing observed CPUE and modeled T2m distributions produced by the Mass & 
Growth version of the Mass-Growth model (mass and growth efficiency driven leaving, constant 
catchability) of the years 1996-2000.   
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Figure 3.9 

 

Yearly plots showing observed CPUE and modeled CPUE produced by the Mass, Growth & 
Catchability version of the Mass-Growth model (mass and growth efficiency driven leaving, 
mass varying catchability) for the years 1992-1995. Model parameters were estimated 
independently for each year via a maximum likelihood method. Modeled CPUE tracks observed 
CPUE fairly well in most years. 
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Figure 3.10 

 

Yearly plots showing observed CPUE and modeled CPUE produced by the Mass, Growth & 
Catchability version of the Mass-Growth model (mass and growth efficiency driven leaving, 
mass varying catchability) for the years 1996-2000.   
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Figure 3.11 

 

Yearly plots showing observed CPUE and modeled T2m distributions produced by the Mass, 
Growth & Catchability version of the Mass-Growth model (mass and growth efficiency driven 
leaving, mass varying catchability) for the years 1992-1995. T2m is broken into separate 
distributions of fish that initiated migration due to growing larger than Mcrit and fish that left 
due to growth efficiency falling below Gcrit. The leaving distributions are proportional to each 
other, but not directly proportional to CPUE; CPUE distributions are only shown to indicate 
where in the rearing season modeled leaving occurs.  
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Figure 3.12 

 

Yearly plots showing observed CPUE and modeled T2m distributions produced by the Mass, 
Growth & Catchability version of the Mass-Growth model (mass and growth efficiency driven 
leaving, mass varying catchability) for the years 1996-2000.  
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Figure 3.13 

 

Yearly plots for 1992-1995 showing mean modeled Mass of fish present in the rearing habitat 
and modeled Catchability for the Mass, Growth & Catchability version of the Mass-Growth 
model. Catchability is a function of each year’s individually fitted catchability coefficient cc, the 
mean population Mass, and the fitted exponential coefficient B (see section 3.2.6 and Table 3.7). 
Mean Mass tends to increase over the rearing season as fish grow, but it is also affected as fish 
are tagged and added into the population or initiate migration and leave the population. Large 
tagging or migration events can have large impacts on mean population Mass. 
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Figure 3.14 

 

Yearly plots for 1996-2000 showing mean modeled Mass of fish present in the rearing habitat 
and modeled Catchability for the Mass, Growth & Catchability version of the Mass-Growth 
model.   
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Chapter 4: Age-Growth Model of Migration Initiation 

 

4.1 Introduction 

 After the Thermal Wall model was found to be inadequate to explain migration and the 

Mass-Growth model produced reasonable predictions of migration, we undertook a third 

modeling project to compare to the results of the Mass-Growth model. This third model is a 

correlative model that regresses tagging and environmental data against recapture time T0:T1 in 

a generalized linear modeling framework, and then predicts T2 using modeled recapture time. 

We refer to this model as the ‘Age-Growth’ model and denote T2 predicted by this model as 

T2a. The two major steps in the creation of the Age-Growth model were the creation of the 

generalized linear model of recapture time T0:T1 and creating a theoretical framework to 

estimate T2a from modeled recapture time. 

 

4.2 Methods 

4.2.1 PIT Data 

 The Age-Growth model is a correlative model that extrapolates T2 from a generalized 

linear model of recapture time, the number of days between T0 and T1. The generalized linear 

model of T1 was fit using the records of 2,451 fish for which a T1 data point was present. These 
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fish are largely the same as those used to fit the Thermal Wall model, described in section 2.2.3 

of this thesis. All 2,385 fish used to fit the Thermal Wall model are present in the 2,451 fish used 

to fit the Age-Growth model. Slightly more fish are used to fit the Age-Growth model because 

more data points were usable. Unlike the Thermal Wall model, the Age-Growth model only 

requires a T1 data point; no M1 data point is necessary. Four fish had a T1 data point with no 

length or mass recorded at recapture; these fish were unable to be used for the Thermal Wall 

model, but they were used for the Age-Growth model. Additionally, the Thermal Wall model 

required a fitted consumption rate for every fish. Since the Age-Growth model does not require 

fitted consumption rates, the 62 fish which were discarded in the Thermal Wall model are used 

to fit the Age-Growth model. 

 

4.2.2 Generalized Linear Model of Recapture Date 

 The first component of the Age-Growth model is a generalized linear model that predicts 

the number of days between tagging and recapture T0:T1 using environmental data and tagging 

data from the PIT tag dataset. The goal of this model was to produce the best prediction of 

recapture time possible using only data available from the tagging data point. Thus, while the 

model is fitted using the records of fish for which a T1 data point is present, it will be capable of 

predicting recapture time for fish with only a T0 and M0 data point, along with environmental 

data. 

To determine the error distribution to use for the generalized linear model, we examined 

the characteristics of the data. On an individual basis, recapture of tagged fish follows a Poisson 

process. Each fish is tagged on date T0 and released back into the river; the fish then remains in 

the rearing habitat until the initiation of migration at unknown date T2. During the period T0-T2, 
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on any given day, sampling may occur at the tagged fish’s location, and if sampling occurs, the 

fish may be recaptured, producing a T1 data point. Thus, for a given day i, the probability of a 

fish being recaptured is: 

 rP s cP P= ×  [4.1] 

In this formulation, Pr is the probability of recapture, Ps is the probability of sampling occurring, 

and Pc is the probability a fish is captured if sampling occurs. If Ps is constant over time and Pc 

does not vary according to individual fish characteristics, then recapture follows a homogenous 

Poisson process; if these probabilities vary over time or between individual fish, then recapture 

follows a non-homogenous Poisson process. 

 While a complete record of all sampling events is not available, tagging and recapture 

data displays fairly regular patterns. According to Connor et al. (2003), some sampling sites were 

sampled on a regular, weekly basis, while other sites were sampled on an irregular basis. The 

bulk of tagging and recapture data comes from sites sampled on a regular basis. Plots of the 

distribution of tagging events (Figures 4.1, 4.2) by day of year and river kilometer sampled 

display regular, weekly patterns in sampling. There are some departures from the weekly 

sampling schedule- particularly in the first three years of data, and not all regularly sampled sites 

are sampled on the same schedule, but overall the pattern of tagging data suggests regularity in 

sampling. Additionally, a histogram of recapture time T0:T1 (Figure 4.3) displays distinct peaks 

at 7, 14, 21, and 28 days, displaying that the bulk of recaptured fish are recaptured at sites with a 

weekly sampling schedule. For this reason, we assume that Ps remains uniform across time. As 

for Pc, we assume that it remains constant for all fish. Though the mass-varying catchability 

coefficient of the Mass-Growth model estimated a negative relationship between individual fish 
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mass and catchability, assuming uniform catchability greatly simplifies the Age-Growth model, 

as individual fish mass then does not need to be modeled. 

 Since recapture follows a Poisson process, the natural error distribution to use for the 

generalized linear model was the Poisson distribution. The first generalized linear model we 

created used the Poisson distribution with a log link to regress day of recapture T1 against tag 

day T0, mass at tagging M0, length at tagging L0, CPUE at the tagging location on the tag date, 

daily mean temperature of the Snake River on the tag date, and a year effect. Interaction terms 

between tag day and length at tagging, CPUE, and temperature were included as well as squared 

terms for length at tagging, CPUE and temperature. Table 4.1 provides a summary of parameter 

estimates and significance and Table 4.2 provides an analysis of deviance table for the full 

model. A parsimonious reduced model was then generated from this full model via sequential 

deletion. The least explanatory predictor was removed from the model if removal did not 

increase the AIC score of the model by more than 2, then the model was re-fitted and the new 

least explanatory predictor examined. Once removal of the least explanatory predictor would 

increase the AIC of the model by more than 2, we determined that a parsimonious model had 

been reached. The parameters removed from the full model were, in sequence: L0 squared term, 

T0:L0 interaction term. Table 4.3 provides a summary of parameter estimates and significance 

and Table 4.4 provides an analysis of deviance table for the reduced model. 

 There was concern that the Poisson model of recapture time was inadequate because the 

Poisson distribution did not fit observed recapture time well. The mean of the Poisson 

distribution is also the variance of the Poisson distribution; observed recapture time is over-

distributed with respect to the Poisson distribution. The mean recapture time is 10.34 days, while 

the variance in observed recapture time is 40.89 days. Since the negative binomial distribution is 
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often used in place of the Poisson distribution for over-distributed statistics, we compared the 

distributions of a maximum likelihood negative binomial fit and Poisson fit of observed 

recapture time. The Poisson fit (Figure 4.3) clearly does not adequately match the variance of the 

observed recapture time distribution (Figures 4.1, 4.2); the Poisson fit underpredicts the number 

of short recapture times in the 1-5 day range and the tail of the observed distribution in the 20-40 

day range. In contrast, the negative binomial distribution (Figure 4.4) fits the early and later 

portions of the observed recapture time distribution much better.  

We then created a second generalized linear model of recapture time using the negative 

binomial error distribution with a log link and compared the AIC score of the model to the AIC 

of the Poisson log-link generalized linear model. The full negative binomial model used the same 

set of predictors as the full Poisson model. Tables 4.5 and 4.6 provide a summary of parameter 

estimates, significance, and analysis of deviance of the full model. A reduced, parsimonious 

negative binomial model was then generated from the full model via the same sequential deletion 

process used for the Poisson model. The predictors removed were, in sequence: L0 squared term, 

T0:L0 interaction term, CPUE squared term, temperature squared term, T0:temperature 

interaction term, and temperature. Tables 4.7 and 4.8 provide a summary of parameter estimates, 

significance, and analysis of deviance of the reduced model. The AIC scores of both the full and 

reduced negative binomial models are significantly lower than those of the respective Poisson 

models. The full negative binomial model has an AIC of 14776.9 compared to an AIC of 

16976.4 for the full Poisson model; the reduced models have slightly lower AIC scores, with 

14773.4 for the reduced negative binomial model and 16973.8 for the reduced Poisson model. 

Since it has the lowest AIC score, uses the error distribution that best fits the data, and has 
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statistically significant parameter estimates for all predictors, we used the reduced negative 

binomial generalized linear model for the Age-Growth model. 

  

4.2.3 Linking Recapture Time and Residence Time 

 Once a satisfactory model of recapture time was found, it was necessary to create a 

theoretical framework to relate recapture time to residence time. As discussed in section 4.2.2, a 

fish’s residence time is defined as the number of days between tagging T0, known from data, and 

the date the fish initiates migration T2, which is unknown. Recapture follows a Poisson process 

where a fish is subject to a probability of being recaptured for each day of the fish’s residence 

time. As described in section 4.2.2, we assume that the probability of recapture is uniform with 

time and identical for all fish. For a single sampling event, the day of recapture could be located 

at any date within the residence time, resulting in a recapture time ranging from one day to 

equivalent to residence time. This means that for an individual sampling event, the relationship 

between recapture time and residence time is unknown. However, the assumption of uniform 

probability of recapture means that as the number of hypothetical sampling events becomes 

large, the mean recapture time approaches one half of residence time. 

 Unfortunately, this only holds if there is no variation in residence time among fish. 

Variation in residence time introduces bias, as fish with longer residence times are more likely to 

be recaptured than fish with shorter residence times. A fish’s probability of being recaptured 

follows the following relationship: 

�,0 �  1 � �1 � ���M     [4.2] 

In this formulation, PT1 is the probability a fish is recaptured at least once during its residence 

time and a T1 data point is generated, Pr is the probability that a fish is recaptured on any given 
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day, and R is the length of the fish’s residence time in days. As residence time R increases, the 

probability a fish is recaptured PT1 also increases. This means that there is some amount of bias 

in the relationship between observed recapture times and the true population mean residence 

time. While the mean of observed recapture times approaches one half of the true residence times 

of those recaptured fish, the recaptured fish are a biased subset of the total population, with a 

mean residence time larger than the mean residence time of the population at large. 

 To address this issue of bias, we applied theory from a classical study in probability and 

queuing theory on waiting time paradoxes (Feller 1966). The original theory arose to address the 

issue of bias in expected residual waiting time for customers of an arrival process. For an arrival 

process such as buses arriving at a bus stop, a passenger’s residual waiting time is the amount of 

time between when the passenger arrives at the stop and when the next bus arrives. If the 

passenger’s arrival time is independent of the bus arrival time, then for a single interarrival 

period, the mean expected waiting time is one-half the interarrival period; the passenger could 

arrive at any time between the two bus arrivals, and over many samples the waiting time will 

average to one-half the length of the interval. The paradox arises when examining more than one 

interarrival period when interarrival periods are not uniform. Over a given time interval, the 

probability of the passenger’s arrival is uniform, but if the length of the interarrival periods is not 

the same, then the passenger is more likely to arrive at the stop during a long interarrival period 

than a short interarrival period. The result is that longer interarrival periods contribute more to 

mean waiting time and mean waiting time is greater than one-half the mean interarrival period 

length (Feller 1966). 

 To illustrate how we apply this method to recapture of fish and approximate this bias, we 

treat the residence and potential recapture of an individual fish as a triangular surface, and the 
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residence and recapture of multiple fish as a sawtooth curve (Figure 4.6). For an individual fish, 

residence time is presented on the x-axis beginning with tagging T0 at the origin and ending with 

initiation of migration T2 at R. This residence time of a single fish approximates a single 

interarrival period from an arrival process. Recapture time is presented on the y-axis; as 

recapture at any date within the residence time produces a recapture time equivalent to the 

number of days to that point, potential recapture time follows a one-to-one increasing 

relationship with a maximum potential recapture time equal to the length of the residence time, 

R. This is the opposite of residual waiting time; rather than counting from the passenger arrival 

time to the end of the interarrival period, we count from the beginning of the residence period to 

the recapture time; however, the end result is still comparable, just mirrored on the bus arrival/ 

fish residence time axis. We then place the residence times of multiple fish in sequence, 

producing a sawtooth curve of potential recapture time. This approximates the curve of residual 

waiting time for an arrival process over multiple arrival periods; however, unlike the arrival 

process example, the x-axis no longer directly relates to time. Instead, the x-axis becomes an 

abstract representation of the population of tagged fish. Here is where the assumptions of 

uniformity of sampling effort and uniformity of catchability among fish become important; these 

assumptions mean that any single sampling event has a uniform probability of occurring at any 

point on the fish-day axis of the population sawtooth curve. The mean potential recapture time r  

then becomes the average height of the sawtooth curve; as the number of actual sampling events 

becomes large, realized mean recapture time will approachr . The average height of the 

sawtooth curve is described by the following equation: 

>N � 0
∑ M ∑ 0

�
KIP0 �I�     [4.3] 
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In this formulation, r is the mean recapture time, Ri is the residence time of a fish i, n is the 

number of fish in the population, and ΣR is the sum of all residence times, the total number of 

fish-days in the population. Mean residence time R  is equal to ΣR/n, yielding: 

>N � 0
MQK ∑ 0

�
KIP0 �I�     [4.4] 

This formula reduces to: 

>N � 0
�

MRQQQQ
MQ      [4.5] 

In this formulation, r is mean recapture time; 2R  is mean squared residence time, and R  is 

mean residence time. Mean squared residence time is equal to the variance in residence time plus 

mean residence time squared, yielding: 

>N � 0
�

6
��M�SMQR
MQ       [4.6] 

Thusly, the relationship between mean recapture time and mean residence time depends on the 

variance in residence time. As discussed above, if all residence times are equal, then the variance 

in residence time is zero, and mean recapture time is equal to one half of mean residence time. 

As variance in residence time increases, mean recapture time approaches mean residence time. 

 Though true residence time is unknown, we estimated some potential relationships 

between recapture time and residence time by assuming a hypothetical distribution of residence 

times equal to observed recapture times multiplied by two. As the mean observed recapture time 

is 10.34 days, the hypothetical residence time distribution has a mean of 20.68 days and a 

variance of 163.51. We then used the MASS library in the statistical computing language R to 

produce maximum likelihood fits of this hypothetical residence time distribution to both Poisson 

and negative binomial distributions. We then used the mean and variance predicted by the fits 

and equation 4.6 to produce predictions of mean recapture time under each scenario. Table 4.9 
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presents the fitted parameter values, the resulting predicted mean recapture time, and the 

relationship between predicted mean recapture time and hypothetical mean residence time. The 

Poisson and negative binomial distributions both underpredict the variance in hypothetical 

residence time, but the negative binomial distribution does so by much less. The Poisson fit 

predicts low variance, and thus predicts that mean residence time will be only slightly less than 

twice the mean recapture time. The negative binomial fit predicts much larger variance, resulting 

in the prediction that mean residence time is 1.51 times longer than mean recapture time.  

While the true residence time distribution is unknown, we assume that initiation of 

migration can be represented as a Poisson process, and thus the Poisson family of distributions is 

appropriate to fit the data. Since observed recapture time is overdistributed with respect to the 

Poisson distribution, we assume that residence time likely is as well. For this reason, we decided 

that the negative binomial model likely provides the best estimate of the relationship between 

observed mean recapture time and true mean residence time. We combine this relationship with 

the generalized linear model of recapture time to predict residence time for individual fish via the 

following relationship: 

�I � 1.51 � �$���0, $0, �0, �0 ��	�, U(�>�   [4.7] 

In this formulation, Ri is the predicted residence time for an individual fish, and GLM() is the 

reduced log-link negative binomial model of recapture time described in Tables 4.7 and 4.8. We 

recognize that using the 1.51 conversion factor estimated between mean recapture time and mean 

residence time does not necessarily predict individual residence time well, but we assume that 

the sample sizes of our data are large enough that it will be sufficient to represent the 

distributional properties of true residence time. We then use predicted residence time Ri and 
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known date of tagging T0i to yield an individual prediction of date of migration initiation T2ai 

via the following relationship: 

�2�I � �0I � �I     [4.8] 

Equations 4.7 and 4.8 together comprise the Age-Growth model of migration initiation. 

 

4.2.4 Validating the Age-Growth Model 

 To validate the Age-Growth model, we use T2a predicted by the Age-Growth model to 

predict CPUE and compare modeled CPUE distributions to observed CPUE. Similarly to the 

Mass-Growth model, we use the records of all fish tagged at the sites for which CPUE data is 

available. This ensures that we are comparing model predictions and data from the same group of 

fish, and also makes the model results directly comparable to results from the Mass-Growth 

model. We use the modeling framework presented in section 3.2.2 of this thesis to track the 

number of tagged fish in the river. This framework has the following structure: 

VI � VI�0 � �I � $I     [4.9] 

In this formulation, Ni is the number of tagged fish in the rearing habitat on day i, Ni-1 is the 

number of tagged fish in the rearing habitat on the previous day, Ti is the number of fish that are 

tagged and released back into the rearing habitat on day i, and Li is the number of tagged fish that 

initiate migration and leave the rearing habitat on day i. Ti is generated from the tagging dates T0 

from data, and Li is generated from T2a predicted for each fish using the Age-Growth model. Ni, 

the number of tagged fish in the river, relates to CPUE via the following equation: 

��	�I � VI � WW     [4.10] 

In this formulation, cc is a catchability constant describing how the population of fish in the 

rearing habitat relates to catch per unit effort. Since we assume that catchability is constant for 
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all fish in the Age-Growth model, we did not include a mass-varying term in catchability like in 

the Mass-Growth model. 

We used a maximum likelihood method to fit modeled CPUE to observed CPUE. We 

assumed that the deviations between observed CPUE and CPUE predicted by our model come 

from a Gaussian distribution with mean 0 and variance σ. Thus, for our model: 

��	�I � VI � WW � X     [4.11] 

For each day i, a deviation ε between modeled and observed CPUE is generated. For each 

deviation ε, the likelihood that the deviation came from Gaussian distribution with mean 0 and 

variance σ is then calculated. The negative log of these likelihoods is then taken, to yield 

negative log likelihood. Due to the log transform, these negative log likelihoods are then 

additive; the sum of the negative log likelihoods for each day i yields a single estimate of 

negative log likelihood for a given set of parameters. The negative log likelihood is then 

minimized via an iterative parameter estimation process using the statistical computing language 

R. For the Age-Growth model, since the leaving function is wholly predetermined by the Age-

Growth model of migration initiation, the catchability constant cc and the variance parameter σ 

are the only free parameters fitted in the maximum likelihood process. 

 

4.3 Results 

 Table 4.10 presents the yearly predictions of the Age-Growth model. For most years, 

mean modeled residence time was around 15 days. Shorter residence time was modeled in 1992, 

with a mean of 11.45 days, and longer residence time was modeled in 1997 and 2000, with mean 

residence times of 23.52 days and 19.80 days respectively. Though mean residence time was 

quite consistent, mean T2a displayed more variation between years. More variation in T2a was 
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not unexpected; the relative timing of the rearing season shifts from year to year due to 

differences in temperature regime that affect growth and development and variation in spawning 

date (Quinn 2005). Fitted catchability coefficient was very consistent, with the exception of 

2000; catchability coefficients vary from 0.0052 to 0.0144 excluding 2000. Fitted σ is small in 

most years, indicating a good fit. Fitted σ is larger in 1998 and 2000, indicating poorer fits of 

observed CPUE in those years. 

 In most years, the Age-Growth model produces respectable fits of observed CPUE data 

(Figures 4.7, 4.8). The closeness of the fits is reflected in the low σ fitted in most years. 

However, similarly to the Mass-Growth model without the mass-varying catchability coefficient, 

the Age-Growth model tends to underpredict CPUE early in the rearing season. This early 

underprediction is visible in the modeled CPUE distributions for 1992, 1997, 1998, and 2000. In 

1992 and 1998 in particular, the modeled CPUE distribution looks like it is shaped similarly to 

the observed CPUE distribution, but lagging behind by a week or more. In most years, the fits 

produced by the Age-Growth model are comparable to fits produced by the Mass-Growth model 

with both mass and growth efficiency driven leaving (Figures 3.9, 3.10). The primary difference 

between the fits produced by the two models lies in the fact that the Mass-Growth model tends to 

have sudden drops in modeled CPUE resulting from surges in growth-efficiency driven leaving; 

while modeled CPUE distributions produced by the Age-Growth model decline much more 

gradually. This difference is most evident in the fits for 1993, 1995, and 1997 (Figures 3.9, 3.10 

and 4.7, 4.8); in all these years, the Mass-Growth model predicts sharp declines to zero in CPUE, 

while the Age-Growth model predicts much more gradual declines with an evident tail in 

modeled CPUE. 
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 The reasons for this difference in fits become evident when examining distributions of 

initiation of migration produced by the two models. The distribution of T2a predicted by the 

Age-Growth model tends to be gradual and fairly dispersed (Figures 4.9, 4.10). Predicted T2a 

distributions tend to start near the peak of observed CPUE distributions in most years, and the 

last modeled T2a occurs at nearly the same time as observed CPUE distributions reach zero in 

every year except 1994. These distributions of T2a strongly resemble distributions of mass-

driven leaving predicted by the Mass-Growth model (Figures 3.11, 3.12); in every year where 

enough fish left via the mass threshold to produce a visible distribution, the location and 

characteristics of modeled T2m are quite comparable to T2a. While distributions of T2a more 

closely resemble the dispersed leaving produced by mass-driven leaving than the densely packed 

growth-efficiency driven leaving, a significant amount of spikiness is still observed in the 

distributions on T2a. Combined with stratified sampling, this results in significant spikiness in 

the curves of the modeled CPUE where observed CPUE displays much more monotonic 

properties; this is most obvious in the fits for 1994, 1996 and 1997. 

 

4.4 Discussion 

 Overall, the Age-Growth model was successful at fitting observed data. To be confident 

that the model is producing accurate fits, we determined that modeled leaving should primarily 

coincide with observed declines in CPUE. We also expect few migrants early in the rearing 

season, and the model should not predict fish to remain in the rearing habitat beyond when fish 

are no longer observed there. The Age-Growth model’s predictions definitely meet all of these 

criteria, meaning that the mechanics of the model merit further inspection. 
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 However, as a correlative regression model, the conclusions that can be drawn from the 

Age-Growth model are unfortunately less clear than those that can be drawn from a mechanistic 

model like the Mass-Growth model. In particular, the assumptions made in the process of 

creating the Age-Growth model limit the ability to be confident in the model’s predictions on an 

individual basis. The relationship established between mean recapture time and mean residence 

time is just that; a relationship between the means of the relevant statistics. Thusly, we examine 

the distributional characteristics of the resulting predictions rather than aspects of predictions for 

individual fish. 

 The negative binomial generalized linear model of recapture time is the primary 

determinant of modeled T2a. Most of the coefficients estimated in the model can be extrapolated 

fairly easily to a potential process (Table 4.7). There is a negative relationship between tag date 

T0 and recapture time; this makes sense, as tagging of fish is a random process. Later in the 

rearing season, most fish will be closer on average to their migration date, and thus the expected 

residual residence time of fish captured and tagged later is shorter. Interestingly, opposite 

relationships are fitted between length at tagging L0 and mass at tagging M0, both of which are 

measurements of fish size. The magnitude of the coefficient fitted for M0 is larger, but the 

magnitude of the measurement used for fish length (millimeters) scales much more rapidly than 

the metric for mass (grams), so the overall relationship between fish size and residence time is 

driven by the negative coefficient fitted for L0. This relationship makes sense in context of mass-

driven leaving; fish that are larger at tagging will grow into a mass threshold more quickly, and 

would thus have less residual residence time. The difference in signs between the L0 and M0 

coefficients likely captures nonlinearity in the fish size-residence time relationship; however, a 

squared term for L0 was included in the full model for just this possibility, so it is perplexing 
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why M0 was retained but L0^2 was not. The most likely explanation is that M0 contains some 

additional information that L0^2 does not; as explained in section 2.2.1 of this thesis, about 30% 

of all fish have both a mass and a length recorded at tagging. For the remainder of the fish, M0 is 

estimated directly from L0 via the weight-length relationship presented in section 2.2.3 and M0 

offers no advantage over L0^2, but for the 30% of the fish which do have a M0 data point, it 

offers additional information about the condition of the fish. 

 A positive relationship is fitted between CPUE at tagging and modeled residence time 

(Table 4.7). This makes sense in the context of density dependence; if many fish are present in 

the rearing habitat, then competition for resources may restrict growth, and thusly delay 

migration since fish take longer to become bioenergetically prepared to migrate. A negative 

interaction is fitted between CPUE and tag date, suggesting that the importance of density 

dependence declines later in the tagging season. This could be because density dependent effects 

decline later in the season as fish leave the rearing habitat. It could also be an impact of our 

hypothesized growth efficiency driven leaving; in the fits produced by the Mass-Growth model, 

it was shown that growth efficiency driven leaving tends to impact all fish similarly regardless of 

their mass, and it tends to act as a termination factor driving fish out of the rearing habitat at the 

end of the growing season. Thusly, late in the season, any impacts of density dependent growth 

restriction would become nullified, as fish are forced to leave regardless of how quickly they are 

growing. 
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4.5 Chapter 4 Tables 

Table 4.1 

Summary of the full log-link Poisson model of recapture time with all predictors. T0 is the day a 
fish was tagged, L0 is the fish’s length on the tag day in millimeters, L0^2 is a squared term of 
length, M0 is the fish’s mass on the tag day in grams, T0 CPUE is the CPUE at the tag site on the 
tag date, CPUE^2 is a squared term of CPUE, T0 Temp is the daily mean temperature of the 
Snake River on the tag date, and Temp^2 is a squared term of temperature. Year 1993-2000 are 
year effects, estimated as offsets from the base year (1992). T0:L0, T0:CPUE, and T0:Temp are 
interaction terms. All parameter estimates except T0, L0^2, T0 Temp, and T0:L0 are 
significantly different from zero at the 0.05 level. 
 

Predictor Estimate Std. Error T Statistic P 

Y-Intercept 3.919 0.768 5.10 3.4e-7 

T0 0.00777 0.00599 1.30 0.19 

L0 -0.0343 0.0128 -2.68 0.0073 

L0^2 -0.0000101 0.0000843 -0.12 0.90 

M0 0.0468 0.0184 2.54 0.011 

T0 CPUE 0.0301 0.00523 5.73 9.9e-9 

CPUE^2 -0.0000501 0.0000155 -3.24 0.0012 

T0 Temp -0.0337 0.0645 -0.52 0.60 

Temp^2 0.0102 0.00309 3.30 0.00098 

Year (1993) 0.597 0.0559 10.67 < 2e-16 

Year (1994) 0.463 0.0501 9.25 < 2e-16 

Year (1995) 0.515 0.0534 9.63 < 2e-16 

Year (1996) 0.529 0.0647 8.18 2.7e-16 

Year (1997) 0.543 0.0562 9.66 < 2e-16 

Year (1998) 0.513 0.0527 9.74 < 2e-16 

Year (1999) 0.435 0.0562 7.73 1.1e-14 

Year (2000) 0.792 0.0591 11.93 < 2e-16 

T0:L0 0.0000792 0.0000680 1.17 0.24 

T0:CPUE -0.000176 0.0000352 -4.99 6.2e-7 

T0:Temp -0.00159 0.000398 -4.01 6.2e-5 

Null Deviance:   8494.4   Degrees of Freedom:   2450 

Residual Deviance:   7071.1   Degrees of Freedom:   2431 

AIC:   16976.4                   Parameters:   20 
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Table 4.2 

Analysis of deviance table of the full log-link Poisson model of recapture time with all 
predictors. All predictors combined explain 1423.3 of 8494.4 total deviance. 
 

Predictor D.F. Deviance Residual D.F. Residual Deviance 

Null   2450 8494.4 

T0 1 822.9 2449 7671.6 

L0 1 262.0 2448 7409.6 

L0^2 1 3.9 2447 7405.7 

M0 1 4.4 2446 7401.2 

T0 CPUE 1 94.9 2445 7306.3 

CPUE^2 1 7.3 2444 7299.0 

T0 Temp 1 7.6 2443 7291.4 

Temp^2 1 3.9 2443 7287.5 

Year 8 179.2 2434 7108.3 

T0:L0 1 0.0241 2433 7108.2 

T0:CPUE 1 21.0 2432 7087.2 

T0:Temp 1 16.1 2431 7071.1 
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Table 4.3 

Summary of the reduced log-link Poisson model of recapture time. T0 is the day a fish was 
tagged, L0 is the fish’s length on the tag day in millimeters, M0 is the fish’s mass on the tag day 
in grams, T0 CPUE is the CPUE at the tag site on the tag date, CPUE^2 is a squared term of 
CPUE, T0 Temp is the daily mean temperature of the Snake River on the tag date, and Temp^2 
is a squared term of temperature. Year 1993-2000 are year effects, estimated as offsets from the 
base year (1992). T0:CPUE, and T0:Temp are interaction terms. All parameter estimates except 
T0 Temp are significantly different from zero at the 0.05 level. 
 

Predictor Estimate Std. Error T Statistic P 

Y-Intercept 3.419 0.592 5.77 7.8e-9 

T0 0.0114 0.00510 2.24 0.025 

L0 -0.0240 0.00293 -8.20 2.5e-16 

M0 0.0488 0.0138 3.55 0.00039 

T0 CPUE 0.0293 0.00522 5.61 2.0e-8 

CPUE^2 -0.0000488 0.0000155 -3.15 0.0016 

T0 Temp -0.0514 0.0626 -0.82 0.41 

Temp^2 0.0101 0.00309 3.28 0.0010 

Year (1993) 0.597 0.0559 10.67 < 2e-16 

Year (1994) 0.463 0.0500 9.25 < 2e-16 

Year (1995) 0.515 0.0534 9.63 < 2e-16 

Year (1996) 0.526 0.0646 8.14 4.0e-16 

Year (1997) 0.542 0.0562 9.65 < 2e-16 

Year (1998) 0.515 0.0527 9.77 < 2e-16 

Year (1999) 0.436 0.0562 7.75 9.3e-15 

Year (2000) 0.712 0.0587 12.13 < 2e-16 

T0:CPUE -0.000172 0.0000352 -4.90 9.5e-7 

T0:Temp -0.00147 0.000382 -3.83 0.00013 

Null Deviance:   8494.4   Degrees of Freedom:   2450 

Residual Deviance:   7072.5   Degrees of Freedom:   2433 

AIC:   16973.8                   Parameters:   18 
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Table 4.4 

Analysis of deviance table of the reduced log-link Poisson model of recapture time. All 
predictors combined explain 1421.9 of 8494.4 total deviance. The removal of L0^2 and T0:L0 
results in M0 explaining more deviance than in the full model, and T0:Temp slightly less. 
 

Predictor D.F. Deviance Residual D.F. Residual Deviance 

Null   2450 8494.4 

T0 1 822.9 2449 7671.6 

L0 1 262.0 2448 7409.6 

M0 1 8.3 2447 7401.3 

T0 CPUE 1 94.8 2446 7306.5 

CPUE^2 1 7.4 2445 7299.1 

T0 Temp 1 7.6 2444 7291.6 

Temp^2 1 3.9 2443 7287.7 

Year 8 179.4 2435 7108.3 

T0:CPUE 1 21.0 2434 7087.2 

T0:Temp 1 14.7 2433 7072.5 
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Table 4.5 

Summary of the full log-link negative binomial model of recapture time with all predictors. T0 is 
the day a fish was tagged, L0 is the fish’s length on the tag day in millimeters, L0^2 is a squared 
term of length, M0 is the fish’s mass on the tag day in grams, T0 CPUE is the CPUE at the tag 
site on the tag date, CPUE^2 is a squared term of CPUE, T0 Temp is the daily mean temperature 
of the Snake River on the tag date, and Temp^2 is a squared term of temperature. Year 1993-
2000 are year effects, estimated as offsets from the base year (1992). T0:L0, T0:CPUE, and 
T0:Temp are interaction terms. The intercept, T0 CPUE, all year effects, and the T0:CPUE and 
T0:Temp interaction terms are significantly different from zero at the 0.05 level. 
 

Predictor Estimate Std. Error z Statistic P 

Y-Intercept 3.784 1.318 2.87 0.0041 

T0 0.00705 0.0102 0.69 0.49 

L0 -0.0298 0.0210 -1.42 0.16 

L0^2 -0.0000422 0.000136 -0.31 0.76 

M0 0.0551 0.0291 1.89 0.059 

T0 CPUE 0.0302 0.00915 3.30 0.00098 

CPUE^2 -0.0000442 0.0000255 -1.73 0.083 

T0 Temp -0.0277 0.0110 -0.25 0.80 

Temp^2 0.00944 0.00515 1.83 0.067 

Year (1993) 0.593 0.0899 6.59 4.3e-11 

Year (1994) 0.468 0.0788 5.93 3.0e-9 

Year (1995) 0.508 0.0851 5.97 2.4e-9 

Year (1996) 0.542 0.107 5.08 3.8e-7 

Year (1997) 0.531 0.0894 5.94 2.9e-9 

Year (1998) 0.511 0.0839 6.09 1.1e-9 

Year (1999) 0.452 0.0900 5.02 5.2e-7 

Year (2000) 0.711 0.0972 7.31 2.6e-13 

T0:L0 0.0000710 0.000113 0.63 0.53 

T0:CPUE -0.000179 0.0000617 -2.91 0.0036 

T0:Temp -0.00150 0.000683 -2.19 0.028 

Null Deviance:   2926.1   Degrees of Freedom:   2450 

Residual Deviance:   2433.9   Degrees of Freedom:   2431 

Estimated θ:   5.62              Standard Error:    0.24 

AIC:   14776.9                   Parameters:   20 
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Table 4.6 

Analysis of deviance table of the full log-link negative binomial model of recapture time with all 
predictors. All predictors combined explain 492.16 of 2926.1 total deviance. 
 

Predictor D.F. Deviance Residual D.F. Residual Deviance P (>|Chi|) 

Null   2450 2926.1  

T0 1 288.15 2449 2637.95 1.3e-64 

L0 1 95.25 2448 2542.70 1.7e-22 

L0^2 1 1.33 2447 2541.38 0.25 

M0 1 2.11 2446 2539.27 0.15 

T0 CPUE 1 28.70 2445 2510.57 8.5e-8 

CPUE^2 1 2.14 2444 2508.43 0.14 

T0 Temp 1 2.84 2443 2505.59 0.09 

Temp^2 1 1.02 2443 2504.58 0.31 

Year 8 59.18 2434 2445.39 6.7e-10 

T0:L0 1 0.02 2433 2445.37 0.88 

T0:CPUE 1 6.67 2432 2438.70 0.01 

T0:Temp 1 4.76 2431 2433.94 0.03 

Analysis of deviance table of the full log-link negative binomial model of recapture time with all 
predictors. All predictors combined explain 492.16 of 2926.1 total deviance. 
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Table 4.7 

Summary of the reduced log-link negative binomial model of recapture time. T0 is the day a fish 
was tagged, L0 is the fish’s length on the tag day in millimeters, M0 is the fish’s mass on the tag 
day in grams, and T0 CPUE is the CPUE at the tag site on the tag date. Year 1993-2000 are year 
effects, estimated as offsets from the base year (1992). T0:CPUE is an interaction term. All 
predictors are significantly different from zero at the 0.05 level. 
 

Predictor Estimate Std. Error z Statistic P 

Y-Intercept 4.642 0.263 17.66 < 2e-16 

T0 -0.00808 0.00105 -7.73 1.1e-14 

L0 -0.0247 0.00475 -5.21 1.9e-7 

M0 0.0523 0.0219 2.40 0.017 

T0 CPUE 0.0229 0.00851 2.68 0.0075 

Year (1993) 0.528 0.0795 6.64 3.1e-11 

Year (1994) 0.423 0.0748 5.65 1.6e-8 

Year (1995) 0.463 0.0753 6.15 8.0e-10 

Year (1996) 0.460 0.0936 4.91 9.0e-7 

Year (1997) 0.448 0.0761 5.89 3.7e-9 

Year (1998) 0.432 0.0736 5.87 4.4e-9 

Year (1999) 0.399 0.0766 5.21 1.9e-7 

Year (2000) 0.657 0.0892 7.35 2.0e-13 

T0:CPUE -0.000151 0.0000597 -2.53 0.011 

Null Deviance:   2915.7   Degrees of Freedom:   2450 

Residual Deviance:   2433.9   Degrees of Freedom:   2431 

Estimated θ:   5.59              Standard Error:    0.24 

AIC:   14773.5                  Parameters:    14 
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Table 4.8 

Analysis of deviance table of the reduced log-link negative binomial model of recapture time. 
All predictors combined explain 481.76 of 2915.69 total deviance.  
 

Predictor D.F. Deviance Residual D.F. Residual Deviance P (>|Chi|) 

Null   2450 2915.69  

T0 1 287.10 2449 2628.59 2.1e-64 

L0 1 94.91 2448 2533.68 2.0e-22 

M0 1 3.42 2447 2530.26 0.06 

T0 CPUE 1 28.57 2446 2501.69 9.0e-8 

Year 8 61.62 2438 2440.06 2.2e-10 

T0:CPUE 1 6.14 2437 2433.93 0.01 
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Table 4.9 

Table of estimated parameter values and the resulting mean residence times from fitting a 
hypothetical residence time distribution to Poisson and negative binomial distributions. R  is the 
mean of the hypothetical residence time distribution; Var R is the variance of the hypothetical 
residence time distribution. λ is the maximum likelihood fitted mean and variance parameter of 
the Poisson distribution. µ and θ are the maximum likelihood fitted parameters of the negative 
binomial distribution, where µ is the mean parameter and variance is found by µ+µ2/θ. Var Fit is 
the variance in each fitted distribution, and r  Fit is the mean recapture time resulting from 
applying the fitted variance and mean residence time to the equation 4.6. R / r  is the ratio 
between mean hypothetical residence time and mean predicted recapture time.  
 

 Poisson Negative Binomial 

YZ  20.68 days 20.68 days 

[\] YZ  163.51 163.51 

λ 20.68 - 

µ - 20.68 

θ - 3.61 

Var Fit 20.68 139.15 

]Z Fit 10.84 days 13.71 days 

YZ/]Z 1.91 1.51 
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Table 4.10 

Table of the results of the Age-Growth model. # Fish is the number of fish modeled; these fish 
were tagged at locations where CPUE data is available in the given year. R  is the mean 
residence time produced by the Age-Growth model for the fish in the given year. T2a-bar is the 
mean day of year of migration initiation produced by the Age-Growth model in the given year. 
cc is the catchability coefficient fitted by maximum likelihood for each year, and σ is the error 
variance parameter fitted by maximum likelihood for each year. 
 

Year # Fish YZ  _`\QQQQQQ cc σ 

1992 633 11.45 days 152.4 0.0107 1.23 

1993 751 14.52 days 180.2 0.0095 0.69 

1994 1177 14.37 days 168.6 0.0052 0.28 

1995 692 15.21 days 170.1 0.0150 0.93 

1996 389 15.46 days 171.4 0.0144 0.35 

1997 291 23.52 days 184.7 0.0141 0.32 

1998 1298 16.70 days 162.8 0.0114 3.12 

1999 1129 14.96 days 167.5 0.0116 1.05 

2000 1078 19.80 days 165.9 0.0346 5.89 
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4.6 Chapter 4 Figures 

Figure 4.1 

Yearly plots of the number of fish tagged by day of year and river kilometer sampled for the 
years 1992-1995. The size of each circle relates on a log scale to the number of fish tagged at a 
particular site on a particular day; the smallest circles correspond to a single fish, the largest to 
several hundred. Sampling distributions display regular, weekly patterns. 
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Figure 4.2 

Yearly plots of the number of fish tagged by day of year and river kilometer sampled for the 
years 1992-1995. The size of each circle relates on a log scale to the number of fish tagged at a 
particular site on a particular day; the smallest circles correspond to a single fish, the largest to 
several hundred.   
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Figure 4.3 

Histogram of observed recapture times for 2,451 fish for which a T1 data point is present. 
Observed recapture time is defined as the number of days between tagging (T0) and in-river 
recapture (T1) for each fish. Distinct peaks are seen at 7, 14, 21, and 28 days, indicating that 
many fish were recaptured at locations with weekly sampling. 
  



142 
 

 
 

Figure 4.4 

Plot of the Poisson fit of observed recapture time. Mean and variance parameter λ is equal to 
10.34, the mean observed recapture time. 
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Figure 4.5 

Plot of the negative binomial fit of observed recapture time. Mean parameter µ is equal to 10.34, 
the mean observed recapture time; dispersion parameter θ was fitted at 4.33 via maximum 
likelihood function using the MASS library in the statistical computing language ‘R’. 
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Figure 4.6 

 

Depiction of the process of relating residence time R to recapture time r by representing potential 
recapture time as a sawtooth curve. For an individual fish, residence time R = T0:T2. Recapture 
can occur at any date within R, producing potential recapture time varying from 0 to R days. For 
a population of fish with varying residence times Ri, the mean recapture time r is the average 
height of the sawtooth curve. 
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Figure 4.7 

Yearly plots showing observed CPUE and modeled CPUE produced by the Age-Growth model 
for the years 1992-1995. Day of initiation of migration T2a is predicted for each fish using the 
negative binomial generalized linear model of recapture time and the 1.51 conversion factor. 
Modeled T2a and T0 are used to generate distributions of modeled number of fish in-river. These 
distributions are then fitted to observed CPUE via maximum likelihood fitting of catchability 
coefficient and variance. Catchability coefficient and variance were estimated independently for 
each year. 
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Figure 4.8 

Yearly plots showing observed CPUE and modeled CPUE produced by the Age-Growth model 
for the years 1996-2000.   
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Figure 4.9 

Yearly plots showing observed CPUE and distributions of modeled T2a produced by the Age-
Growth model for the years 1992-1995. Day of initiation of migration T2a is predicted for each 
fish by first using the negative binomial generalized linear model of recapture time and the 1.51 
conversion factor to predict residence time. Predicted residence time is then added to each fish’s 
day of tagging T0 to yield modeled T2a. 
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Figure 4.10 

Yearly plots showing observed CPUE and distributions of modeled T2a produced by the Age-
Growth model for the years 1992-1995.   
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Chapter 5: Applying Migration Models to Juvenile Life History 

 

5.1 Introduction 

 After the Mass-Growth and Age-Growth models of migration initiation were completed, 

we applied these models with our other models to examine the early life history of fall Chinook. 

In particular, we examined fish that could be confidently labeled as either ocean-type or 

reservoir-type. As described in Chapter 1 of this thesis, ocean-type fall Chinook are fish that 

migrate to the ocean in the first summer after emergence (Healy 1991); reservoir-type fall 

Chinook arrest this seaward migration and overwinter in one of the reservoirs on the Snake or 

Columbia Rivers, then resume migrating the following spring  (Connor et al. 2005). The 

mechanisms by which juvenile Chinook bifurcate into the ocean-type and reservoir-type life 

histories are unknown (Connor et al. 2005); to investigate what factors may be involved in 

determining which life history a fish follows, we used our models to examine these fish and 

identify differences in both modeled statistics and statistics from data. We also tested the fish 

using our models of migration initiation to see if fish fell back below the criterion for migration 

initiation after entering Lower Granite Reservoir. Lastly, we examine the results of these models 

in the context of the motivating theory to draw conclusions about the ecology of migration 

initiation in juvenile fall Chinook salmon and the role of reservoirs in the reservoir-type life 

history. 
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5.2 Modeling Fish Through Lower Granite Reservoir 

5.2.1 Operation of the Model Complex 

 We combined our model of fish growth with our models of migration initiation to create 

a model complex to track the early life history of individual fall Chinook through the Snake 

River and Lower Granite Reservoir. We break down the migration and life history timing of 

juvenile Chinook salmon into distinct points in time and reaches in space relevant to our models 

and data (Figure 5.1). As discussed in section 2.2.1 of this thesis, we break the habitat of the 

Snake River into two broad reaches separated by the confluence of the Snake and Clearwater 

Rivers. The ‘River’ reach stretches from Hell’s Canyon Dam to the confluence of the Snake and 

Clearwater Rivers. All tagging occurs within this reach, and in our modeling we assume that all 

fish within this reach are non-migratory parr. The ‘Reservoir’ reach covers the Lower Granite 

Reservoir and stretches from the confluence of the Snake and Clearwater Rivers to Lower 

Granite Dam. We assume in our modeling that fish instantaneously enter the reservoir reach once 

they begin to migrate. The critical points in time in our modeling of an individual fish are: T0, 

the day a fish was tagged; T1, the day a fish is recaptured within the river reach; T2, the day the 

fish initiates migration and transitions from the river reach into the reservoir reach; T3, the day a 

fish passes Lower Granite Dam; and T4, recapture and detection at other dams downstream of 

Lower Granite Dam (Figure 5.1). 

The modeling process for an individual fish begins with the tagging data point T0 and 

mass at tagging M0. We then use our in-river growth model, described in section 2.2.2, to predict 

the growth of the fish during its period of in-river residence. We denote this period of modeled 
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growth as G1 (Figure 5.2). The end of the period of in-river growth is determined by the 

initiation of migration, for which we have two estimates; T2m from the Mass-Growth model and 

T2a from the Age-Growth model (Figure 5.3).  At whichever T2 point is used for a particular 

run, we model the fish as instantaneously leaving the Snake River habitat and entering the Lower 

Granite Reservoir. We then model the growth of the fish in Lower Granite Reservoir using a 

growth model described in this section. We denote the period of modeled growth in Lower 

Granite Reservoir as G2. 

 To produce this model of the growth of individual fall Chinook in Lower Granite 

Reservoir, we combined the growth model used in-river with a new model of consumption rate 

and the estimates of migration initiation date produced by the migration initiation models. The 

core of the growth model is the Wisconsin bioenergetics model, parameterized for Chinook 

salmon by Stewart and Ibarra (1991). Section 2.2.2 of this thesis describes the Wisconsin model 

and the manner in which we used it in detail. To model the growth of a fish using the Wisconsin 

model, a number of inputs are required. Necessary inputs are the starting date and the starting 

mass of the fish, the water temperature on each day for which growth will be modeled, an 

estimate of the energy density of the fish's diet, and an estimate of consumption rate. 

Since we treat the transition from the free-flowing river habitat to Lower Granite 

Reservoir as instantaneous in our modeling, the starting day of growth in the reservoir is 

determined by the modeled day the fish initiates migration, or day T2. We assessed the 

performance of the Mass-Growth and Age-Growth models to determine how different the 

predictions of the two models are and if one model should be preferentially used over the other, 

see section 5.2.2 for details. To get the fish’s starting mass upon entering Lower Granite 

Reservoir, we estimate the fish’s mass at the initiation of migration, which we denote as M2. M2 
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is generated using the in-river growth model, G1; the growth model is run until day T2, and the 

final modeled mass on day T2 becomes M2. 

For temperature data, we used the daily mean temperature recorded in the scroll case at 

Lower Granite Dam. As discussed in section 2.2.1 of this thesis, there are three temperature 

readings available from Lower Granite Dam; temperatures are recorded at the scroll case, the 

forebay, and the tailrace. The scroll case reading is generally the coolest of the three readings, 

the forebay the warmest, and the tailrace intermediate between the two. The forebay reading 

provides an estimate of the surface temperature in Lower Granite Reservoir, and the scroll case 

temperature reading provides an estimate of the temperature at depth. However, it is not known 

how closely the forebay-scroll case temperature differential represents the actual thermal 

stratification of the reservoir. Most likely, the scroll case temperature reading represents a 

mixture of water from above and below the thermocline; dam operations and the flow rate of the 

river likely influence the mixture ratio over time. Radio tracking of tagged fall Chinook salmon 

indicates that outmigrating juveniles preferentially occupy intermediate temperatures in the 

thermocline (Tiffan et al. 2009). Since it provides the closest estimate of the temperatures 

available in the thermocline, we chose to assume in our modeling that all fish in Lower Granite 

Reservoir experience the temperature recorded at the scroll case. Additionally, the scroll case 

reading is the only reading available for every year modeled; the forebay and tailrace readings 

are only available from 1995 onwards. 

For prey energy density, we used the same estimate used for the in-river growth model; 

see section 2.2.3 of this thesis for details. For the fish's consumption rate, we created a 

multivariate linear model of consumption rate in Lower Granite Reservoir using the records of 

fish recaptured at Lower Granite Dam. This model is described in detail below in section 5.2.3. 
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These inputs allow the growth of fish within Lower Granite Reservoir to be modeled, yielding 

G2 (Figure 5.4). 

 

5.2.2 Relative Performance of the Mass-Growth and Age-Growth Models 

 We created two different models to predict the initiation of migration in juvenile fall 

Chinook salmon. The first model, described in Chapter 3 of this thesis, is the Mass-Growth 

model of migration initiation. This model is a mechanistic model that applies the theory 

proposed by Thorpe et al. (1998) and Mangel and Satterthwaite (2008); the model proposes that 

fish initiate migration when their mass exceeds a mass threshold or their growth efficiency drops 

below a growth efficiency threshold. The magnitude of these thresholds was fitted independently 

for each year of data using a maximum likelihood method. 

 The second model, described in Chapter 4 of this thesis, is the Age-Growth model of 

migration initiation. This model is a correlative model that predicts a fish's recapture time using a 

multivariate linear model with tagging data as predictors. This recapture time is then extrapolated 

into a residence time using a theoretical relationship between mean recapture time and mean 

residence time, and the modeled residence time is used to predict expected date of migration 

initiation. 

 These two models provide two independent estimates of date of migration initiation T2; 

T2m predicted by the Mass-Growth model, and T2a predicted by the Age-Growth model. To 

assess how congruent the predictions of these two models are, we compared predicted T2m and 

T2a for a set of fish. We used the records of the 7,438 fish which were used in the process of 

maximum likelihood fitting in both the Mass-Growth and Age-Growth models. For these fish, 

we used the fitted parameters from the version of the Mass-Growth model with mass and growth 
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efficiency driven leaving and a mass-varying catchability coefficient to predict T2m (see section 

3.3.3). We also used the fitted parameters of the Age-Growth model to predict T2a for these fish 

(see section 4.2.4). We then plotted predicted T2a against predicted T2m and fitted a linear 

model to the resulting distribution (Figure 5.5). 

 In the ideal case where both models perfectly predict the initiation of migration, we 

would expect modeled T2a and T2m to be 100% correlated, with all points lying on the one-to-

one line. As neither model can perfectly predict migration, there is significant deviation from the 

one-to-one line; however, the linear regression of T2a vs. T2m shows that the results of the two 

models are still comparable. The r2 of the linear model fit is 0.565, meaning that the results of the 

two models are 56.5% correlated. The slope of the linear model fit is 0.823; since this departs 

from the expected slope of 1, this indicates differences in the distributional properties of fitted 

T2a and T2m. Mean T2a and T2m are very similar, as mean day of year of fitted T2a is 167.38, 

while the mean day of year of fitted T2m is 166.64. While the mean fitted T2a and T2m are very 

close, there is more variance in fitted T2m than in fitted T2a, which results in the fitted slope of 

the linear model being less than one. The variance of fitted T2a is 163.58, while the variance of 

fitted T2m is 195.96. 

 While this comparison showed that the individual predictions of the two models are fairly 

comparable, we decided that the results are different enough to warrant independent analysis. For 

this reason, in our modeling of juvenile Chinook through Lower Granite Reservoir, we create 

two versions of each analysis; one version using the Age-Growth model to predict migration, and 

the other using the Mass-Growth model to predict migration. 
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5.2.3 Modeling Growth in Lower Granite Reservoir 

Fitting Reservoir Consumption Rate from Data 

 In order to model the growth of fish within Lower Granite Reservoir, individual estimates 

of consumption rate are necessary. To create a model capable of estimating consumption rates of 

individual fish, we created a multivariate linear model regressing consumption rate in the 

reservoir against T2, M2, tagging data and environmental data. To fit the model, we used the 

records of fish for which a consumption rate in Lower Granite Reservoir could be individually 

estimated. Estimating a fish's consumption rate in Lower Granite Reservoir required an estimate 

of the fish's growth over a known period within the reservoir; required components were the date 

of entry into the reservoir and mass at entry, date of exit of the reservoir and mass at exit, mean 

energy density of the composite diet, and the temperature of the reservoir for the period between 

reservoir entry and exit. 

As we model the transition from the free-flowing habitat of the Snake River to the 

impounded reservoir habitat as instantaneous, date of entry to Lower Granite Reservoir is given 

by date of migration initiation T2. Since we have two models of migration initiation, we have 

two separate estimates of day T2: T2m from the Mass-Growth model and T2a from the Age-

Growth model. We conducted two independent analyses of consumption rate in Lower Granite 

Reservoir; one using day T2m as the day of entry to the reservoir, the other using day T2a. 

Mass at entry to the reservoir is denoted as M2. As we have two estimates of day of entry 

to the reservoir, each estimate of entry day is associated with an entry mass: M2m for entry day 

modeled by the Mass-Growth model and M2a for entry day modeled by the Age-Growth model. 

Each mass M2 is found by using the in-river growth model to model the growth of individual 

fish from the tag day T0 until the respective migration day T2. Section 2.2.2 of this thesis 
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describes the in-river growth model in detail. The in-river growth model is not able to model all 

fish with equal fidelity; some fish are recaptured in-river and have an in-river capture day T1 and 

capture mass M1. These fish have individually fitted in-river consumption rates, as described in 

section 2.2.3 of this thesis. Fish lacking a T1 and M1 data point have no individually fitted in-

river consumption, and an attempt to model in-river consumption rate was unsuccessful (see 

section 3.2.1 of this thesis); so for these fish the mean fitted consumption rate was used in 

previous models in Chapters 3 and 4. In order to avoid compounding model error resulting from 

using mean in-river consumption to generate M2, then using this modeled M2 to fit the in-

reservoir consumption model, we confined the fish used to fit the reservoir consumption model 

to only those fish with a T1 and M1 data point and individually fitted in-river consumption. 

 Day of exit of Lower Granite Reservoir is given by day of passage of Lower Granite 

Dam. This comes directly from PIT data; we denote the day a fish is detected passing Lower 

Granite Dam as day T3. Some of these fish are recaptured and measured as they pass Lower 

Granite Dam; for these fish, mass at passage M3 is known. As described in section 5.2.1 of this 

thesis, the temperature data we use for Lower Granite Reservoir comes from the scroll case 

temperature record at Lower Granite Dam. We used the same estimate of prey energy density 

used for the in-river growth model (section 2.2.3), 5400 joules per gram. Once all of these data 

are present, start day (T2m or T2a), start mass (M2m or M2a), end day T3, end mass M3, 

temperature and prey energy density, the Wisconsin model is used to estimate a consumption 

rate in Lower Granite Reservoir. As consumption rate is an input to the Wisconsin Bioenergetics 

Model, we solve for consumption rate using an iterative method. Test consumption rates are 

submitted to the model and modeled final mass M3 is compared to known final mass M3 until a 

suitable match is found. 
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 Only a small percentage of all fish tagged were recaptured at Lower Granite Dam, and 

only a small percentage of these were also recaptured in-river. A total of 136 individual fish had 

all required data; as the sampling schedule at Lower Granite Dam varied by year, these fish are 

confined to the years 1992-1995. For these fish, the two-decimal consumption rate that most 

closely predicted the known mass at Lower Granite Dam M3 was selected as the fish’s 

individual consumption rate. Some fish could not be satisfactorily fitted with a consumption rate; 

the number of fish varied depending on which migration model was used to predict T2 and the 

resulting M2. When the Mass-Growth Model was used, a total of 26 fish could not be fitted, 

resulting in a total of 110 fish with a fitted consumption rate. Table 5.1 provides a summary of 

the fitted consumption rates using the Mass-Growth model predicted reservoir entry. When the 

Age-Growth Model was used, a total of 2 fish could not be fitted, resulting in a total of 134 fish 

with a fitted consumption rate. Table 5.2 provides a summary of the fitted consumption rates 

using Age-Growth model predicted reservoir entry. 

Fish that could not be satisfactorily fitted with a consumption rate were all tagged in 

1994; the fish could not be fitted because observed growth was larger than could be matched 

with the Wisconsin model. While the theoretical maximum consumption rate is equal to one, the 

Wisconsin model can fit consumption rates larger than one; however, consumption peaks at two, 

and if a consumption rate of two does not match observed growth, then a fit could not be found. 

Previous researchers have found that bioenergetics model results may fit abnormally high 

consumption rates due to underestimation of diet energy density (Luecke and Brandt 1993, 

Stockwell et al. 1999). These researchers showed that salmonids are capable of reducing the 

water content of daphnid prey, meaning that field estimates of prey energy density can 

significantly underestimate the energy density of prey within the salmon stomach if the diet 
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consists in large part of daphnia. We already considered this phenomenon when fitting 

consumption rates within the in-river portion of the Snake River habitat, resulting in our estimate 

of a high prey energy density of 5400 joules per gram (section 2.2.3) in order to confine fitted 

consumption rates below the theoretical maximum. The consumption rates fitted within Lower 

Granite Reservoir used the same prey energy density, but resulted in significantly higher fitted 

consumption rates than those fitted in-river, and a number of fish that could not be fitted with a 

consumption rate high enough to match growth. A diet shift to a more daphnid-heavy diet when 

fish enter the impounded water of the reservoir could be responsible for this increase in fitted 

consumption rates. It is also possible that the temperature record we use in our model is not 

accurately capturing the thermal experience of the fish; even though the scroll case reading is the 

coolest of the three temperature readings available at Lower Granite Dam, we do not think it 

represents the coolest water available in Lower Granite Reservoir. Fish could potentially be 

occupying colder water than predicted in our model, which would be more optimal for growth; 

this may especially be the case in 1994, which has the highest fitted consumption rates, the most 

number of fish that could not be fitted, and also the warmest scroll case temperatures. 

 

Multivariate Linear Models of Fitted Reservoir Consumption Rate 

Once individually fitted consumption rates were identified for a set of fish, we then 

created a multivariate linear model of in-reservoir consumption rate by regressing these fitted 

consumption rates against tagging and environmental data. Since we have two separate models 

of migration initiation and two different sets of estimated in-reservoir consumption rates, two 

models of in-reservoir consumption rate were created. For ease of reference, we denote the 

reservoir consumption rate model created using Mass-Growth predicted migration as the 
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‘MGRC’ model, and the reservoir consumption rate model created using Age-Growth predicted 

migration as the ‘AGRC’ model. Both models regressed fitted in-reservoir consumption rate 

against: T0 and M0- tag date and mass at tagging; T0 RKM- the river kilometer of tagging; T0 

CPUE- the CPUE at the tag location on the tag date; T0 Temp- the temperature in the Snake 

River (Anatone gauge) on the tag date; and three estimates of temperature in Lower Granite 

Reservoir. Squared terms were included for CPUE, river temperature, and all three estimates of 

reservoir temperature. Each model also included as predictors the T2 and M2 predicted by the 

relevant migration initiation model; T2m and M2m for the MGRC model and T2a and M2a for 

the AGRC model. Interaction terms were included between T0 and M0 and between the relevant 

T2 and M2 in each model. The three estimates of reservoir temperature were found by averaging 

temperature at the scroll case of Lower Granite Dam for different lengths of time following each 

fish’s individually predicted migration day T2. The first estimate was the mean temperature on 

day T2. The second estimate was the mean temperature for the first week after day T2, and the 

third was the mean temperature for the first month after day T2. Table 5.3 provides a summary 

of the parameter estimates and significance for the version of the full MGRC model. Table 5.6 

provides a summary of parameter estimates and significance for the full AGRC model. 

A parsimonious reduced model was then generated from each of these two full models 

via sequential deletion. The least explanatory predictor was removed from the model if removal 

did not increase the AIC score of the model by more than 2, then the model was re-fitted and the 

new least explanatory predictor examined. Once removal of the least explanatory predictor 

would increase the AIC of the model by more than 2, we determined that a parsimonious model 

had been reached. The parameters removed from the full MGRC model were, in sequence: 

reservoir temperature 2, T0 CPUE, CPUE squared term, reservoir temperature 3 squared term, 



160 
 

 
 

T0 RKM, T2m:M2m interaction term, T2m, T0:M0 interaction term, M0, reservoir temperature 

2 squared term, river temperature, and T0. Tables 5.4 and 5.5 provide a summary of parameter 

estimates and significance and ANOVA tables of the reduced MGRC model. The parameters 

removed from the full AGRC model were, in sequence: T2a:M2a interaction term, T0 RKM, 

T0:M0 interaction term, CPUE squared term, reservoir temperature 3, T0 CPUE, reservoir 

temperature 1, reservoir temperature 1 squared term, T0, T2a, and M0. Tables 5.7 and 5.8 

provide a summary of parameter estimates and significance and ANOVA tables of the reduced 

AGRC model.  

The reduced models for both the MGRC and AGRC versions of the reservoir 

consumption rate model were successful at describing fitted reservoir consumption rate. Many of 

the predictors tested were not contributing very much to explaining consumption rate, resulting 

in the full models having no significant predictors despite having reasonable R2 values. The 

reduced models eliminate the deadweight predictors, resulting in far fewer parameters than the 

full models, with all remaining parameter estimates significantly different from zero. The 

resulting AIC scores of the reduced models are better than their respective full models, and most 

of the R2 value of the full models is retained. As the reservoir consumption rates used for the two 

models were fitted separately using the different migration models to predict reservoir entry, the 

results of the two models are not directly comparable, but their relative success at predicting 

consumption rate can be examined. While both the reduced MGRC model and the reduced 

AGRC model have decent R2 scores, the AGRC model is better at predicting consumption rates 

fitted using Age-Growth migration than the MGRC model is at predicting consumption rates 

fitted using Mass-Growth migration. This is illustrated by the difference in R2; the reduced 

MGRC model has an R2 of 0.405, while the reduced AGRC model has an R2 of 0.597, meaning 
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that the AGRC model explains almost 20% more of the variation in consumption rate. We 

decided that both models were successful enough to use in further analysis modeling the growth 

of fish in Lower Granite Reservoir. As described in section 5.2.1, we use the fitted parameters of 

the reduced MGRC and AGRC models to predict consumption rates of individual fish in Lower 

Granite Reservoir, which then enables the growth model to predict growth in Lower Granite 

Reservoir. For an analysis predicting reservoir entry using the Mass-Growth model, consumption 

rates are estimated using the reduced MGRC model; for analysis predicting reservoir entry using 

the Age-Growth model, consumption rates are estimated using the reduced AGRC model. 

 

5.3 Differences Between Ocean-Type and Reservoir-Type Chinook 

 Once we had completed a model complex capable of modeling the growth and migration 

of juvenile salmon from the rearing habitat in the free-flowing Snake River into Lower Granite 

Reservoir, we applied this model complex to investigate the differences between the life history 

strategies employed by Snake River fall Chinook. Currently, two different juvenile life histories 

are observed in fall Chinook, labeled as ‘ocean-type’ (NMFS 1992) and ‘reservoir-type’ life 

histories. Ocean-type Chinook salmon juveniles rear for only a few months after emergence from 

the gravel and migrate in their first summer as age-0 smolts (Healey 1991). Reservoir-type 

juveniles initiate migration in late summer or early fall like the ocean-type fish and leave the 

natal rearing habitat, but then arrest migration and overwinter in one of the reservoirs along the 

Snake or Columbia Rivers (Connor et al. 2005). These fish resume migration early in the 

following spring and enter the ocean as age-1 smolts (Connor et al. 2005). The reservoir-type life 

history is thought to have emerged very recently; reservoir-type fall Chinook were first described 
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in 2002 (Connor et al. 2002), and prior to the discovery of the reservoir-type life history it was 

thought that all Snake River fall Chinook were ocean-type (NMFS 1992). 

While researchers familiar with Snake River Chinook salmon have postulated that habitat 

modification resulting from damming and impounding the river is ultimately responsible for the 

emergence of the reservoir-type life history (Connor et al. 2002 & 2005, Williams et al. 2008), 

the proximate mechanisms by which individual salmon arrest their migration are unknown. 

Previous studies of salmon migration have speculated that growth opportunity and threshold size 

or mass inform the migratory tactic that juvenile salmon use (Thorpe et al. 1998, Brannon et al. 

2004, Mangel and Satterthwaite 2008); we applied these principles in the creation of our models 

of salmon migration, expanding them to include growth efficiency. Our goal is to apply our 

models of salmon growth and migration initiation to juvenile Chinook of both life history types 

to identify and quantify plausible mechanisms that could result in selection of one life history 

strategy or the other by individual fish. 

 

5.3.1 Identifying Ocean-Type and Reservoir-Type Fish 

 The first step in examining the different life history strategies observed in Snake River 

fall Chinook was to identify a set of individual fish as either ocean-type or reservoir-type using 

the PIT tag dataset. PIT tag detectors are located in the juvenile bypass systems at the dams on 

the Snake and Columbia Rivers (Marvin and Nighbor 2009). Outmigrating juvenile fall Chinook 

from the Snake River pass a total of eight dams on their way to the ocean: Lower Granite Dam, 

Little Goose Dam, Lower Monumental Dam, and Ice Harbor Dam on the Snake River, then 

McNary Dam, John Day Dam, The Dalles Dam, and Bonneville Dam on the Columbia River. 

PIT tag detectors are located at all of these dams except The Dalles Dam (Marvin and Nighbor 
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2009). Detection efficiency is not the same at each dam, as the configuration of the bypass 

system and detectors is different at each dam; additionally, the operation of the bypass systems 

varied by dam and by year. Consequently, the distribution of recorded detections in the PIT tag 

dataset varies by dam and by year (Table 5.9). Individual fish could be detected at multiple 

locations during their migration, and date of first and last detection at each location a fish was 

detected at is recorded in the PIT tag dataset. 

 To assign a life history strategy to individual fish, we created criteria using the location 

and date information from these detection histories. For the ocean-type life history, we assumed 

that any fish detected at a dam in the Columbia River prior to September 1st of the year in which 

it was tagged was an ocean-type juvenile. These criteria may capture some reservoir-type fish as 

well, as it is possible that some fish overwinter in reservoirs on the Columbia; however, this is 

the best assumption we can make given the data available. The only PIT detection site actually in 

the ocean is the estuary towed array, and too few fish are detected by this array to enable a 

quantitative analysis (Table 5.9). Additionally, the majority of fish that were known to be 

reservoir-type overwintered in Lower Granite Reservoir or Little Goose Reservoir on the Snake 

River (Connor, personal comm.). For the reservoir-type life history, we assumed that any fish 

detected at any juvenile bypass location between January 1st and June 1st of the year after it was 

tagged was a reservoir-type juvenile. We used only the detection sites located in the juvenile 

bypass systems to avoid confounding the data with returning minijacks. Additionally, the PIT 

dataset is likely unable to capture some reservoir-type fish, since the juvenile bypass systems are 

dewatered during winter, and therefore any fish passing a dam during the winter months will not 

be detected (Connor et al. 2005). 
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 To expand the amount of data for this analysis, we included both presumed wild fall 

Chinook captured by beach seine by Connor in the years 1992-2000 and subyearling hatchery 

fall Chinook released into the Snake River by Connor in the years 1995, 1997, and 1998. Of a 

total of 31,531 tagged fish which were detected at least once by the PIT detection array, the 

records of 6,890 fish met the criteria for the ocean-type life history, and the records of 1,725 fish 

met the criteria for the reservoir-type life history. A single fish met the criteria for both life 

histories; the record of this fish was excluded from further analyses, resulting in a total of 6,889 

ocean-type and 1,724 reservoir-type fish. A subset of these fish was selected using only the 

presumed wild fall Chinook captured and tagged by Connor for use in some analyses; this set of 

fish totaled 728 confirmed ocean-type fish and 374 confirmed reservoir-type fish. 

 

5.3.2 Observed Differences in Modeled Statistics 

 Once sets of ocean-type and reservoir-type fish were identified, we compared the 

properties of the data and model predictions for the two sets of fish. Few of both the confirmed 

ocean-type and confirmed reservoir-type fish had T1 or T3 points from data, but all fish had a T0 

and M0 data point; mass and date of tagging. In-river growth was modeled for all fish using the 

in-river growth model described in section 2.2.2; the few fish which had a T1 and M1 data point 

used an individually fitted in-river consumption rate for in-river growth, while the remainder of 

the fish used the mean fitted consumption rate of 0.56. Migration initiation dates T2m and T2a 

were predicted for all fish using the Mass-Growth and Age-Growth models. The yearly fitted 

parameters found for the Mass, Growth, & Catchability version of the Mass-Growth model were 

used for T2m predictions (see Table 3.7 for values). Mass at migration M2m and M2a was 

predicted for all fish using the in-river growth model and the predicted dates of migration 
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initiation. Consumption rate in the reservoir was predicted for all fish using both the MGRC and 

AGRC consumption rate models (Tables 5.4, 5.7); the MGRC model corresponding to Mass-

Growth predicted migration and the AGRC model corresponding to Age-Growth predicted 

migration. 

 Statistically significant differences were found between ocean-type fish and reservoir-

type fish in every statistic tested (Table 5.10). Reservoir-type fish, on average, are tagged later 

than ocean-type fish at a smaller size than ocean-type fish. Reservoir-type fish are also modeled 

to initiate migration later than ocean-type fish at a smaller size than ocean-type fish by both the 

Mass-Growth model and the Age-Growth model. However, regardless of the migration model 

used, reservoir-type fish are predicted to have a higher consumption rate once they enter Lower 

Granite Reservoir than ocean-type fish. 

 There was concern that comparing the overall means of the ocean-type and reservoir-type 

distributions was inappropriate, because significant year effects are observed in all of the 

statistics examined, and the distribution of fish in each life history category is not even across 

years (Table 5.11). To confirm if the trends observed in the overall dataset held on a yearly basis, 

yearly subsets of the data was examined for the years where significant numbers of both life 

history types are known : 1995, 1997, and 1998. Tables 5.12, 5.13, and 5.14 present the results of 

the comparisons for these years. While observed differences in M0, M2m, and M2a are 

considerably smaller in 1995, in all other respects, the patterns observed in the overall 

distributions hold in all three yearly comparisons.  
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5.3.3 Modeling the Cessation of Migration in Lower Granite Reservoir 

 The mechanisms informing the cessation of migration in reservoir-type juvenile fall 

Chinook are currently unknown; we used our models of migration to address this gap in our 

knowledge of salmon life history. In chapter 3 of this thesis, we described the mechanistic model 

of migration we created: the Mass-Growth model. This model specifies and fits threshold criteria 

in fish mass or growth efficiency that must be met to trigger migration; here, we postulate that a 

reversal of these criteria once a fish is migrating may result in a cessation of migration. The mass 

threshold is not a likely candidate for triggering this behavior; while the Wisconsin model can 

predict a negative energy balance at high water temperatures, we decided that it was unrealistic 

to model a fish losing enough mass to significantly compromise migration success. The theory 

informing fish mass as a criterion for migration postulates that larger size confers increased 

survivability to migrants by reducing vulnerability to gape-limited predators and increasing the 

fish’s swimming speed (Thorpe et al. 1998). While fish under starvation conditions may lose 

muscle mass and lipid reserves, they do not shrink in overall size, meaning that there is no 

theoretical justification for predicting cessation of migration stemming from a loss of body mass. 

The growth efficiency threshold, however, can potentially explain cessation of migration. The 

theory informing the growth efficiency threshold postulates that growth efficiency provides an 

estimate of the benefit a fish is receiving from its current habitat; if the benefit drops below some 

threshold level, then the fish is forced to initiate migration regardless of how close to the 

threshold mass it is. Critically, in our models, the growth efficiency fish experience can change 

as a fish changes habitats. In particular, the temperature regime and fish’s consumption rates are 

modeled to change as fish transition from the free-flowing reach of the Snake River into Lower 

Granite Reservoir. In the summer when fall Chinook are rearing in the Snake River, water 
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temperatures gradually increase to very high levels; in our models, this forces fish to migrate by 

driving growth efficiency below the Gcrit threshold. However, Lower Granite Reservoir receives 

cold water input from the Clearwater River, which is amplified in summer by coldwater flow 

releases from Dworshak Dam (Anderson 2000); this cold water persists into Lower Granite 

Reservoir creating a stratified water column (Cook et al. 2006, Tiffan et al. 2009). Fish migrating 

into Lower Granite Reservoir have access to this cooler water, which can improve growth 

efficiency (see Figures 2.8, 2.9). If a fish is forced to initiate migration due to falling below the 

Gcrit threshold while its mass is still below the mass threshold, then later enters a habitat in 

which its growth efficiency increases back above the Gcrit threshold, we postulate that the fish 

will arrest migration to take advantage of the growth opportunity until migration criteria are met 

again. 

 To test this hypothesis, we applied the Mass-Growth model and our model of growth in 

Lower Granite Reservoir to the records of fish with a confirmed life history. The Mass-Growth 

model predicts the initial migration from the rearing habitat individually for each fish; migration 

initiation begins when a fish grows larger than the mass threshold (mass > Mcrit) or when its 

growth efficiency drops below the growth efficiency threshold (growth efficiency < Gcrit). Since 

we assume that fish larger than the mass threshold will not shrink, only fish that left via the Gcrit 

threshold in the Mass-Growth leaving function are eligible to arrest migration upon entry to 

Lower Granite Reservoir. Based on our theory for cessation of migration, we would expect that 

reservoir-type fish would display a higher likelihood of leaving due to the Gcrit threshold than 

ocean-type fish, and we also expect the growth efficiency of reservoir-type fish that left by the 

Gcrit threshold to be more likely to rise back above the threshold for migration after reservoir 

entry. 
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We used the Mass-Growth model to predict T2m for 6,889 confirmed ocean-type fish and 

1,724 confirmed reservoir-type fish and recorded the threshold that resulted in migration 

initiation for each fish. Of the 6,889 ocean-type fish, 2,549 initiated migration due to growth 

efficiency dropping below the threshold, while 4,340 initiated migration by growing larger than 

the mass threshold. Of the 1,724 reservoir-type fish, 860 initiated migration due to the growth 

efficiency threshold, while 864 initiated migration due to the mass threshold. Table 5.15 provides 

a contingency table of life history type and migration threshold; the Pearson’s test of 

independence indicates that a significantly larger percentage of reservoir-type fish are modeled 

to initiate migration via the Gcrit threshold.  

 For the 2,549 ocean-type and 860 reservoir-type fish that initiated migration due to the 

Gcrit threshold, we then modeled their growth after entering Lower Granite Reservoir to 

examine whether each fish’s modeled growth efficiency rose back above the Gcrit threshold. For 

each fish, growth was modeled and growth efficiency recorded for the first week after reservoir 

entry day T2m; if modeled growth efficiency rose above the growth efficiency threshold Gcrit 

(values of fitted Gcrit vary by year, see table 3.7) for any day during this period, the fish was 

modeled to arrest migration. Of 2,549 ocean-type fish, 1,798, or 70.5%, are modeled to arrest 

migration due to growth efficiency rising above Gcrit after entering Lower Granite Reservoir. Of 

860 reservoir-type fish, 689, or 80%, are modeled to arrest migration. Table 5.16 provides a 

contingency table of life history and proportion of fish arresting or continuing migration; 

Pearson’s test of independence indicates that reservoir-type fish were significantly more likely to 

be modeled to arrest migration. 

 Reservoir-type fish displayed a higher proportion of fish which initiated migration via 

Gcrit and a higher proportion of fish modeled to arrest migration after entering Lower Granite 
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reservoir than ocean-type fish; in both cases, the differences in proportions are statistically 

significant. However, significant numbers of confirmed ocean-type fish are modeled to arrest 

migration as well. The data confirms that these fish did not arrest migration in Lower Granite 

Reservoir for the duration of the summer, since they were detected at dams on the Columbia 

River prior to the end of their first summer. It is possible that these fish briefly arrested migration 

after entering Lower Granite Reservoir, but quickly grew into the mass threshold for migration 

and renewed migration. To examine this possibility, we used the reservoir growth model to 

model growth of both ocean-type and reservoir-type fish predicted to arrest migration and 

recorded the number of days required to reach the mass threshold and renew migration. The 

1,796 ocean-type fish modeled to arrest migration took 5.8 days on average to grow to the mass 

threshold for migration; the 689 reservoir-type fish took 7.4 days on average. A Welch two-

sample T-Test of the distributions of growth times between ocean-type and reservoir-type fish 

returned a T statistic of -11.3 with a P value less than 0.001, indicating that the difference in 

means is very statistically significant. This means that ocean-type fish are modeled to renew 

migration more quickly than reservoir-type fish after arresting migration in Lower Granite 

Reservoir. 

 Since these comparisons were conducted with a sample of fish that were mostly hatchery-

spawned, it was decided to conduct the same tests on the smaller subset of only wild-reared fish. 

For each fish, three different model outcomes were possible. Firstly, a fish could be modeled to 

initiate migration via the Mcrit threshold (mass > Mcrit); this means the fish is not eligible to 

arrest migration and is modeled to be ocean-type. Secondly, a fish could initiate migration via 

the Gcrit threshold (growth efficiency < Gcrit), but not be modeled to arrest migration after 

reservoir entry (growth efficiency stays < Gcrit); this also results in a modeled ocean-type life 
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history as the fish is not modeled to arrest migration. The last possible model outcome is when a 

fish initiates migration via the Gcrit threshold and is then modeled to arrest migration after 

entering Lower Granite Reservoir; this outcome is a modeled reservoir-type life history. The 

model complex was used to predict migration initiation and growth after reservoir entry for the 

728 confirmed ocean-type and 374 confirmed reservoir-type wild fish. Figure 5.7 displays the 

resulting life histories predicted by the model complex. Overall, the results were similar to those 

from the larger dataset including hatchery fish; majorities of fish of both life history types were 

correctly modeled to follow the right life history. Of 728 confirmed ocean-type fish, 425 

migrated by Mcrit, and 72 migrated by Gcrit but did not arrest migration, resulting in 497 fish 

correctly modeled to be ocean-type. 231 ocean-type fish were modeled to arrest migration, 

incorrectly modeled to be reservoir-type. Of 374 confirmed reservoir-type wild fish, 88 migrated 

by Mcrit and 16 migrated by Gcrit but were not modeled to arrest migration, resulting in 104 fish 

incorrectly modeled to be ocean-type. 270 known reservoir-type fish were correctly modeled to 

arrest migration. Overall, 68% of known ocean-type fish and 72% of known reservoir-type fish 

were modeled to follow the correct life history. 

 

5.4 Conclusions 

 Our modeling exercises identified statistically significant differences between ocean-type 

and reservoir type fish, and these differences are in the directions suggested by the theory 

informing our models. Fewer reservoir-type fish are modeled to grow larger than the mass 

threshold for migration initiation in-river (Table 5.15), more reservoir-type fish are modeled to 

arrest migration after entering Lower Granite Reservoir (Table 5.16), and reservoir-type fish take 

longer to reach the mass threshold for migration initiation after arresting migration. However, 
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while all of these differences are statistically significant, they are not extremely clear-cut. Based 

on our theory for migration initiation, we would expect ocean-type fish to reach the mass 

threshold for migration during the rearing period, meaning that they have no reason to arrest 

migration even if their growth efficiency improves after entering Lower Granite Reservoir. Two 

thirds of the ocean-type fish fall into this category, but a third does not, and a significant number 

of the remaining third are modeled to arrest migration, contrary to what we expect based on 

theory. Similarly perplexing, a significant portion of the confirmed reservoir-type fish do fall 

into this category, and will never be modeled to arrest migration by our models despite the fact 

that we know from data these fish did arrest migration. These disparities between theory and 

portions of the model predictions could simply be the result of imperfections in our modeling; 

the statistics produced for the reservoir comparisons are the result of a complex of models 

tracking in-river growth, consumption rate, migration initiation, converting fish length and mass, 

etc. None of these models are perfect; a number of assumptions and simplifications were made in 

the construction of each one, and it would not be surprising if the additive error were responsible 

for at least some of the disparity between theory and results. 

 Another possibility is that some of these reservoir-type fish really are reaching the mass 

threshold for migration, but are not initiating migration because the timing is off. Previous 

research into salmon migration has postulated that certain periods are important to successful 

migration (Scheuerell et al. 2009, Spence and Hall 2010); the theoretical framework proposed by 

Thorpe et al. (1998) and expanded upon by Mangle and Satterthwaite (2008) explicitly 

incorporates this idea by defining the ‘decision window’ when an individual decides whether to 

migrate and the actual initiation of migration as distinct points in time. Our modeling has shown 

that the reservoir-type fish tend to proceed on a later time schedule than ocean-type fish; 
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reservoir-type fish are tagged later (presumably indicating later emergence), they initiate 

migration later, they grow more slowly resulting in smaller mass at migration (Table 5.10), and 

they take longer to reach the migration mass threshold once in the reservoir. It is possible that a 

period analogous to the decision window exists for fall Chinook salmon, and reservoir-type 

salmon do not renew migration after reaching the threshold mass because the decision window 

has already passed by the time they reach it. This speculation is supported by empirical evidence 

of the size of reservoir-type migrants. Reservoir-type fish captured while migrating in the spring 

are much larger than ocean-type migrants; ocean-type smolts averaged 139 mm fork length, 

while reservoir-type smolts averaged 222 mm (Connor et al. 2005). These fish have clearly been 

much larger than the ocean-type migrants for a significant amount of time, as it is assumed that 

they do not grow very much during the winter months. The fact that they did not renew 

migration until the spring despite this size difference indicates that more than just a mass 

threshold is required for migration initiation, and the consistent timing difference in their early 

life history suggests that correct timing of reaching the bioenergetic thresholds is important. 

 

5.4.1 The Ecology of Initiation of Migration in Fall Chinook Salmon 

 Previous research has broadly indicated that bioenergetic factors, including growth 

opportunity and growth rate, are the primary determinants of life history in salmonids, and that 

temperature plays a central role by impacting these bioenergetic factors (Brannon et al. 2004). 

Additional previous work has identified relationships between these factors and salmonid life 

history at various scales (Hutchings and Jones 1998, Metcalfe 1998, McCormick et al. 1998, 

Morinville and Rasumssen 2003), such as the model of Chinook life history created by Jager et 

al. (1997), in which timing of smoltification is triggered by accumulated degree-days- a proxy 
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for growth that incorporates temperature. The next steps to build on this research are to identify 

physiological mechanisms that quantify how environmental factors and biological processes 

interact to result in behavior, and how behavior and habitat combine to result in a particular life 

history strategy (Mangel and Satterthwaite 2008). The primary goal of this Master’s research was 

to do this specifically for Snake River fall Chinook salmon; to create and parameterize a 

mechanistic model of migration initiation in fall Chinook and use this model to explore 

differences between the ocean-type and reservoir-type life history. 

Starting with goals similar to our research, Thorpe et al. (1998) linked growth 

opportunity to life history via a quantitative theoretical framework incorporating bioenergetics in 

a model to predict salmon migration. We applied parts of this theory as the mass-based migration 

threshold of the Mass-Growth Model. This mass threshold represents the preparedness of a fish 

to undertake and survive migration to the ocean (Thorpe et al. 1998, Mangel and Satterthwaite 

2008). Theoretical justifications for this threshold process involve balancing the relative benefits 

of staying in a freshwater environment versus a marine environment while taking into account 

the cost of and risk of mortality during the migration event- i.e., it is a sort of extension and 

physiological representation of a fitness maximization model (Werner and Gilliam 1984, Thorpe 

et al. 1998). For salmon, the ocean environment offers much greater growth opportunity than the 

freshwater environment, meaning that earlier migration to the ocean will yield benefits in the 

form of faster lifetime growth (Quinn 2005). However, migration is energetically costly, and 

exposure to size-selective predators during migration and after ocean entry means that larger size 

at migration confers significant survival benefits (Anderson et al. 2005, Duffy and Beauchamp 

2008, Weitkamp et al. 2011). Thus, the mass threshold for migration represents a point of 

optimal fitness where the tradeoffs of migrating at a smaller mass are balanced with the benefits 
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of reaching the ocean earlier; as a genetic threshold, the optimal selection of the threshold 

magnitude occurs via evolutionary processes (Thorpe et al. 1998). The key to the operation of 

this mass threshold is that it is a process that operates within the physiology of individual fish, 

thus the fish needs no outside source of information to act on the threshold (Thorpe et al. 1998, 

Mangel and Satterthwaite 2008). In our modeling, the fitted values of the mass threshold ranged 

from around 7 grams to more than 11 grams (Table 3.7); this equates to roughly 80-100 mm fork 

length. The theory motivating this threshold suggests that fish larger than these fitted sizes 

should be prepared to initiate migration and smoltification. However, the fits span a fairly wide 

range; since these values are the independent fits of different years of data, they perhaps indicate 

phenotypic plasticity in the mass threshold responding to yearly variation in environmental 

conditions. Previous research has also hypothesized that significant plasticity exists in Chinook 

life history traits (Williams et al. 2008). Field data and prior research supports the values of the 

mass threshold we fitted in our modeling. Lower Granite Dam is the first location outside of the 

rearing habitat where juvenile fall Chinook are recaptured and remeasured (i.e., it is the earliest 

measure of the size of fall Chinook after initiating migration); in the PIT dataset used in our 

modeling, the minimum fork length of fall Chinook recaptured at Lower Granite Dam was 71 

mm; however, of 1,156 fish recaptured, just 12 were smaller than 100 mm fork length, and the 

average fork length was 140 mm. Spring Chinook juveniles typically become active migrants 

between 80-120 mm fork length (Bjornn 1971). Additionally, a prior model of fall Chinook life 

history estimated a minimum size for smoltification of 70 mm (Jager et al. 1997). 

However, as discussed in Chapter 3 of this thesis, the mass threshold alone was not 

sufficient to explain migration initiation in juvenile fall Chinook. We expanded upon the theory 

of Thorpe et al. to add a second bioenergetic process that can initiate migration: growth 
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efficiency. This process operates in the reverse of the theoretical underpinnings for the mass 

threshold; mass is treated as a requirement for successful migration, where surpassing the 

threshold indicates that a fish is biologically prepared to initiate migration. Growth efficiency, 

we propose, acts as an indicator of the favorability of the current environment to the fish, and 

dropping below a certain threshold indicates that the environment is becoming too hostile- the 

fish must initiate migration regardless of its bioenergetic preparedness. In particular, since 

growth efficiency is a bioenergetic process that is strongly sensitive to the high water 

temperatures that are stressful to Chinook salmon (see Figure 5.6), our research demonstrates 

that it can be used as an individually-based trigger to allow fish to avoid these unfavorable 

conditions. Previous work supports the theoretical basis for this process; Bellgraph et al. (2009) 

demonstrated in the laboratory that increasing temperatures will induce movement behavior in 

Chinook salmon, and several field studies have shown that in the wild, juvenile and adult 

Chinook salmon behaviorally avoid high water temperatures (Sauter et al. 2001, Goniea et al. 

2006, Tiffan et al. 2009). The growth efficiency thresholds fitted in the most successful version 

of the Mass-Growth model (the Mass, Growth & Catchability version) are quite consistent; with 

the exception of 1994 and 1996, the fitted coefficients are around 0.3 (see Table 3.7). Since each 

year of data was fitted independently, the consistency of these fits indicates the suitability of a 

growth efficiency process for describing migration initiation. The magnitude of the resulting fits 

also bears some scrutiny; for consumption rates ranging from 0.5 to 0.7, the intersection with 

growth efficiency of 0.3 occurs at water temperatures between 17 and 19 degrees Celsius (Figure 

5.6). As the mean fitted in-river consumption rate is 0.56, this means that the average fish in our 

model will be predicted to initiate migration via the growth efficiency threshold when 

temperatures exceed about 18 degrees Celsius (varying slightly depending on the exact growth 
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efficiency threshold fitted in a given year and the individual’s mass). The theory informing the 

growth efficiency threshold indicates that this means that, for an average fish, water temperatures 

above about 18 degrees begin to become too stressful, and the growth opportunity available too 

low, to justify continued occupation of the current habitat. Empirical evidence from field studies 

supports this conclusion. Connor et al. observed that juvenile fall Chinook move offshore and 

become inaccessible to beach seine when river temperatures exceeded 18 degrees Celsius 

(Connor et al. 2002); presumably, these fish were initiating migration. Additionally, Tiffan et al. 

(2009) found that juvenile Chinook behaviorally selected temperatures from 16-20 degrees 

Celsius when in Lower Granite Reservoir. While the upper end of this temperature range is near 

or somewhat over the threshold we fitted in our modeling, Tiffan et al. also found that fish 

tended to increase their rate of downstream movement when they were occupying the upper end 

of this temperature range, as our modeling proposes. 

In combination, the mass and growth efficiency thresholds parameterized in our modeling 

and the theory informing these thresholds reveal some patterns in predicted migration initiation 

of fall Chinook salmon. Firstly, the two processes for migration initiation produce different 

patterns in predicted migration. The mass threshold of the Mass-Growth model predicts 

migration in a diffuse, gradual pattern spread out over the rearing season (Figures 3.11, 3.12). 

This pattern arises due to individual differences in emergence date or growth rate, with 

individuals that emerge earlier or grow more rapidly reaching the threshold sooner, and vice 

versa. This result is fairly natural, and agrees with the theory of prior researchers. Brannon et al. 

proposed that much of the variation in salmon life history arises due to variation in growth 

opportunity; this was represented mechanistically via a mass threshold by Thorpe et al. (1998) 

and quantified by this research with the mass threshold in the Mass-Growth model. However, 
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The work of Brannon et al. and Thorpe et al. generally refers to timescales of a year or more, 

wherein faster or slower growth results in migration in an earlier year or a later year; in contrast, 

our modeling shows the same pattern, but on a much shorter timescale within a single rearing 

season. This difference between how prior researchers applied the mass threshold and how we 

apply it is important, as the within-season timing of when fish reach the mass threshold has 

consequences for Snake River fall Chinook due to the temperature regime of the rearing habitat. 

These consequences are made clear by the second migration initiation process in the Mass-

Growth model- the growth efficiency process. The growth efficiency process shows markedly 

different patterns in the migration initiation predicted by the model (Figures 3.11, 3.12). While 

the mass process predicts gradual, diffuse migration initiation, the growth efficiency process 

predicts that almost all individuals initiate migration in a single, condensed group over a short 

period of just a few days. The fits of observed CPUE data indicate that this pulse of growth-

efficiency driven migration occurs at the end of the rearing season, driving all remaining fish out 

of the rearing habitat; the theory motivating the threshold indicates that this point is when the 

river habitat has become too hostile to remain in due to rising temperatures. Thus, in the context 

of both processes operating simultaneously, the emergence timing and growth rate of individual 

fish has important consequences with regard to which process will ultimately result in migration. 

If a fish emerges too late or grows too slowly, it will be unable to reach the mass threshold 

before the growth efficiency threshold kicks in; these fish might be much smaller than the 

desired size for migration, but they have no choice other than to leave the rearing habitat. 
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5.4.2 The Reservoir-Type Life History and Reservoirs as Thermal Refuges 

 The recent emergence of the reservoir-type life history in juvenile fall Chinook in the 

Snake River is not yet completely understood, and it is important to proper management and 

recovery of the Snake River population to gain a better understanding of how and why this life 

history tactic operates (Connor et al. 2005, Williams 2008). Our modeling works towards this 

goal; we proposed, quantified, and tested individually-based, physiological mechanisms to 

explore juvenile fall Chinook life history by applying theory and trends identified by other 

researchers. Prior research outlines some general concepts for why the reservoir-type life history 

has emerged. In general, it is thought that changes in the timing of the fall Chinook rearing 

season has resulted in a desynchronization of salmon preparedness to migrate and the appropriate 

seasonal period to undergo migration (Williams et al. 2008). Dam construction denied fall 

Chinook access to their historical spawning grounds; salmon in the current habitat emerge from 

the gravel later, grow more slowly, and initiate migration later than before the dams were 

constructed (Krcma and Raleigh 1970, Connor et al. 2002, Connor and Burge 2003). These 

changes, along with slower juvenile migration through reservoir habitat as opposed to free-

flowing habitat, have resulted in later passage of migrating juvenile fall Chinook salmon; 

currently, the majority of migrants pass Lower Granite Dam in July (Connor et al. 2002, Smith et 

al. 2003), about a month later than historically (Mains and Smith 1964). These delays in the 

timing of the juvenile life history have potentially severe consequences, as it is thought that the 

timing of arrival to the ocean is very important to survival (Scheuerell et al. 2009, Spence and 

Hall 2010), and migration during peak summer temperatures in August would expose juveniles 

to very stressful conditions throughout the Columbia and Snake Rivers (Sauter et al. 2001, Tiffan 

et al. 2003). Williams et al. (2008) proposed that the reservoir-type life history is likely to be 
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adopted by fish which have their timing and growth schedule delayed to the point that this 

synchronization is no longer likely. Our modeling of ocean-type and reservoir-type fall Chinook 

juveniles supports the hypothesis proposed by Williams et al. We found that, on average, 

juveniles that followed a reservoir-type life history had been tagged later and at smaller sizes 

than ocean-type juveniles, and our models of migration initiation predicted that reservoir-type 

juveniles initiate migration later on average as well (Tables 5.10, 5.12, 5.13, 5.14). Additionally, 

our modeling supports the hypothesis that fish that end up following a reservoir-type life history 

are not ready to migrate during their first summer. Our Mass-Growth model proposes that the 

mass threshold indicates preparedness to migrate; when we examined how ocean-type and 

reservoir-type fish were initiating migration, we found that a majority of ocean-type fish had 

surpassed the mass threshold for migration; in contrast, a majority of the reservoir-type fish did 

not surpass the mass threshold for migration, and were instead forced to initiate migration due to 

unfavorable environmental conditions- the growth efficiency threshold (Figure 5.7). 

Habitat conditions in the reservoir provide the other half of the reservoir-type life history 

puzzle. Previous research has identified reservoirs and the temperature regimes in them as 

important thermal refuges during the summer months (Sauter et al. 2001, Tiffan et al. 2009). Our 

modeling provides physiologically-based, mechanistic explanations for why these behaviors 

occur. Water temperatures within the free-flowing portion of the Snake River upstream of the 

confluence with the Clearwater River are fairly homogenous (Anderson et al. 2000); meaning 

that when river temperatures rise above about 18 degrees Celsius, our Mass-Growth model 

predicts that juvenile Chinook throughout the rearing habitat are all forced to initiate migration 

via the growth efficiency process. In the absence of any habitat favorable for growth downstream 

of the rearing habitat, our model would predict that all fish would continue migration to the 
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ocean at this point, regardless of whether or not they had grown larger than the mass threshold. 

However, Lower Granite Reservoir receives significant input of cool water from the Clearwater 

River, supplemented by flow releases from Dworshak Dam on the Clearwater River (Cook et al. 

2006). This significantly cooler water generally remains below 18 degrees Celsius year-round; 

peak summer temperatures do reach up to 19 degrees in some years. This cool water input 

partially mixes with warm Snake River water, but significant thermal stratification is observed 

within the impounded areas of Lower Granite Reservoir (Cook et al. 2006, Tiffan et al. 2009). 

Critically, radio tagging observations of juvenile fall Chinook have shown that individuals 

preferentially occupy cooler water in the thermocline around 17 degrees, and avoid the warmest 

water at the surface in Lower Granite Reservoir (Tiffan et al. 2009). This means that, in the 

context of our Mass-Growth model, fish that were forced to initiate migration within the rearing 

habitat by unfavorable temperatures can find favorable temperatures after entering Lower 

Granite Reservoir, resulting in modeled cessation of migration and a reservoir-type life history. 

In essence, our model quantifies a mechanism for why Lower Granite Reservoir and other 

reservoirs with thermally stratified water columns provide refuges for juvenile salmon that are 

not yet prepared to migrate, enabling the reservoir-type life history.  

 While we have represented migration as a simple on/off switch in our modeling for 

simplicity and ease of parameter estimation, the truth is that a continuum of migratory behavior 

and life history strategies exists in salmonids. Previous theory has noted the existence and 

importance of this continuum in the context of researching and managing salmonids (Thorpe et 

al. 1998, Mangel and Satterthwaite 2008). Previous research on Columbia basin salmon has 

demonstrated this continuum; Connor et al. (2003) identified four distinct migratory phases in 

juvenile fall Chinook, incorporating periods of continuous and discontinuous movement. Spring 
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Chinook commonly undertake partial migration into mainstem rivers as parr prior to the onset of 

the smolting migration (Bjornn 1971). This continuum of behavior applies to reservoir-type fall 

Chinook salmon; while we model these fish as arresting migration, reservoir-type juveniles still 

disperse downstream discontinuously throughout fall and winter. Few data exist on the passage 

rates of fall Chinook during these periods, as PIT tag detection systems in the Snake and 

Columbia Rivers are operated irregularly during the fall and dewatered completely during the 

winter (Marsh et al. 2004); however, what data exists shows that some fish do pass dams during 

fall and winter (Connor et al. 2004). Thus, migration may not be completely suppressed in 

reservoir-type individuals, or the fish may merely be dispersing downstream as passive particles. 

Our modeling does not implicitly capture this detail in its current form; however, an extension 

incorporating spatially-explicit movement rules or a hydrodynamic model could test the 

discontinuous downstream movement of reservoir-type fish. Though our modeling does not 

incorporate it, seasonal and timing considerations are very important to understanding the totality 

of the reservoir-type life history in fall Chinook salmon. A second complication of the reservoir-

type life history that our modeling does not capture is the suppression of migration after arresting 

it in the reservoir. Reservoir-type fish continue to grow rapidly through the summer and fall, and 

at migration the following spring they are much larger than ocean-type smolts (Connor et al. 

2005). Clearly these fish surpassed the mass threshold for migration sometime the previous year, 

but they did not renew migration and reach the ocean until spring. The ultimate reasons for the 

timing of ocean entry are clear; survival is highest during seasons when ocean conditions are 

most favorable (Schuerell et al. 2009, Petrosky and Schaller 2010, Spence and Hall 2010), 

however, an individually-based mechanism is necessary to represent this. Previous research has 

identified photoperiod as a potential mechanism individuals could use to time behavioral 
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switches (McNamara et al. 2011), and previous models of salmon life history have used 

photoperiod to time migration initiation (Thorpe et al. 1998). An extension of our Mass-Growth 

migration initiation model could incorporate a photoperiod based switch to inhibit migration 

after a certain point, which would capture why reservoir-type juveniles do not renew migration 

even though they may surpass the mass threshold for migration by late summer or fall. 

 

5.4.3 Management Implications 

 The impounded water of the reservoir and the cool-water input from flow releases from 

Dworshak Dam are both critical to creating the stratified water column that provides juvenile fall 

Chinook a thermal refuge from high summer temperatures. While there is some variability by 

year and individual, our modeling predicts that temperatures very much above 19 to 20 degrees 

Celsius will likely force all juvenile Chinook to initiate migration, even if they are not 

physiologically prepared to migrate. Summer temperatures in the Snake River already reach well 

above this level, but in many years peak Clearwater River temperatures also approach this level. 

If managers of the Columbia River hydropower system wish to enable the continued existence of 

the reservoir-type life history, then our models suggest that at least some pool of water below 

about 18 degrees Celsius must be maintained within Lower Granite Reservoir or other reservoirs 

for the duration of the summer. If the thermal refuge fails, our model would predict that fish 

occupying it would be forced to renew migration. To prevent this occurrence will require careful 

management of water resources within the Snake River Basin; this is especially important in 

light of predicted climate changes in the Pacific Northwest (Schindler et al. 2008). 

 Enabling the reservoir-type life history in juvenile fall Chinook may be desirable for 

several reasons. Firstly, our models and the theory behind them suggest that fish that are 
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initiating migration via the growth efficiency threshold are not doing so because they are 

bioenergetically prepared to migrate, but to escape adverse local conditions. If there were no 

thermal refuges and these fish were forced to complete their ocean migration as subyearlings, 

they would likely experience high mortality from a number of sources. Firstly, fish migrating in 

late summer would be exposed to maximum summer temperatures throughout the Snake and 

Columbia Rivers and would incur significant thermal stress (Sauter et al. 2001, Smith et al. 

2003); the work of Tiffan et al. (2003) demonstrates how much thermal stress fish can be 

exposed to in a homothermic reservoir. Secondly, these fish would likely be exposed to severe 

predation mortality during their migration due to their smaller size than fish that initiated 

migration due to the mass threshold and due to warm temperature regimes that favor salmon 

predators (Vigg et al. 1991, Petersen and Kitchell 2001). Lastly, these fish would be reaching the 

ocean at a non-ideal time in very late summer or fall, and would likely suffer severe mortality in 

the ocean (Duffy and Beauchamp 2008, Petrosky and Schaller 2010, Spence and Hall 2010, 

Weitkamp et al. 2011). In addition to this, recent research has demonstrated that reservoir-type 

juveniles have a high smolt-to-adult return ratio and potentially higher fitness than ocean-type 

juveniles (Williams 2008, Marsh et al. 2010). In light of the threatened status of Snake River fall 

Chinook, managers may wish to support the reservoir-type life history by maintaining thermal 

refuges during the summer, as lack of thermal refuges could have severe consequences for 

reservoir-type juveniles. 
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5.5 Chapter 5 Tables 

Table 5.1 

Table of individually fitted consumption rates resulting Mass-Growth model predicted reservoir 
entry. Year is the year in which the fish were tagged; # Fish is the number of fish in each year for 
which all necessary data was present and a consumption rate within Lower Granite Reservoir 
could be individually fitted. The mean and variance of the resulting fitted consumption rates is 
presented for each year. 
 

Year # Fish Mean Fitted P Variance in Fitted P 

1992 2 0.77 0.016 

1993 29 0.90 0.020 

1994 8 1.13 0.17 

1995 71 0.90 0.035 
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Table 5.2 

Table of individually fitted consumption rates resulting Age-Growth model predicted reservoir 
entry. Year is the year in which the fish were tagged; # Fish is the number of fish in each year for 
which all necessary data was present and a consumption rate within Lower Granite Reservoir 
could be individually fitted. The mean and variance of the resulting fitted consumption rates is 
presented for each year. 
 

Year # Fish Mean Fitted P Variance in Fitted P 

1992 2 0.80 0.026 

1993 29 0.97 0.038 

1994 30 1.40 0.099 

1995 71 0.94 0.052 
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Table 5.3 

Summary of the full MGRC model, the multivariate linear model of consumption rate in Lower 
Granite Reservoir using Mass-Growth modeled migration. T0 is the day a fish was tagged, M0 is 
the fish’s mass on the tag day in grams, T2m is the modeled day a fish initiates migration 
predicted by the Mass-Growth model, and M2m is the fish’s modeled mass predicted by the 
Wisconsin bioenergetics model on day T2m. T0 CPUE is the CPUE at the tag site on the tag 
date, CPUE^2 is a squared term of CPUE, T0 Temp is the daily mean temperature of the Snake 
River on the tag date, and Temp^2 is a squared term of temperature. T2 Temp 1, 2, and 3 are 
indices of temperature in Lower Granite Reservoir. T2 Temp 1 is the daily mean temperature of 
the scroll case reading at Lower Granite Dam on day T2m. T2 Temp 2 is the mean temperature 
for the first week after day T2m. T2 Temp 3 is the mean temperature for the first month after day 
T2m. Squared terms for all three temperature indices are included. T0:M0 and T2m:M2m are 
interaction terms. No parameter estimates are significantly different from zero at the 0.05 level. 
 

Predictor Estimate Std. Error T Statistic P 

Y-Intercept -1.231 3.555 -0.346 0.730 

T0 -0.00135 0.00462 -0.292 0.771 

M0 -0.367 0.472 -0.777 0.439 

T2m 0.00151 0.00465 0.324 0.747 

M2m 0.150 0.307 0.487 0.627 

T0 RKM -0.000383 0.000522 -0.733 0.466 

T0 CPUE 0.00190 0.00738 0.255 0.800 

CPUE^2 -0.000120 0.000322 -0.373 0.710 

T0 Temp 0.243 0.180 1.350 0.180 

Temp^2 -0.00958 0.00682 -1.405 0.163 

T2 Temp1 -0.500 0.333 -0.157 0.875 

T2 Temp1^2 0.0162 0.0115 0.253 0.801 

T2 Temp2 -0.0669 0.426 0.854 0.395 

T2 Temp2^2 0.00350 0.0138 -0.622 0.535 

T2 Temp3 0.289 0.338 -1.503 0.136 

T2 Temp3^2 -0.00640 0.0103 1.409 0.162 

T0:M0 0.0000286 0.0000370 0.773 0.442 

T2m:M2m -0.0000143 0.0000244 -0.583 0.561 

r2:   0.458   Adjusted r2:   0.358 

AIC:   -379.7                  Parameters:   18 
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Table 5.4 

Summary of the reduced MGRC model, the multivariate linear model of consumption rate in 
Lower Granite Reservoir using Mass-Growth modeled migration. M2m is the fish’s modeled 
mass predicted by the Wisconsin bioenergetics model on day T2m. T0 Temp^2 is the daily mean 
temperature in the Snake River on the day the fish was tagged, squared. T2 Temp 1 and 3 are 
indices of temperature in Lower Granite Reservoir. T2 Temp 1 is the daily mean temperature of 
the scroll case reading at Lower Granite Dam on day T2m. T2 Temp 3 is the mean temperature 
for the first month after day T2m. The squared term for T2 Temp 1 was retained. All parameter 
estimates are significantly different from zero at the 0.05 level. 
 

Predictor Estimate Std. Error T Statistic P 

Y-Intercept 4.475 1.073 4.169 6.4e-5 

M2m -0.0246 0.00724 -3.403 0.00095 

T0 Temp^2 -0.00108 0.000446 -2.428 0.017 

T2 Temp1 -0.627 0.0171 5.095 1.6e-6 

T2 Temp1^2 0.0210 0.137 -4.569 1.4e-5 

T2 Temp3 0.0870 0.00451 4.662 9.3e-6 

r2:   0.405   Adjusted r2:   0.376 

AIC:   -393.5                Parameters:   6 
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Table 5.5 

ANOVA Table of the reduced MGRC model, the multivariate linear model of consumption rate 
in Lower Granite Reservoir using Mass-Growth modeled migration. M2m is the fish’s modeled 
mass predicted by the Wisconsin bioenergetics model on day T2m. T0 Temp^2 is the daily mean 
temperature in the Snake River on the day the fish was tagged, squared. T2 Temp 1 and 3 are 
indices of temperature in Lower Granite Reservoir. T2 Temp 1 is the daily mean temperature of 
the scroll case reading at Lower Granite Dam on day T2m. T2 Temp 3 is the mean temperature 
for the first month after day T2m. The squared term for T2 Temp 1 was retained. The F-statistics 
of T2 Temp 1 and T2 Temp 3 are significant at the 0.05 level; all other predictors are not 
statistically significant. All predictors combined explain 1.873 of 4.361 total variance in the 
response variable, fitted consumption rate. 
 

Predictor D.F. SS Mean SS F P 

M2m 1 0.0146 0.0146 0.549 0.46 

T0 Temp^2 1 0.00063 0.00063 0.0237 0.88 

T2 Temp 1 1 1.273 1.273 48.017 3.6e-10 

T2 Temp 1^2 1 0.00905 0.00905 0.341 0.56 

T2 Temp 3 1 0.576 0.576 21.739 9.3e-6 

Error 104 2.757 0.0265   

Total 109 4.631    
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Table 5.6 

Summary of the full AGRC model, the multivariate linear model of consumption rate in Lower 
Granite Reservoir using Age-Growth modeled migration. T0 is the day a fish was tagged, M0 is 
the fish’s mass on the tag day in grams, T2a is the modeled day a fish initiates migration 
predicted by the Mass-Growth model, and M2a is the fish’s modeled mass predicted by the 
Wisconsin bioenergetics model on day T2a. T0 CPUE is the CPUE at the tag site on the tag date, 
CPUE^2 is a squared term of CPUE, T0 Temp is the daily mean temperature of the Snake River 
on the tag date, and Temp^2 is a squared term of temperature. T2 Temp 1, 2, and 3 are indices of 
temperature in Lower Granite Reservoir. T2 Temp 1 is the daily mean temperature of the scroll 
case reading at Lower Granite Dam on day T2a. T2 Temp 2 is the mean temperature for the first 
week after day T2a. T2 Temp 3 is the mean temperature for the first month after day T2a. 
Squared terms for all three temperature indices are included. T0:M0 and T2a:M2a are interaction 
terms. No parameter estimates are significantly different from zero at the 0.05 level. 
 

Predictor Estimate Std. Error T Statistic P 

Y-Intercept 3.192 4.852 0.658 0.51 

T0 -0.0181 0.0142 -1.278 0.20 

M0 -0.0870 0.734 -0.119 0.91 

T2a 0.0182 0.0142 1.276 0.20 

M2a -0.0418 0.469 -0.089 0.93 

T0 RKM 0.0000655 0.000612 0.107 0.91 

T0 CPUE 0.00516 0.00864 0.597 0.55 

CPUE^2 -0.000127 0.000386 -0.328 0.74 

T0 Temp 0.372 0.219 1.700 0.092 

Temp^2 -0.0151 0.00815 -1.848 0.067 

T2 Temp1 -0.172 0.279 -0.617 0.54 

T2 Temp1^2 0.00639 0.00943 0.678 0.50 

T2 Temp2 -0.431 0.371 -1.163 0.25 

T2 Temp2^2 0.0131 0.0115 1.141 0.26 

T2 Temp3 -0.205 0.542 -0.378 0.71 

T2 Temp3^2 0.0105 0.0158 0.667 0.51 

T0:M0 0.0000103 0.0000579 0.178 0.86 

T2a:M2a -0.00000059 0.0000368 -0.016 0.99 

r2:   0.624   Adjusted r2:   0.568 

AIC:   -404.3                  Parameters:   18 

 
  



190 
 

 
 

Table 5.7 

Summary of the reduced AGRC model, the multivariate linear model of consumption rate in 
Lower Granite Reservoir using Age-Growth modeled migration. M2a is the fish’s modeled mass 
predicted by the Wisconsin bioenergetics model on day T2a. T0 Temp is the daily mean 
temperature in the Snake River on the day the fish was tagged; T0 Temp^2 is the squared term. 
T2 Temp 2 and 3 are indices of temperature in Lower Granite Reservoir. T2 Temp 2 is the mean 
temperature of the scroll case reading at Lower Granite Dam for the first week after day T2a. T2 
Temp 3 is the mean temperature for the first month after day T2a. The squared term for T2 Temp 
2 was retained; the base term for T2 Temp 3 was dropped and only the squared term was 
retained. All parameter estimates except the intercept term are significantly different from zero at 
the 0.05 level. 
 

Predictor Estimate Std. Error T Statistic P 

Y-Intercept 3.738 2.358 1.585 0.11 

M2a -0.0380 0.00678 -5.608 1.3e-7 

T0 Temp 0.420 0.193 2.173 0.032 

T0 Temp^2 -0.0170 0.00727 -2.334 0.021 

T2 Temp2 -0.800 0.270 -2.961 0.0037 

T2 Temp2^2 0.0248 0.00826 3.007 0.0032 

T2 Temp3^2 0.00476 0.000808 5.885 3.4e-8 

r2:   0.597   Adjusted r2:   0.578 

AIC:   -417.2                Parameters:   7 
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Table 5.8 

ANOVA Table of the reduced AGRC model, the multivariate linear model of consumption rate 
in Lower Granite Reservoir using Age-Growth modeled migration. M2a is the fish’s modeled 
mass predicted by the Wisconsin bioenergetics model on day T2a. T0 Temp is the daily mean 
temperature in the Snake River on the day the fish was tagged; T0 Temp^2 is the squared term. 
T2 Temp 2 and 3 are indices of temperature in Lower Granite Reservoir. T2 Temp 2 is the mean 
temperature of the scroll case reading at Lower Granite Dam for the first week after day T2a. T2 
Temp 3 is the mean temperature for the first month after day T2a. The squared term for T2 Temp 
2 was retained; the base term for T2 Temp 3 was dropped and only the squared term was 
retained. The F-statistics of all predictors except T0 Temp^2 are significant at the 0.05 level. All 
predictors combined explain 7.466 of 12.499 total variance in the response variable, fitted 
consumption rate. 
 

Predictor D.F. SS Mean SS F P 

M2a 1 1.389 1.389 34.50 3.6e-8 

T0 Temp 1 0.200 0.200 4.97 0.028 

T0 Temp^2 1 0.127 0.127 3.15 0.078 

T2 Temp 2 1 4.096 4.096 101.73 < 2.2e-16 

T2 Temp 2^2 1 0.260 0.260 6.45 0.012 

T2 Temp 3^2 1 1.395 1.395 34.64 3.4e-8 

Error 125 5.033 0.0403   

Total 131 12.499    
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Table 5.9 
 
Distribution of detections of wild juvenile fall Chinook by dam and by year. Total Detected = 
total number of fish detected in that year; numbers of detections at the various locations are not 
additive since fish can be detected at more than one location. LGD = Lower Granite Dam, LGS = 
Little Goose Dam, LMN = Lower Monumental Dam, IHA = Ice Harbor Dam, MCN = McNary 
Dam, JDA = John Day Dam, BON = Bonneville Dam, Traps = Snake and Clearwater River 
juvenile traps. 
 

Year Total Detected LGD LGS LMN IHA MCN JDA BON Traps 

1992 68 39 20 0 0 9 0 0 1 

1993 393 270 68 54 0 40 0 0 3 

1994 340 202 60 64 0 52 5 0 1 

1995 3479 2097 1344 1303 0 946 31 11 0 

1996 203 145 76 45 0 27 2 1 0 

1997 223 135 106 47 0 32 2 2 0 

1998 1024 571 631 295 0 217 75 19 1 

1999 1062 608 544 364 0 142 73 40 0 

2000 507 336 269 145 2 142 31 11 1 

Total 7299 4403 3118 2317 2 1607 219 84 7 
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Table 5.10 

Table of overall mean values from data and modeled statistics for 6,889 confirmed ocean-type 
fish and 1,724 confirmed reservoir-type fish. The mean values of each statistic tested are 
presented for both ocean-type and reservoir-type categories; a Welch two-sample T-Test was 
performed between the distributions from the two life history types for each statistic. T0 and M0 
are day of year of tagging and mass at tagging; T2m and T2a are the day of year of migration 
initiation predicted individually by the Mass-Growth model and the Age-Growth model 
respectively; M2m and M2a are the mass at migration initiation predicted by the in-river growth 
model, and MGRC P and AGRC P are the consumption rates in Lower Granite Reservoir 
predicted individually by the MGRC and AGRC consumption rate models. 
 

Statistic Ocean Type Reservoir Type T-Statistic P 

# Fish 6,889 1,724 - - 

T0 158.9 166.4 -27.2 < 2.2e-16 

M0 7.39 g 5.27 g 32.9 < 2.2e-16 

T2m 163.6 176.0 -46.6 < 2.2e-16 

T2a 171.9 179.4 -33.1 < 2.2e-16 

M2m 8.70 g 7.31 g 24.9 < 2.2e-16 

M2a 11.19 g 8.13 g 40.8 < 2.2e-16 

MGRC P 0.88 1.07 -38.0 < 2.2e-16 

AGRC P 0.99 1.17 -29.6 < 2.2e-16 
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Table 5.11 

Table of the number of confirmed ocean-type and reservoir-type fish in each year of data. 

Year # Ocean Type Fish # Reservoir Type Fish 

1992 6 3 

1993 9 111 

1994 3 108 

1995 975 167 

1996 19 11 

1997 1163 863 

1998 4384 403 

1999 211 0 

2000 119 58 
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Table 5.12 

Table of mean values for the year 1995 from data and modeled statistics for 975 confirmed 
ocean-type fish and 167 confirmed reservoir-type fish tagged in 1995. The mean values of each 
statistic tested are presented for both ocean-type and reservoir-type categories; a Welch two-
sample T-Test was performed between the distributions from the two life history types for each 
statistic. T0 and M0 are day of year of tagging and mass at tagging; T2m and T2a are the day of 
year of migration initiation predicted individually by the Mass-Growth model and the Age-
Growth model respectively; M2m and M2a are the mass at migration initiation predicted by the 
in-river growth model, and MGRC P and AGRC P are the consumption rates in Lower Granite 
Reservoir predicted individually by the MGRC and AGRC consumption rate models. 
 

Statistic Ocean Type Reservoir Type T-Statistic P 

# Fish 975 167 - - 

T0 157.1 161.2 -7.0 3.2e-11 

M0 4.52 g 4.42 g 0.77 0.45 

T2m 169.3 172.5 -6.4 6.2e-10 

T2a 171.7 175.4 -7.4 2.7e-12 

M2m 7.24 g 6.92 g 3.0 0.0025 

M2a 7.90 g 7.63 g 1.9 0.065 

MGRC P 0.94 0.98 -5.3 2.7e-7 

AGRC P 1.04 1.13 -7.4 3.3e-12 
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Table 5.13 

Table of mean values for the year 1997 from data and modeled statistics for 1,163 confirmed 
ocean-type fish and 863 confirmed reservoir-type fish tagged in 1997. The mean values of each 
statistic tested are presented for both ocean-type and reservoir-type categories; a Welch two-
sample T-Test was performed between the distributions from the two life history types for each 
statistic. T0 and M0 are day of year of tagging and mass at tagging; T2m and T2a are the day of 
year of migration initiation predicted individually by the Mass-Growth model and the Age-
Growth model respectively; M2m and M2a are the mass at migration initiation predicted by the 
in-river growth model, and MGRC P and AGRC P are the consumption rates in Lower Granite 
Reservoir predicted individually by the MGRC and AGRC consumption rate models. 
 

Statistic Ocean Type Reservoir Type T-Statistic P 

# Fish 1,163 863 - - 

T0 164.1 167.5 -12.6 < 2.2e-16 

M0 7.20 g 5.30 g 18.7 < 2.2e-16 

T2m 169.9 179.6 -26.7 < 2.2e-16 

T2a 175.9 180.3 -18.3 < 2.2e-16 

M2m 8.70 g 7.79 g 14.8 < 2.2e-16 

M2a 10.50 g 8.10 g 20.7 < 2.2e-16 

MGRC P 0.93 1.08 -24.0 < 2.2e-16 

AGRC P 1.01 1.11 -14.4 < 2.2e-16 
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Table 5.14 

Table of mean values for the year 1998 from data and modeled statistics for 4,384 confirmed 
ocean-type fish and 403 confirmed reservoir-type fish tagged in 1998. The mean values of each 
statistic tested are presented for both ocean-type and reservoir-type categories; a Welch two-
sample T-Test was performed between the distributions from the two life history types for each 
statistic. T0 and M0 are day of year of tagging and mass at tagging; T2m and T2a are the day of 
year of migration initiation predicted individually by the Mass-Growth model and the Age-
Growth model respectively; M2m and M2a are the mass at migration initiation predicted by the 
in-river growth model, and MGRC P and AGRC P are the consumption rates in Lower Granite 
Reservoir predicted individually by the MGRC and AGRC consumption rate models. 
 

Statistic Ocean Type Reservoir Type T-Statistic P 

# Fish 4,384 403 - - 

T0 158.9 168.3 -26.6 < 2.2e-16 

M0 8.21 g 5.70 g 20.8 < 2.2e-16 

T2m 160.4 169.6 -29.4 < 2.2e-16 

T2a 171.4 180.4 -31.1 < 2.2e-16 

M2m 8.86 g 6.16 g 21.7 < 2.2e-16 

M2a 12.19 g 8.46 g 26.0 < 2.2e-16 

MGRC P 0.86 0.98 -31.3 < 2.2e-16 

AGRC P 0.98 1.30 -31.3 < 2.2e-16 
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Table 5.15 

Contingency table of life history type and the threshold of the Mass-Growth model that resulted 
in migration initiation date T2m. Of 6,889 ocean-type fish, 4340 initiated migration due to mass 
growing larger than Mcrit, while 2,549 initiated migration due to growth efficiency dropping 
below Gcrit. Of 1,724 reservoir-type fish, 864 initiated migration due to mass growing larger 
than Mcrit, while 860 initiated migration due to growth efficiency dropping below Gcrit. The 
Pearson’s χ2 test of independence is highly significant, indicating that life history affects the 
proportion of fish initiating migration by the two processes. 
 
 Ocean-Type Reservoir-Type Total 
Mcrit 4340 864 5204 
Gcrit 2549 860 3409 
Total 6889 1724 8613 

χ
2: 95.16 P: < 2.2e-16  
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Table 5.16 

Contingency table of life history type and the number of fish which were modeled to arrest 
migration or continue migrating. Of 2,549 ocean-type fish which initiated migration via the Gcrit 
threshold and could arrest migration if their growth efficiency rose back above Gcrit, 1,798 were 
modeled to arrest migration, while 751 were modeled to continue migrating. Of 860 reservoir-
type fish which initiated migration via the Gcrit threshold and could arrest migration if their 
growth efficiency rose back above Gcrit, 689 were modeled to arrest migration, while 171 were 
modeled to continue migrating. . The Pearson’s χ

2 test of independence is highly significant, 
indicating that life history affects the proportion of fish which are modeled to arrest migration. 
 
 Ocean-Type Reservoir-Type Total 
Arrested Migration 1798 689 2487 
Continued Migration 751 171 922 
Total 2549 860 3409 

χ
2: 29.4 P: 5.8e-8  

  



 

5.6 Chapter 5 Figures 

Figure 5.1 

A diagrammatic depiction of the Snake River habitat relevant to our modeling.
water flow and seaward migration of juvenile Chinook is indicated with arrows. The points 
important to our modeling are labeled; the Snake River habitat is broken into the ‘River’ and 
‘Reservoir’ reaches, and the critical points in time T
occurs. 
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A diagrammatic depiction of the Snake River habitat relevant to our modeling.
water flow and seaward migration of juvenile Chinook is indicated with arrows. The points 
important to our modeling are labeled; the Snake River habitat is broken into the ‘River’ and 
‘Reservoir’ reaches, and the critical points in time T0-T4 indicate where in the habitat each event 

 

A diagrammatic depiction of the Snake River habitat relevant to our modeling. The direction of 
water flow and seaward migration of juvenile Chinook is indicated with arrows. The points 
important to our modeling are labeled; the Snake River habitat is broken into the ‘River’ and 

T4 indicate where in the habitat each event 



 

Figure 5.2 

A diagrammatic depiction of our model of in
and environmental data are input into the Wisconsin model, which produces modeled growth 
within the ‘River’ reach of the Snake River.
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A diagrammatic depiction of our model of in-river growth. Tagging data for an individual fish 
and environmental data are input into the Wisconsin model, which produces modeled growth 

in the ‘River’ reach of the Snake River. 

 

river growth. Tagging data for an individual fish 
and environmental data are input into the Wisconsin model, which produces modeled growth 



 

Figure 5.3 

A diagrammatic depiction of our models of migration initiation. The Mass
mechanistic process to predict day of migration initiation 
efficiency. The Age-Growth model uses a correlative model to predict day of migration initiation 
T2a using tagging and environmental data.
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A diagrammatic depiction of our models of migration initiation. The Mass-Growth model uses a 
mechanistic process to predict day of migration initiation T2m from modeled growth and growth 

Growth model uses a correlative model to predict day of migration initiation 
using tagging and environmental data. 

 

Growth model uses a 
from modeled growth and growth 

Growth model uses a correlative model to predict day of migration initiation 



 

Figure 5.4 

A diagrammatic depiction of the process of modeling growth in Lower Granite Reservoir. 
Environmental data from the reservoir and a starting time and mass generated from either the 
Mass-Growth or Age-Growth models are used as inputs to the Wisconsin Bioenergetics Model, 
which predicts growth. Environmental data in the reservoir includes temperature data from the 
scroll case reading at Lower Granite Dam and prey energy density.
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A diagrammatic depiction of the process of modeling growth in Lower Granite Reservoir. 
servoir and a starting time and mass generated from either the 

Growth models are used as inputs to the Wisconsin Bioenergetics Model, 
which predicts growth. Environmental data in the reservoir includes temperature data from the 

se reading at Lower Granite Dam and prey energy density. 

 

A diagrammatic depiction of the process of modeling growth in Lower Granite Reservoir. 
servoir and a starting time and mass generated from either the 

Growth models are used as inputs to the Wisconsin Bioenergetics Model, 
which predicts growth. Environmental data in the reservoir includes temperature data from the 
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Figure 5.5 

Comparison of the day of year of modeled T2a predicted by the Age-Growth model and modeled 
T2m predicted by the Mass-Growth model for a set of 7,438 fish. The one-to-one line is shown 
dashed. The solid line is the least-squares fitted linear model resulting from regressing modeled 
T2a against modeled T2m. 
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Figure 5.6 

Plot of growth efficiency vs. temperature for multiple possible consumption rates (P). Growth 
efficiency of zero is the light dotted line; growth efficiency of 0.3 is the dark dashed line.  
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Figure 5.7 

 
Plot of the life history outcomes predicted by the Mass-Growth model complex for 728 known 
ocean-type fish and 374 known reservoir-type fish. Three different model outcomes were 
possible: fish that migrated by the Mcrit threshold were modeled as ocean-type; fish that 
migrated by the Gcrit threshold but did not arrest migration were also modeled as ocean-type; 
fish that migrated by the Gcrit threshold and were modeled to arrest migration were modeled as 
reservoir-type. The fish in each known life history type that were modeled to follow the wrong 
life history are labeled as misspecified. 
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