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While general patterns in the juvenile outmigration of Paciitnen are well known, the
proximate mechanisms informing migration in individuals aredidirly understood. This thesis
describes a complex of individually-based bioenergetic and migraticationt models and their
application to fall Chinook salmon. We used the Wisconsin bioenergetids| mombined with
PIT tag and temperature data to model the growth of individual figliltthe rearing habitat.
We then created and tested a series of mechanistic modelsgadtiom initiation using
individual fish mass and growth efficiency as proximate tnggé migration. We examined the
performance of these models using CPUE data and maximum likeldptimdization methods
and found that the model with both fish mass and growth efficienppssble trigger methods
performed the best; we refer to this model as the Mass-Growadel. To further test this model,
we then created a correlative model of migration initiation whielrefer to as the Age-Growth
model. We found the predictions of the Mass-Growth and Age-Growth models to be dampara
We then applied the Mass-Growth and bioenergetic models to PITirdataocean-type and
reservoir-type fall Chinook to examine possible triggers that trésuthe two different life
history strategies when fish enter Lower Granite Reservoir.niddels predicted that reservoir-

type fish were more likely to initiate migration later andsataller sizes than ocean-type fish,



and that the proximate triggers for migration were more likelipe reversed for reservoir-type
fish after they entered Lower Granite Reservoir. We deterntimdthe stratified temperature
regime in Lower Granite Reservoir was the primary caiigbe reversal of modeled migration
triggers; for this reason, we then assert that the cool-wates po&nake and Columbia River
reservoirs provide temperature refuges with favorable growing toamslithat result in slower-

growing fall Chinook salmon following a reservoir-type life history.
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Chapter 1: Introduction

1.1 Background and Chinook Life History

Migration plays a central role in the life history of anadromsalsion. Chinook salmon
(Oncorhynchus tshawytscha) rear in riverine habitats, then migrate as subyearlingearling
juveniles through riverine and estuarine habitats to the ocean (Quinn Z0@5¢ are several
distinct life history types present in Chinook salmon in the SnakerRiasin, characterized by
differences in timing of their juvenile outmigration and the metorigration as adults (Quinn
2005, Waples et al. 1991, Connor et al. 2005). Spring-summer Chinook spawn andsnealt
order streams in tributaries of the Snake River (Matthews aadléd 1991) and follow a
“stream-type” life history characterized by rearing fofulk year in the spawning habitat and
migrating in early to mid spring as age-1 smolts (Healy 19%l).Ghinook spawn and rear in
the main stem of the Snake River and in the lower reaches & Sowke River tributaries
(Connor et al. 2003a) and generally have been assumed to follow am-tgpea life history
(NMFS 1992) wherein juveniles rear for only a few months aftergenee from the gravel and
migrate in the summer as age-0 smolts (Healy 1991). Howeves irecently been discovered
that significant numbers of fall Chinook juveniles arrest theiwaeé migration and overwinter
in reservoirs on the Snake and Columbia Rivers, then resume migrati@mt@ndhe ocean in

early spring as age 1 smolts (Connor et al. 2005). Connor termedtiféhigstory strategy



“reservoir-type.” As there were no dams on the Snake or Colunvieis prior to the 1950s, the
development of this reservoir-type life history is likely fairly recerar{@r et al. 2005).

The reservoir-type life history has not yet been well-studiad, the mechanisms that
result in the reservoir-type life history as opposed to the ocganlie history are not fully
understood. However, it appears that the reservoir-type life hisemypecome consequential to
the fall Chinook population spawning in the Snake River basin (Connor2&0&, Williams et
al. 2008). Work by Connor has revealed that a significant proportiomeodverall population
currently follows the reservoir-type life history. The percentiggivenile Chinook that follow
the reservoir-type life history seems to be quite variablgimgrfrom 1% to 25% depending on
specific subpopulation in the Snake River and year (Connor et al. 2002)etbentage of
returning adults that were reservoir-type juveniles is alse quatiable, but averages 41% for
wild fish and 51% for hatchery fish (Connor et al. 2005). Additionally,réservoir-type life
history appears to result in higher smolt-to-adult return r&tas the ocean-type life history, as
predicted by optimal life history models (Williams et al. 2008) demonstrated by return rates
(Connor et al. 2005). These studies demonstrate that reservoirdlypaifeook have become a
significant component of the Snake River population, and make clear pogtamce of gaining
an understanding of this life history to efforts to restore Shake River population of fall
Chinook salmon. Snake River fall Chinook salmon are listed as thrdatader the Endangered
Species Act (NMFS 1992), and over the last several decade§csighresources have been
allocated to research and efforts to restore and protect iallo@k salmon, as well as other
populations of salmon in the Columbia River basin. Many agencestakeholders hold an
interest in preserving Columbia River salmon; numerous fededastate government agencies

are tasked with managing various aspects of the river andsigsirces, and many academic,



private, and tribal agencies contribute to research and managdfoestas well. More than $7
billion has been spent in total in efforts to research, protect andgeaalmon and restore runs
to their historical sizes (Williams 2008). This Master's agsk intends to contribute to these
efforts to understand and restore salmon populations, specificdllZHiaiook salmon. The
primary goal of this research is to investigate what fagtdhgence migratory decision-making
in individual fall Chinook juveniles, and to relate these factors tatean-type and reservoir-
type life histories to gain a deeper understanding of the meclan@mrolling life history and
how individual fish may follow one or the other. While the exact m@isha underlying the life
histories observed in Snake River fall Chinook salmon are unknown, tteegeaat deal of prior
research in salmonid ecology and Columbia River basin dynamicerihdades a background
and framework for this research.

The single most important factor affecting salmon life histothe Snake and Columbia
Rivers is anthropogenic modification of the river habitat. Sincééginning of the 20 century,
numerous dams have been built on the Snake and Columbia Rivers andiilbiogaries
(Williams 2008). The largest dams on the mainstem Snake and Rlal&vers that lie between
fall Chinook spawning habitat and the ocean were built starting ir19668s. Currently, fall
Chinook must pass eight dams to reach the ocean: Lower Granite, Gitbse, Lower
Monumental, and Ice Harbor dams on the Snake River, and McNary, JohnHgapalles, and
Bonneville dams on the Columbia River (Figure 1.1). The creatiorhefet dams has had
numerous direct and indirect effects on Chinook salmon. Directteffat salmon include
impeding and slowing the migration of both adults and juveniles (Wi#li&2008), direct
mortality of outmigrating juveniles due to turbine blade strikesn@et al. 2011), and denying

access to salmon spawning habitat via inundating spawning habitat under reserdditocking



access to spawning reaches via impassable dams (William¥ 2008nile fall Chinook salmon
in the Snake River incur significant direct mortality duringirtteitmigration due to turbine
blade strikes. Fish passing through the powerhouse of a single darallganeur around 10%
mortality (Deng et al. 2011); since fall Chinook must migrat& payht dams, this mortality has
the potential to be very costly. Significant research and resobavesgone into designing and
building various redirection and bypass systems to prevent juvelmiersrom passing through
turbine passageways, but none of these systems is completaiveff(Johnson and Dauble
2006). Dam construction has also resulted in changing and limitingsghening habitat
available to fall Chinook salmon in the Snake River (Dauble and Geg®). Brownlee Dam,
constructed in the middle Snake in 1958, is impassable to salmon and béodess of the
Snake River fall Chinook population to their historical spawning grounds Marsing, Idaho
(Connor et al. 2005, Williams 2008). Today, fall Chinook salmon are confmmegdawning in
the lower 224 km of the Snake River; since much of the lower Snakengated by reservoirs,
only 163 km of this reach is usable for spawning, most of it locatéigeimeach of the Snake
River from Hell's Canyon Dam to Lewiston, Idaho (Dauble andsG2000, Dauble et al. 2003,
Connor et al. 2005). While few data are available on the qualitgeobtiginal spawning and
rearing habitat, Connor and Burge (2003) concluded that the temperagime was slightly
warmer than that observed currently in the portion of the Snake River upstreamesfGu@mite
Reservoir. It is uncertain how productivity and suitability for growththe current rearing
habitat compare to the original habitat, but Connor and Burge (2003) afeectilat growth was
faster in the Marsing reach, and recent research has conclutedrtians of the Marsing reach
are still suitable rearing habitat (Dauble et al. 2003). &nhyil recent research has also found

that suitable Chinook salmon spawning habitat still remains abovessaiple dams on the



Columbia River (Hanrahan et al. 2004). Hydrosystem operations sagniff affect the
suitability and extent of the current spawning habitat (Willi&@88); reservoir drawdown can
have the effect of increasing available spawning habitatafTiéit al. 2006) and flow release
schedules are timed to manage temperature regimes for redy andvival (Dauble et al. 2003,
Williams 2008, Yates et al. 2008).

The construction of the hydropower system has also had numerous imfiests on
Snake River salmon. Dam construction has created reservoir hsinible for native and
invasive salmon predators (Petersen and DeAngelis 2000, Harvey arnhkz@5, Waples et
al. 2007); this has had a potentially large impact on the predatiomalityomigrating juvenile
salmon face in the Columbia River. Modeling has shown that migrating salmaoa gacmtlet of
predators, where predation mortality varies depending on the distalmoen must migrate,
predator density, and the migration rate of the salmon (PeterseBDeAngelis 2000, Anderson
et al. 2005). Reservoirs created by Snake and Columbia dams casénpredator density by
providing suitable habitat for native species (Petersen and Das2@€l0) and invasive species
such as lake trout (Harvey and Kareiva 2005, Carey et al. 2011). Thasges in predator
regime are complicated, and their impacts on salmon are notoeasnage (Fritts and Pearsons
2008, Carey et al. 2011).

Another, potentially more important, indirect effect dam constru¢taenhad on Snake
and Columbia River salmon is that the dams have radicalledltemperature and flow regimes
through much of the river (Connor et al. 2005). Changes in the hydnoskeselting from dam
construction have resulted in lower survival and increased travelféimmigrating fall Chinook
juveniles; research has linked these changes to increasedevaparature, decreased flow, and

decreased turbidity (Smith et al. 2003). William Connor and otheers hypothesized that water



temperature also plays an important role in determining the ouwatioigrtiming of fall chinook
(Connor et al. 2003a, Connor and Burge 2003); prior work has linked temperat@ssanihted
growth opportunity to life history variability in Chinook salmon (Bman et al. 2004).
Laboratory studies have demonstrated that salmon react to changeder temperature by
increasing activity levels and propensity for movement, showing ttieere definitely are
proximate linkages between temperature and salmon behavior épéllgt al. 2009). Field and
laboratory studies have also shown that juvenile Chinook salmon behavibeattyoregulate by
choosing specific temperature ranges in reservoirs or infisgldaboratory tanks (Sauter et al.
2001, Tiffan et al. 2009). However, the physiological mechanisms tighwtemperature
influences migration, and ultimately, life history, are unknown. In summawhile the
mechanisms which govern migration and life history in salmonidshacenpletely understood,
temperature, flow, and growth have all been identified as impomaptevious research on
salmonid life history (Hutchings and Jones 1998, Metcalfe 1998, McChmhial. 1998, Thorpe
et al. 1998, Morinville and Rasmussen 2003, Mangel and Satterthwaite 2868,e5al. 2009),
and changes in these environmental and biological characteriséosmmg from dam
construction are thought to have played an important role in the reosertgence of the
reservoir-type life history (Connor et al. 2005, Williams e8D8). Our research is focused on
using numerical modeling methods to test individually-based mechahrgteges between
water temperature, fish growth, and life history. We createmrgplex of models to simulate the
growth, bioenergetics, and movement of fall Chinook juveniles frmwdaring habitat to Lower
Granite Dam, using data on water temperature in the free-flowingameethe reservoir and data
from tagged fall Chinook; these models were created by applyaugyt from previous research

on salmonid life history.



1.2 Prior Models of Salmonid Migration

The most widely accepted theory for the existence of migréenavior posits that such
behavior must provide a fitness advantage over a non-migratory behaten g&ross 1987).
Consequently, a common method of modeling migration has been via matiemimodels that
track fitness (or fitness proxies such as foraging efficiene®r multiple habitats and predict
migration based on strategies that maximize the statibeéing modeled (Thorpe et al. 1998,
Werner and Gilliam 1984). This modeling process is based on how natural selectairibe
model assumes that selective pressures direct behavior into theoptiosal schema (Gross
1987). Habitat shifts of rearing juvenile salmon have been modeledthsrapproach (Jager et
al. 1997), however, while this modeling approach incorporates the wdtimegtsons for
migration, it does not necessarily capture the proximate mechathsinare directing migration
in individuals (Metcalfe 1998, Thorpe et al. 1998). It only makes sensmjecture that fitness
may be informing an individual’s migration in the case of sntles habitat shifts where an
individual can sample the habitats available, such as shiftimgebet surface orientation and
bottom orientation in a lake (Werner et al. 1983). Anadromous salmontenitp@isands of
miles through diverse habitats (Quinn 2005); an individual salmon has no firsthand knowledge of
what the conditions are or what its fitness will be in thoset&i@biFurthermore, the reservoir-
type life history currently observed in Snake River fall Chinookdmasrged very recently, so a
modeling process that implies behavior optimization over evolutionary timescalesideal.

Rather, we focus on modeling the proximate mechanisms infgrmigratory decision-
making. Since an individual salmon has no foreknowledge of the fitness outcdentsion will

produce, it must make these decisions using locally obtained irtfformalodels of the



cognitive process of decision-making demonstrate that the braipretteisensory information
via statistical processes to extract signal from noise argktiermine if the signal satisfies a
criterion to initiate behavior (Bogacz 2007, Gold and Shadlen 2007). In thextaitfish
migration, while the predisposition to migrate may be partiafiger the control of genetics,
most salmonids display a continuum of potential life history gieseand an individual must
make a selection of when (or if) to migrate. The proper timinthisf decision has significant
impact on the individual's fitness, as migrating when the figbhigiologically unprepared or
environmental conditions are unfavorable is very costly (Hansen 1987orwask et al. 1998).
Many prior models of salmonid life history utilize threshold proesss these important
physiological and environmental variables to time important tiansitsuch as initiation of
migration (Metcalfe 1998, Thorpe et al. 1998, Mangel and Sattetdh\®808), smoltification
(Metcalfe 1998, Thorpe et al. 1998, Mangel and Satterthwaite 2008), anctoatHutchings
and Jones 1998, Thorpe et al. 1998). These threshold models of behavior are noatibtm
with fithess maximization models; if the proximate mechanism govgmigration is thresholds
in physiological and environmental variables, then the ultimate msthdecomes the genetic
factors that govern the magnitude of the thresholds and the fisitseptien of the relevant
variables, which can be modified by evolutionary forces (Metcalfe 1998, Thorhd 298).
Metcalfe (1998) and Thorpe et al. (1998) developed one of the most complete
mechanistic models of Atlantic salmon life history to date. Their model pesphat growth rate
and energetic status are the primary determinants of migratienm®del is also notable in that
it proposes that an individual's decision of which life history stpatéo follow occurs
significantly prior to migration; in Thorpe et al.’s model, an indivickamon parr will decide in

August whether or not to migrate the following spring. The fisls itsecurrent mass and growth



rate to project its mass at the time of migration. If ieB’$ projected mass is greater than the
‘emigration threshold,” then the fish will decide to migrate anereatpre-migratory behavior
pattern characterized by high metabolic rate and rapid growgineparation for the migration
and smolt transformation (Thorpe et al. 1998). If the fish’s projectasls does not meet the
emigration threshold, then the fish is modeled to instead adopt a cdiveefeading strategy
and not migrate the next year. There is considerable empmrickence to support this model of
Atlantic salmon life history (references in Thorpe et al. 1998 Metcalfe 1998); for instance,
the smolt transformation and maturation are processes thamiakins and start significantly
before either migration or reproduction, but not in all fish — i.e., dawgrto Thorpe et al.’s
model, differences in behavior are observed because some fishtd@gepare for the transition
after they decided to migrate or mature during the relevant decision window.

Mangel and Satterthwaite (2008) adapted the model and theory horpeTet al. (1998)
to describe age at return migration in Coho salmon and smoltingtioig in steelhead trout.
Their modeling demonstrated that in coho salmon, different age=tuaih would be favored
depending both on individual growth parameter and on environmental resourdsutiis.
They also modeled the juvenile life history of central Califosteelhead trout; they modeled
growth using a von Bertalanffy function and used the theory from Thdrpé aend survival
estimates to select optimal threshold sizes for smolificaind the resulting expected life
histories for steelhead trout. They then examined how potentiabrisae for anthropogenic
modification of the habitat and climate change would impact modelechapthresholds for
smoltification, and demonstrated how different temperature or fodthlity scenarios could

produce different optimal juvenile life histories.
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1.3 Modeling Strategy

The goal of this thesis is to develop an individually-based mecittamstlel of the early
stages of migration for juvenile fall Chinook in the Snake Rivargutheory developed by prior
researchers (especially Thorpe et al. 1998 and Mangel and SatitrtB@@8). Prior research
has indicated that bioenergetics, including fish mass and grovethara critical to successful
migration and smolting in salmonids, and these statistics haveedighighly in previous
threshold-based models of salmon migration (Thorpe et al. 1998). Therefoenergetics and
the environmental factors that affect it are also at the @ooeir modeling, and we apply much
of the theoretical framework developed by Thorpe et al. in our mddelgever, several aspects
of Snake River fall Chinook necessitated departures from Thorpe et al.’s sheorie

Thorpe et al.’s (1998) model of decision-making in Atlantic salmarpgses that
individuals make their decisions about which life history strategipltow months before the
transition in question actually occurs. This model works well fibargic salmon (Thorpe et al.
1998), which rear for one or more years before initiating migraaad smoltification
(McCormick et al.1998). However, ocean-type fall Chinook in the Snaker Rmerge in late
spring, grow rapidly, and then initiate migration and smoltificatiory anfew months later in
late summer (Waples et al. 1991). This compressed time scheduleada@@®w for a decision
window very much prior to initiation of migration, and we treatdleeision to migrate and the
initiation of migration as the same event in our modeling of fall Chinook.

A second complication involved in modeling Snake River fall Chinook idabiethat
Snake River temperatures can reach lethal levels. Tempearatuwge about 20 degrees Celsius
cause significant thermal stress to Chinook salmon, resultingshuption of physiological

processes and refuge-seeking behavior (Connor et al. 2003a, Richteolames K005). The
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incipient lethal temperature for Chinook salmon is about 25 degrees Celsiug(Rmhtkolmes
2005). Daily mean temperatures in the free-flowing portion of th&eSRaver routinely reach
20 degrees Celsius in July and August and in some years can acénalmove 24 degrees
(Anderson 2000, this thesis). In Thorpe et al.’s model, the only conswfefat initiation of
migration is the attainment of a growth or size threshold; whée model accounts for reduced
feeding and activity during winter dormancy, there is no congidaréor what a fish will do if
growth becomes negative during the growth season. We propose thatisharesecond
mechanism that can initiate migration; if the environment becmuelostile that growth is
negative, fish will be forced to initiate migration regardless/oéther or not they have reached
the growth/size threshold. Anecdotal evidence wherein Connor obsdraeduvenile fall
Chinook tended to leave the nearshore of the riverine rearingahalhien river temperatures
exceeded 18 degrees Celsius supports this hypothesis (Connor et al. Affiflonally, a
previous model of fall Chinook salmon in the Sacramento River alsopo@ted mechanisms
for juvenile salmon to respond to hostile warm temperatures byngealdooler refuge (Jager et
al. 1997); however, this model used simple threshold water temperasuties trigger, while in
our model, we test physiological mechanisms via thresholds in bioenergesiocsta

Lastly, while Thorpe et al. (1998) and Mangel and Satterthwaite (200&) von
Bertalanffy growth models, we use the Wisconsin bioenergetics InfHdason et al. 1997)
since it better suits our individually-based approach. Since wexgiecitly modeling the
migration of Chinook and Chinook do not mature as parr, we are also ignoring the portlans of t
Thorpe et al. model that pertain to precocious maturation. Mangel &ed!8aaite (2008) have
stated that it is difficult to determine which growth statsstidipid or total mass, absolute or rate

parameters - are most important to the fish’s assessmenteaisibd process; in light of this
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uncertainty, we created a several mechanistic and coveelaibdels attempting to explain
initiation of migration using a variety of energetic statstiout chiefly fish mass, growth rate,
and growth efficiency.

We here present the terminology we will use to distinguish the components of our models
and data through the remainder of this thesis. We divide the habite¢ 8hake River into two
broad reaches for the purposes of our modeling. We define the aktuh Snake River from
Hell's Canyon Dam to the confluence with the Clearwater Ragethe free-flowing ‘River’
portion of the Snake River habitat, and the reach from the confluentlee cEnake and
Clearwater Rivers to Lower Granite Dam as the ‘Reservesch of the Snake River. We
assume the environmental conditions within each reach are homogenamégneur habitat
model is a simple compartment model, with two compartments: tkier'Rand the ‘Reservoir.’
We will elaborate on the reasons for this decision in section 2.2thisothesis. Figure 1.2
displays the region of the Snake River habitat used in this switly,the relevant features
labeled.

We define the times and locations of juvenile fish life histoapgitions based on these
broad habitat delineations. The individual fish data for our modeling cdroes a study
conducted by Connor (Connor et al. 2005) from 1992-2000 in which many wil@Hallbok
were sampled and tagged with PIT (Passive Integrated Transpoager)Ve define the day a
fish is tagged as time TO. Some of the fish were recaptwrgdn the rearing habitat and
detected or recaptured at Lower Granite Dam and at damsrfddivastream on the Snake and
Columbia rivers. We define the day a fish is recaptured by Connbinwhe ‘River’ reach as
time T1, the day a fish is recaptured or detected at Lower t&r@am as time T3, and capture

dates at downstream dams as time T4. To simplify our mod@m@gssume that all fish within
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the rearing habitat (the ‘River reach) are parr and nagratory; this assumption is supported
by the fact that most fish recaptured within the ‘River reasre recaptured at the tagging
location (Connor et al. 2003a). We define the day a fish transitiomsthe ‘River’ reach to the
‘Reservoir’ reach as time T2; in our models, this is the totieof migration. There is no point
of data that directly corresponds to T2; there is a juvenile feghriear the confluence of the
Snake and Clearwater Rivers maintained by the ldaho Departhé&mh and Game (Marvin
and Nighbor 2009), but exceedingly few fall Chinook are captured indpe\tve also do not
explicitly model distance or the exact location of individual fisimce our habitat model is a
compartment model, all fish within each reach experience the samnmental conditions
regardless of their exact position within the reach. We aésd the transition of fish from the
‘River’ box to the ‘Reservoir’ box at time T2 as instantaneousanmmg that as soon as fish
initiate migration at time T2 they enter the reservoir. Basumption is supported by evidence
that Chinook juveniles migrate very rapidly in the free-flowing iparbf the Snake River, then
slow down when they reach the reservoir (Connor et al. 2003a). Fi@udesplays the locations
of points TO-T4 on the habitat map from Figure 1.2; Figure 1.4 displam@lified, iconic
version. We will use the layout from Figure 1.4 through the remaiidéns thesis to illustrate

and organize the components of our data and models.
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1.4 Chapter 1 Figures

Figurel.1

Map of the Columbia River Basin showing the locations of the major dams on the Columbia
River and its tributaries. Fall Chinook salmon in the Snake River must migrateopaest
Granite Dam, Bonneville Dam, and all the dams in between.
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Figurel1.2

Lower Granite Dam
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Hell's Canyon Dam

The portion of the Snake River habitat relevantths study. Labeled are the Snake
Clearwater Riverghe major dams mentioned in this thesis, and tinflwence of the Snake ai

Clearwater Rivers. The two dashed boxes indicatebitoad habitat regions modeled in i
thesis.
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Figure1.3

Lower Granite Dam
./ \.

Dworshak Dam

.

Hell’'s Canyon Dam

The habitat and the locations of the critical pwint time o juvenile fall Chinook life history ir
our data and models. Points TO and T1 (taggingi@-river recapture) occur at many sampl
locations within the ‘River’ reach of the Snake &ivPoint T2 (initiation of migration) is tt
point where a fish transiins from the ‘River’ reach to the ‘Reservoir’ réa®oint T3 (recaptur
or detection at Lower Granite Dam) is the point rehe fish passes Lower Granite Dam. P
T4 (other recapture or detection) is the point wharfish passes dams downstream of er
Granite Dam (not shown on me
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Figurel.4
Lower Granite Dam
T4 T3
l
— Clearwater River
‘Reservoir Reach
T0: Tag Date
T1:In-River Recapture Date ‘River Reach \ Snake River
T2: Migration Date
T3:LGD Passage Date T1
T4: Other Detection Dates I TO

Hell's Canyon Dam

A simplified, iconic representation of the SnakevdRihabitat used in our model. The m
habitat features and the critical points in tim@un models and data are labe
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Chapter 2: Bioenergetic Modelsand Thermal Wall Model

2.1 Introduction

The first step in our life history modeling of juvenile Chinook was build an
individually-based bioenergetic model and parameterize it fowiteour data. We chose to use
the Wisconsin bioenergetics model (Hanson et al. 1997) as the coue gfoavth model; this
model has been parameterized specifically for Chinook salmon ($tema Ibarra 1991) and
used extensively for modeling salmonids in freshwater environmBety (1993, Madenjian et
al. 2009). From data, we have dates of tagging and recapture withiRitee reach (denoted as
TO and T1 respectively) as well as the fish’'s mass at thates (denoted as MO and M1) for a
number of fish; in this chapter, we describe how we used the bgsties model to model
growth within the ‘River’ reach (denoted as G1) and describe alrobdegration initiation that
predicts T2 based on G1 (Figure 2.1). This model of migratioratioii applies theory from
Morinville and Rasmussen (2003). Morinville and Rasmussen proposed dkdh gafficiency
may be an important determinant of life history in salmonids by girayian index of how much
benefit an individual is receiving from its current habitat. Thgration model we describe in
this chapter, which we term the Thermal Wall model, incorpsrttis theory; the Thermal Wall
model assumes that positive growth efficiency indicates thatdividual is benefiting from its

current habitat and will continue rearing. We propose that zexetlg efficiency is the threshold



19

which indicates an individual is no longer benefitting from its hgbitaus the Thermal Wall
model predicts that fish will initiate migration once their giiovefficiency falls below zero.
Henceforth, in this chapter and subsequent chapters in this thesis,vemheree refer to an
important statistic that comes from data, it will beré, while any statistic coming from a

model will be inblue

2.2 Methods
2.2.1 Overview of Data
Environmental Data

As discussed in section 1.3, we represent the habitat occupied IGhiabok in the
Snake River as a compartment model with two primary compartr{fégtae 1.3). Temperature
and flow data was sourced from the USGS gauge near Anatone, WAS(W$334300) for the
'River’ reach of the model. Daily mean temperatures in deg@dsius and flows in cubic feet
per second from the Anatone gauge were assumed to adequately déscrdsch of the Snake
River from Hell's Canyon Dam (river kilometer 399) to the confleemdth the Clearwater
River (river kilometer 224), the entirety of the ‘River’ reathis also contains the reach of the
mainstem Snake River used by spawning and rearing fall ChincobkrsgConnor et al. 2002).
Figure 2.2 provides yearly plots of the water temperature ret@tdde Anatone gauge over the
rearing season of juvenile fall Chinook salmon. While the Cleariter is not a compartment
of our habitat model, input from the Clearwater River at the genfie of the Snake and
Clearwater Rivers has a large impact on the thermal regfirbewer Granite Reservoir (Cook et
al. 2006). For this reason, we use the temperature differentve¢ére the Clearwater River and

the ‘River’ reach of the Snake River as one index of thermatifstation in Lower Granite
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Reservoir. Temperature and flow data for the Clearwater Rieee taken from the USGS gage
at Peck, Idaho (USGS 13341050) and was assumed to describe adequatehpénature of the
Clearwater River at the confluence with the Snake River. Dadgn temperature data for the
Lower Granite Reservoir (the ‘Reservoir’ reach) was takem fthe DART database maintained
by Columbia Basin Research of the University of Washington. Thigs dantains separate
temperature readings from Lower Granite Dam forebay, tailrand scroll case. Data for the
forebay and tailrace readings begins in 1995, so for the years 1992hEQ84Aly temperature
measure available for the Lower Granite Reservoir is thell scase measure. During the
summer, the scroll case temperature reading is generaltpthest while the forebay reading is
generally the warmest, so for periods where both readingsvailalde we use the difference
between the two as a second index of thermal stratification in the reservoir.

Missing values in temperature or flow data from the USG&sdé&d were filled in by
interpolating linearly between the values on either end of theSjape most gaps in the data
were only one or two days, and there were only two gaps longeotieamweek over the nine
years of data, this simple method is sufficient to repair the &hall gaps in the temperature
data from Lower Granite Dam were repaired in the same mahoeever, no readings were
taken at Lower Granite Dam during the winter, and this gap canmepbeed by interpolation
both because it is too long and because it contains the yearlgregome minimum. Since all of
our modeling takes place in late spring and summer, it was deoidigaore the missing winter

data.
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PIT Tag Data

The data to enable our individually based model come from recofdshdagged with
passive integrated transponder (PIT) tags in the Snake RivereM&ved records of juvenile
Fall Chinook salmon tagged by William Connor (Connor et al. 2005) iry¢hes 1991-2000
from the PTAGIS database of the Pacific States Marine Emmmission. Some records were
unusable for various reasons, but a total of 75,969 individual fish recordsheveine year
period were deemed usable. Of these fish, 58,314 fish were hatcherg-asd released into the
Snake River rearing habitat by Connor; 17,655 fish were captureaiyo€ from the rearing
habitat and are presumed to be wild. In our modeling, we prefetgnisd the wild fish. In
some analyses where sample sizes were too small, we exphadedriple size by including the
hatchery reared fish; it will be noted where this is the cashsets of these fish were detected or
recaptured one or more times; Tables 2.1 and 2.2 provide summiaties numbers of tagged
wild fish and tagging date and size recorded at tagging &yofehe study. In our modeling, we
term the day a fish is tagged as tagging daté-igure 1.3).

The fish tagged by Connor are ideal for this study because threycaptured from the
wild. Connor captured and tagged rearing fish in the Snake and Clearwars (Connor et al.
2002). This sampling method results in a mixture of wild and hatchay dish, and for most
fish their true origin cannot be determined since many hatdisbryeleased at small size are not
adipose fin-clipped. However, since all of these fish were captaraver and not taken directly
from hatcheries, we assume that all of these fish have reatbd wild. Thus, even though we
have excluded from our modeling any fish that could be determinedabhagchery origin, the

remaining sample which we have assumed to be of wild origin ligelly contains some
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hatchery-spawned individuals; we assume that this portion of matoidividuals are similar
enough to the wild individuals that they do not adversely impact our modeling.

Connor conducted beach seines weekly at multiple sampling sites repamaireach of
the Snake River from river kilometer 224 (upper end of Lower GrdRéservoir) to river
kilometer 397 (Hell's Canyon Dam). Connor sampled each yearnstarti April when fall
Chinook begin to emerge from the gravel and ending on a site-by-sitevidaen no juvenile
Chinook were captured in consecutive samples at a particulaypitglly in late June to early
July (Connor et al. 2002, Connor et al. 2005). Connor PIT tagged all juvenile Chomoek
than 60 millimeters and released them back into the river on the daynthey were captured.
Tagging date and length at tagging were recorded forsall Weight at tagging was recorded for
10,713 fish of the 17,655 wild fish.

Tagged fish could then be detected by PIT tag detectors looatde juvenile fish
bypass systems and in sampling at the juvenile fish fasilgt dams on the Snake and Columbia
rivers and a handful of other sampling sites. Sampling effort @mellslle varied by location and
by year; additionally, the structure and operations at each damlhas river conditions affect
detection and survival probabilities (Muir et al. 2001, Connor et al. 20@P)e 2.3 summarizes
the distribution of detections. Besides being detected, some fighr@egaptured and measured at
the juvenile fish facilities at dams. Recapture and detectitwovaer Granite Dam in particular
are important components in our modeling; we refer to the date ofetegpture or detection as
T3 (Figure 1.3). Recapture and detection at other dams downstreaowerf Granite have some
use in our modeling, and we term the date of such evenis! §5igure 1.3). Additionally,
Connor recaptured some fish that had previously been tagged in hisrgampliour modeling,

we refer to the date a fish is recaptured in-rivelr agFigure 1.3). Most recapture events have
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fish length, but as with tagging data, weight at recapture i ardilable in a portion of the

recapture data.

CPUE Data

To supplement the PIT tag data, we requested records of the catatitpeffort (CPUE
henceforth) from Connor. Connor conducted a large-scale study of jutahi&hinook in the
Snake River from 1992 to 2000. The study sampled many sites aloBgdke River by beach
seining and tagging juvenile Chinook (Connor et al. 2002 and 2005). All Gtheagged were
labeled with Connor’s tag code (WPC) in the PTAGIS database;veoyweot all sites were
sampled in the same manner. Some sites were sampled on a feagiar(referred to as
permanent sites); other sites were sampled on an irreguliar (peferred to as supplemental
sites) (Connor et al. 2003). Connor provided us with CPUE data for pernsaiesnbut the data
was unavailable for supplemental sites. Additionally, no complewdeof sampling sites and

dates sampled was available for the supplemental sites.
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2.2.2 Wisconsin Model

The Wisconsin Model (Hansen et al. 1997) is a generalized bioensrgetdel
encompassing a family of equations intended to simulate the diffexemponents of
bioenergetics in different species. This model simulates theigibgyigal processes of an
individual fish, yielding a daily estimate of energy the fishs havailable for growth (or
potentially negative growth). The model follows the general energy balancevoakne

G=C—{R+F+U+S)

In this formulation,G refers to the total energy available for grow@hjs the total energetic
intake from consumptiorR is the energy lost to metabolism and activifygandU are the energy
lost to egestion and excretion respectively, 8nd the energy lost to specific dynamic action
(SDA), the cost of digestion. For each of the components listed abevé/isconsin model has
several potential equations for use with different species or under diffesemsons.

For the consumption term of the bioenergetics model, we used equattidrirem the
Wisconsin model (Hanson et al. 1997), parameterized for Chinook sayr®tewart and Ibarra

(1991). This equation set follows the form:

C = Cmax X T X P X Epyey,

Crnax = 0.303 X Mass™0275

0.36 x L1 0.01 x L2
r=( ) x( )
1+036%x(L1—1)) " \1+001x (L2-1)

L1 = e(0.4467><(Temperature—5)) L2 = e(1.4145><(24—Temperature))

In this formulation,Cnax is the theoretical maximum consumption rate of the organismamgyr
per gram of fish per dayJ is a function that describes the temperature dependence of

consumptionP is an estimate of the fish’s consumption rate (representeg@partion of the
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theoretical maximum), anfl,ey is the energy density of the prey the salmon consumes, irs joule
per gram.
We used equation set 1 for the respiration term of the biodiwvsrgeodel (Hanson et al.

1997, Stewart and Ibarra 1991). This equation set follows the form:

R=BXTXA

B = 0.00264 X Mass~ %217

T =e (0.06818xTemperature)

A=c¢e (0.0234XVEL)

VEL = (9.7 X Mass®13) x g(0-0405xTemperature) \yhen temperature 25°C

VEL = (9.7 x Mass®13) x ¢(0:0405x25) when temperature > 25°C

In this formulationB is the basal metabolic rate in joules per daig a function that describes
the temperature dependence of respiration, Aamgl an adjustment for the organism’s activity
level. We modified the activity function, however, in order to align tthe halves of the
function (which uses separate equations for temperatures above and below 8§ Getgieis for
Chinook salmon). Instead of using: (m&Ss we used: 9.7*(madd3)*e04%5"2% for the upper
half of the function. Since 25 degrees Celsius is very neaethal llimit for Chinook salmon
(Richter and Kolmes 2005, Geist et al. 2009) and temperatures garalyove this level in the

Snake River, we assume this change had no significant impact on the outcome of ougmodelin
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We used equation set 2 for the egestion and excretion terms lmb#mergetics model

(Hanson et al. 1997, Stewart and Ibarra 1991). These equation sets follow the form:

F = (0.212 x Temperature0%22) x ¢(0:631x0.68) x ¢

U = (0.0314 x Temperature®58) x ¢(~0299%0.68) y (¢ _ F)

In this formulation,F is the energy lost to egestion in joules per days the energy lost to
excretion, andC is the total energy intake from consumption. The equation for SDéw®lthe
following form:

$=0172%x(C—-F)
In this formulation,C is the total energy consumed dnds the total energy lost to egestion. As
the equations demonstrate,is calculated as a temperature-dependant proportion of the total
energy consumed, whil®) is calculated as a temperature-dependant proportion of the total

energy assimilated, ar®lis calculated as a constant proportion of the total energy assimilated.

Explanation of Growth Model Operation

To model the growth of a fish, we combine the Wisconsin model witlt@muapartment
model of the habitat. The Wisconsin model takes as inputs a fidss and energy density, the
fish’s consumption rate, the temperature, and diet energy densitgtanads the fish’s modeled
daily growth. A fish’s initial mass comes from the PIT taaset; we term the fish’s mass at
tagging 0) asM0. We determine the compartment of the habitat the fish occtpigst the
daily mean temperatures the fish experiences. We determirfestiteeenergy density and the
diet energy density from prior research and estimations usingd®&. We fit consumption rate
individually for fish with aT1 data point and use a model to estimate consumption rate for

others. By combining these components, the Wisconsin model produces diaigtess of
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growth of an individual fish. By incrementing the fish’'s mas$h®/amount of growth predicted
by the model in each daily timestep, the mass of a fish can be modeled over time.

From the PIT tag dataset, we have the date a fish was taggecdeleased, its mass
(potentially converted from length) on that date, and the reach irhwthicas located. We also
have the daily mean temperature on that date and the surroundingraiatdésef environmental
dataset. Assuming estimates for consumption rate and the diey eeesity, individual fish can
be modeled. For example, assume a hypothetical fish capture aed taghbe Snake River on
June 1 1995(T0), weighed 10 gramsv{0). From the environmental dataset, we know that the
daily mean temperature of the Snake River was 14.5 degrésigsam June®11995. Assuming
the fish’s consumption rate (P) was 0.6 and that the prey enengitydevas 5400 joules per
gram, then the Wisconsin model predicts a growth increment for Junfe01339 grams (Figure
2.3a). The fish then starts at 10.339 grams on Jifnén2 temperature on Jun& & read in and
the growth increment for Jund“is modeled (Figure 2.3b). This process can be repeated in
forward or in reverse given temperature data and assumptions baltit&t, consumption rate,

and diet (Figure 2.3c).

2.2.3 Assumptions and Sub-Components
Weight to Length Conversion

The Wisconsin model requires mass as an input, but for a large portion of our tagding
recapture data points only fork length is available. Therefaree used a weight-to-length
relationship to convert lengths into masses where necessary. N(pBesonal communication,
unpublished data) fitted the following weight-to-length model for jueefall Chinook in the

Snake River:
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Mass = e 1217 x Length317°

This model closely fits the weight to length relationship seethénjuvenile Chinook in this
study (Figure 2.4). 10,713 wild fish had both weight and length recatdidjging; fork length
at tagging ranges from 60 mm to slightly over 120 mm, and atasgyging from 2 g to more
than 30 g. The weight-to-length conversion model describes 94% of taaceaobserved in this
data, so we assumed that weights derived from converted lengtasswtable for use in our

modeling for fish that do not have weight recorded at tagging.

Consumption Rate

Since the Wisconsin model requires a consumption rate (P) apwnand we had no
independent estimate of consumption rate, we used records of fish @h@atrecaptured to
iteratively generate estimates of consumption rates. We asdbatefish that were recaptured
by Connor’s beach seining {d data point was present) had not migrated out of the Snake River
reach in between release and recapture; therefore, for thbseedaptured within the Snake
River, we have a known start weight and end weight from the PITda#m and a known
temperature history. We had estimates of prey energy ddrmityliterature values (described
below), leaving consumption rate as the only unknown remaining. For fises&e modeled
growth over the period between release and recapture, iteratingaoamge of consumption
rates. The two-decimal consumption rate that produced a modeledriasal closest to the
recapture mass was selected as an individual’s consumption rate anddassheneonstant over
the period modeled. A total of 2,447 fish recaptured within the Snake River could be fitted wi
consumption rate. In addition, 62 fish had strong negative growth and could fittédelosely

under any of the prey energy density values tested. Sinceotthe pannot fit a consumption rate
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below 0, these fish were assumed to be sick or otherwise straffgisted by some non-
bioenergetic factor and were excluded from future simulations. Bvaingh the theoretical
maximum value of consumption rate is 1.00, the model will fit consompttes above 1

without issue.

Energy Density
The Wisconsin model requires as inputs estimates of the energiyyds the fish and its
prey. We used the following linear equation to generate a juveifeos’s energy density based

on its mass:
Epredawr = 5764 + (Mass X 0.5266)

This relationship was calculated for juvenile fall Chinook by NerBat Columbia Basin
Research (unpublished data).

We generated estimates of prey energy density from twoestadiidiet composition of
juvenile Snake River Chinook and literature energy density valuegrégrtaxa (Curet 1993,
Muir and Coley 1996). Curet (1993) provided calorific estimates ofatkee lhe identified in his
study of diet contents, but he did not provide the wet weight/ dry weagiat necessary to
convert his units into joules per gram wet weight required in tisedlsin model (Hanson et al.
1997). Therefore, literature values of wet-to-dry weight ratiesewnecessary to produce an
estimate of prey energy density (Table 2.4). The overathagti of the energy density of the diet
of juvenile Chinook we generated from Curet (1993) is 4,371 joules parafrarey. Muir and
Coley (1996) also conducted a study of the diet of juvenile Fall Chifitookthe Snake River,
but they did not provide any calorific estimates, so we used literaturesviaiuenergy density to

produce a second estimate of the energy density of the juvemiersaliet (Table 2.5). The
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overall estimate of the energy density of the juvenile faihGok diet we generated from Muir
and Coley (1996) is 3,992 joules per gram of prey.

We assumed that all fish consumed the same diet, so we neestddctoa single value
for prey energy density. We selected a prey energy dengitysing the Wisconsin model to
estimate consumption rates using test values of prey enengtyddndividual consumption
rates were fitted for the 2,447 fish for whichl'a data point was present for each of the prey
energy density values tested. First, the two estimates of goresgy density generated from
Curet (1993) and Muir and Coley (1996) were used to generate distribofimmsumption
rates (Figures 2.5, 2.6). Both of the resulting distributions had a farmber of consumption
rates fitted above the theoretical maximum- 19.7% of all consumgaties in the 4,371 (Curet)
distribution and 30.9% in the 3,992 (Muir and Coley) distribution. The distribupaosuced
from these estimates of prey energy density are cledtilygf far outside the bounds of the
model, as the tail of the main distribution easily surpasses 150%naptisn in both. However,
prior research using bioenergetic models to fit growth of fishedirig in freshwater lakes have
found similar results, with fitted consumption rates exceedingréieal maximum rates
(Luecke and Brandt 1993, Stockwell et al. 1999). These researchers concluded Hiatdhels
they modeled have the ability to reduce the water content of @edoprey in the mouth or the
foregut, thus effectively increasing the energy densithefdiet. For this reason, rather than use
either of the prey energy density estimates generated fremnii¢t analyses and literature values,
we decided to fit a prey energy density that produced a gmadentage of fitted consumption
rates above 1. 5400 joules per gram was selected becauseotimlanumber that results in only
1.6% of fish fitted with over 100% consumption (Figure 2.7), and bechissestimate was used

in prior modeling of fall Chinook conducted by N. Beer at Columbia rB&®search (Beer
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1998). Note that while the value used for prey energy density changes theditsamption rate
for individuals, it affects all individuals equally; i.e., each indivitkigrowth rate is known and
comes directly from data, so the relationship between fitted cqisumrates of different

individuals remains the same regardless of the prey energy density used.

2.2.4 Thermal Wall Model

The first model of migration we created to test our hypotlieaishostile environmental
factors will cause juvenile salmon to initiate migration. Terapges above 21 degrees Celsius
cause severe thermal stress to Chinook salmon (Richter and &Kab0&), and peak summer
temperatures usually reach this level in the Snake River. Siaagse the equation sets of the
Wisconsin model designed to simulate the effects of temperatul®@oenergetics, we use the
growth statistics produced by the Wisconsin model as an indicattowf temperature is
affecting the physiology of the salmon. Our ‘Thermal Wall' maafemigration initiation states
that an individual salmon will initiate migration when its growfficiency falls below zero; we
denote the date of migration initiation T2, and refer to a T2 predicted by the Thegathanodel
asT2b. Since the Thermal Wall model relies completely on the Wisnamsidel, we confined
our testing of the Thermal Wall model to only those 2,385 fish forchwlan individual
consumption rate could be fitted.

We initially modeledl'2b as the first day when a fish’s growth efficiency fell beloavo;
however, in some years, brief temperature spikes lasting onlgyaodtwo could produce
modeled migration much earlier than in other years. To explom@sidting predictions, we also
tested a version of the Thermal Wall model that would pr@dibtafter a predetermined number

of continuous days of below-zero growth. We somewhat arbitraritiedesn five days as the
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limit for this version of the model, as this was longer than rabgtte short temperature spikes

and also limited exposure to very high temperatures to no more than a few days.

Response Variables

While growth magnitude is produced directly by the Wisconsin madelis the most
obvious variable to examine with regards to determining when growtthes zero, we used
growth efficiency as our primary indicator metric for theeirhal Wall model. In theory
proposed by Morinville and Rasmussen (2003), growth efficiency prosmé@sdicator of how
well an individual is performing within its current habitat; theppwse that fish that perform
inefficiently may be more likely to initiate migration. In tidermal Wall model, we slightly
redefine this theory to instead propose that growth efficiencypoande an indicator of when
the current habitat becomes hostile to an individual. This is incogabnato our zero threshold;
when growth or growth efficiency fall below zero, an individual canlonger grow and the
Thermal Wall model predicts that it will initiate migration/e defined growth efficiency as
energy available for growth divided by total energy consumed, or:

G
Gefficiency = E

We chose this metric because it displays a strong signal griogvth approaches and falls below
zero with increasing temperature and because of its use on ftudies (Morinville and
Rasmussen 2003). Due to our model assumptions, energy density ofntioa skt remains
constant across time and for all individuals, and while consumption aateditted on an
individual basis, they remain constant over time for each individuathi®rduration of the

rearing period. Therefore, the only inputs to the Wisconsin moderéhsin variable on an
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individual basis are mass and temperature. Over the size raeges srir data, the Wisconsin
model is insensitive to changes in mass relative to chaingésmperature, as an order of
magnitude change in mass only results in a 5% change in groveikreff/, while a change over
the range of temperatures commonly seen in the Snake River dpring and summer results
in a change of orders of magnitude in growth efficiency (Fi@ug Since temperature has the
largest impact on the bioenergetic model, we chose metrics badeomothey responded to
temperature. Over the course of the spring-summer period wheHalook are rearing,
temperatures in the Snake River increase in a linear mannéeirgon 2000). Growth magnitude
varies very little across temperatures from 10-20 degrebsu€eand then declines at higher
temperatures (Figure 2.9). Energy consumed displays the sameenpathd the result of
combining the two curves into growth efficiency is a steepenintpefcurve as it declines at
high temperatures (Figure 2.10). Since the signal in growth ef@igievhen growth is

approaching zero is very strong, we used it as the metric informing the Thgathahodel.

Validating Model Predictions

Unfortunately, as very few fall Chinook are captured at the juvdish trap at the
confluence of the Snake and Clearwater Rivers, there is no datafpoithe initiation of
migration (T2) in the PIT tag dataset with which to comparel@iepredicted by the Thermal
Wall model. What we do have for 2,385 individual Chinook is a date of reeapithin the
‘river’ reach (denoted a$1). Connor et al. (2003) in their study of migration of fall Chinook
assumed that this date was the date that Chinook initiated imngnatorder to estimate travel
time from the rearing grounds to Lower Granite Dam. Howevere dimese fish are recaptured

within the rearing habitat, we do not make this assumption; instead, we assisreedate when
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the fish was known to be in the rearing habitat and has not tiatedi migration. 534 of these
2,385 fish are also detected or recaptured while passing Lowerté&sEann (denoted ag3).
Since these fish have left the rearing habitat, we know thanitretion of migration took place
prior to T3. So, for the subset of 534 fish for which bothlaand aT3 data point are present,
there is a range of valid T2 dates betwé&érandT3. By comparing modeledi2b for these fish
with this rangeT2b can be determined to be valid or invalid for each fish.

A second method to examine the validity of model&b dates is to compare the
distributional properties of 1 dates and CPUE data. On a yearly basis, battand CPUE
display a normal distribution. We assume that the distribution begittimb as fish in the
rearing habitat grow into the tagging size threshold of 60mm,Ferdliegins to decline as fish
initiate migration and leave the rearing habitat. Thus, if tleelehof migration initiation is
accurate, we expect it to predict an increase in migratigniagl with the decline observed in
recapture and CPUE data. Lastly, the decline in CPUE and rezalatiar to zero is indicative of
the true end of the rearing season, as Connor continued sampling feeeks after the last fish
was capture to ensure that he sampled the entire rearing ¢€asoior et al. 2003); therefore, if
the model is accurate, it should predict a mean migration daie tprthe date of the last

recorded recapture.

Modeling Process

The first step in modeling these fish was to fit a conswmptate (P) using the mass of
the fish atffO andT1 and the temperature history of the Snake River between thosdklgtes
2.11). Once a fish’'s consumption rate was determined, its daily lygnea$ modeled and its

growth efficiency tracked until growth efficiency fell bel@ero (Figure 2.12), or in the case of
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the 5-day alternative, until its growth efficiency fell bel@vfor 5 consecutive days (Figure
2.13). According to the Thermal Wall model, this date is the dataigfation initiationT2b.
After T2b, the model predicts that the fish enters Lower Granite Reservoir; wéhteesansition
from the ‘River’ reach to the ‘Reservoir’ reach as instantandbgsowth in the reservoir is then
modeled, the model then uses temperature data from the reserteading the Snake River;

however, we did not model in-reservoir growth in our validation of the Thermal Walllmode

2.3 Results
2.3.1 Validation of the Thermal Wall Model

The relative timing of the rearing season and thus the distwtsubf tagging, passage,
and modeled migration varied by year, so yearly data was egdnmdividually. Additionally,
the total of 534 fish used to test the Thermal Wall model was sinibdited evenly across years
(Table 2.6). Years with fewer than 30 fish were excluded fronysisalthese years were 1992,
1996, and 2000, with 2, 22, and 0 fish respectively. The Thermal Wall modietheitone day
alternative predicted a very compact period for initiation aration. Within each year, greater
than 90% of fish modeled were predicted to initiate migration wighone-week period, with a
handful of early outliers (Figure 2.14). There were few or nodatiers. The Thermal Wall
model with the five day alternative predicted a slightly moidely distributed period of
initiation of migration (Figure 2.15). Since the only differenoenf the one-day alternative is
that fish will initiate migration four or more days later untiez five day alternative, the mean
migration date is also later (Table 2.6).

Significant numbers of modeled fish were modeled with an invidid (Table 2.7). A

T2b modeled to occur prior td1 was invalid due to predicting migration too earlyT2b
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modeled to occur after3 was invalid due to predicting migration too late. Overall, the Therm
Wall model tends to predict migration late. While there arky @aedictions, the number seldom
exceeds 10% of all fish in a given year (Table 2.7). Thereeamemany late predictions, with
many years exceeding 50% of @Rbs invalidated (Table 2.7). The Thermal Wall model with
the five-day alternative predicts slightly fewer earlygrants, but at the cost of predicting many
more late migrants. Additionally, the mean migration date in 1993, 1996, andsli@® than
the meanl' 3 date in both versions of the Thermal Wall model (Table 2.6).chaulative plots
of T2b and T3 display howT2b is late compared t®3 (Figures 2.14 and 2.15); portions of the
plot where cumulativé 3 crosses above cumulativ@b indicate many late migrants predicted at
that time.

Comparisons of CPUE data am#éb predicted by the Thermal Wall model also reveal a
general trend of late prediction of migration (Figures 2.16 and 2.173 decline in CPUE is
indicative of fish leaving the rearing habitat, we would expectribdel to predict the bulk of
migration initiation over this period. Instead, in every year but 1994;asemajority of fish are
not predicted to initiate migration until very late in the CPdi&ribution, or even until several
weeks after the end of the CPUE data (Figure 2.16). Using thddivalternative instead of the
one-day alternative makes the fits even later; fish in 1994 areredicted not to migrate until
the tail of the CPUE distribution, and in most other years, thedfuilkgrants are not predicted
to leave until several weeks after the end of the CPUE Bagaré 2.17). Lastly, the decline in
CPUE data to zero indicates that very few fish remain in ¢heing habitat at that time; the
Thermal Wall model instead predicts that the bulk of the populatiorains in the rearing

habitat until that time or later.
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2.3.1 Sensitivity Analysis of the Thermal Wall Model

The Thermal Wall model produces very compact distributions oftioiaaf migration
within years due to the mechanics of growth efficiency. As grofitiency is produced from
the Wisconsin model, the factors that impact growth efficieareythe inputs to the Wisconsin
model — temperature, diet energy density, fish mass, and fish consamgte (P). Within a
given year, all fish experience the same temperature regicheve assume that all fish consume
the same diet; therefore, the only factors that vary on an dudivibasis are fish mass and
consumption rate. Assuming that temperature increases lineaolygthrthe rearing season,
individual fish mass and consumption rate affect the temperatusieh growth efficiency
drops below zero, and thus the predicted dafe2bf The Wisconsin Model is not very sensitive
to changes in fish mass, so changes in mass do not have mutloeffesultingl2b (Figures
2.18, 2.19). The majority of fish captured within the ‘River reachthef Snake River are
between 1 and 10 grams in mass; a change of this magnitude snresa#is in just a 3 day
difference in predictedi2b (Figure 2.19). Consumption rate has a much larger impact on
predictedT2b, but only when consumption is low (Figures 2.20, 2.21). A change in consampti
rate from 1.0 to 0.4 results in a 13 day difference in predit®¥x while a change from 0.4 to

0.2 results in a 49 day difference (Figure 2.21).

2.4 Discussion

The sensitivity analysis of the Thermal Wall model shows Wvpsedicts such a compact
period of migration initiation within years. Changes in fish mass have ltdet®n the modeled
day of migration initiation, and while very low consumption rateshave a large impact, only a

small proportion of fish are fitted with a consumption rate below Qgu(€ 2.7). This results in
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the majority of the population reaching the zero-growth threshold at #imgame time, and is
the reason why we termed this model the ‘Thermal Wall’ model.

The validation of the Thermal Wall model reveals that it isonetlicting migration at the
time the data suggests the fish are migrating. The model pgiacg many ‘late’ predictions;
these predictions are direct evidence of a failure to prediatatrog, as the fish were known
from data to have already passed through Lower Granite Reséefore the model even
predicts the fish to leave the free-flowing portion of the SnakeerRiAdditionally, the
distributional properties of both CPUE data and T3 suggest that tregiamtof migration is a
much more gradual distribution than predicted by the Thermal Wallelm The CPUE
distributions all have a gradual decline from peak CPUE lasting ian a month (Figures
2.16, 2.17), and cumulative passage of Lower Granite Dam takes geradrailt 2 months
before the bulk of the population has passed (Figures 2.14, 2.15). We concludiee Thetrmal
Wall model was not sufficient to describe initiation of migraiimfall Chinook salmon, and that
most fish were initiating migration via a different mechanidife then proceeded to create
another model to examine a growth efficiency threshold withaxedl assumption on the value

of the threshold as well as threshold mass as potential triggers of migration.



2.5 Chapter 2 Tables

Table2.1

Distribution of fish tagged, detected, and recaptured by year. Since fish coelchpeured more

than once, the total number of recaptures is also included.

Y ear # Tagged # Detected # Recaptured  Total Recaptures
1992 1010 68 83 88

1993 1404 393 388 477

1994 2344 340 455 599

1995 6603 3479 945 1104

1996 465 203 100 120

1997 641 223 165 196

1998 2058 1024 449 522

1999 1917 1062 342 394

2000 1213 507 147 189
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Table2.2

Mean and standard deviations by year of tagging date andeigthl at tagging for wild fall
Chinook in the Snake River. Minimum size for tagging was 60 mm fork length.

Y ear Mean Tag Date  Tag Date SD Mean Tag Length TagLength SD
1992 24 May 10 days 72 mm 11 mm

1993 13 June 13 days 75 mm 13 mm
1994 2 June 10 days 74 mm 12 mm

1995 4 June 6 days 72 mm 7 mm

1996 6 June 23 days 75 mm 13 mm

1997 14 June 14 days 77 mm 13 mm
1998 31 May 15 days 74 mm 11 mm

1999 5 June 12 days 75 mm 11 mm

2000 25 May 14 days 76 mm 12 mm
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Table2.3

Distribution of detections of wild juvenile fall Chinook by dam andyiear. Total Detected =
total number of fish detected in that year; numbers of detectiadhg &arious locations are not
additive since fish can be detected at more than one location. LGD = Lowsate®am, LGS =
Little Goose Dam, LMN = Lower Monumental Dam, IHA = Ice Blar Dam, MCN = McNary
Dam, JDA = John Day Dam, BON = Bonneville Dam, Traps = SnakeCéalwater River
juvenile traps.

Year Total Detected LGD LGS LMN IHA MCN JDA BON Traps

1992 68 39 20 0 0 9 0 0 1
1993 393 270 68 54 0 40 0 0 3
1994 340 202 60 64 0 52 5 0 1
1995 3479 2097 1344 1303 0 946 31 11 0
1996 203 145 76 45 0 27 2 1 0
1997 223 135 106 47 0 32 2 2 0
1998 1024 571 631 295 0 217 75 19 1
1999 1062 608 544 364 0 142 73 40 0
2000 507 336 269 145 2 142 31 11 1

Total 7299 4403 3118 2317 2 1607 219 84 7
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Table2.4

Summary of the diet composition from Curet (1993) and energy dersdityates derived from
it. %TD is the percent of the total diet by mass of each faveon. DW ED is the energy density
of ash-free dry weight in joules per gram converted from Qa8493). %DW is the percent ash
free dry weight of wet weight from literature values. 20%swaed for taxon where a source
could not be found and the percent total diet was less than five p&oente is the source for
the %DW value. For those entries with (order) or (subclass)ewatlire value for the next
highest taxonomic group was used instead of the group listed undefdaxay. WW ED is the
energy density in joules per gram wet weight calculated from DW ED and %DW

Prey Taxon %TD DWED %DW Source WW ED
Collembola <0.01 23998 20.0 NA 4800
Chironomidae/Simuliidae 0.25 21388 17.0 Groot 1995 (order) 3636
Cecidomyiidae <0.01 19886 17.0 Groot 1995 (order) 3381
Ceratopogonidae <0.01 19924 17.0 Groot 1995 (order) 3387
Coleoptera <0.01 19585 23.7 Chen 2003 3094
Drosophilidae <0.01 20920 17.0 Groot 1995 (order) 3556
Ephemeroptera 0.33 25172 23.0 Hanson 1997 5789
Homoptera 0.03 21334 20.0 NA 4267
Cicadellidae <0.01 21489 20.0 NA 4298
Isoptera <0.01 21757 20.0 NA 4351
Hodotermitidae <0.01 41840 20.0 NA 8368
Odonata <0.01 23135 22.8 Groot 1995 5275
Hymenoptera <0.01 23745 20.0 NA 4749
Plecoptera <0.01 21365 20.0 NA 4273
Psocoptera <0.01 20920 20.0 NA 4184
Thysanoptera <0.01 21525 20.0 NA 4305
Thripidae <0.01 14428 20.0 NA 2886
Trichoptera 0.01 20068 20.7 Groot 1995 4154
unknown insects <0.01 20969 20.0 NA 4194
insect parts 0.02 21090 20.0 NA 4218
Amphipoda <0.01 16348 26.0 Hanson 1997 4250
Annelida <0.01 19416 18.2 Groot 1995 (subclass)3534
Araneae <0.01 19819 20.0 NA 3964
Copepoda <0.01 22985 19.6 Groot 1995 4505
Cladocera 0.11 20590 11.0 Hanson 1997 2265
Hirudinea <0.01 20477 20.0 Hanson 1997 4095
Hydracarina <0.01 21429 20.0 NA 4286
Isopoda 0.03 11863 20.0 NA 2373

larval fish 0.19 21493 21.0 Groot 1995 4514
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Table2.5

Summary of the diet composition from Muir and Coley (1996) and the literatures\aileaergy
density used to estimate energy density of the juvenile salmar2dl® is the percent of the
total diet for each taxon from Muir and Coley (1996). WW ED isliteeature value for energy
density in joules per gram wet weight used for the analysis Saundce is the source for the
literature value. For those taxa with Curet (1993) listed as sowmocestimate of wet mass/dry
mass ratio was available, so a value of 0.2 was used to produdenaateesf wet mass energy
density from the dry mass energy densities provided by Curet (1993).

Prey Taxon %TD WW ED Source

Diptera 0.44 3859 Groot 1995
Coleoptera 0.16 5010 Chen 2003
Homoptera 0.02 4267 Curet 1993
Hymenoptera 0.08 4748 Curet 1993
Thysanoptera 0.01 4305 Curet 1993
Trichoptera 0.03 4554 Groot 1995

Amphipoda 0.22 3582 Groot 1995
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Table2.6

Summary of the results of the Thermal Wall model, shown by. ye&ish is the number of
individual fish used to test the model in a given year. Meéan(1D) and Var (1D) are the mean
and variance of the day of year of the predict@d produced by the Thermal Wall model with
the one day alternative; Medrb (5D) and Var (5D) are the mean and variance of the predicted
T2b produced with the five day alternative. Meafh and MeanT3 are the mean in-river
recapture date and recapture/detection date at Lower Granite Dam fshtimetihat year.

Year #Fish MeanT2b 'Var(1D) MeanT2b Var(5D) MeanTl Mean T3

(1D) (5D)

1992 2 173.5 0.5 177.5 0.5 141 184

1993 30 205.5 299.9 210.4 272.4 152.2 204.4
1994 34 177.9 24.3 191.8 25.8 146 202.2
1995 103 199.8 37.4 203.9 35.7 150.5 207.6
1996 22 196.2 255.3 201.6 259.7 144.8 199.2
1997 82 196.2 149.7 201.3 150.1 162.1 205.5
1998 187 185.9 69.6 190.7 74.4 157.7 201.8
1999 74 203.2 5.9 211.2 6.2 153.2 198.1

2000 0 - - . . . -
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Table2.7

Summary of the validation of the Thermal Wall model, shown by. ye&ish is the number of
individual fish used to test the model in a given yeafT 2 BeforeT1 (1D) and (5D) are the
percentage of individual fish fitted withT&b prior to the date of 1 under the one-day and five-
day alternatives of the Thermal Wall model; i.e., the fish wadeted to begin migration before
a point where it was known to be in the rearing habitat, an ‘eanlid prediction. %T2b
After T3 (1D) and (5D) are the percentage of individual fish fitted witl2laafter the date of 3
under the one-day and five-day alternatives of the Thermal Wall Imoele the fish was
modeled to initiate migration after it was known to pass Lo@&enite Dam, a ‘late’ invalid
prediction.

Year #Fish % T2b Before % T2b After % T2b Before % T2b After

T1(1D) T3 (1D) T1(5D) T3 (5D)

1992 2 0% 0% 0% 0%

1993 30 13% 50% 7% 57%
1994 34 0% 6% 0% 38%
1995 103 1% 36% 1% 45%
1996 22 5% 50% 5% 55%
1997 82 10% 45% 0% 52%
1998 187 14% 22% % 30%
1999 74 0% 57% 0% 2%

2000 O - - - -
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2.6 Chapter 2 Figures

Figure2.1

Observed

Modeled

Chapter2:
Modeling In-River Growth and Migration

Environmental
Data

Environmental

Data Wisconsin ~
T1 M1 = Model = C
TO MO T1 M1
G1 ‘[ TO MO
a1 Thermal Wall 5
Model

A depiction of the major modeling and data compdsemesented in chapter 2 of this the
within the iconic schema introduced in figure 1\&alues from data are in red, compone
produced by models are in blue. Note that as tiere direct value fc T2 from data, it is
presented in blackiO andT1 are the dates of tagging ancriver recapture from PIT tag da
MO andM1 are the recorded mass on those dates. In combinaitb environmental data, ti
Wisconsin model is used to model growth fish for which all data is present, yielding mode
growthG1. G1lis then used in our Thermal Wall model of migratiomiation to yield a modele

migration initiation date] 2.
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Figure2.2

Temperature in the Snake River
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Graph of daily mean water temperature recorded at the US@E§ gt Anatone, WA from April
through August for the nine years of the study. Water tempesatiuring the rearing season of
Snake River fall Chinook vary from around 8 degrees Celsius to meme2¢h degrees Celsius.
Temperatures start low at the beginning of the rearing season and peak io sadlAugust.



48

Figure2.3a
Start Mass Prev Energv Densitv  Consumption Rate (P)
| 10 | [ 5400 | | 0.6 |

Temperature (Snake River)
6/1/1995

14.5 \

Wisconsin Model

1
Modeled Growth

| 0339 |

Depiction of the operation of the growth model. Values from data draak, modeled values
are in red. The first step is initialization of the modelhwdata, which produces an estimate of
the growth for the first day.
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Figure2.3b
Start Mass Prev Energy Density _Consumption Rate (P)
[10 | [5400 | [06 |
Temperature {Snake River)
6/1/1995 6/2/1995
145 14.0

\ /

Wisconsin Model

Depiction of the operation of the growth model. Values from data draok, modeled values
are in red. The modeled growth is added to the initial mas=ld tyie mass on day two. The
mass on day two is then fed back into the Wisconsin model alongheittemperature on day
two of the simulation to generate the growth on day two.
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Figure2.3c

Start Mass Prey Energy Density _Consumption Rate (P)
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Temperature (Snake River)
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Depiction of the operation of the growth model. Values from data draak, modeled values
are in red. Modeled growth is continually added to mass to generate modsted ma
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Figure2.4

Weight-to-Length Relationship
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Distribution of weight and length values for 10,713 fish for which both keagtd weight was
recorded at tagging. The weight-to-length relationship used to inter¢denvgths and weights is
shown in black.
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Figure2.5
Prey Energy Density 4371 joules/gram
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Consumption rate (P)

Distribution of consumption rates (P) generated using the Wisconsinl modleé prey energy
density of 4,371 joules per gram. This prey energy density was geshdrain a diet analysis
performed by Curet (1993). This distribution of consumption rates has @éa4 and variance
0.109, and 19.7% of all fish are fitted with a consumption rate greater than 1.
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Figure 2.6
Prey Energy Density 3992 joules/gram
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Consumption rate (P)

Distribution of consumption rates (P) generated using the Wisconsinl modle prey energy
density of 3,992 joules per gram. This prey energy density was geshdrain a diet analysis
performed by Muir and Coley (1996). This distribution of consumption ratesban 0.837 and
variance 0.137, and 30.9% of all fish are fitted with a consumption rate greater than 1.
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Figure2.7
Prey Energy Density 5400 joules/gram
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Consumption Rate (P)

Distribution of consumption rates (P) generated using the Wisconsinl modleé prey energy
density of 5,300 joules per gram. This prey energy density wadexklk® produce less than 5%
of fish fitted above 1. This distribution of consumption rates has mean &ifbdariance 0.045
and 1.6% of all fish are fitted with a consumption rate greater than 1.
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Figure2.8
Growth Efficiency Contours
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Contour plot of growth efficiency across varying temperature arss.nfaey energy density was
held constant at 5400 joules per gram and consumption rate was held cain@t@nSpring and
summer temperatures in the Snake River generally range freéid dégrees Celsius (Anderson
2000). Over that range of temperatures, growth efficiency dechite increasing temperatures.
Growth efficiency also declines with increasing mass or length.
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Figure2.9
Temperature - Energetic relationships
=
=
o wmmmmES TSI T -
,-"’*F-J ’ “
= u
1.-'"
o ] I"
o — "
=

=
D —
§ &
=
w
D B e A S S S SRS SRR eSSy ap =y -y
S | — G
o -=== Consumption
| I | | | I | |
10 12 14 16 18 20 22 24

Temperature {degrees )

Relationships between total energy consunt@dafd total energy available for growi@)(and
temperature in the Wisconsin model. Mass was held constant arh8,grey energy density at
5400 joules per gram, and consumption rate at 0.7. Both curves followrgiet@aonships of
little change from 10-20 degrees to steep decline from 20-24 degrees. Neteettyy applied to
growth passes zero near 21 degrees Celsius.
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Figure2.10
Temperature - Growth Efficiency relationship
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Relationship between growth efficiency and temperature (Massheldsat 10g, prey energy
density at 5400 j/g, and P at 0.7). This relationship is monotonic bgetetperature range
experienced by rearing fall Chinook; it declines slowly fron200degrees, then sharply from 20
degrees and higher. Note that growth efficiency is equal to Zeeo energy applied to growth
is equal to zero (Figure 2.8).
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Figure2.11
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Plots depicting the process of fitting a consumption rate for an thdilfish.TO, MO, T1, M1,
and the temperature in the Snake River over that period are used twhsumption rate™}.

The fitted daily masses are shown betwé&€érandT1.
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Figure2.12
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Plots depicting the process of generating a fish’'s growthieftty data and predicting the

initiation of migration via the Thermal Wall model. The previous$gimated consumption rate

is used to model the fish beyomd and the fish’s growth efficiency is tracked until it falls below
zero, at which point the model predictgh.
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Figure2.13
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Plots depicting the process of predicting the initiation of migmnatia the Thermal Wall model
with the 5 day alternative. The previously estimated consumptionsrated to model the fish
beyond T1 and the fish’'s growth efficiency is tracked until it falkkelow zero for five
consecutive days, at which point the model prediéts For clarity, growth efficiencies below
zero are in red.
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Figure2.14
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Yearly cumulative plots of the day of year of observédand T3 and modeled 2b using the
Thermal Wall model with the one day alternative.
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Figure2.15
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Figure2.16
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migration (T2b) using the Thermal Wall model with the one day alternative. Cosamapled on
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basis.
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Figure2.17
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basis.
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Figure2.18
Sensitivity of Critical Temperature to Mass
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Plot depicting how the growth efficiency — temperature relationgsponds to changes in fish
mass. Prey energy density was held at 5400 joules/gram, and comsurapdi (P) at 0.5. The
critical temperature (the point where the growth efficiency curessess zero) is 20.7 degrees for
a 1 gram fish, 20.2 degrees for a 10 gram fish, and 19.8 degrees for a 30 gram fish.
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Figure2.19
T2b resulting from Critical Temperatures
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Plot depicting how changes in the critical temperature resuitomy changes in mass produce
different predicted 2b dates in the Thermal Wall model (the one-day alternativeus@d here).
The temperatures used are temperatures from the ‘River reat@95. A mass of 1 gram
resulted inT2b on day 203 (July 22nd), a mass of 10 grams result&g@bron day 200 (July 19),
and a mass of 30 grams resulted &b on day 199 (July 18).
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Figure2.20
Sensitivity of critical temperature to P
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Plot depicting how the growth efficiency — temperature relationgsponds to changes in fish
consumption rate (P). Prey energy density was held at 5400 joales/gnd mass at 10 grams.
The critical temperature (the point where the growth efficieoggve crosses zero) is 21.1
degrees for P of 1.0, 20.7 degrees for a P of 0.7, 19.7 degrees é610a4P18.4 degrees for a P
of 0.3, and 14.5 degrees for a P of 0.2.
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Figure2.21
T2b resulting from Critical Temperatures
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Plot depicting how changes in consumption rate produce different predi2zbedates in the
Thermal Wall model (the one-day alternative was used here). @ihpetatures used are
temperatures from the ‘River’ reach in 1995. A P of 1.0 resultd@loon day 212 (July 31), a P
of 0.7 resulted imM2b on day 203 (July 22), a P of 0.4 resulted #b on day 199 (July 18), a P
of 0.3 resulted iM2b on day 189 (July 8), and a P of 0.2 resulte@idb on day 150 (May 30).
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Chapter 3: Mass-Growth Model of Migration Initiation

3.1 Introduction

After the Thermal Wall model was found to be inadequate to iexpigration initiation,
the second modeling project we undertook was the creation otlzamstic model of migration
initiation incorporating the theory proposed by Thorpe et al. (1998) and éVlaad
Satterthwaite (2008). This mechanistic model uses the growth mvedeleated in Chapter 2 to
model the growth of individual fish, then predicts initiation of miigma T2 when a fish’'s
modeled mass passes a mass threshold. We refer to this mtdeiMass-Growth’ model, and
we denotel2 predicted by this model &&2m. We tested several versions of the Mass-Growth
model; in the first version a threshold mass was the only triggemigration; in the second
version both threshold mass and threshold growth efficiency could tmggeation; lastly, we

modified the second version with a more complex catchability coefficient t@uafits.

3.2 Methods
3.2.1 Modeling Consumption Rate

The first step in the construction of the Mass-Growth modelexpanding our original
growth model to support modeling more fish. As described in section 2.2t8sahesis, we

fitted consumption rates (P) individually for fish for which allTéf, MO, T1 andM1 data points
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were present. Only a small percentage of all fish had. and M1 data point, limiting the
number of fish which could be modeled in this way. The method weougehie Mass-Growth
model requires growth data for all fish tagged at a subsaggfrg locations, including fish for
which noT1 or M1 data is present. In order to model the growth of these fismesded a
method to estimate consumption rate other than by a direct fitegted a multivariate linear
model regressing fitted consumption rates (P) againstiO, and environmental data to attempt
to create a model to predict P for fish lackirfigandM1 data.

A total of 2,385 individual fish had a fitted consumption rate and wesd tesfit the
linear model. We started with a full model including as predictoesy piece of data available
to fish with only aTO andMO data point from the PIT tag dataset. These data comisad
MO from the PIT tag data, the temperature and CPUE at the tatploonTO, and the river
kilometer of the tag location. Additionally, squared terms wereudted for temperature and
CPUE to allow for a potential nonlinear relationship, and interatéions betweerf0 andMO,
temperature, and CPUE were included. Tables 3.1 and 3.2 show a suofitieryull model fit
and the ANOVA table of the full model fit. To reach a parsimonimaslel, we used sequential
deletion; the least explanatory predictor was removed from the Inszdientially until
removing another predictor would result in an increase in Akaikésniation Criterion (AIC)
estimate of greater than two. The predictors removed from thel mede, in sequence: TO-
CPUE interaction term, and TO-MO interaction term. Tables 3.3 and 3.4 alsmmmary and
ANOVA table of the reduced model.

While there are statistically significant relationshipswiaetn most of the predictor
variables and fitted consumption rate, overall the available datandbexplain enough of the

variation in fitted consumption rate to be useful for making accyseddictions. The total
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adjusted R of both the full and reduced models are only 0.12; we decided thanhokisl was
inadequate to predict consumption rates for use in our modeling. Asbackaloption, we
decided to use the mean value of all fitted consumption rates (0.5@)yfdish which did not

have an individual fit.

3.2.2 Mass-Growth Model of Migration
To facilitate confronting our models of the migration initiation wfgnile fall Chinook
with our data, we created a generalized modeling framewariottel the number of tagged fish
present in the rearing habitat over time. This model has the following structure
Ni=Ni-1+Ti—Li
In this formulation N; is the number of tagged fish at large within the rearing haditatayi, so
Ni.1 Is the number of fish that were present within the rearing dtaduit the previous day; is
the number of fish tagged and released back into the rearingthabidayi, andL; is the
number of fish that initiate migration and leave the habitat on.days generated from the0
data points of individual fish and is an external forcihgis generated by our models of
migration initiation, described below. We udgto validate the model by comparing it to CPUE
data. We assume thidt is related to CPUE via the following relationship:
CPUE = Nixcc
In this formulationN; is directly proportional to CPUEand catchability coefficierdc describes
the relationship between the two. We then test the model ibimparingCPUE produced by

the model tacCPUE from data.
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3.2.3 CPUE and PIT Data

CPUE data was only available for a subset of all sites sahgyl William Connor. Some
sites were sampled on a regular basis, others were samplediroagalar basis (Connor et al.
2003). CPUE data is available for a subset of sites that wenglexhon a weekly basis. The set
of sites sampled each year is not exactly the same, but QRidEs available for 10-14 sites in
each year of data from 1992 to 2000. These sites were sampled akdr€fdtted on a weekly
basis, with subsets of sites sampled on different days of tbk. We yield a single estimate of
CPUE, the CPUE recorded at all sites was averaged oveneag&ly sampling period. The days
between each weekly mean were then backfilled by linear intépolaetween the mean CPUE
points. Both averaged data points and interpolated points were usedytongatel results, but
averaged data points were weighted three times heavier than interpolated points.

For the individual fish data used in the Mass-Growth model, we ulséshatagged at
the river kilometers for which CPUE data is available in gear. As the CPUE data is derived
from initial capture and recapture of these fish (fish too stodde PIT tagged were not included
in CPUE data, William Connor, personal comm.), the CPUE data teeflee presence of these
fish in the rearing habitat. By using this subset of the Pl& gatun the model, the CPUE data
can provide an accurate indicator of how well the Mass-Growth misd@redicting the
movement of the fish. As described in section 3.2.1, many of the Ggledaat these sampling
locations lack &1 andM1 data point; they only haveTd® andMO data point. For these fish, the

mean of fitted consumption rates is used in the growth model.
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3.2.4 Mass Only Model

The first version of the model we tested used only masggetrmigration. For ease of
reference through the rest of this chapter, we will refehi®wersion of the model as the Mass
Only Model. Growth of all fish was modeled from tagging thiotige end of the rearing season;
when an individual’'s mass passed a critical mass, that fisimedsled to initiate migration. So,
for this version of the mass-growth model, the leaving functipriollows the following

structure:

max

Li= ) (masqj,i] > Mcrit)

fish[ j]
In this formulation, the number of fish leaving on d&ay;) is equal to the sum of all fighfor
which their modeled mass on dais greater than the critical maddcrit. Mass is a matrix of
modeled masses with two dimensions; dimengisrthe individual fish modeled, and dimension
i is time, in daysMcrit simulates a genetic threshold size which must be surpassadisbrto
decide to initiate migration, as proposed in Thorpe et al. (199&).tfAdory in Thorpe et al.
(1998) proposes that, as a genetically controlled threshold, the magpiitirsethreshold likely

varies among individuals due to variation in genes; however, to supparigiarastimation via

optimization fitting, we trealicrit as a constant for all fish within a given year.

3.2.5 Mass and Growth Efficiency Model

We then created a second version of the model in which eitlesr angrowth efficiency
could trigger migration. For ease of reference, we will redehis version of the model as the
Mass & Growth Model through the remainder of this chapter. Both arasgrowth efficiency

were modeled for all fish from tagging through the end of thangaeason; an individual
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would be modeled to initiate migration when its mass was grénte a critical mass or when its
growth efficiency was less than a critical growth efficenthe leaving functiorL; for this
model follows the following form:

max j max j

L =( > (masy j,i] > Mcrit)]+( > (growtheff[ j,i] <Gcrit)]

fish[ j] fish[ j]
In this formulation, the first term of the leaving function is ideadtio that in the mass only
version of the model. However, there is also a second term withilar structure to the first to
account for fish leaving due to the growth efficiency threshold. dtaé mumber of fish leaving
on dayi is equal to the sum of all fish for which their modeled maggdater than the critical
massMcrit, plus the sum of all fish for which their modeled growth efficieon dayi is less
than the critical growth efficiencyGcerit. In order to prevent double counting, any fish that
initiated migration by the mass threshold was ineligible taaieitmigration by the growth
efficiency threshold. AgainMcrit and Gerit are fitted as constant parameters for all fish in a

given year.

3.2.6 Adding a Mass-Based Covariate to the Catchability Model
Model fits of both versions of the Mass-Growth model tended to unoeaéstCPUE in
the early portion of the season, so the catchability portion of thelwadeexpanded to include

a term that modifies catchability depending on the mean matée gdfopulation of fish in the
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rearing habitat. For ease of reference, we will refetht® version of the model as the Mass,

Growth, & Catchability Model. This expanded catchability term has the fallpatructure:

max j B

Z masy j, i]
CPUE = Ni x| cox/| Ml :
max |

In this formulation, the term inside the inner set of parenthekislates the mean mass of all
fish present in the rearing habitat on dayhe term sums the mass of fish on dagross all fish

j, then divides by the number of fighto yield the mean mass. Exponential paramBténen
describes how mean mass impacts the catchability coefficie If B is zero, then population
mass has no impact on catchabilityBlfs larger than zero, then increasing population mass will
result in increasing catchability. B is less than zero, then increasing population mass will

reduce catchability.

3.2.7 Maximum Likelihood Parameter Estimation

We used a maximum likelihood method to estimate the paranoetexs/early basis for
each version of the model. For the maximum likelihood implementation oimmael, we
assumed that the deviations between observed CPUE and CPUE pregiotedntodel come
from a Gaussian distribution with mean 0 and variancéhus, for our model:

CPUEobserved = NixCCX...+ &

Modeled CPUE is generated from the modeled number of fish in Mvand the catchability
termcc, as well as the additional mass catchability term in ongioreiof the model. Then, for
each day, a deviatiore between modeled and observed CPUE is generated. For each deviation

g, the likelihood that the deviation came from Gaussian distributidmmean 0 and varianee
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is then calculated. The negative log of these likelihoods is them,tdo yield negative log
likelihood. Due to the log transform, these negative log likelihoodsadudéive; the sum of the
negative log likelihoods for each dayields a single estimate of negative log likelihood for a
given set of parameters. The negative log likelihood is then nz@edvia an iterative parameter
estimation process to yield a single maximum likelihood parameter set.

We tested three versions of the Mass-Growth model. The firstoretested was the
Mass-Only Model: a mass-only leaving function with a constarthehility coefficient. The
second was the Mass & Growth Model: a mass and growth efficidmeen leaving function
with constant catchability. The last version tested was thesMarowth, & Catchability Model:
both a mass and growth efficiency driven leaving function and ss+vexrying catchability
coefficient. The optim function from the stats package in thesstai computing language ‘R’
was used for the minimization process. The optim function implemesvsrad different
minimization methods; for the parameter estimations of the Nadg and Mass & Growth
versions of the model, the Nelder-Mead method (Nelder and Mead ¥885used as the
primary method, with the L-BFGS-B (Byrd et al. 1995) method beind dste Nelder-Mead
method had difficulty converging. The Nelder-Mead method is unbounded,ssartthes the
entire parameter space. The L-BFGS-B method is bounded; boundselested to be as large
as possible, but often had to be tweaked to reach convergence. Foratnetpa estimation of
the Mass, Growth & Catchability version of the model, the L-BFG&d8hod was the primary
method used, with the Nelder-Mead as a fallback if the L-BFGS-B metbatticonverge. The
starting parameters used for the optimizations were: 10 grarivkfdr 0.0 joulesG/C for Gerit,

0.02 forcc, -1 for B if the mass-varying catchability coefficient was used] 2 forc. In some
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years for some versions of the model these starting paranveeee modified slightly if optim

had difficulty converging.

3.3 Results
3.3.1 Mass Only Model

Table 3.5 presents the results of the maximum likelihood paramestieration of the
Mass Only Model (mass driven leaving, constant catchability). TéldedMead optimization
method (Nelder and Mead 1965) was used for most years; in 1994 and 1996|dieNiead
method had difficulty converging and the L-BFGS-B method (Byrd et1995) was used
instead. FittedVicrit values are fairly consistent across years (Table 3.5),n@rfgpm 3.13
grams to 6.74 grams. The average filtéait is 4.99 grams. Fitted catchability coefficients vary
relatively more across years, ranging from 0.0088 to 0.0867. The fitt=th catchability
coefficient is 0.0316. Fitted is an index of how close the fit is to the observed data; in most
years fittedos is less than one, but in 1998 and 2000 a larger fittedlicates a poorer fit. The
theory behind the model states that achieving a critical ngadhkei trigger for migration;
therefore, fish that were larger than fittsttrit at tagging are evidence of a model failure, as
these fish have clearly not yet initiated migration evendghduey are larger than the threshold
mass. Significant numbers of fish were larger tNamit at tagging in each year of data (Table
3.5), ranging up to half of the fish modeled in some years.

In most years, the Mass Only version of the Mass-Growth Modelatoadequate job of
fitting observed CPUE data (Figures 3.1, 3.2); however, some yearsidizeably poor fits. In
1993 and 1996, many fish are modeled to never grow larger than the ghvesghold for

migrationMcrit, resulting in the modeled CPUE distribution never reaching closerd¢o In the
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other years this is only true for a handful of fish, and the moddktdEQistribution approaches
zero at the same time as the observed CPUE distribution. Addiyiomalhost years the fitted
CPUE distribution lags slightly behind the observed CPUE distribufibis effect is most
visible in 1997. Observed CPUE data displays mostly monotonic pattetinéittie jaggedness
in the pattern of CPUE over time; however, model fits displggitant jaggedness (Figures
3.1, 3.2). This is largely due to the large proportion of fish that Veeger than fittedMcrit
values at tagging. Due to the stratified nature of sampling, sagn@lents tend to be clustered
together in blocks of three to four days, with spaces of seveyalwigh no sampling between
each cluster. After each sampling event, many fish which vaeger tharMcrit at tagging are
then modeled to immediately initiate migration. This leads ¢ggdness in modeled CPUE
values; modeled CPUE tends to climb rapidly due to a sampling ekientrapidly drop after
the sampling event.

Modeled leaving illustrates how the large number of fish latigen Mcrit at
tagging leads to jagged modeled CPUE (Figures 3.3, 3.4). Distribofionsdeled leaving dates
(T2m) predicted by the Mass Only model are very spiky. While theséng distributions are
located within the declining portion of the CPUE data, which the Thalekiall model was
unable to achieve, this spikiness is a symptom of a high rate célrfeoldire with regards to

fitted Mcrit values being smaller than the mass of many fish at tagging.

3.3.2 Mass & Growth Model
Table 3.6 presents the results of the maximum likelihood paramestieration of the
Mass & Growth model (mass and growth efficiency leaving, constnhability). The Nelder-

Mead optimization method (Nelder and Mead 1965) was used for mast ye&995 and 1997,
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the Nelder-Mead method had difficulty converging and the L-BFGB8eBiod (Byrd et al. 1995)
was used instead. While a maximum likelihood fit was found for 2000hahee of the fitted
parameter values and the distributions of the fit are markedbrelit from the other years. We
concluded that the fit for 2000 was not working very well and attemptéadd a local minimum
with parameters closer to those fitted in other years, but &re wnsuccessful. Fitteldcrit
values are fairly consistent across years (Table 3.6), witexteption of 1996 and 2000. Fitted
Mcrit values range from 9.19 grams to 12.53 grams excluding 1996 and 2000, witlyethisse
fitted at 7.86 grams and 5.54 grams respectively. The avertggeMitrit is 9.79 grams. Fitted
Gcrit values are also very consistent, with the exception of 1994 and Ri&@8.Gcrit ranges
from 0.30 to 0.41 excluding 1994 and 1996, with 1994 fitted at -0.015 and 1996 at 0.16. As in
the Mass Only version of the Mass-Growth model, fitted catchabibefficients vary relatively
more across years, ranging from 0.0034 to 0.09. The mean fitted catghebdfficient is
0.0236. Fitteds again follows a similar pattern as in the Mass Only versif the Mass-Growth
model; in most years fitted is less than one, but in 1998 and 2000 a larger fittedlicates a
poorer fit. As fittedMcrit values were much larger in this version of the model than in tee-ma
only version, many fewer fish were larger thdorit at tagging in each year of data (Table 3.6).
The one exception is 2000, which is fitted with the sdugt as in the mass-only version of the
Mass-Growth model (Table 3.5).

The Mass & Growth version of the Mass-Growth model does a hetteof fitting
observed CPUE data than the Mass Only version. The problem of jatgetderved in the
Mass Only fits is mostly absent in the Mass & Growth fgres 3.5, 3.6). This is largely due
to the much larger fitteticrit values, which lead to many fewer fish being larger than fitted

Mcrit at tagging (Table 3.6). Additionally, the problem observed in thes @y version of the
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model with some fish never modeled to initiate migration is rabse the Mass & Growth
version of the model. The growth efficiency leaving term of the Nassvth model behaves in
the same manner as the Thermal Wall model; the only differsntteat the critical growth
efficiency Gcrit is free to be fitted at any value in the Mass-Growth modékrev it was
constrained to zero in the Thermal Wall model. Since temperstitmegly impacts the growth
efficiency of all fish as discussed in Chapter 2 of this th€ist-initiated leaving tends to be
tightly grouped into short periods. As discussed in Chapter 2, tempeiatreases over the
rearing season resulting in generally declining growth efficiebys results irGerit acting in
the same manner as the Thermal Wall model, where beyond ia ciaxtia temperature will drive
the growth efficiency of virtually all fish below the threshold ara fish will be modeled to
remain in the river. This solves the problem of some fish bewdetad to never migrate, but it
introduces another problem as in some y&arst-driven leaving produces a poor fit of the tail
of the CPUE distribution. This is especially visible in 1993 and 199§.(€$ 3.5, 3.6), where
modeled CPUE rapidly drops to near zero after the peak of thidouiigin, while the observed
CPUE distribution declines much more gradually. Jaggedness is thewenbserthe fitted
CPUE distributions, resulting from small numbers of tagged fish beaptured and released
back into the river, then immediately initiating migration dug¢h@Gcrit threshold. There are
clearly still some fish in the river at this point, as evidenmgthe observed CPUE distributions
and records of tagged fish, but the model has predicted that vinwafigh should remain in the
river, so this can be considered a partial failure of the fit.

Examination of the leaving distributions predicted by the fitmlit and Gerit values
illustrates the differences between how the two leaving presasserate (Figures 3.7, 3.8). As

in the Thermal Wall modelcrit driven leaving displays a very spiky distribution, with leaving
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packed into short periods of a few days. In contidstjt driven leaving displays a much more
diffuse distribution, with fish growing into the threshold graduaMgiditionally, the percentage
of fish that initiate migration by the two processes varieatty depending on the year (Table
3.8). For most years, the majority of fish initiate migration duéhe Gerit threshold; only in
1996 and 2000 do majorities of fish initiate migration due toMlest threshold. ThisGcerit-

dominated leaving is very visible in the leaving distributions (Figure 3.7, 3.8).

3.3.3 Mass, Growth & Catchability Model

Table 3.7 presents the results of the maximum likelihood paramestieration of the
Mass, Growth & Catchability Model (mass and growth efficieddven leaving, mass-varying
catchability). The L-BFGS-B optimization method (Byrd et al. 1988¥% used for every year
except 2000, for which the Nelder-Mead (Nelder and Mead 1965) optimizakgtinod was
used. Achieving convergence was much more difficult for this versitimeaihodel, and starting
parameters had to be modified slightly for most years. Unlikpriagous versions of the model,
the maximum likelihood fit for 2000 was not markedly different frdra bther years. Fitted
Mcrit values seem to break into two groups, with some years fitted avobirgtams and other
years fitted near 11 grams (Table 3.7). FitMdit values range from 7.36 grams to 11.53
grams; the average fittédcrit is 9.44 grams. Fittecrit values are very consistent, with the
exception of 1994 and 1996 again. Fit@adit ranges from 0.27 to 0.4 excluding 1994 and 1996,
with 1994 fitted at -0.015 and 1996 at 0.049. As in the other versions of dee@Gfawth model,
fitted catchability coefficients vary relatively more acrgssars, ranging from 0.015 to 0.19. The
mean fitted catchability coefficient is 0.102. Fitt&ds fairly consistent, ranging from -0.46 to -

1.82, with a mean of -0.99. Fittedagain follows a similar pattern as in the other versions of the



82

Mass-Growth model; in most years fitteds less than one, but in 1998 and 2000 a larger fitted
o indicates a poorer fit. Fittellcrit values were larger in this version of the model than in the
Mass Only version but smaller than in the Mass & Growth versioneSistm were larger than
Mcrit at tagging in each year of data, ranging as high as 19% of all fish modeled in 1995.
The Mass, Growth & Catchability version of the Mass-Growth M@detiuces the best
fits of observed CPUE data of the three versions tested. Vidb#reof the previous versions of
the model produced fits that tended to lag behind observed CPUE in thepadrof the
distribution (Figures 3.1, 3.2 and 3.5, 3.6), this problem is much lesseribd fits produced
using the mass-varying catchability coefficient (Figures 3.9,)3TIe mass exponential tefn
in the catchability coefficient has the effect of increasngdeled catchability in the early
portion of the rearing season, improving the model’'s ability tacimtite observed increases in
CPUE. Since the fitted value & is negative in all years, catchability in this version of the
model declines as fish mass increases. The mean populationendsstd increase over the
rearing season, leading to declining catchability (Figures 3.13,.3Mdjleled mass and
catchability tend to be quite spiky near the end of the reagagon; this is because the number
of fish remaining in the habitat is very low, and the tagging or migration of evamndfuh of fish
can have a large impact on the mean population mass. Leavingulistts produced by this
version of the model are similar to those produced by the Masso&ts model;Mcrit-driven
leaving tends to follow a more gradual distribution spread out adtessearing season, while
Gcerit-driven leaving is compacted into short periods with many fish ngaat once (Figures
3.11, 3.12). Since fittetMcrit values are significantly lower than those in the Mass & Growt

version of the model, the percentages of fish that initiate leavjirthebtwo processes is much
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more even (Table 3.8%crit-driven leaving is dominant in 1992, 1993, and 194@8it-driven
leaving is dominant in 1996; the remaining years show a balance of the two processes
While overall the fits produced by this version of the model ateerhesome of the
problems present in the previous versions persist. In particOrif-driven leaving still
produces a poor fit of the tail of the CPUE distribution in maggry.Gerit as a leaving process
produces compact leaving distributions where many fish are modelgtiate migration at
once (Figures 3.11, 3.12), and due to how growth efficiency changeshevezaring season,
past a certain point in the rearing sea&arit-driven leaving will drive all fish out of the rearing
habitat. This produces a sharp decline to zero at the tail of mogtieofmodeled CPUE
distributions, while observed CPUE distributions mostly show a much gradeial decline. In
1993 and 1998 this phenomenon has the largest impact on the fit; modeled deBliiEs
sharply to zero several weeks before observed CPUE does, and theremarseveral tagging
events afteiGcerit driven leaving has driven all fish from the rearing habitatdileg to brief

spikes in modeled CPUE.

3.4 Discussion
3.4.1 Observed Problems

The largest problems observed in the fits of the three versidhe dMass-Growth model
were fittedMcrit values smaller than the mass of many fish at tagging #&edancy forGcrit-
driven leaving to drive modeled fish out of the rearing habitat befbserved CPUE reaches
zero. The Mass Only version suffered the most from large numbkshofvith tagging mass
larger than fittedMcrit values. In every year fitted, twenty to fifty percent of ehfwere larger

at tagging than the fittellicrit (Table 3.5). Each of these fish can be considered a model failure;
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our model proposes that reaching Merit threshold is the trigger for migration; therefore any
fish that has grown larger thavicrit and has not yet initiated migration is evidence that the
Mcrit threshold fitted is in error. If the model were working perfectly, we woubgedno fish in
the rearing habitat to be larger thisierit, and therefore no fish could be captured and tagged
with a larger mass thavicrit. This being the ideal outcome, no model is a perfect representation
of reality and the Mass-Growth model is no exception. For reasdaoslimg parsimony and ease
of estimating the parameter, our model fterit as a single value constant for all fish; however,
as a representation of a genetic threshold, the theory motivaengiadel suggests that there
would most likely be significant variability iMcrit on an individual basis corresponding with
genetic variability in the population (Thorpe et al. 1998). In this,cabat the Mass-Growth
model is actually fitting is the population mean of the individdatit values. Some rate of
failure would be expected under this circumstance, as some flsmawe a true mass threshold
larger than the fitte#icrit, and they could be captured and tagged after they have grown larger
than the fittedVicrit but before they have reached their individual threshold. Howevevgtlye
high rate of failure displayed by the Mass Only version of thesMarowth model is almost
certainly evidence that the fittddcrit thresholds are too low. The two versions of the model
with both mass-driven leaving and growth efficiency-driven leaving lsayaficantly higher
fitted Mcrit values and correspondingly a much lower rate of failure withertsto tagging
masses larger than the fittddcrit values. For this reason, we conclude that the Mass Only
version of the Mass-Growth model is insufficient to explain ntignain juvenile Chinook, and
both mass and growth efficiency thresholds are necessary.

Both the Mass & Growth and the Mass, Growth & Catchabilitwgives of the model

display a tendency fo6Gcrit-driven leaving to drive modeled fish out of the rearing habitat
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before observed CPUE reaches zero. As discussed in section 3.8 egpecially visible in the
fits for 1993 and 1998 in both versions of the model (Figures 3.5, 3.6 and 3.)9,Thé&Gcrit
parameter behaves as the Thermal Wall model, discussed innigvagg analysis in section
2.3.2; due to the increasing trend in temperature over the course eatimg rseason, eventually
the growth efficiency of all fish will fall belowGcrit. Gcerit-driven leaving thus acts as a
termination of the rearing season, forcing all fish to initistigration with an abrupt, large
migration pulse (Figures 3.7, 3.8 and 3.11, 3.12). In contrast, observed @BftButions
display gradual declines, sometimes with a marked tail. Agasymptions and simplifications
we have made in our modeling are likely responsible for the dliffithe Mass-Growth model
has in fitting a gradual taiscrit affects the majority of the population at once because many of
the factors that determine individual growth efficiency are @esmsicross fish in our modeling.
In reality, individual growth efficiencies are affected by indual variation in temperature
experience and consumption rate, and genetic variatiGorih

In our modeling, we use only the daily mean temperature fromgéessource to describe
the temperature experience of all fish. In reality, therepmtial and diurnal variation in
temperature through the reach of the Snake River used as réafdtgt by fall Chinook
(Anderson 2000, Cook et al. 2006). Additionally, in the nearshore habitat useehtiygr
juvenile Chinook, the salmon are vulnerable to being caught in entrapuelst caused by
anthropogenic modification of flow rates (Geist et al. 2010). Teryresa within entrapment
pools vary much more than temperatures within the river (Geadt 2010). These variations in
individual temperature experience will affect each fish’s gnoefficiency, resulting in greater
variation in when individual fish pass the growth efficiency threskatit than captured by our

modeling.
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While we fit individual consumption rates for any fish for whichlaandM1 data point
is present, many fish used in the Mass-Growth model did not hav@adM1 data point. Since
our multivariate linear model of consumption rate was unsatisfact@ysed the mean fitted
consumption rate for all of these fish. Unfortunately, this assompémoves much individual
variation in growth rate and growth efficiency, which results is legiation in migration dates
predicted byGcrit.

Lastly, similarly to our modeling d¥icrit, we modelGcrit as a constant parameter for all
fish. However, we employ Thorpe et al.’s (1998) theory that thgedring mechanisms driving
migratory behavior are under genetic control, and as a repreégertba genetically-determined
threshold Gcrit in reality will vary according to an individual’'s genetic makefince the Mass-
Growth model can only estimate a single, constant valu&dat, this genetic variability is not
modeled. This individual variation in temperature experience, consumgten andGcrit
threshold which the Mass-Growth model does not capture would all worgréads out the
migration dates predicted by tlegcrit threshold. If such improvements could be made to the
model, the large pulse that the model currently predicts would be digpersed, greatly
improving the model’s ability to fit a gradual tail in the observed CPUE distoibuti

The last question arising from the model fits concerns ttel frelationship between fish
mass and catchability in the Mass, Growth & Catchabilityigarsf the model. In every year
fitted, the fitted relationship predicts decreasing catchaliiitly increasing mass (Figures 3.13,
3.14). While no prior studies explicitly evaluate the relationshipvdxen catchability and fish
mass with beach seine gear, a study examining catchabilityiveiile salmonids with
electrofishing gear found a positive relationship between fish aragcatchability (Ruiz and

Laplanche 2010). The mass coeffici#htvas added to the model to address the tendency for
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model fits to lag behind observed CPUE, but it is possible thatfexedif factor is impacting
catchability, or even some factor other than catchability beayesponsible for the lagging fits.
The fitted mass-catchability relationship cannot be discountedelgntirowever, because
catchability relationships are known to vary widely depending on #a& type and fishing
method used (Arreguin-Sanchez 1996). It is likely that differehet&een beach seine and
electrofishing processes could result in opposite relationshipgedet fish mass and
catchability; in electrofishing, larger fish are more vulnerahle to the physics of the fishing
gear- the waveform generated by the electric probessetisr larger bodies more frequently,
resulting in a more severe stun effect. In contrast, beanmgehas very different sampling
dynamics. In a large habitat such as the mainstem Snake River, habkatoshore is easier to
sample, and habitat further from shore is comparatively moreuiffdue to increasing depth
and a longer cast distance. Additionally, fish can see the oncontimgdeattempt to escape it;
fish with a faster swimming speed are better able to edbapeet. If larger fish tend to occupy
rearing habitat farther from shore or are better able topestize net, then the negative

relationship fitted between fish mass and catchability in our model is Bkelyrate.

3.4.2 Overall Performance

The Mass Only version of the Mass-Growth model produced reasditatwéobserved
CPUE data for some years; notably, the AIC scores for 1993 andcb@giare favorably to the
other models (Table 3.9). However, the fits produced for many other years hblk mpobblems,
and this version had a high rate of model failure with many fisgjetaat tagging than the low
fitted Mcrit values. Ultimately, due to the model failures, we conclude thatss threshold

alone is insufficient to describe migration initiation in falli@ok in the Snake River. Both the
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Mass & Growth and the Mass, Growth & Catchability versions of Mass-Growth model
produced much better fits of observed CPUE data with fewer sgsproblems with the fits.
However, modifying the catchability term of the model signifisaohanged the fitted values of
the other parameters and the distributions of fish that initiagdation via the two processes.
With a constant catchability term, fittédcrit values were quite large, averaging 9.79 grams
(Table 3.6). While these larddcrit values resulted in a low rate of failure with regards to fish
being larger tharMcrit at tagging, it also resulted in the mass-driven leaving psolbesg
unimportant to overall migration, as most fish initiated migratian tiie Gerit process (Table
3.8). Using a mass-varying catchability term resulted in lemétted Mcrit values, averaging
9.44 grams, but produced little change in fit@&d it values. This results in the two parameters
being equally important to the overall migration pattern, with ortepther process producing
a majority of migrants depending on the year. These lower fiterdt values do produce a
slightly higher failure rate with fish larger thavicrit at tagging, but overall the failure rate is
much more acceptable, with less than ten percent of all fisbrlatgtagging than their fitted
Mcrit (Table 3.7).

The quality of the fits produced and the low rate of failure leatbselect the Mass,
Growth & Catchability version of the Mass-Growth model asmfust successful version. For
most years, the AIC scores produced by this model are superiboge of the other versions
(Table 3.9); the largest exceptions are 1998 and 2000, which ardewiwféll by any version of
the Mass-Growth model. The model produces very consistent esdifieaitthe critical growth
efficiency initiating migration. With the exception of two ygahe fitted values dbcrit suggest
that growth efficiencies between 0.3 and 0.4 are a trigger faatidg. The fitted values of the

mass threshold are more ambiguous; some years seem to dlostet a.5 grams, while others
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cluster around 11 grams. It is interesting to note that the ylei@s with the lowest fitteMlcrit
values- 1995, 1997, and 1998- are also three years when Connor releasedrgignimbers of
tagged subyearling hatchery fish into the Snake River rearingahabia study related to his
study of wild fall Chinook. In 1995, 7,681 hatchery subyearlings weeased; in 1997, 29,783
were released, and 25,470 were released in 1998. No hatchery subyeeeliageleased by
Connor in the other years. These three years also have the lateeshtrit values, at 7.61,
7.36, and 7.60. These values are markedly lower than the Nittad values for the other years
(with the exception of 1996); it is possible that amplified dendggendent effects resulting
from the large number of hatchery subyearlings released reduced the optissaior migration.
The end result of combining the mass-driven and growth-efficieiioyen leaving
processes into one leaving function is a fairly constant, low-lewveluat of fish initiating
migration through the bulk of the rearing season, capped by large pfilsegration at the end
of the rearing season. Depending on whether the constant or massgr\aatghability term is
used, the dynamics of the two processes change. If the constdrahdly term is used (Mass
& Growth Model), the number of fish migrating in the diffuse portion of the season (prbduce
Mcrit) is insignificant compared to the large leaving pulses atnlde(produced becrit). If the
mass-varying catchability term is used (Mass, Growth & l@dditity Model), the number of fish
leaving by the two processes is much more balanced, though oneathé¢hean be dominant

depending on the year.
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Table3.1
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Summary table of the full model with all predictors for the maftate linear model of fitted
consumption rate (P).0 is the day of year a fish was taggétl) is the fish’s mass at tagging,
TO RKM is the river kilometer the fish was tagged &b, CPUE is the catch per unit effort
recorded at the site and day on which the fish was tagged, CPyB &juared term of CPUE,
TO Temp is the daily mean Snake River temperature on the daghheds tagged, Temp”2 is a
squared term of temperature, aidtMO, TO:CPUE andTO:Temp are interaction terms. Year
effects are estimated as offsets from the base year (IR®2)I-statistics offO Temp, TO:MO
and TO:CPUE and the year offset for 1993 are not significant at the 0v@h; ldhe slope
coefficients of all other terms are significantly different from zero. fokel adjusted Ris 0.12.

Predictor Estimate Std. Error T P
Y-Intercept -1.516 0.398 -3.81 0.00014
TO 0.0169 0.00337 5.01 5.8e-7
MO -0.0627 0.0295 -2.13 0.0335
TORKM 0.000894 0.000114 7.78 1l.1e-14
TO CPUE 0.00849 0.00360 2.36 0.019
CPUE"2 -0.000028 0.0000095 -2.96 0.0031
TO Temp 0.0631 0.0418 1.51 0.13
Temp”2 0.00571 0.00194 2.95 0.0032
Year (1993) 0.0142 0.0338 0.42 0.67

Year (1994) 0.157 0.0290 5.40 7.6e-8
Year (1995) 0.0761 0.0319 2.39 0.017
Year (1996) 0.169 0.0399 4.24 2.3e-5
Year (1997) 0.0955 0.0335 2.85 0.0043
Year (1998) 0.0626 0.0315 1.99 0.047
Year (1999) 0.120 0.0338 5.91 3.7e-9
Year (2000) 0.166 0.0369 4.50 7.2e-6
TO:MO 0.000333 0.000186 1.79 0.073
TO:CPUE -0.000041 0.000024 -1.71 0.087
TO:Temp -0.00132 0.000259 -5.11 3.6e-7

R"2: 0.1288

Adjusted RM2:  0.1222
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Table3.2

ANOVA Table of the full model with all predictors for the muériate linear model of fitted
consumption rate (P). The table includes a list of the predict@bles, the degrees of freedom
used by each predictor, the sum of squares and mean sum of squares explainegizygesor,
the resulting F statistics and the P values of the F stati$) is the day of year a fish was
tagged,MO is the fish’'s mass at taggingD RKM is the river kilometer the fish was tagged at,
TO CPUE is the catch per unit effort recorded at the sitedagdon which the fish was tagged,
CPUE"2 is a squared term of CPUIB, Temp is the daily mean Snake River temperature on the
day the fish was tagged, Temp”"2 is a squared term of temperdaaeis a year effect, and
TO:MO, TO:CPUE andTO:Temp are interaction terms. The F-statisticsI0f Temp”2,T0:MO
andTO:CPUE are not significant at the 0.05 level, all other predieiastatistically significant.
All predictors combined explain 13.715 of 106.453 total variance in the resporeddeyditted
consumption rate (P).

Predictor D.F. SS Mean SS F P

TO 1 0.00000236 0.00000236 0.0001 0.994

MO 1 0.377 0.377 9.614 0.00195
TO RKM 1 3.296 3.296 84.088 < 2.2e-16
TO CPUE 1 0.406 0.406 10.345 0.00131
CPUE"2 1 0.831 0.831 21.206 4.34e-6
TO Temp 1 0.309 0.309 7.889 0.00501
Temp”2 1 0.116 0.116 2.959 0.0855
Year 8 7.303 0.913 23.290 <2.2e-16
TO:MO 1 0.009 0.009 0.224 0.636
TO:CPUE 1 0.046 0.046 1.180 0.278
TO:Temp 1 1.022 1.022 26.074 3.55e-7
Error 2366 92.738 0.039

Total 2384 106.453
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Table3.3

Summary table of the reduced multivariate linear model of fatesumption rate (P), produced
by sequential deletion from the full modélb is the day of year a fish was taggéd)) is the
fish’s mass at tagging,0 RKM is the river kilometer the fish was tagged &, CPUE is the
catch per unit effort recorded at the site and day on which thenves tagged, CPUE"2 is a
squared term of CPUH,0 Temp is the daily mean Snake River temperature on the dayslhe fi
was tagged, Temp”2 is a squared term of temperaturd,Cahdmp is an interaction term. Year
effects are estimated as offsets from the base year (1B®2)T-statistics of O Temp and the
year offsets for 1993 and 1998 are not significant at the 0.05 levediojpe coefficients of all
other terms are significantly different from zero. The total adjusféd R12.

Predictor Estimate Std. Error T P
Y-Intercept -1.410 0.395 -3.57 0.00037
TO 0.0158 0.00334 4.74 2.3e-6
MO -0.00998 0.0236 -4.24 2.4e-6

TO RKM 0.000939 0.000111 8.44 < 2e-16
TO CPUE 0.00218 0.000789 2.76 0.0058
CPUE"2 -0.000027 0.0000095 -2.81 0.0050
TO Temp 0.0464 0.0407 1.14 0.25
Temp”2 0.00545 0.00193 2.82 0.0048
Year (1993) 0.0108 0.0336 0.32 0.75

Year (1994) 0.154 0.0290 5.31 1.2e-7
Year (1995) 0.0703 0.0317 2.23 0.026
Year (1996) 0.164 0.0398 4.12 3.9e-5
Year (1997) 0.0918 0.0334 2.75 0.0061
Year (1998) 0.0612 0.0315 1.94 0.052
Year (1999) 0.195 0.0334 5.83 6.3e-9
Year (2000) 0.167 0.0363 4.6 4.4e-6
TO:Temp -0.00117 0.000250 -4.68 3.1e-6

R"2: 0.1268

Adjusted R*2:  0.1209
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Table3.4

ANOVA Table of the reduced multivariate linear model of fittedasumption rate (P), produced
by sequential deletion from the full model. The table included af the predictor variables, the
degrees of freedom used by each predictor, the sum of squares andsumeaf squares
explained by each predictor, the resulting F statistics and v&iPs of the F statistics0 is the
day of year a fish was taggdd is the fish’s mass at taggingp) RKM is the river kilometer
the fish was tagged atp CPUE is the catch per unit effort recorded at the site apdmavhich
the fish was tagged, CPUE"2 is a squared term of CHOHemp is the daily mean Snake
River temperature on the day the fish was tagged, Temp”2 is a ¢daare of temperature,
Year is a year effect, antD:Temp is an interaction term. The F-statistic§ 0fand Temp”2 are
not significant at the 0.05 level, all other predictors are stailst significant. All predictors
combined explain 13.496 of 106.453 total variance in the response varitietecfinsumption
rate (P).

Predictor D.F. SS Mean SS F P

TO 1 0.00000236 0.00000236 0.0001 0.994

MO 1 0.377 0.377 9.614 0.00195
TO RKM 1 3.296 3.296 84.088 < 2.2e-16
TO CPUE 1 0.406 0.406 10.345 0.00131
CPUE"2 1 0.831 0.831 21.206 4.34e-6
TO Temp 1 0.309 0.309 7.889 0.00501
Temp”2 1 0.116 0.116 2.959 0.0855
Year 8 7.303 0.913 23.290 <2.2e-16
TO:Temp 1 0.858 0.858 21.860 3.10e-6
Error 2366 92.738 0.039

Total 2384 106.453
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Table of yearly fitted parameter values for the Mass Ontgioe of the Mass-Growth model
(mass driven leaving function, constant catchability coefficient). Yscidwel year modeled, # Fish
is the number of individual fish tagged at the sites sampled inEC#Rta and used to fit the
model. # Fitted P is the number of individual fish which hdd. andM1 data point and had an
individually fitted consumption rate; other fish used the mean consumptenFittedMcrit, cc,
ando are the parameters of the Mass-Growth model estimatedaxenum likelihood. Method
is the optimization method used to reach the fit; N-M refeithé¢ Nelder-Mead method (Nelder
and Mead 1965), L-BFGS-B is the method of Byrd et al. 1998) # Mcrit is the number of
fish which had a larger mass at tagging than the criti@adsnfior migration, which is a model
failure; the model predicts that these fish initiate migratiomediately after tagging, leading to
spikiness in the modeledPUEfits.

Y ear #Fish #Fitted P  Fitted Mcrit  Fitted cc Fitted 6 Method #TO> Mcrit
1992 633 43 3.13¢g 0.0358 0.964 N-M 358

1993 751 141 4539 0.0178 0.633 N-M 324
1994 1177 213 46849 0.0088 0.548 L-BFGS-B 494

1995 692 144 5.83¢g 0.0227 0.661 N-M 207

1996 389 61 6.74 g 0.0162 0.01 L-BFGS-B 83

1997 291 54 4389 0.0348 0.574 N-M 146

1998 1298 203 41749 0.0461 1.734 N-M 665

1999 1129 221 590¢ 0.0151 0.803 N-M 220
2000 1078 142 5549 0.0867 3.958 N-M 356
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Table 3.6

Table of yearly fitted parameter values for the Mass & Gnowdrsion of the Mass-Growth
model (mass and growth efficiency leaving function, constant catithatmefficient). Year is
the year modeled, # Fish is the number of individual fish tagged aitdsesampled in CPUE
data and used to fit the model; the number is the same as in3ablhe number of fish with a
fitted consumption rate is also the same as in Table 3.5; it has been omitted friadol¢hiSitted
Mcrit, Gerit, cc, ando are the parameters of the Mass-Growth model estimated wisnoma
likelihood. Method is the optimization method used to reach the i} i¢fers to the Nelder-
Mead method (Nelder and Mead 1965), L-BFGS-B is the method of Byald #995. #T0 >
Mcrit is the number of fish which had a larger mass at tagging tina critical mass for
migration, which is a model failure; the model predicts that tHese initiate migration
immediately after tagging, leading to spikiness in the modeRdEfits.

Year #Fish Fitted Mcrit Fitted Gerit  Fitted cc  Fitted ¢ Method #T0> Mcrit

1992 633 10.74 g 0.36 0.019 0.69 N-M 11
1993 751 11.29¢ 0.34 0.011 0.71 N-M 69
1994 1177 12.53¢g -0.015 0.0034 0.43 N-M 41
1995 692 9.19¢9 0.37 0.018 0.77 L-BFGS-B 83
1996 389 7.869 0.16 0.012 0.23 N-M 59
1997 291 11.08 g 0.30 0.010 0.41 L-BFGS-B 7
1998 1298 9.49¢ 0.41 0.040 2.52 N-M 84
1999 1129 10.39¢ 0.37 0.0090 1.33 N-M 47

2000 1078 5.54¢ 0.35 0.090 3.95 N-M 356
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Table3.7

Table of yearly fitted parameter values for the Mass, Growth &nahtlity version of the Mass-
Growth model (mass and growth efficiency leaving function, massngarcatchability
coefficient). Year is the year modeled; # Fish and # Fitted P have be¢adimm this table, as
they are the same as in Table 3.5. Fiftédit, Gcerit, cc, B, andoc are the parameters of the
Mass-Growth model estimated via maximum likelihood. Method is then@gaition method
used to reach the fit; N-M refers to the Nelder-Mead methotti@land Mead 1965), L-BFGS-
B is the method of Byrd et al. 199518 > Mcrit is the number of fish which had a larger mass
at tagging than the critical mass for migration, which isacglehfailure; the model predicts that
these fish initiate migration immediately after tagging, leading tarsgss in the modeledPUE
fits.

Year Fitted Mcrit Fitted Gerit  Fitted cc  Fitted B Fittede  Method #TO>Mcrit

1992 10.0 0.35 0.044 -0.91 0.70 L-BFGS-B 13
1993 11.53 0.34 0.025 -0.99 0.72 L-BFGS-B 64
1994 10.61 -0.015 0.015 -1.15 0.33 L-BFGS-B 82
1995 7.61 0.37 0.087 -1.30 0.66 L-BFGS-B 131
1996 8.23 0.049 0.065 -1.82 0.18 L-BFGS-B 53
1997 7.36 0.27 0.10 -0.88 0.31 L-BFGS-B 49
1998 7.60 0.40 0.19 -0.63 3.98 L-BFGS-B 154
1999 10.61 0.30 0.19 -0.46 0.58 L-BFGS-B 40

2000 11.44 0.34 0.20 -0.77 4.43 N-M 50
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Table3.8

Table showing the percentage of fish that initiated migratioaat and viaGerit in the two
versions of the model with both thresholds present. In both versions of thé wittda mass
and growth driven leaving function, a fish can initiate migratioreiblyer growing larger than
Mcrit or by having its growth efficiency fall beloGcrit. Since each fish initiates migration only
once, the first threshold criteria met becomes the mechanismitime migration for an
individual fish. The columns %crit and %Gcrit show the percentage of all fish modeled in
each year and model run for which the relevant threshold wame¢bbanism that resulted in
migration initiation.

Mass & Growth Model Mass, Growth & Catchability Model

Y ear % Mcrit % Gcrit % Mcrit % Gcrit

1992 0% 100% 4% 96%

1993 6% 94% 5% 95%

1994 14% 86% 24% 76%

1995 26% 74% 41% 59%

1996 81% 19% 82% 18%

1997 26% 75% 70% 30%

1998 3% 97% 8% 92%

1999 27% 73% 76% 24%

2000 71% 29% 16% 84%
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Table3.9

Table showing the AIC scores of the maximum likelihood fitted rsoftte each year and all
three versions of the Mass-Growth Model.

Year MassOnly AIC Mass & Growth AIC Mass, Growth & Catchability AIC
1992  308.1 237.2 275.6

1993  306.6 339.2 412.2

1994  239.8 172.6 89.2

1995 275.8 352.5 305.1

1996 516.9 1.0 -60.2

1997 135.2 140.5 72.8

1998 498.4 598.1 649.0

1999 352.0 499.2 291.6

2000 766.6 774.6 805.5




99

3.6 Chapter 3 Figures

Figure3.1

1992 1993
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Yearly plots showing observelPUEand modele€PUEproduced by the Mass Only version of
the Mass-Growth model (mass driven leaving, constant catchaliditythe years 1992-1995.
Model parameters were estimated independently for each yaaa vhaximum likelihood
method. ModeledCPUE tracks observed@PUE fairly well in most years. In 1993 and 1996,
many fish are never modeled to grow larger thamit and are thus modeled to never initiate
migration, resulting in modele@PUE distributions not approaching zero when obse@edE
distributions are approaching zero.
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Yearly plots showing observelPUEand modele€PUEproduced by the Mass Only version of

the Mass-Growth model (mass driven leaving, constant catchability)efgetrs 1996-2000.
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Figure3.3

Observed CPUE and Modeled T2m Distributions
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Yearly plots showing observedPUE and modeledr2m distributions produced by the Mass
Only version of the Mass-Growth model (mass driven leaving functrstant catchability) for
the years 1992-1995. Leaving occurs within @&JEdistribution as opposed to after the end of
the distribution like th@2b produced by the Thermal Wall model. Distributionsrafm tend to

be very spiky due to low fittedicrit thresholds; many fish are larger thisderit at tagging,
leading to spikes in modeld®m coinciding with sampling events where many fish were tagged
and then modeled to immediately initiate migration.
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Figure3.4
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Yearly plots showing observedPUE and modeledr2m distributions produced by the Mass
Only version of the Mass-Growth model (mass driven leaving functrstant catchability) for
the years 1996-2000.
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Figure3.5
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Yearly plots showing observedPUE and modeledCPUE produced by the Mass & Growth
version of the Mass-Growth model (mass and growth efficienoyemrleaving, constant
catchability) for the years 1992-1995. Model parameters wereatstinmdependently for each
year via a maximum likelihood method. Modele®UE tracks observedPUE fairly well in
most years.
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Figure 3.6
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Yearly plots showing observedPUE and modeledCPUE produced by the Mass & Growth
version of the Mass-Growth model (mass and growth efficiencyenlrieaving, constant
catchability) for the years 1996-2000.
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Figure3.7
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Yearly plots showing observedPUE and modeled2m distributions produced by the Mass &
Growth version of the Mass-Growth model (mass and growth effigcigéneen leaving, constant
catchability) of the years 1992-199%2m is broken into separate distributions of fish that
initiated migration due to growing larger thterit and fish that left due to growth efficiency
falling below . The leaving distributions are proportional to each other, but not girectl
proportional toaCPUE



106

Figure 3.8
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Yearly plots showing observetPUEand modeled 2m distributions produced by the Mass &
Growth version of the Mass-Growth model (mass and growth efficiency driven leawimgant
catchability) of the years 1996-2000.
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Figure 3.9
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Yearly plots showing observedPUE and modeledCPUE produced by the Mass, Growth &
Catchability version of the Mass-Growth model (mass and groffitieacy driven leaving,

mass varying catchability) for the years 1992-1995. Model pdessewvere estimated
independently for each year via a maximum likelihood method. Mod&RdE tracks observed
CPUEfairly well in most years.
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Figure3.10
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Yearly plots showing observedPUE and modeledCPUE produced by the Mass, Growth &
Catchability version of the Mass-Growth model (mass and groffitieacy driven leaving,
mass varying catchability) for the years 1996-2000.



109

Figure3.11
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Yearly plots showing observedPUE and modeledr2m distributions produced by the Mass,
Growth & Catchability version of the Mass-Growth model (masd growth efficiency driven
leaving, mass varying catchability) for the years 1992-1995n is broken into separate
distributions of fish that initiated migration due to growing lartiean Mcrit and fish that left
due to growth efficiency falling below:crit. The leaving distributions are proportional to each
other, but not directly proportional t6PUE CPUE distributions are only shown to indicate
where in the rearing season modeled leaving occurs.
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Figure3.12
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Yearly plots showing observedPUE and modeled'2m distributions produced by the Mass,
Growth & Catchability version of the Mass-Growth model (masd growth efficiency driven
leaving, mass varying catchability) for the years 1996-2000.
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Figure 3.13
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Yearly plots for 1992-1995 showing mean modeléassof fish present in the rearing habitat
and modeledCatchability for the Mass, Growth & Catchability version of the Mass-Growth
model.Catchabilityis a function of each year’s individually fitted catchabittefficientcc, the
mean population/ass and the fitted exponential coefficidBt(see section 3.2.6 and Table 3.7).
Mean Masstends to increase over the rearing season as fish grow, balsoiaffected as fish
are tagged and added into the population or initiate migration and tleaympulation. Large
tagging or migration events can have large impacts on mean popllatian
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Figure3.14
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Yearly plots for 1996-2000 showing mean modeléakss of fish present in the rearing habitat
and modeledCatchability for the Mass, Growth & Catchability version of the Mass-Growth
model.
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Chapter 4. Age-Growth Model of Migration Initiation

4.1 Introduction

After the Thermal Wall model was found to be inadequate to expigration and the
Mass-Growth model produced reasonable predictions of migration, wetamidest third
modeling project to compare to the results of the Mass-Growth mode third model is a
correlative model that regresses tagging and environmental ghatestarecapture timé0:T1 in
a generalized linear modeling framework, and then prediztssing modeled recapture time.
We refer to this model as the ‘Age-Growth’ model and defi@epredicted by this model as
T2a The two major steps in the creation of the Age-Growth moded wes creation of the
generalized linear model of recapture tim6:T1 and creating a theoretical framework to

estimatel 2afrom modeled recapture time.

4.2 Methods
4.2.1 PIT Data

The Age-Growth model is a correlative model that extrapolB2efom a generalized
linear model of recapture time, the number of days betw@esnd T1. The generalized linear

model of T1 was fit using the records of 2,451 fish for whidl @ata point was present. These
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fish are largely the same as those used to fit the Therratiiédel, described in section 2.2.3
of this thesis. All 2,385 fish used to fit the Thermal Wall modelmesent in the 2,451 fish used
to fit the Age-Growth model. Slightly more fish are used tdhig Age-Growth model because
more data points were usable. Unlike the Thermal Wall modelAgeeGrowth model only
requires al'l data point; ndVi1 data point is necessary. Four fish ha@lladata point with no
length or mass recorded at recapture; these fish were uoabke used for the Thermal Wall
model, but they were used for the Age-Growth model. Additionally, theriial Wall model
required a fitted consumption rate for every fish. Since the GQuevth model does not require
fitted consumption rates, the 62 fish which were discarded in the ah¥&¥ial model are used

to fit the Age-Growth model.

4.2.2 Generalized Linear Model of Recapture Date

The first component of the Age-Growth model is a generalized Imedel that predicts
the number of days between tagging and recagitdrgl using environmental data and tagging
data from the PIT tag dataset. The goal of this model wasowupe the best prediction of
recapture time possible using only data available from then@ggtata point. Thus, while the
model is fitted using the records of fish for whichladata point is present, it will be capable of
predicting recapture time for fish with onlyT® andMO data point, along with environmental
data.

To determine the error distribution to use for the generalinedr model, we examined
the characteristics of the data. On an individual basis, recagfttmgged fish follows a Poisson
process. Each fish is tagged on dBfeand released back into the river; the fish then remains in

the rearing habitat until the initiation of migration at unknown d&eDuring the period 0-T2,
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on any given day, sampling may occur at the tagged fish’s docatnd if sampling occurs, the
fish may be recaptured, producing & data point. Thus, for a given daythe probability of a

fish being recaptured is:
Pr=Psx Pc [4.1]

In this formulation, Pis the probability of recaptur®s is the probability of sampling occurring,
andP. is the probability a fish is captured if sampling occur$slis constant over time arfel
does not vary according to individual fish characteristics, thempt@eafollows a homogenous
Poisson process; if these probabilities vary over time or betweé@ndual fish, then recapture
follows a non-homogenous Poisson process.

While a complete record of all sampling events is not avaijlaatgying and recapture
data displays fairly regular patterns. According to Connor et al. (2003), sonpdirsg sites were
sampled on a regular, weekly basis, while other sites werpledran an irregular basis. The
bulk of tagging and recapture data comes from sites sampled gularrbasis. Plots of the
distribution of tagging events (Figures 4.1, 4.2) by day of year amd kilometer sampled
display regular, weekly patterns in sampling. There are sorpartdees from the weekly
sampling schedule- particularly in the first three years &, datd not all regularly sampled sites
are sampled on the same schedule, but overall the pattern ofgtalgg@gnsuggests regularity in
sampling. Additionally, a histogram of recapture timieT1 (Figure 4.3) displays distinct peaks
at 7, 14, 21, and 28 days, displaying that the bulk of recaptured fisbcapgured at sites with a
weekly sampling schedule. For this reason, we assumé@diha@mains uniform across time. As
for P, we assume that it remains constant for all fish. Though the-vaagag catchability

coefficient of the Mass-Growth model estimated a negatiatioakhip between individual fish
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mass and catchability, assuming uniform catchability greatiplgies the Age-Growth model,
as individual fish mass then does not need to be modeled.

Since recapture follows a Poisson process, the natural errobwudish to use for the
generalized linear model was the Poisson distribution. Thegaseralized linear model we
created used the Poisson distribution with a log link to regt@gsf recapturd 1l against tag
dayTO, mass at tagginiylO, length at tagging0, CPUE at the tagging location on the tag date,
daily mean temperature of the Snake River on the tag date, arat affect. Interaction terms
between tag day and length at tagging, CPUE, and temperatwensieided as well as squared
terms for length at tagging, CPUE and temperature. Table 4.1 pravgleemary of parameter
estimates and significance and Table 4.2 provides an analysisviEnce table for the full
model. A parsimonious reduced model was then generated from thimddél via sequential
deletion. The least explanatory predictor was removed from the niodemoval did not
increase the AIC score of the model by more than 2, then the madelewitted and the new
least explanatory predictor examined. Once removal of the Igpktnatory predictor would
increase the AIC of the model by more than 2, we determinedatpatsimonious model had
been reached. The parameters removed from the full model weegjuencet 0 squared term,
TO:LO interaction term. Table 4.3 provides a summary of parameiaratéss and significance
and Table 4.4 provides an analysis of deviance table for the reduced model.

There was concern that the Poisson model of recapture timenadesjuate because the
Poisson distribution did not fit observed recapture time well. Thanm&f the Poisson
distribution is also the variance of the Poisson distribution; obseeapture time is over-
distributed with respect to the Poisson distribution. The mean recaiptaeres 10.34 days, while

the variance in observed recapture time is 40.89 days. Sincegdtevaebinomial distribution is
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often used in place of the Poisson distribution for over-distributedtsts, we compared the
distributions of a maximum likelihood negative binomial fit and Poissoroffiobserved
recapture time. The Poisson fit (Figure 4.3) clearly does nguatiely match the variance of the
observed recapture time distribution (Figures 4.1, 4.2); the Poissamd®rpredicts the number
of short recapture times in the 1-5 day range and the taieafliberved distribution in the 20-40
day range. In contrast, the negative binomial distribution (Figurefdsd)he early and later
portions of the observed recapture time distribution much better.

We then created a second generalized linear model of rectipteresing the negative
binomial error distribution with a log link and compared the AIC sobrihe model to the AIC
of the Poisson log-link generalized linear model. The full negative binomial modeheassaie
set of predictors as the full Poisson model. Tables 4.5 and 4.6 provitkenzasy of parameter
estimates, significance, and analysis of deviance of the fodlem A reduced, parsimonious
negative binomial model was then generated from the full model via the egoental deletion
process used for the Poisson model. The predictors removed were, inceegesquared term,
TO:LO interaction term, CPUE squared term, temperature squared Teimgmperature
interaction term, and temperature. Tables 4.7 and 4.8 provide a sunfpargmoeter estimates,
significance, and analysis of deviance of the reduced model. Thaddres of both the full and
reduced negative binomial models are significantly lower than tbbsee respective Poisson
models. The full negative binomial model has an AIC of 14776.9 compared AdCaof
16976.4 for the full Poisson model; the reduced models have slightly W\escores, with
14773.4 for the reduced negative binomial model and 16973.8 for the reduced Poisson model

Since it has the lowest AIC score, uses the error distributianltest fits the data, and has
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statistically significant parameter estimates for akdictors, we used the reduced negative

binomial generalized linear model for the Age-Growth model.

4.2.3 Linking Recapture Time and Residence Time

Once a satisfactory model of recapture time was found, itneasssary to create a
theoretical framework to relate recapture time to residénue As discussed in section 4.2.2, a
fish’s residence time is defined as the number of days between tdggikigown from data, and
the date the fish initiates migration T2, which is unknown. Recapdliceve a Poisson process
where a fish is subject to a probability of being recaptuoecéch day of the fish’s residence
time. As described in section 4.2.2, we assume that the probabilégagfture is uniform with
time and identical for all fish. For a single sampling eventdtheof recapture could be located
at any date within the residence time, resulting in a regapine ranging from one day to
equivalent to residence time. This means that for an individual saymplient, the relationship
between recapture time and residence time is unknown. However, thepéss of uniform
probability of recapture means that as the number of hypotheticyglling events becomes
large, the mean recapture time approaches one half of residence time.

Unfortunately, this only holds if there is no variation in residemo® tamong fish.
Variation in residence time introduces bias, as fish with loregdence times are more likely to
be recaptured than fish with shorter residence times. A figtobability of being recaptured

follows the following relationship:
PTl = 1_ (1_Pr)R [42]
In this formulation,Pr; is the probability a fish is recaptured at least once duringsisience

time and al'l data point is generateB; is the probability that a fish is recaptured on any given
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day, andr is the length of the fish’s residence time in days. Aglezgie timeR increases, the
probability a fish is recapturd@r; also increases. This means that there is some amount of bias
in the relationship between observed recapture times and the truetjpopulaan residence
time. While the mean of observed recapture times approaches one half of thedareessines
of those recaptured fish, the recaptured fish are a biased sulibettotal population, with a
mean residence time larger than the mean residence time of the populatige.at lar

To address this issue of bias, we applied theory from a clsgidy in probability and
gueuing theory on waiting time paradoxes (Feller 1966). The ofitjeary arose to address the
issue of bias in expected residual waiting time for custoofess arrival process. For an arrival
process such as buses arriving at a bus stop, a passenger’s reaitiigltime is the amount of
time between when the passenger arrives at the stop and timherext bus arrives. If the
passenger’s arrival time is independent of the bus arrival, tine® for a single interarrival
period, the mean expected waiting time is one-half the imtestbiperiod; the passenger could
arrive at any time between the two bus arrivals, and over s@amyples the waiting time will
average to one-half the length of the interval. The paradox ais®s examining more than one
interarrival period when interarrival periods are not uniform. Qvegiven time interval, the
probability of the passenger’s arrival is uniform, but if the flergd the interarrival periods is not
the same, then the passenger is more likely to arrive atdpealsting a long interarrival period
than a short interarrival period. The result is that longer imteaaperiods contribute more to
mean waiting time and mean waiting time is greaten r@e-half the mean interarrival period
length (Feller 1966).

To illustrate how we apply this method to recapture of fish apdoximate this bias, we

treat the residence and potential recapture of an individual fisht@@ngular surface, and the
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residence and recapture of multiple fish as a sawtooth curvaer¢Fg6). For an individual fish,
residence time is presented on the x-axis beginning with tag@irdg the origin and ending with
initiation of migration T2 atR. This residence time of a single fish approximates alesing
interarrival period from an arrival process. Recapture tim@resented on the y-axis; as
recapture at any date within the residence time producesaptuee time equivalent to the
number of days to that point, potential recapture time follows a oeaedoincreasing
relationship with a maximum potential recapture time equal tdéetigth of the residence time,
R. This is the opposite of residual waiting time; rather than cogritom the passenger arrival
time to the end of the interarrival period, we count from the begirofitige residence period to
the recapture time; however, the end result is still comparalsiemirrored on the bus arrival/
fish residence time axis. We then place the residence tohesultiple fish in sequence,
producing a sawtooth curve of potential recapture time. This apprositieeurve of residual
waiting time for an arrival process over multiple arrival periduswever, unlike the arrival
process example, the x-axis no longer directly relates ta fimeead, the x-axis becomes an
abstract representation of the population of tagged fish. Here ieewhe assumptions of
uniformity of sampling effort and uniformity of catchability amdirh become important; these
assumptions mean that any single sampling event has a unifornbiptplzd occurring at any
point on the fish-day axis of the population sawtooth curve. The mean potential retiapure
then becomes the average height of the sawtooth curve; as the miiratieral sampling events
becomes large, realized mean recapture time will approacfhe average height of the

sawtooth curve is described by the following equation:

iR [4.3]
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In this formulation,T is the mean recapture timi, is the residence time of a fishn is the

number of fish in the population, aidR is the sum of all residence times, the total number of

fish-days in the population. Mean residence tiRés equal taR/n, yielding:

— 1 1 2
r= n ?=1ERL- [4.4]
This formula reduces to:
_  1R?
r=—-——= [4.5]
2R

In this formulation, T is mean recapture time®’ is mean squared residence time, @ds
mean residence time. Mean squared residence time is equaltridree in residence time plus
mean residence time squared, yielding:

1 Var(R)+R?
2 R

r= [4.6]
Thusly, the relationship between mean recapture time and meamoestdee depends on the
variance in residence time. As discussed above, if all residiemeg are equal, then the variance
in residence time is zero, and mean recapture time is emoakt half of mean residence time.
As variance in residence time increases, mean recapture time approacimeesidence time.
Though true residence time is unknown, we estimated some potexniiabnships

between recapture time and residence time by assuming a hygaitdedtribution of residence
times equal to observed recapture times multiplied by two. Am#an observed recapture time
is 10.34 days, the hypothetical residence time distribution hasam of 20.68 days and a
variance of 163.51. We then used the MASS library in the statisticaputing language R to
produce maximum likelihood fits of this hypothetical residence tisgibution to both Poisson

and negative binomial distributions. We then used the mean and varianaegrdxyi the fits

and equation 4.6 to produce predictions of mean recapture time undeiceaahos Table 4.9



122

presents the fitted parameter values, the resulting predicted reeapture time, and the
relationship between predicted mean recapture time and hypothmeé&eaal residence time. The
Poisson and negative binomial distributions both underpredict the vanmaniegpothetical
residence time, but the negative binomial distribution does so by reash The Poisson fit
predicts low variance, and thus predicts that mean resideneenll be only slightly less than
twice the mean recapture time. The negative binomial fit pedicich larger variance, resulting
in the prediction that mean residence time is 1.51 times longer than mean reaagture t

While the true residence time distribution is unknown, we assumeirtitiation of
migration can be represented as a Poisson process, and thustos Ramily of distributions is
appropriate to fit the data. Since observed recapture time is dxibrded with respect to the
Poisson distribution, we assume that residence time likelyvigeksFor this reason, we decided
that the negative binomial model likely provides the best estinfatiee relationship between
observed mean recapture time and true mean residence time. Waednibirelationship with
the generalized linear model of recapture time to predict residence timdifodual fish via the
following relationship:

R; = 1.51 x GLM(T0,L0,M0,T0 CPUE,Year) [4.7]

In this formulation,R; is the predicted residence time for an individual fish, @ht1() is the
reduced log-link negative binomial model of recapture time descnib&dbles 4.7 and 4.8. We
recognize that using the 1.51 conversion factor estimated betwearresapture time and mean
residence time does not necessarily predict individual resideneewviell, but we assume that
the sample sizes of our data are large enough that it willubfecient to represent the

distributional properties of true residence time. We then use peddiesidence tim& and
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known date of taggingO0 to yield an individual prediction of date of migration initiatib8a
via the following relationship:
TZal- = TOL + Ri [48]

Equations 4.7 and 4.8 together comprise the Age-Growth model of migration initiation.

4.2.4 Validating the Age-Growth Model
To validate the Age-Growth model, we UB2a predicted by the Age-Growth model to
predict CPUE and compare modele®UE distributions to observe@PUE Similarly to the
Mass-Growth model, we use the records of all fish tagged aitésefer which CPUE data is
available. This ensures that we are comparing model predictions andodathdrsame group of
fish, and also makes the model results directly comparable utisrésom the Mass-Growth
model. We use the modeling framework presented in section 3.2.2 dhdlsis to track the
number of tagged fish in the river. This framework has the following structure:
N;=Ni_ +T;— L [4.9]
In this formulation,N; is the number of tagged fish in the rearing habitat onidhly; is the
number of tagged fish in the rearing habitat on the previousTgdaythe number of fish that are
tagged and released back into the rearing habitat on daglL; is the number of tagged fish that
initiate migration and leave the rearing habitat oniddyis generated from the tagging daiés
from data, and.; is generated from2apredicted for each fish using the Age-Growth moblgl.
the number of tagged fish in the river, relates to CPUE via the following equation:
CPUE; = N; X cc [4.10]
In this formulation,cc is a catchability constant describing how the population of fistien

rearing habitat relates to catch per unit effort. Sineeagsume that catchability is constant for
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all fish in the Age-Growth model, we did not include a mass-varggng in catchability like in
the Mass-Growth model.

We used a maximum likelihood method to fit modeled CPUE to observedt CRe
assumed that the deviations between observed CPUE and CPUE pregiotedntodel come
from a Gaussian distribution with mean 0 and variancéhus, for our model:

CPUE; = N; X cc + ¢ [4.11]

For each day, a deviatione between modeled and observed CPUE is generated. For each
deviationg, the likelihood that the deviation came from Gaussian distributitim wwean 0 and
varianceo is then calculated. The negative log of these likelihoods is tiemn, to yield
negative log likelihood. Due to the log transform, these negative loghlloels are then
additive; the sum of the negative log likelihoods for each idgields a single estimate of
negative log likelihood for a given set of parameters. The tivegéog likelihood is then
minimized via an iterative parameter estimation process tisengtatistical computing language

R. For the Age-Growth model, since the leaving function is wholgiermined by the Age-
Growth model of migration initiation, the catchability constemtind the variance parameter

are the only free parameters fitted in the maximum likelihood process.

4.3 Results

Table 4.10 presents the yearly predictions of the Age-Growth mbBdelmost years,
mean modeled residence time was around 15 days. Shorter resideneeat modeled in 1992,
with a mean of 11.45 days, and longer residence time was moddl@d7srand 2000, with mean
residence times of 23.52 days and 19.80 days respectively. Though mdanceegime was

quite consistent, meah2a displayed more variation between years. More variationzewas
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not unexpected; the relative timing of the rearing season dhiits year to year due to
differences in temperature regime that affect growth andldpment and variation in spawning
date (Quinn 2005). Fitted catchability coefficient was very cogrsistwith the exception of
2000; catchability coefficients vary from 0.0052 to 0.0144 excluding 2000. kittegmall in
most years, indicating a good fit. Fittedis larger in 1998 and 2000, indicating poorer fits of
observed CPUE in those years.

In most years, the Age-Growth model produces respectable fiissefved CPUE data
(Figures 4.7, 4.8). The closeness of the fits is reflected inawecl fitted in most years.
However, similarly to the Mass-Growth model without the masshvaryatchability coefficient,
the Age-Growth model tends to underpredict CPUE early in thengeaeason. This early
underprediction is visible in the modeled CPUE distributions for 1992, 1997, 19980@@din
1992 and 1998 in particular, the modeled CPUE distribution looks like hiaiges similarly to
the observed CPUE distribution, but lagging behind by a week or moneodhyears, the fits
produced by the Age-Growth model are comparable to fits produce byabs-Growth model
with both mass and growth efficiency driven leaving (Figures 3.9, 3Tb@) primary difference
between the fits produced by the two models lies in the factitbalass-Growth model tends to
have sudden drops in modeled CPUE resulting from surges in growtiereffiadriven leaving;
while modeled CPUE distributions produced by the Age-Growth modeindeoiuch more
gradually. This difference is most evident in the fits for 1993, 1995188d (Figures 3.9, 3.10
and 4.7, 4.8); in all these years, the Mass-Growth model predictsdgddines to zero in CPUE,
while the Age-Growth model predicts much more gradual declines avitlevident tail in

modeled CPUE.
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The reasons for this difference in fits become evident wheniexgrdistributions of
initiation of migration produced by the two models. The distributiod 24 predicted by the
Age-Growth model tends to be gradual and fairly dispersed @sgu®©, 4.10). PredicteiRa
distributions tend to start near the peak of observed CPUE distribuionsst years, and the
last modeledl2a occurs at nearly the same time as observed CPUE distribuéiacis zero in
every year except 1994. These distributionsT2& strongly resemble distributions of mass-
driven leaving predicted by the Mass-Growth model (Figures 3.11); 3rl2very year where
enough fish left via the mass threshold to produce a visible disbmpuihe location and
characteristics of modelet2m are quite comparable fi2a While distributions off2a more
closely resemble the dispersed leaving produced by mass-dzasnd than the densely packed
growth-efficiency driven leaving, a significant amount of spikges still observed in the
distributions onT2a Combined with stratified sampling, this results in significgpikiness in
the curves of the modeled CPUE where observed CPUE displays muchnmmarggonic

properties; this is most obvious in the fits for 1994, 1996 and 1997.

4.4 Discussion

Overall, the Age-Growth model was successful at fitting obdetia¢a. To be confident
that the model is producing accurate fits, we determined that ndoléaleing should primarily
coincide with observed declines in CPUE. We also expect fegvanis early in the rearing
season, and the model should not predict fish to remain in the réabitgt beyond when fish
are no longer observed there. The Age-Growth model’s predictiomstelgf meet all of these

criteria, meaning that the mechanics of the model merit further inspection.
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However, as a correlative regression model, the conclusions thbhée @awn from the
Age-Growth model are unfortunately less clear than those @nabe drawn from a mechanistic
model like the Mass-Growth model. In particular, the assumptions mmatlee process of
creating the Age-Growth model limit the ability to be confidien the model’'s predictions on an
individual basis. The relationship established between mean rectiptarand mean residence
time is just that; a relationship between the means of thearglstatistics. Thusly, we examine
the distributional characteristics of the resulting predictiatiser than aspects of predictions for
individual fish.

The negative binomial generalized linear model of recapture temthe primary
determinant of modele@2a Most of the coefficients estimated in the model can be exttapola
fairly easily to a potential process (Table 4.7). Therenegative relationship between tag date
TO and recapture time; this makes sense, as tagging of fislhaisdam process. Later in the
rearing season, most fish will be closer on average to thgiation date, and thus the expected
residual residence time of fish captured and tagged later iseshbrterestingly, opposite
relationships are fitted between length at taggiigand mass at tagging0, both of which are
measurements of fish size. The magnitude of the coefficigat fior MO is larger, but the
magnitude of the measurement used for fish length (millimeseales much more rapidly than
the metric for mass (grams), so the overall relationship batfige size and residence time is
driven by the negative coefficient fitted fiod. This relationship makes sense in context of mass-
driven leaving; fish that are larger at tagging will grow iatmass threshold more quickly, and
would thus have less residual residence time. The differencgria between the0 and MO
coefficients likely captures nonlinearity in the fish sizadesce time relationship; however, a

squared term fotO was included in the full model for just this possibility, scsifperplexing
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why MO was retained but0”2 was not. The most likely explanation is th&d contains some
additional information that0"2 does not; as explained in section 2.2.1 of this thesis, about 30%
of all fish have both a mass and a length recorded at taggintheF@mainder of the fishjO is
estimated directly fromb.O via the weight-length relationship presented in section 2.2.3/@&nd
offers no advantage ové&N”"2, but for the 30% of the fish which do havé/a data point, it
offers additional information about the condition of the fish.

A positive relationship is fitted between CPUE at tagging andeted residence time
(Table 4.7). This makes sense in the context of density dependemay fish are present in
the rearing habitat, then competition for resources may tegiramvth, and thusly delay
migration since fish take longer to become bioenergeticabpgred to migrate. A negative
interaction is fitted between CPUE and tag date, suggesting haimportance of density
dependence declines later in the tagging season. This could lbsddeasity dependent effects
decline later in the season as fish leave the rearing habitaiuld also be an impact of our
hypothesized growth efficiency driven leaving; in the fitsquced by the Mass-Growth model,
it was shown that growth efficiency driven leaving tends to ohph fish similarly regardless of
their mass, and it tends to act as a termination factor drisshgtit of the rearing habitat at the
end of the growing season. Thusly, late in the season, any impagesity dependent growth
restriction would become nullified, as fish are forced to leavardégss of how quickly they are

growing.
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4.5 Chapter 4 Tables
Table4.1

Summary of the full log-link Poisson model of recapture time walitipredictors.TO is the day a
fish was tagged, O is the fish’s length on the tag day in millimetdr8/2 is a squared term of
length,MO is the fish’'s mass on the tag day in grafisCPUE is the CPUE at the tag site on the
tag date, CPUE"2 is a squared term of CPUE,Temp is the daily mean temperature of the
Snake River on the tag date, and Temp”2 is a squared term ofa&un@eYear 1993-2000 are
year effects, estimated as offsets from the base year)(I99R0, TO:CPUE, andl0:Temp are
interaction terms. All parameter estimates excépt L0"2, TO Temp, andTO:LO are
significantly different from zero at the 0.05 level.

Predictor Estimate Std. Error T Statistic P
Y-Intercept 3.919 0.768 5.10 3.4e-7
TO 0.00777 0.00599 1.30 0.19
LO -0.0343 0.0128 -2.68 0.0073
LON2 -0.0000101 0.0000843 -0.12 0.90
MO 0.0468 0.0184 2.54 0.011
TO CPUE 0.0301 0.00523 5.73 9.9e-9
CPUE"2 -0.0000501 0.0000155 -3.24 0.0012
TO Temp -0.0337 0.0645 -0.52 0.60
Temp”2 0.0102 0.00309 3.30 0.00098
Year (1993) 0.597 0.0559 10.67 <2e-16
Year (1994) 0.463 0.0501 9.25 <2e-16
Year (1995) 0.515 0.0534 9.63 <2e-16
Year (1996) 0.529 0.0647 8.18 2.7e-16
Year (1997) 0.543 0.0562 9.66 <2e-16
Year (1998) 0.513 0.0527 9.74 < 2e-16
Year (1999) 0.435 0.0562 7.73 1l.1e-14
Year (2000) 0.792 0.0591 11.93 <2e-16
TO:LO 0.0000792 0.0000680 1.17 0.24
TO:CPUE -0.000176 0.0000352 -4.99 6.2e-7
TO:Temp -0.00159 0.000398 -4.01 6.2e-5
Null Deviance: 8494.4 Degreesof Freedom: 2450
Residual Deviance: 7071.1 Degreesof Freedom: 2431

AlIC: 16976.4

Parameters: 20
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Table4.2

Analysis of deviance table of the full log-link Poisson model etapture time with all
predictors. All predictors combined explain 1423.3 of 8494.4 total deviance.

Predictor D.F. Deviance Residual D.F. Residual Deviance

T0 1 822.9 2449 7671.6

LON2 1 3.9 2447 7405.7

TO CPUE 1 94.9 2445 7306.3

TO Temp 1 7.6 2443 7291.4

Year 8 179.2 2434 7108.3

TO:CPUE 1 21.0 2432 7087.2
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Table4.3

Summary of the reduced log-link Poisson model of recapture fifhes the day a fish was
tagged,LO is the fish’s length on the tag day in millimetéyX) is the fish’s mass on the tag day
in grams,TO CPUE is the CPUE at the tag site on the tag date, CPUEA3qgsiared term of
CPUE,TO Temp is the daily mean temperature of the Snake River on tliatagand Temp”2
is a squared term of temperature. Year 1993-2000 are year effgintsated as offsets from the
base year (1992).0:CPUE, andlO:Temp are interaction terms. All parameter estimates@xc
TO Temp are significantly different from zero at the 0.05 level.

Predictor Estimate Std. Error T Statistic P
Y-Intercept 3.419 0.592 5.77 7.8e-9
TO 0.0114 0.00510 2.24 0.025
LO -0.0240 0.00293 -8.20 2.5e-16
MO 0.0488 0.0138 3.55 0.00039
TO CPUE 0.0293 0.00522 5.61 2.0e-8
CPUE"2 -0.0000488 0.0000155 -3.15 0.0016
TO Temp -0.0514 0.0626 -0.82 0.41
Temp”2 0.0101 0.00309 3.28 0.0010
Year (1993) 0.597 0.0559 10.67 <2e-16
Year (1994) 0.463 0.0500 9.25 <2e-16
Year (1995) 0.515 0.0534 9.63 <2e-16
Year (1996) 0.526 0.0646 8.14 4.0e-16
Year (1997) 0.542 0.0562 9.65 < 2e-16
Year (1998) 0.515 0.0527 9.77 < 2e-16
Year (1999) 0.436 0.0562 7.75 9.3e-15
Year (2000) 0.712 0.0587 12.13 <2e-16
TO:CPUE -0.000172 0.0000352 -4.90 9.5e-7
TO:Temp -0.00147 0.000382 -3.83 0.00013

Null Deviance: 8494.4 Degreesof Freedom: 2450
Residual Deviance: 7072.5 Degreesof Freedom: 2433

AlIC: 16973.8

Parameters: 18
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Tabled4.4

Analysis of deviance table of the reduced log-link Poisson moflee@apture time. All
predictors combined explain 1421.9 of 8494.4 total deviance. The remol@!fandTO:LO
results inMO explaining more deviance than in the full model, @Ad'emp slightly less.

Predictor D.F. Deviance Residual D.F. Residual Deviance
Null 2450 8494.4
TO 1 822.9 2449 7671.6
LO 1 262.0 2448 7409.6
MO 1 8.3 2447 7401.3
TO CPUE 1 94.8 2446 7306.5
CPUEN2 1 7.4 2445 7299.1
TO Temp 1 7.6 2444 7291.6
Temp”2 1 3.9 2443 7287.7
Year 8 179.4 2435 7108.3
TO:CPUE 1 21.0 2434 7087.2
TO:Temp 1 14.7 2433 7072.5
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Table4.5

Summary of the full log-link negative binomial model of recaptureetwith all predictorsTO is
the day a fish was tagged) is the fish’s length on the tag day in millimeter87'2 is a squared
term of length MO is the fish’s mass on the tag day in graim$CPUE is the CPUE at the tag
site on the tag date, CPUE"2 is a squared term of CPUEemp is the daily mean temperature
of the Snake River on the tag date, and Temp”2 is a squared teempmrature. Year 1993-
2000 are year effects, estimated as offsets from the basg1@&®). TO:LO, TO:CPUE, and
TO:Temp are interaction terms. The intercéfii, CPUE, all year effects, and th@:CPUE and

TO:Temp interaction terms are significantly different from zero at the @\@3.|

Predictor Estimate Std. Error z Statistic P
Y-Intercept 3.784 1.318 2.87 0.0041
TO 0.00705 0.0102 0.69 0.49
LO -0.0298 0.0210 -1.42 0.16
LON2 -0.0000422 0.000136 -0.31 0.76
MO 0.0551 0.0291 1.89 0.059
TO CPUE 0.0302 0.00915 3.30 0.00098
CPUE"2 -0.0000442 0.0000255 -1.73 0.083
TO Temp -0.0277 0.0110 -0.25 0.80
Temp”2 0.00944 0.00515 1.83 0.067
Year (1993) 0.593 0.0899 6.59 4.3e-11
Year (1994) 0.468 0.0788 5.93 3.0e-9
Year (1995) 0.508 0.0851 5.97 2.4e-9
Year (1996) 0.542 0.107 5.08 3.8e-7
Year (1997) 0.531 0.0894 5.94 2.9e-9
Year (1998) 0.511 0.0839 6.09 1.1e-9
Year (1999) 0.452 0.0900 5.02 5.2e-7
Year (2000) 0.711 0.0972 7.31 2.6e-13
TO:LO 0.0000710 0.000113 0.63 0.53
TO:CPUE -0.000179 0.0000617 -2.91 0.0036
TO:Temp -0.00150 0.000683 -2.19 0.028
Null Deviance: 2926.1 Degreesof Freedom: 2450
Residual Deviance: 2433.9 Degreesof Freedom: 2431
Estimated 6: 5.62 Standard Error: 0.24

AIC:

14776.9

Parameters: 20
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Analysis of deviance table of the full log-link negative binomial nhofleecapture time with all
predictors. All predictors combined explain 492.16 of 2926.1 total deviance.

Predictor D.F. Deviance Residual D.F.  Residual Deviance P (>|Chi|)
Null 2450 2926.1

TO 1 288.15 2449 2637.95 1.3e-64
LO 1 95.25 2448 2542.70 1.7e-22
LON2 1 1.33 2447 2541.38 0.25
MO 1 2.11 2446 2539.27 0.15
TOCPUE 1 28.70 2445 2510.57 8.5e-8
CPUE"2 1 2.14 2444 2508.43 0.14
TOTemp 1 2.84 2443 2505.59 0.09
Temp”2 1 1.02 2443 2504.58 0.31
Year 8 59.18 2434 2445.39 6.7e-10
TO:LO 1 0.02 2433 2445.37 0.88
TO.CPUE 1 6.67 2432 2438.70 0.01
TO:Temp 1 4.76 2431 2433.94 0.03

Analysis of deviance table of the full log-link negative binomial nhofleecapture time with all
predictors. All predictors combined explain 492.16 of 2926.1 total deviance.
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Table4.7

Summary of the reduced log-link negative binomial model of recapimeeTO is the day a fish
was tagged., O is the fish’s length on the tag day in millimetevk) is the fish’s mass on the tag
day in grams, and@0 CPUE is the CPUE at the tag site on the tag date. Year2(8#Bare year
effects, estimated as offsets from the base year (1992LPUE is an interaction term. All
predictors are significantly different from zero at the 0.05 level.

Predictor Estimate Std. Error z Statistic P
Y-Intercept 4.642 0.263 17.66 < 2e-16
TO -0.00808 0.00105 -7.73 1l.1le-14
LO -0.0247 0.00475 -5.21 1.9e-7
MO 0.0523 0.0219 2.40 0.017
TO CPUE 0.0229 0.00851 2.68 0.0075
Year (1993) 0.528 0.0795 6.64 3.le-11
Year (1994) 0.423 0.0748 5.65 1.6e-8
Year (1995) 0.463 0.0753 6.15 8.0e-10
Year (1996) 0.460 0.0936 491 9.0e-7
Year (1997) 0.448 0.0761 5.89 3.7e-9
Year (1998) 0.432 0.0736 5.87 4.4e-9
Year (1999) 0.399 0.0766 5.21 1.9e-7
Year (2000) 0.657 0.0892 7.35 2.0e-13
TO:CPUE -0.000151 0.0000597 -2.53 0.011

Null Deviance: 2915.7 Degreesof Freedom: 2450
Residual Deviance: 2433.9 Degreesof Freedom: 2431
Estimated 6: 5.59 Standard Error: 0.24
AIC: 147735 Parameters. 14
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Table4.8

Analysis of deviance table of the reduced log-link negative binomialel of recapture time.
All predictors combined explain 481.76 of 2915.69 total deviance.

Predictor D.F. Deviance Residual D.F.  Residual Deviance P (>|Chi|)
Null 2450 2915.69

TO 1 287.10 2449 2628.59 2.1e-64
LO 1 94.91 2448 2533.68 2.0e-22
MO 1 3.42 2447 2530.26 0.06
TOCPUE 1 28.57 2446 2501.69 9.0e-8
Year 8 61.62 2438 2440.06 2.2e-10
TO:.CPUE 1 6.14 2437 2433.93 0.01
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Table of estimated parameter values and the resulting megenas times from fitting a
hypothetical residence time distribution to Poisson and negative iaihdistributions.R is the
mean of the hypothetical residence time distributidar; Ris the variance of the hypothetical
residence time distributiof.. is the maximum likelihood fitted mean and variance parameter of
the Poisson distributiorn and6 are the maximum likelihood fitted parameters of the negative
binomial distribution, whera is the mean parameter and variance is found#py/6. Var Fit is

the variance in each fitted distribution, aind Fit is the mean recapture time resulting from
applying the fitted variance and mean residence time to thei@gyuab. R/T is the ratio
between mean hypothetical residence time and mean predicted recapture time.

Poisson Negative Binomial
R 20.68 days 20.68 days
Var R 163.51 163.51
A 20.68 -
n - 20.68
0 - 3.61
Var Fit 20.68 139.15
T Fit 10.84 days 13.71 days
R/T 1.91 151
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Table4.10

Table of the results of the Age-Growth model. # Fish is the nuofoesh modeled; these fish
were tagged at locations where CPUE data is available irgitte year. R is the mean

residence time produced by the Age-Growth model for the fish igitle® yearT2a-bar is the

mean day of year of migration initiation produced by the Age-Gromddel in the given year.
cc is the catchability coefficient fitted by maximum likelihoaat ach year, and is the error

variance parameter fitted by maximum likelihood for each year.

Year #Fish R T2a cc c

1992 633 11.45 days 152.4 0.0107 1.23
1993 751 14.52 days 180.2 0.0095 0.69
1994 1177 14.37 days 168.6 0.0052 0.28
1995 692 15.21 days 170.1 0.0150 0.93
1996 389 15.46 days 171.4 0.0144 0.35
1997 291 23.52 days 184.7 0.0141 0.32
1998 1298 16.70 days 162.8 0.0114 3.12
1999 1129 14.96 days 167.5 0.0116 1.05

2000 1078 19.80 days 165.9 0.0346 5.89
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Yearly plots of the number of fish tagged by day of year arel ikilometer sampled for the
several hundred. Sampling distributions display regular, weekly patterns.
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Figure4.2
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several hundred.
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Figure4.3

Histogram of Recapture Time
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Histogram of observed recapture times for 2,451 fish for whidhl alata point is present.
Observed recapture time is defined as the number of days betaggengt {0) and in-river

recapture T1) for each fish. Distinct peaks are seen at 7, 14, 21, and 28 ddisting that

many fish were recaptured at locations with weekly sampling.
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Figure4.4

Poisson fit of Recapture Time
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Plot of the Poisson fit of observed recapture time. Mean and vanemaenetei. is equal to
10.34, the mean observed recapture time.
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Figure4.5
Negative Binomial fit of Recapture Time
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Plot of the negative binomial fit of observed recapture time. Nb@aameteq is equal to 10.34,
the mean observed recapture time; dispersion pararfetas fitted at 4.33 via maximum
likelihood function using the MASS library in the statistical computing languRge *
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AssessingBias in Recapture Time
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Depiction of the process of relating residence titie recapture time by representing potential
recapture time as a sawtooth curve. For an individual fish, resideneR = T0O:T2. Recapture
can occur at any date withR) producing potential recapture time varying from Rtdays. For
a population of fish with varying residence tini¢sthe mean recapture tinteis the average
height of the sawtooth curve.
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Figure4.7

Observed CPUE and Modeled CPUE
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Yearly plots showing observedPUE and modeledPUE produced by the Age-Growth model

for the years 1992-1995. Day of initiation of migratibPa is predicted for each fish using the
negative binomial generalized linear model of recapture timetlad..51 conversion factor.
ModeledT2aandTO are used to generate distributions of modeled number of fish in-river. These
distributions are then fitted to observe®UE via maximum likelihood fitting of catchability
coefficient and variance. Catchability coefficient and variameee estimated independently for
each year.
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Figure4.8
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Yearly plots showing observedPUE and modeledPUE produced by the Age-Growth model
for the years 1996-2000.
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Figure4.9
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Yearly plots showing observedPUE and distributions of modeleti2a produced by the Age-
Growth model for the years 1992-1995. Day of initiation of migrafidais predicted for each
fish by first using the negative binomial generalized lineadeh of recapture time and the 1.51
conversion factor to predict residence time. Predicted resd@me is then added to each fish’s
day of taggingr O to yield modeled 2a
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Figure4.10
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Yearly plots showing observedPUE and distributions of modeleti2a produced by the Age-
Growth model for the years 1992-1995.
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Chapter 5: Applying Migration Modelsto JuvenileLife History

5.1 Introduction

After the Mass-Growth and Age-Growth models of migration imndtrawere completed,
we applied these models with our other models to examine theligahistory of fall Chinook.
In particular, we examined fish that could be confidently labeleciter ocean-type or
reservoir-type. As described in Chapter 1 of this thesis, ocearfdilp€hinook are fish that
migrate to the ocean in the first summer after emergeHealy 1991); reservoir-type fall
Chinook arrest this seaward migration and overwinter in one of teevoes on the Snake or
Columbia Rivers, then resume migrating the following spring (Comtoal. 2005). The
mechanisms by which juvenile Chinook bifurcate into the ocean-typeeseavoir-type life
histories are unknown (Connor et al. 2005); to investigate what $aotay be involved in
determining which life history a fish follows, we used our model&xamine these fish and
identify differences in both modeled statistics and stati$tar® data. We also tested the fish
using our models of migration initiation to see if fish fell baclolwethe criterion for migration
initiation after entering Lower Granite Reservoir. Lastly, examine the results of these models
in the context of the motivating theory to draw conclusions about thegscolf migration
initiation in juvenile fall Chinook salmon and the role of reservairshe reservoir-type life

history.
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5.2 Modeling Fish Through Lower Granite Reservoir
5.2.1 Operation of the Model Complex

We combined our model of fish growth with our models of migrationaiin to create
a model complex to track the early life history of individual falinook through the Snake
River and Lower Granite Reservoir. We break down the migrationlindlistory timing of
juvenile Chinook salmon into distinct points in time and reachepage relevant to our models
and data (Figure 5.1). As discussed in section 2.2.1 of this theslweale the habitat of the
Snake River into two broad reaches separated by the confluence 8hake and Clearwater
Rivers. The ‘River’ reach stretches from Hell's Canyon Darthe confluence of the Snake and
Clearwater Rivers. All tagging occurs within this reach, andur modeling we assume that all
fish within this reach are non-migratory parr. The ‘Reserva@dch covers the Lower Granite
Reservoir and stretches from the confluence of the Snake amadw&ter Rivers to Lower
Granite Dam. We assume in our modeling that fish instantaneously enterettveiragach once
they begin to migrate. The critical points in time in our modetihgn individual fish are: TO,
the day a fish was tagged; T1, the day a fish is recaptutkih\he river reach; T2, the day the
fish initiates migration and transitions from the river react the reservoir reach; T3, the day a
fish passes Lower Granite Dam; and T4, recapture and detectidiheatdams downstream of
Lower Granite Dam (Figure 5.1).

The modeling process for an individual fish begins with the taggingptate TO and
mass at tagginlyl0. We then use our in-river growth model, described in section 2.2.2, to predict

the growth of the fish during its period of in-river residence. d&eote this period of modeled
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growth asG1 (Figure 5.2). The end of the period of in-river growth is determinedhb
initiation of migration, for which we have two estimat&&m from the Mass-Growth model and
T2afrom the Age-Growth model (Figure 5.3). At whichever T2 poinised for a particular
run, we model the fish as instantaneously leaving the Snake Riveatleaid entering the Lower
Granite Reservoir. We then model the growth of the fish in Ld@manite Reservoir using a
growth model described in this section. We denote the period of nlodsedevth in Lower
Granite Reservoir aS2.

To produce this model of the growth of individual fall Chinook in Lowear@e
Reservoir, we combined the growth model used in-river with a new nobadeinsumption rate
and the estimates of migration initiation date produced by theatidg initiation models. The
core of the growth model is the Wisconsin bioenergetics modelmpéeazed for Chinook
salmon by Stewart and Ibarra (1991). Section 2.2.2 of this thesigbaéssthe Wisconsin model
and the manner in which we used it in detail. To model the growtisif asing the Wisconsin
model, a number of inputs are required. Necessary inputs are tmegstiate and the starting
mass of the fish, the water temperature on each day for whastthgwill be modeled, an
estimate of the energy density of the fish's diet, and an estimate of cdiosurae.

Since we treat the transition from the free-flowing rivabibat to Lower Granite
Reservoir as instantaneous in our modeling, the starting day ofthgiowthe reservoir is
determined by the modeled day the fish initiates migration, gr [da We assessed the
performance of the Mass-Growth and Age-Growth models to detertmow different the
predictions of the two models are and if one model should be prefdyens@d over the other,
see section 5.2.2 for details. To get the fish’s starting mass epi@ning Lower Granite

Reservoir, we estimate the fish’s mass at the initiationigfation, which we denote &82. M2
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is generated using the in-river growth model; the growth model is run until day2, and the
final modeled mass on day. becomed2.

For temperature data, we used the daily mean temperaturdedaarthe scroll case at
Lower Granite Dam. As discussed in section 2.2.1 of this thesig #rerthree temperature
readings available from Lower Granite Dam; temperaturesemm@ded at the scroll case, the
forebay, and the tailrace. The scroll case reading is ggnéral coolest of the three readings,
the forebay the warmest, and the tailrace intermediate hettheetwo. The forebay reading
provides an estimate of the surface temperature in Lower &faegervoir, and the scroll case
temperature reading provides an estimate of the temperatdeptht However, it is not known
how closely the forebay-scroll case temperature differemgpresents the actual thermal
stratification of the reservoir. Most likely, the scroll caseperature reading represents a
mixture of water from above and below the thermocline; dam operatohthea flow rate of the
river likely influence the mixture ratio over time. Radio tragkof tagged fall Chinook salmon
indicates that outmigrating juveniles preferentially occupy mésliate temperatures in the
thermocline (Tiffan et al. 2009). Since it provides the closeSinate of the temperatures
available in the thermocline, we chose to assume in our modelinglitfiah in Lower Granite
Reservoir experience the temperature recorded at the screll Additionally, the scroll case
reading is the only reading available for every year modeledptkbay and tailrace readings
are only available from 1995 onwards.

For prey energy density, we used the same estimate us#te for-river growth model;
see section 2.2.3 of this thesis for details. For the fish's consunmatien we created a
multivariate linear model of consumption rate in Lower GraRigservoir using the records of

fish recaptured at Lower Granite Dam. This model is describeeétail below in section 5.2.3.
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These inputs allow the growth of fish within Lower Granite Reseneobe modeled, yielding

G2 (Figure 5.4).

5.2.2 Relative Performance of the Mass-Growth and Age-Growth Models

We created two different models to predict the initiation ofration in juvenile fall
Chinook salmon. The first model, described in Chapter 3 of this thesthe iMass-Growth
model of migration initiation. This model is a mechanistic modet #yaplies the theory
proposed by Thorpe et al. (1998) and Mangel and Satterthwaite (2008)pdeé proposes that
fish initiate migration when their mass exceeds a masshibick or their growth efficiency drops
below a growth efficiency threshold. The magnitude of these threshaklfitted independently
for each year of data using a maximum likelihood method.

The second model, described in Chapter 4 of this thesis, is the rdgghGmodel of
migration initiation. This model is a correlative model that predicts a fishapture time using a
multivariate linear model with tagging data as predictors. This recapnugadithen extrapolated
into a residence time using a theoretical relationship betwesm mecapture time and mean
residence time, and the modeled residence time is used to prquictezl date of migration
initiation.

These two models provide two independent estimates of date of iongratiation T2;
T2m predicted by the Mass-Growth model, anza predicted by the Age-Growth model. To
assess how congruent the predictions of these two models acepwared predicted2m and
T2afor a set of fish. We used the records of the 7,438 fish which wge@ in the process of
maximum likelihood fitting in both the Mass-Growth and Age-Growth nsdeor these fish,

we used the fitted parameters from the version of the MasstBrmadel with mass and growth
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efficiency driven leaving and a mass-varying catchabiligffi@ent to predicfT2m (see section
3.3.3). We also used the fitted parameters of the Age-Growth mopiddiztT2afor these fish
(see section 4.2.4). We then plotted predici@a against predicted2m and fitted a linear
model to the resulting distribution (Figure 5.5).

In the ideal case where both models perfectly predict theatioiti of migration, we
would expect modele@2aandT2m to be 100% correlated, with all points lying on the one-to-
one line. As neither model can perfectly predict migration, tisesegnificant deviation from the
one-to-one line; however, the linear regressio2d vs. T2m shows that the results of the two
models are still comparable. THeof the linear model fit is 0.565, meaning that the results of the
two models are 56.5% correlated. The slope of the linear modsldiB23; since this departs
from the expected slope of 1, this indicates differences in thebdisbnal properties of fitted
T2aandT2m. MeanT2aandT2m are very similar, as mean day of year of fitléthis 167.38,
while the mean day of year of fittd@mis 166.64. While the mean fittd®aandT2m are very
close, there is more variance in fitt€adm than in fittedT2a which results in the fitted slope of
the linear model being less than one. The variance of fitkeds 163.58, while the variance of
fitted T2mis 195.96.

While this comparison showed that the individual predictions of the twael® are fairly
comparable, we decided that the results are different enough to warrant indepeatiesis. For
this reason, in our modeling of juvenile Chinook through Lower Granite Rasewe create
two versions of each analysis; one version using the Age-Growth model tct pnegtiation, and

the other using the Mass-Growth model to predict migration.
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5.2.3 Modeling Growth in Lower Granite Reservoir
Fitting Reservoir Consumption Rate from Data

In order to model the growth of fish within Lower Granite Reservoir, iddai estimates
of consumption rate are necessary. To create a model capabtenatig consumption rates of
individual fish, we created a multivariate linear model regrgssionsumption rate in the
reservoir against T2, M2, tagging data and environmental data. Teefihbdel, we used the
records of fish for which a consumption rate in Lower Granite Resetould be individually
estimated. Estimating a fish's consumption rate in Lower @r&w@servoir required an estimate
of the fish's growth over a known period within the reservoir; redquognponents were the date
of entry into the reservoir and mass at entry, date of exit alefervoir and mass at exit, mean
energy density of the composite diet, and the temperature oédbevoir for the period between
reservoir entry and exit.

As we model the transition from the free-flowing habitat of hnake River to the
impounded reservoir habitat as instantaneous, date of entry to LoategdReservoir is given
by date of migration initiation T2. Since we have two models of atign initiation, we have
two separate estimates of day T2m from the Mass-Growth model ania from the Age-
Growth model. We conducted two independent analyses of consumption ratean Goamite
Reservoir; one using day2m as the day of entry to the reservoir, the other usingrday

Mass at entry to the reservoir is denoted as M2. As we havestivoates of day of entry
to the reservoir, each estimate of entry day is associatbdawientry masdvi2m for entry day
modeled by the Mass-Growth model di@a for entry day modeled by the Age-Growth model.
Each mass M2 is found by using the in-river growth model to mbaegtowth of individual

fish from the tag dayrO until the respective migration day T2. Section 2.2.2 of this thesis
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describes the in-river growth model in detail. The in-river ghomodel is not able to model all
fish with equal fidelity; some fish are recaptured in-river ancelan in-river capture dalyl and
capture masbi1. These fish have individually fitted in-river consumption rategjesribed in
section 2.2.3 of this thesis. Fish lackinglaandM1 data point have no individually fitted in-
river consumption, and an attempt to model in-river consumption rateumgscessful (see
section 3.2.1 of this thesis); so for these fish the mean fitted cptisnnrate was used in
previous models in Chapters 3 and 4. In order to avoid compounding modekstiting from
using mean in-river consumption to generate M2, then using this mdol#eto fit the in-
reservoir consumption model, we confined the fish used to fit thevodiseonsumption model
to only those fish with @1 andM1 data point and individually fitted in-river consumption.

Day of exit of Lower Granite Reservoir is given by daypatsage of Lower Granite
Dam. This comes directly from PIT data; we denote the dishais detected passing Lower
Granite Dam as day3. Some of these fish are recaptured and measured as thelyopass
Granite Dam; for these fish, mass at pas$dgas known. As described in section 5.2.1 of this
thesis, the temperature data we use for Lower Granite Reseomes from the scroll case
temperature record at Lower Granite Dam. We used the sammatesof prey energy density
used for the in-river growth model (section 2.2.3), 5400 joules per graoe &l of these data
are present, start daydm or T23), start massM2m or M2a), end dayT3, end massvi3,
temperature and prey energy density, the Wisconsin model is aissdirnate a consumption
rate in Lower Granite Reservoir. As consumption rate is an ioghetWisconsin Bioenergetics
Model, we solve for consumption rate using an iterative method. Tesimptien rates are
submitted to the model and modeled final meSsis compared to known final mak&3 until a

suitable match is found.
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Only a small percentage of all fish tagged were recapturedveer Granite Dam, and
only a small percentage of these were also recaptured m-Aitetal of 136 individual fish had
all required data; as the sampling schedule at Lower @réxai varied by year, these fish are
confined to the years 1992-1995. For these fish, the two-decimal consumgigotihat most
closely predicted the known mass at Lower Granite Ddf was selected as the fish’s
individual consumption rate. Some fish could not be satisfactorilg fitieh a consumption rate;
the number of fish varied depending on which migration model waktosgredict T2 and the
resulting M2. When the Mass-Growth Model was used, a total disB6could not be fitted,
resulting in a total of 110 fish with a fitted consumption ratdld®.1 provides a summary of
the fitted consumption rates using the Mass-Growth model prediesedvoir entry. When the
Age-Growth Model was used, a total of 2 fish could not be fittedjtneg in a total of 134 fish
with a fitted consumption rate. Table 5.2 provides a summary ofittkd tonsumption rates
using Age-Growth model predicted reservoir entry.

Fish that could not be satisfactorily fitted with a consumption watee all tagged in
1994; the fish could not be fitted because observed growth was largerotiidnbe matched
with the Wisconsin model. While the theoretical maximum consumpdienis equal to one, the
Wisconsin model can fit consumption rates larger than one; however, quimupeaks at two,
and if a consumption rate of two does not match observed growth, thesoalditnot be found.
Previous researchers have found that bioenergetics model resultsit nadjpormally high
consumption rates due to underestimation of diet energy density (Laeck&randt 1993,
Stockwell et al. 1999). These researchers showed that salmonidapatage of reducing the
water content of daphnid prey, meaning that field estimates of @nergy density can

significantly underestimate the energy density of prey witha salmon stomach if the diet



158

consists in large part of daphnia. We already considered this pkanomwhen fitting
consumption rates within the in-river portion of the Snake River &ab@sulting in our estimate
of a high prey energy density of 5400 joules per gram (section 2m2@yler to confine fitted
consumption rates below the theoretical maximum. The consumptiorfitegesvithin Lower
Granite Reservoir used the same prey energy density, butecegulsignificantly higher fitted
consumption rates than those fitted in-river, and a number of fislcdbbt not be fitted with a
consumption rate high enough to match growth. A diet shift to a more dalpéavy diet when
fish enter the impounded water of the reservoir could be responsibdeidancrease in fitted
consumption rates. It is also possible that the temperature reeowssevin our model is not
accurately capturing the thermal experience of the fish; gnsergh the scroll case reading is the
coolest of the three temperature readings available at L®namite Dam, we do not think it
represents the coolest water available in Lower Granite WeseFish could potentially be
occupying colder water than predicted in our model, which would be amtimal for growth;
this may especially be the case in 1994, which has the highedtddansumption rates, the most

number of fish that could not be fitted, and also the warmest scroll case tengseratur

Multivariate Linear Models of Fitted Reservoir Consumption Rate

Once individually fitted consumption rates were identified for addefish, we then
created a multivariate linear model of in-reservoir consumptiten g regressing these fitted
consumption rates against tagging and environmental data. Since wivbasegparate models
of migration initiation and two different sets of estimatedeservoir consumption rates, two
models of in-reservoir consumption rate were created. For cfassference, we denote the

reservoir consumption rate model created using Mass-Growth prediagpdtion as the
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‘MGRC’ model, and the reservoir consumption rate model created usingAgyeth predicted
migration as the ‘AGRC’ model. Both models regressed fitteteservoir consumption rate
against:TO andMO- tag date and mass at taggifi@; RKM- the river kilometer of taggingfO
CPUE- the CPUE at the tag location on the tag de@ieTemp- the temperature in the Snake
River (Anatone gauge) on the tag date; and three estimatesnpétature in Lower Granite
Reservoir. Squared terms were included for CPUE, river temperanaeall three estimates of
reservoir temperature. Each model also included as predictorthadlM2 predicted by the
relevant migration initiation model;2m andM2m for the MGRC model and@2a andM2a for
the AGRC model. Interaction terms were included betwé&eandMO and between the relevant
T2 and M2 in each model. The three estimates of reservoir temngevatre found by averaging
temperature at the scroll case of Lower Granite Dam foeréifit lengths of time following each
fish’s individually predicted migration day T2. The first estiematas the mean temperature on
day T2. The second estimate was the mean temperature fanstheeek after day T2, and the
third was the mean temperature for the first month after daydide 5.3 provides a summary
of the parameter estimates and significance for the versitredtill MGRC model. Table 5.6
provides a summary of parameter estimates and significance for th&RICAnodel.

A parsimonious reduced model was then generated from each of weesdltmodels
via sequential deletion. The least explanatory predictor was eshfoym the model if removal
did not increase the AIC score of the model by more than 2, thenatiel was re-fitted and the
new least explanatory predictor examined. Once removal of #s &xplanatory predictor
would increase the AIC of the model by more than 2, we detedntiva a parsimonious model
had been reached. The parameters removed from the full MGRC nmvedel in sequence:

reservoir temperature 2,0 CPUE, CPUE squared term, reservoir temperature 3 squaned ter
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TO RKM, T2m:M2m interaction termT2m, TO:MO interaction termMO, reservoir temperature

2 squared term, river temperature, arid Tables 5.4 and 5.5 provide a summary of parameter
estimates and significance and ANOVA tables of the reduced ®1@Rdel. The parameters
removed from the full AGRC model were, in sequent2aM?2a interaction termT0 RKM,
TO:MO interaction term, CPUE squared term, reservoir temperatuiigd 3_PUE, reservoir
temperature 1, reservoir temperature 1 squared téonT2a and MO. Tables 5.7 and 5.8
provide a summary of parameter estimates and significamteANOVA tables of the reduced
AGRC model.

The reduced models for both the MGRC and AGRC versions of the reservoir
consumption rate model were successful at describing fittedvoseonsumption rate. Many of
the predictors tested were not contributing very much to explainingiecgt®n rate, resulting
in the full models having no significant predictors despite haviagomable Rvalues. The
reduced models eliminate the deadweight predictors, resulting fevi@r parameters than the
full models, with all remaining parameter estimates sigmifily different from zero. The
resulting AIC scores of the reduced models are better tharréispiective full models, and most
of the R value of the full models is retained. As the reservoir consumpties uaed for the two
models were fitted separately using the different migratiodels to predict reservoir entry, the
results of the two models are not directly comparable, but taktive success at predicting
consumption rate can be examined. While both the reduced MGRC modéheameduced
AGRC model have decenfRcores, the AGRC model is better at predicting consumption rates
fitted using Age-Growth migration than the MGRC model is atigteng consumption rates
fitted using Mass-Growth migration. This is illustrated by tifference in R, the reduced

MGRC model has an3of 0.405, while the reduced AGRC model has amf0.597, meaning
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that the AGRC model explains almost 20% more of the variation inuogetgn rate. We
decided that both models were successful enough to use in furthgisinabdeling the growth
of fish in Lower Granite Reservoir. As described in section 5.2.1, e¢hesfitted parameters of
the reduced MGRC and AGRC models to predict consumption rates of indliftsfuan Lower
Granite Reservoir, which then enables the growth model to predisittgin Lower Granite
Reservoir. For an analysis predicting reservoir entry usinyldes-Growth model, consumption
rates are estimated using the reduced MGRC model; for anphgslicting reservoir entry using

the Age-Growth model, consumption rates are estimated using the reduced AGRC mode

5.3 Differences Between Ocean-Type and Reservoir-Type Chinook

Once we had completed a model complex capable of modelimggdiwth and migration
of juvenile salmon from the rearing habitat in the free-flonimgke River into Lower Granite
Reservoir, we applied this model complex to investigate the diifesebetween the life history
strategies employed by Snake River fall Chinook. Currently, tfferdnt juvenile life histories
are observed in fall Chinook, labeled as ‘ocean-type’ (NMFS 1992)rasdrvoir-type’ life
histories. Ocean-type Chinook salmon juveniles rear for only a fenths after emergence from
the gravel and migrate in their first summer as age-0 smidksl€y 1991). Reservoir-type
juveniles initiate migration in late summer or early fdtelthe ocean-type fish and leave the
natal rearing habitat, but then arrest migration and overwimtene of the reservoirs along the
Snake or Columbia Rivers (Connor et al. 2005). These fish resumetianigearly in the
following spring and enter the ocean as age-1 smolts (Connor et al. 2885gservoir-type life

history is thought to have emerged very recently; reservoirfglp€hinook were first described
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in 2002 (Connor et al. 2002), and prior to the discovery of the reservoitHiygastory it was
thought that all Snake River fall Chinook were ocean-type (NMFS 1992).

While researchers familiar with Snake River Chinook salmon havaelatesi that habitat
modification resulting from damming and impounding the river is ulgaesponsible for the
emergence of the reservoir-type life history (Connor e2@02 & 2005, Williams et al. 2008),
the proximate mechanisms by which individual salmon arrest thigiratton are unknown.
Previous studies of salmon migration have speculated that growth oppoatochithreshold size
or mass inform the migratory tactic that juvenile salmon(likerpe et al. 1998, Brannon et al.
2004, Mangel and Satterthwaite 2008); we applied these principles ordation of our models
of salmon migration, expanding them to include growth efficiency. gual is to apply our
models of salmon growth and migration initiation to juvenile Chinook df bf# history types
to identify and quantify plausible mechanisms that could resultl@ctgs of one life history

strategy or the other by individual fish.

5.3.1 Identifying Ocean-Type and Reservoir-Type Fish

The first step in examining the different life history sigaés observed in Snake River
fall Chinook was to identify a set of individual fish as eithezayetype or reservoir-type using
the PIT tag dataset. PIT tag detectors are located inutleaije bypass systems at the dams on
the Snake and Columbia Rivers (Marvin and Nighbor 2009). Outmigratingijefall Chinook
from the Snake River pass a total of eight dams on their wédnetodean: Lower Granite Dam,
Little Goose Dam, Lower Monumental Dam, and Ice Harbor Dam orStiake River, then
McNary Dam, John Day Dam, The Dalles Dam, and Bonneville Dartih@rColumbia River.

PIT tag detectors are located at all of these dams eXtepbDalles Dam (Marvin and Nighbor
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2009). Detection efficiency is not the same at each dam, as tligucation of the bypass
system and detectors is different at each dam; additionlaflyoperation of the bypass systems
varied by dam and by year. Consequently, the distribution of recdetedtions in the PIT tag
dataset varies by dam and by year (Table 5.9). Individual Gsldde detected at multiple
locations during their migration, and date of first and last detecti each location a fish was
detected at is recorded in the PIT tag dataset.

To assign a life history strategy to individual fish, we @éatriteria using the location
and date information from these detection histories. For the agparife history, we assumed
that any fish detected at a dam in the Columbia River priorpteSwer I of the year in which
it was tagged was an ocean-type juvenile. These criteriecagyre some reservoir-type fish as
well, as it is possible that some fish overwinter in resenairghe Columbia; however, this is
the best assumption we can make given the data available. The DulgtBttion site actually in
the ocean is the estuary towed array, and too few fish are etbtegtthis array to enable a
guantitative analysis (Table 5.9). Additionally, the majority ahfithat were known to be
reservoir-type overwintered in Lower Granite Reservoir ord.i@bose Reservoir on the Snake
River (Connor, personal comm.). For the reservoir-type life histweyassumed that any fish
detected at any juvenile bypass location between JantlamdlJune %L of the year after it was
tagged was a reservoir-type juvenile. We used only the detedtésnlgcated in the juvenile
bypass systems to avoid confounding the data with returning minijackktionally, the PIT
dataset is likely unable to capture some reservoir-type fishe giecjuvenile bypass systems are
dewatered during winter, and therefore any fish passing a dangdha winter months will not

be detected (Connor et al. 2005).
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To expand the amount of data for this analysis, we included both presuidefll
Chinook captured by beach seine by Connor in the years 1992-2000 aedrBogyhatchery
fall Chinook released into the Snake River by Connor in the years 1995, 1@979@8. Of a
total of 31,531 tagged fish which were detected at least once Wylihdetection array, the
records of 6,890 fish met the criteria for the ocean-typéigtry, and the records of 1,725 fish
met the criteria for the reservoir-type life history. Agle fish met the criteria for both life
histories; the record of this fish was excluded from further aealyresulting in a total of 6,889
ocean-type and 1,724 reservoir-type fish. A subset of these fislselasted using only the
presumed wild fall Chinook captured and tagged by Connor for use in satyses; this set of

fish totaled 728 confirmed ocean-type fish and 374 confirmed reservoir-type fish.

5.3.2 Observed Differencesin Modeled Statistics

Once sets of ocean-type and reservoir-type fish were fideintiwve compared the
properties of the data and model predictions for the two setshoffew of both the confirmed
ocean-type and confirmed reservoir-type fish aar T3 points from data, but all fish hadra
andMO data point; mass and date of tagging. In-river growth was nwé®ieall fish using the
in-river growth model described in section 2.2.2; the few fish whichehadandM1 data point
used an individually fitted in-river consumption rate for in-river gtgwvhile the remainder of
the fish used the mean fitted consumption rate of 0.56. Migration imitidatesT2m andT2a
were predicted for all fish using the Mass-Growth and Age-@rawodels. The yearly fitted
parameters found for the Mass, Growth, & Catchability version oiMdes-Growth model were
used forT2m predictions (see Table 3.7 for values). Mass at migrdl@m and M2a was

predicted for all fish using the in-river growth model and the ptedi dates of migration
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initiation. Consumption rate in the reservoir was predicted fdisal using both the MGRC and
AGRC consumption rate models (Tables 5.4, 5.7); the MGRC model corresgdondMass-
Growth predicted migration and the AGRC model corresponding to Agetlrpredicted
migration.

Statistically significant differences were found betweeeaoetype fish and reservoir-
type fish in every statistic tested (Table 5.10). Reservoirdighe on average, are tagged later
than ocean-type fish at a smaller size than ocean-typeRieservoir-type fish are also modeled
to initiate migration later than ocean-type fish at a smallee than ocean-type fish by both the
Mass-Growth model and the Age-Growth model. However, regardfetbe anigration model
used, reservoir-type fish are predicted to have a higher consumptooncd they enter Lower
Granite Reservoir than ocean-type fish.

There was concern that comparing the overall means of the-tbgeaand reservoir-type
distributions was inappropriate, because significant year effaetsobserved in all of the
statistics examined, and the distribution of fish in each lifeotyiscategory is not even across
years (Table 5.11). To confirm if the trends observed in the overall dataset hejedanydasis,
yearly subsets of the data was examined for the years wlggiéicant numbers of both life
history types are known : 1995, 1997, and 1998. Tables 5.12, 5.13, and 5.14 present the results of
the comparisons for these years. While observed differencég0jnM2m, and M2a are
considerably smaller in 1995, in all other respects, the patterssrvalol in the overall

distributions hold in all three yearly comparisons.
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5.3.3 Modeling the Cessation of Migration in Lower Granite Reservoir

The mechanisms informing the cessation of migration in resemmerjuvenile fall
Chinook are currently unknown; we used our models of migration to adithissgap in our
knowledge of salmon life history. In chapter 3 of this thesis, werdeed the mechanistic model
of migration we created: the Mass-Growth model. This model speeaihd fits threshold criteria
in fish mass or growth efficiency that must be met to trigggration; here, we postulate that a
reversal of these criteria once a fish is migrating neault in a cessation of migration. The mass
threshold is not a likely candidate for triggering this behavidijemthe Wisconsin model can
predict a negative energy balance at high water temperatvgedgcided that it was unrealistic
to model a fish losing enough mass to significantly compromiseatrogrsuccess. The theory
informing fish mass as a criterion for migration postulates ldvgler size confers increased
survivability to migrants by reducing vulnerability to gape-leditpredators and increasing the
fish’s swimming speed (Thorpe et al. 1998). While fish under dtarvaonditions may lose
muscle mass and lipid reserves, they do not shrink in overall seaping that there is no
theoretical justification for predicting cessation of migrastemming from a loss of body mass.
The growth efficiency threshold, however, can potentially explain ttessaf migration. The
theory informing the growth efficiency threshold postulates$ ¢ginawth efficiency provides an
estimate of the benefit a fish is receiving from its curhatftitat; if the benefit drops below some
threshold level, then the fish is forced to initiate migration néigas of how close to the
threshold mass it is. Critically, in our models, the growth efficy fish experience can change
as a fish changes habitats. In particular, the temperatureeaegid fish’s consumption rates are
modeled to change as fish transition from the free-flowing re&the Snake River into Lower

Granite Reservoir. In the summer when fall Chinook are reannthe Snake River, water
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temperatures gradually increase to very high levels; in our satied forces fish to migrate by
driving growth efficiency below th&crit threshold. However, Lower Granite Reservoir receives
cold water input from the Clearwater River, which is amplifiedsummer by coldwater flow
releases from Dworshak Dam (Anderson 2000); this cold waterstgeisto Lower Granite
Reservoir creating a stratified water column (Cook et al. 20@0@&nTet al. 2009). Fish migrating
into Lower Granite Reservoir have access to this cooler watdchwcan improve growth
efficiency (see Figures 2.8, 2.9). If a fish is forced toatgtimigration due to falling below the
Gcrit threshold while its mass is still below the mass threshold, l#ten enters a habitat in
which its growth efficiency increases back above@st threshold, we postulate that the fish
will arrest migration to take advantage of the growth opportunity omgjfation criteria are met
again.

To test this hypothesis, we applied the Mass-Growth model and aiel of growth in
Lower Granite Reservoir to the records of fish with a confirtifechistory. The Mass-Growth
model predicts the initial migration from the rearing habitdividually for each fish; migration
initiation begins when a fish grows larger than the mass thekghw@ss >Mcrit) or when its
growth efficiency drops below the growth efficiency threshgld\th efficiency <Gcrit). Since
we assume that fish larger than the mass threshold will noksbnly fish that left via th&crit
threshold in the Mass-Growth leaving function are eligible tosam@gration upon entry to
Lower Granite Reservoir. Based on our theory for cessation ahtiug, we would expect that
reservoir-type fish would display a higher likelihood of leaving duthédGcerit threshold than
ocean-type fish, and we also expect the growth efficiencyseirveir-type fish that left by the
Gcrit threshold to be more likely to rise back above the threshold faatiwg after reservoir

entry.
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We used the Mass-Growth model to predi2in for 6,889 confirmed ocean-type fish and
1,724 confirmed reservoir-type fish and recorded the threshold ésatted in migration
initiation for each fish. Of the 6,889 ocean-type fish, 2,549 initiatedatnmogn due to growth
efficiency dropping below the threshold, while 4,340 initiated mignalby growing larger than
the mass threshold. Of the 1,724 reservoir-type fish, 860 initiatechtioigrdue to the growth
efficiency threshold, while 864 initiated migration due to the mass threshold. S ablerovides
a contingency table of life history type and migration threshtt& Pearson’s test of
independence indicates that a significantly larger percentagese@ivoir-type fish are modeled
to initiate migration via th&crit threshold.

For the 2,549 ocean-type and 860 reservoir-type fish that iditratgration due to the
Gcerit threshold, we then modeled their growth after entering Lo@emite Reservoir to
examine whether each fish’s modeled growth efficiency rose back #te&erit threshold. For
each fish, growth was modeled and growth efficiency recorded fdirsheveek after reservoir
entry dayT2m; if modeled growth efficiency rose above the growth efficiethegsholdGerit
(values of fittedGcrit vary by year, see table 3.7) for any day during this peredfish was
modeled to arrest migration. Of 2,549 ocean-type fish, 1,798, or 70.5%, areechtmlelrrest
migration due to growth efficiency rising abo@erit after entering Lower Granite Reservoir. Of
860 reservoir-type fish, 689, or 80%, are modeled to arrest migratiore bal8 provides a
contingency table of life history and proportion of fish arrestamgcontinuing migration;
Pearson’s test of independence indicates that reservoir-typedig significantly more likely to
be modeled to arrest migration.

Reservoir-type fish displayed a higher proportion of fish whichabeil migration via

Gerit and a higher proportion of fish modeled to arrest migration aftierieg Lower Granite
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reservoir than ocean-type fish; in both cases, the differemc@soportions are statistically
significant. However, significant numbers of confirmed ocean-tyge dre modeled to arrest
migration as well. The data confirms that these fish did neseamigration in Lower Granite
Reservoir for the duration of the summer, since they were detatt@ams on the Columbia
River prior to the end of their first summer. It is possible that thekebfiefly arrested migration
after entering Lower Granite Reservoir, but quickly grew the mass threshold for migration
and renewed migration. To examine this possibility, we used gerva@r growth model to
model growth of both ocean-type and reservoir-type fish predictedrést anigration and
recorded the number of days required to reach the mass thresholdnamd migration. The
1,796 ocean-type fish modeled to arrest migration took 5.8 days on at@m@g@sv to the mass
threshold for migration; the 689 reservoir-type fish took 7.4 days on avekagéelch two-
sample T-Test of the distributions of growth times betweenmstygee and reservoir-type fish
returned a T statistic of -11.3 with a P value less than 0.001, imdjcduat the difference in
means is very statistically significant. This means thaaondype fish are modeled to renew
migration more quickly than reservoir-type fish after arrestimgration in Lower Granite
Reservaoir.

Since these comparisons were conducted with a sample of fish that wesehatustery-
spawned, it was decided to conduct the same tests on the subHet of only wild-reared fish.
For each fish, three different model outcomes were possibleyFadfish could be modeled to
initiate migration via theMcrit threshold (mass ®crit); this means the fish is not eligible to
arrest migration and is modeled to be ocean-type. Secondly) adigd initiate migration via
the Gerit threshold (growth efficiency &crit), but not be modeled to arrest migration after

reservoir entry (growth efficiency staysGerit); this also results in a modeled ocean-type life
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history as the fish is not modeled to arrest migration. Thetastible model outcome is when a
fish initiates migration via thé&crit threshold and is then modeled to arrest migration after
entering Lower Granite Reservoir; this outcome is a modeleerveir-type life history. The
model complex was used to predict migration initiation and gro¥én eeservoir entry for the
728 confirmed ocean-type and 374 confirmed reservoir-type wild figiuré=i5.7 displays the
resulting life histories predicted by the model complex. Ovettadl results were similar to those
from the larger dataset including hatchery fish; majoriesh of both life history types were
correctly modeled to follow the right life history. Of 728 confidnecean-type fish, 425
migrated byMcrit, and 72 migrated b¢crit but did not arrest migration, resulting in 497 fish
correctly modeled to be ocean-type. 231 ocean-type fish were mauelk@dest migration,
incorrectly modeled to be reservoir-type. Of 374 confirmedrvegetype wild fish, 88 migrated
by Mcrit and 16 migrated by Gcrit but were not modeled to amégtation, resulting in 104 fish
incorrectly modeled to be ocean-type. 270 known reservoir-type isb worrectly modeled to
arrest migration. Overall, 68% of known ocean-type fish and 72kh@f/in reservoir-type fish

were modeled to follow the correct life history.

5.4 Conclusions

Our modeling exercises identified statistically significdiffierences between ocean-type
and reservoir type fish, and these differences are in the idirecsuggested by the theory
informing our models. Fewer reservoir-type fish are modeled to dmoger than the mass
threshold for migration initiation in-river (Table 5.15), more resertype fish are modeled to
arrest migration after entering Lower Granite Reservoir @ &Hl6), and reservoir-type fish take

longer to reach the mass threshold for migration initiation afteysting migration. However,
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while all of these differences are statistically sigmaifit, they are not extremely clear-cut. Based
on our theory for migration initiation, we would expect ocean-typk fo reach the mass
threshold for migration during the rearing period, meaning that theg ho reason to arrest
migration even if their growth efficiency improves after emgriower Granite Reservoir. Two
thirds of the ocean-type fish fall into this category, but a tthirels not, and a significant number
of the remaining third are modeled to arrest migration, contamyhat we expect based on
theory. Similarly perplexing, a significant portion of the confirnmedervoir-type fish do fall
into this category, and will never be modeled to arrest mogrdy our models despite the fact
that we know from data these fish did arrest migration. Thesardisp between theory and
portions of the model predictions could simply be the result of imgtesfes in our modeling;
the statistics produced for the reservoir comparisons are the ofsal complex of models
tracking in-river growth, consumption rate, migration initiation, conwgrish length and mass,
etc. None of these models are perfect; a number of assumptions and singpigiesgre made in
the construction of each one, and it would not be surprising if the adelittvewere responsible
for at least some of the disparity between theory and results.

Another possibility is that some of these reservoir-type figliy are reaching the mass
threshold for migration, but are not initiating migration becaugetitming is off. Previous
research into salmon migration has postulated that certain penedsportant to successful
migration (Scheuerell et al. 2009, Spence and Hall 2010); the tlcabfeamework proposed by
Thorpe et al. (1998) and expanded upon by Mangle and Satterthwaite (200@)thexpl
incorporates this idea by defining the ‘decision window’ when an iddalidecides whether to
migrate and the actual initiation of migration as distinchfoin time. Our modeling has shown

that the reservoir-type fish tend to proceed on a later tirmedsdte than ocean-type fish;
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reservoir-type fish are tagged later (presumably indicatingr lamergence), they initiate
migration later, they grow more slowly resulting in smalleésmat migration (Table 5.10), and
they take longer to reach the migration mass threshold once iasthioir. It is possible that a
period analogous to the decision window exists for fall Chinook salnmah,reservoir-type
salmon do not renew migration after reaching the threshold neassise the decision window
has already passed by the time they reach it. This speculatsupported by empirical evidence
of the size of reservoir-type migrants. Reservoir-type fishucagtwhile migrating in the spring
are much larger than ocean-type migrants; ocean-type smolsgadet39 mm fork length,
while reservoir-type smolts averaged 222 mm (Connor et al. 2005). fisteswave clearly been
much larger than the ocean-type migrants for a significant anobdimhe, as it is assumed that
they do not grow very much during the winter months. The fact that diteyhot renew
migration until the spring despite this size difference ind&cdbat more than just a mass
threshold is required for migration initiation, and the consistenngjrdifference in their early

life history suggests that correct timing of reaching the bioenerteéisholds is important.

5.4.1 The Ecology of Initiation of Migration in Fall Chinook Salmon

Previous research has broadly indicated that bioenergetic fagtohsding growth
opportunity and growth rate, are the primary determinants of lifergign salmonids, and that
temperature plays a central role by impacting these bioerefgetors (Brannon et al. 2004).
Additional previous work has identified relationships between thast®rs and salmonid life
history at various scales (Hutchings and Jones 1998, Metcalfe 199%rivick et al. 1998,
Morinville and Rasumssen 2003), such as the model of Chinook life hstated by Jager et

al. (1997), in which timing of smoltification is triggered by accusted degree-days- a proxy
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for growth that incorporates temperature. The next steps t duithis research are to identify
physiological mechanisms that quantify how environmental factodsbamiogical processes
interact to result in behavior, and how behavior and habitat combinsuib irea particular life
history strategy (Mangel and Satterthwaite 2008). The primary gdaikditaster’'s research was
to do this specifically for Snake River fall Chinook salmon; toatgeand parameterize a
mechanistic model of migration initiation in fall Chinook and use thisdel to explore
differences between the ocean-type and reservoir-type life history.

Starting with goals similar to our research, Thorpe et al. (19@&ed growth
opportunity to life history via a quantitative theoretical framdwnocorporating bioenergetics in
a model to predict salmon migration. We applied parts of this theory as thédasassmigration
threshold of the Mass-Growth Model. This mass threshold represenpsdaparedness of a fish
to undertake and survive migration to the ocean (Thorpe et al. 1998, Madg8h#erthwaite
2008). Theoretical justifications for this threshold process invollanbimg the relative benefits
of staying in a freshwater environment versus a marine environnfelg taking into account
the cost of and risk of mortality during the migration event; iteis a sort of extension and
physiological representation of a fithess maximization mode&r{df and Gilliam 1984, Thorpe
et al. 1998). For salmon, the ocean environment offers much greatehgpportunity than the
freshwater environment, meaning that earlier migration to thanoweall yield benefits in the
form of faster lifetime growth (Quinn 2005). However, migratioremgergetically costly, and
exposure to size-selective predators during migration andoggan entry means that larger size
at migration confers significant survival benefits (Anderson .e2@D5, Duffy and Beauchamp
2008, Weitkamp et al. 2011). Thus, the mass threshold for migration represguaint of

optimal fitness where the tradeoffs of migrating at a smalless are balanced with the benefits
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of reaching the ocean earlier; as a genetic threshold, thmabpselection of the threshold
magnitude occurs via evolutionary processes (Thorpe et al. 1998)kely to the operation of
this mass threshold is that it is a process that operatem hie physiology of individual fish,
thus the fish needs no outside source of information to act on the tlr¢Shotpe et al. 1998,
Mangel and Satterthwaite 2008). In our modeling, the fitted values ohalss threshold ranged
from around 7 grams to more than 11 grams (Table 3.7); this eqoataughly 80-100 mm fork
length. The theory motivating this threshold suggests that figierlghan these fitted sizes
should be prepared to initiate migration and smoltification. Howeherfits span a fairly wide
range; since these values are the independent fits of diffexarg of data, they perhaps indicate
phenotypic plasticity in the mass threshold responding to yearlgtioar in environmental
conditions. Previous research has also hypothesized that signglasttity exists in Chinook
life history traits (Williams et al. 2008). Field data andpresearch supports the values of the
mass threshold we fitted in our modeling. Lower Granite Dam ifirgtdocation outside of the
rearing habitat where juvenile fall Chinook are recaptured eametasured (i.e., it is the earliest
measure of the size of fall Chinook after initiating migratian)the PIT dataset used in our
modeling, the minimum fork length of fall Chinook recaptured at Lo@eanite Dam was 71
mm; however, of 1,156 fish recaptured, just 12 were smaller than 100 rkrergth, and the
average fork length was 140 mm. Spring Chinook juveniles typically be@mtive migrants
between 80-120 mm fork length (Bjornn 1971). Additionally, a prior modehlbtChinook life
history estimated a minimum size for smoltification of 70 mm (Jager £99¥).

However, as discussed in Chapter 3 of this thesis, the mass tbredbioé was not
sufficient to explain migration initiation in juvenile fall Chinook. Vegpanded upon the theory

of Thorpe et al. to add a second bioenergetic process that carme imtigration: growth
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efficiency. This process operates in the reverse of the timranderpinnings for the mass
threshold; mass is treated as a requirement for successfudtiongrwhere surpassing the
threshold indicates that a fish is biologically prepared to imitnaigration. Growth efficiency,
we propose, acts as an indicator of the favorability of the cuemntonment to the fish, and
dropping below a certain threshold indicates that the environment is ingcton hostile- the
fish must initiate migration regardless of its bioenergetieparedness. In particular, since
growth efficiency is a bioenergetic process that is strorggwysitive to the high water
temperatures that are stressful to Chinook salmon (see Fdireour research demonstrates
that it can be used as an individually-based trigger to allowtdishvoid these unfavorable
conditions. Previous work supports the theoretical basis for this pré&e&gaph et al. (2009)
demonstrated in the laboratory that increasing temperatullemavice movement behavior in
Chinook salmon, and several field studies have shown that in the wild, gnaamdl adult
Chinook salmon behaviorally avoid high water temperatures (Sau&r 2001, Goniea et al.
2006, Tiffan et al. 2009). The growth efficiency thresholds fitted inribet successful version
of the Mass-Growth model (the Mass, Growth & Catchability eajsare quite consistent; with
the exception of 1994 and 1996, the fitted coefficients are around 0.Balskee3.7). Since each
year of data was fitted independently, the consistency of thssedicates the suitability of a
growth efficiency process for describing migration initiatibhe magnitude of the resulting fits
also bears some scrutiny; for consumption rates ranging from @5 tohe intersection with
growth efficiency of 0.3 occurs at water temperatures betd@emd 19 degrees Celsius (Figure
5.6). As the mean fitted in-river consumption rate is 0.56, this mhanghe average fish in our
model will be predicted to initiate migration via the growth aéincy threshold when

temperatures exceed about 18 degrees Celsius (varying)shigiénding on the exact growth
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efficiency threshold fitted in a given year and the individualzss). The theory informing the
growth efficiency threshold indicates that this means that, for an &/Bshgwater temperatures
above about 18 degrees begin to become too stressful, and the growth oppavailable too
low, to justify continued occupation of the current habitat. Empiricalemce from field studies
supports this conclusion. Connor et al. observed that juvenile fall Chinoek offshore and
become inaccessible to beach seine when river temperatxcesded 18 degrees Celsius
(Connor et al. 2002); presumably, these fish were initiating tograAdditionally, Tiffan et al.
(2009) found that juvenile Chinook behaviorally selected temperatures I6BR0 degrees
Celsius when in Lower Granite Reservoir. While the upper end ofeimperature range is near
or somewhat over the threshold we fitted in our modeling, Tiffan.etlsd found that fish
tended to increase their rate of downstream movement when thepeeeigying the upper end
of this temperature range, as our modeling proposes.

In combination, the mass and growth efficiency thresholds parameterizedmodeling
and the theory informing these thresholds reveal some patternsdictpd migration initiation
of fall Chinook salmon. Firstly, the two processes for migratiatiatiron produce different
patterns in predicted migration. The mass threshold of the MassttGnomwdel predicts
migration in a diffuse, gradual pattern spread out over the reseiagpn (Figures 3.11, 3.12).
This pattern arises due to individual differences in emergence ataggrowth rate, with
individuals that emerge earlier or grow more rapidly reachinghteshold sooner, and vice
versa. This result is fairly natural, and agrees with the thafopyior researchers. Brannon et al.
proposed that much of the variation in salmon life history arises @wartation in growth
opportunity; this was represented mechanistically via a masshtildeby Thorpe et al. (1998)

and quantified by this research with the mass threshold in the-Glasvth model. However,
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The work of Brannon et al. and Thorpe et al. generally refensnestales of a year or more,
wherein faster or slower growth results in migration in ahezgrear or a later year; in contrast,
our modeling shows the same pattern, but on a much shorter timestatearsingle rearing
season. This difference between how prior researchers appliecafisetimeshold and how we
apply it is important, as the within-season timing of when fesdicln the mass threshold has
consequences for Snake River fall Chinook due to the temperaturesrefthe rearing habitat.
These consequences are made clear by the second migraticiomitieocess in the Mass-
Growth model- the growth efficiency process. The growth efficigmogess shows markedly
different patterns in the migration initiation predicted by theded (Figures 3.11, 3.12). While
the mass process predicts gradual, diffuse migration initiationgribweth efficiency process
predicts that almost all individuals initiate migration in a Engondensed group over a short
period of just a few days. The fits of observed CPUE data indibatethis pulse of growth-
efficiency driven migration occurs at the end of the reariaga® driving all remaining fish out
of the rearing habitat; the theory motivating the threshold indidhi@ this point is when the
river habitat has become too hostile to remain in due to rismgeaeatures. Thus, in the context
of both processes operating simultaneously, the emergence timingoavtti gaite of individual
fish has important consequences with regard to which process wilhtéty result in migration.

If a fish emerges too late or grows too slowly, it will be hleao reach the mass threshold
before the growth efficiency threshold kicks in; these fish mightmioeh smaller than the

desired size for migration, but they have no choice other than to leave the reatiag habi
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5.4.2 The Reservoir-Type Life History and Reservoirs as Thermal Refuges

The recent emergence of the reservoir-type life history ienie fall Chinook in the
Snake River is not yet completely understood, and it is importantofgeppmanagement and
recovery of the Snake River population to gain a better understarfdimoyvoand why this life
history tactic operates (Connor et al. 2005, Williams 2008). Our modetongs towards this
goal;, we proposed, quantified, and tested individually-based, physiologeehamsms to
explore juvenile fall Chinook life history by applying theory ameintls identified by other
researchers. Prior research outlines some general conceptsyftine reservoir-type life history
has emerged. In general, it is thought that changes in the twhitlge fall Chinook rearing
season has resulted in a desynchronization of salmon preparedness to migratepgrdghata
seasonal period to undergo migration (Williams et al. 2008). Dam uwotstr denied fall
Chinook access to their historical spawning grounds; salmon in trenthabitat emerge from
the gravel later, grow more slowly, and initiate migrationrldtean before the dams were
constructed (Krcma and Raleigh 1970, Connor et al. 2002, Connor and Burge 208®). The
changes, along with slower juvenile migration through reservoir hadstatpposed to free-
flowing habitat, have resulted in later passage of migrating jwevdnil Chinook salmon;
currently, the majority of migrants pass Lower Granite Danuip Connor et al. 2002, Smith et
al. 2003), about a month later than historically (Mains and Smith 19643eTdways in the
timing of the juvenile life history have potentially severe conseces as it is thought that the
timing of arrival to the ocean is very important to survival (Scheduet al. 2009, Spence and
Hall 2010), and migration during peak summer temperatures in August \@xpose juveniles
to very stressful conditions throughout the Columbia and Snake Rivers (Sauter et ali2a01,

et al. 2003). Williams et al. (2008) proposed that the reservoir-tigodnibtory is likely to be
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adopted by fish which have their timing and growth schedule delayedketpadint that this
synchronization is no longer likely. Our modeling of ocean-type asefhveir-type fall Chinook
juveniles supports the hypothesis proposed by Williams et al. We fthatd on average,
juveniles that followed a reservoir-type life history had been tatgged and at smaller sizes
than ocean-type juveniles, and our models of migration initiation peedibat reservoir-type
juveniles initiate migration later on average as well (Tabl&®, 5.12, 5.13, 5.14). Additionally,
our modeling supports the hypothesis that fish that end up followingeevo@stype life history
are not ready to migrate during their first summer. Our Massvth model proposes that the
mass threshold indicates preparedness to migrate; when we estahtine ocean-type and
reservoir-type fish were initiating migration, we found that @jamty of ocean-type fish had
surpassed the mass threshold for migration; in contrast, a magbtite reservoir-type fish did
not surpass the mass threshold for migration, and were instead foricgtiate migration due to
unfavorable environmental conditions- the growth efficiency threshold (Figure 5.7).

Habitat conditions in the reservoir provide the other half of theveisdype life history
puzzle. Previous research has identified reservoirs and the tdorperegimes in them as
important thermal refuges during the summer months (Sauter2&tCdl, Tiffan et al. 2009). Our
modeling provides physiologically-based, mechanistic explanationsvligr these behaviors
occur. Water temperatures within the free-flowing portion ofSheke River upstream of the
confluence with the Clearwater River are fairly homogenous (Aodeet al. 2000); meaning
that when river temperatures rise above about 18 degrees CelsiuglassiGrowth model
predicts that juvenile Chinook throughout the rearing habitat are a#ddo initiate migration
via the growth efficiency process. In the absence of any hédiatable for growth downstream

of the rearing habitat, our model would predict that all fish wouldimea migration to the
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ocean at this point, regardless of whether or not they had grown taagethe mass threshold.
However, Lower Granite Reservoir receives significant input of wabér from the Clearwater
River, supplemented by flow releases from Dworshak Dam on tlev@ieer River (Cook et al.
2006). This significantly cooler water generally remains below Iffegs Celsius year-round;
peak summer temperatures do reach up to 19 degrees in some yemrsoodlhivater input
partially mixes with warm Snake River water, but significdr@rmal stratification is observed
within the impounded areas of Lower Granite Reservoir (Cook et ab, A0flan et al. 2009).
Critically, radio tagging observations of juvenile fall Chinook have shdvat individuals
preferentially occupy cooler water in the thermocline aroundebfees, and avoid the warmest
water at the surface in Lower Granite Reservoir (Tiffamle2009). This means that, in the
context of our Mass-Growth model, fish that were forced to imitiigration within the rearing
habitat by unfavorable temperatures can find favorable temperadfters entering Lower
Granite Reservoir, resulting in modeled cessation of migratidnaareservoir-type life history.
In essence, our model quantifies a mechanism for why Lower t&rRaservoir and other
reservoirs with thermally stratified water columns provide gefufor juvenile salmon that are
not yet prepared to migrate, enabling the reservoir-type life history.

While we have represented migration as a simple on/off switabur modeling for
simplicity and ease of parameter estimation, the truth isatleaintinuum of migratory behavior
and life history strategies exists in salmonids. Previous thkasynoted the existence and
importance of this continuum in the context of researching and nmgnagimonids (Thorpe et
al. 1998, Mangel and Satterthwaite 2008). Previous research on Colbagiasalmon has
demonstrated this continuum; Connor et al. (2003) identified four distigratary phases in

juvenile fall Chinook, incorporating periods of continuous and discontinuous mategping
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Chinook commonly undertake partial migration into mainstem rivegsaar prior to the onset of
the smolting migration (Bjornn 1971). This continuum of behavior appliesse&rvoir-type fall
Chinook salmon; while we model these fish as arresting migraticeryvoestype juveniles still
disperse downstream discontinuously throughout fall and winter. Fewexiataon the passage
rates of fall Chinook during these periods, as PIT tag detectistersyg in the Snake and
Columbia Rivers are operated irregularly during the fall andatered completely during the
winter (Marsh et al. 2004); however, what data exists showsdohat fish do pass dams during
fall and winter (Connor et al. 2004). Thus, migration may not be aieiplsuppressed in
reservoir-type individuals, or the fish may merely be dispersing dosam as passive particles.
Our modeling does not implicitly capture this detail in its aurferm; however, an extension
incorporating spatially-explicit movement rules or a hydrodynamodel could test the
discontinuous downstream movement of reservoir-type fish. Though ourlingodees not
incorporate it, seasonal and timing considerations are very important to andergtthe totality
of the reservoir-type life history in fall Chinook salmon. A secoorhplication of the reservoir-
type life history that our modeling does not capture is the suppredsmwigration after arresting
it in the reservoir. Reservoir-type fish continue to grow rapildtough the summer and fall, and
at migration the following spring they are much larger than retgae smolts (Connor et al.
2005). Clearly these fish surpassed the mass threshold for miggati@time the previous year,
but they did not renew migration and reach the ocean until sprirgulfimate reasons for the
timing of ocean entry are clear; survival is highest duringossasshen ocean conditions are
most favorable (Schuerell et al. 2009, Petrosky and Schaller 2010, Sgathddall 2010),
however, an individually-based mechanism is necessary to represerRRrevious research has

identified photoperiod as a potential mechanism individuals could usemt® liehavioral
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switches (McNamara et al. 2011), and previous models of salmorhisfery have used
photoperiod to time migration initiation (Thorpe et al. 1998). An extensia@uioMass-Growth
migration initiation model could incorporate a photoperiod based switchhtbit migration

after a certain point, which would capture why reservoir-type jugerdb not renew migration

even though they may surpass the mass threshold for migration by late sumatdier or f

5.4.3 Management Implications

The impounded water of the reservoir and the cool-water input fromréteases from
Dworshak Dam are both critical to creating the stratifiadewcolumn that provides juvenile fall
Chinook a thermal refuge from high summer temperatures. While ihe@me variability by
year and individual, our modeling predicts that temperatures very abhale 19 to 20 degrees
Celsius will likely force all juvenile Chinook to initiate majron, even if they are not
physiologically prepared to migrate. Summer temperaturdgisnhake River already reach well
above this level, but in many years peak Clearwater River tatopes also approach this level.
If managers of the Columbia River hydropower system wish to enladlcontinued existence of
the reservoir-type life history, then our models suggest thaaat some pool of water below
about 18 degrees Celsius must be maintained within Lower GRestervoir or other reservoirs
for the duration of the summer. If the thermal refuge fails, oodehwould predict that fish
occupying it would be forced to renew migration. To prevent thigroeace will require careful
management of water resources within the Snake River Basinistlespecially important in
light of predicted climate changes in the Pacific Northwest (Schindétr 2008).

Enabling the reservoir-type life history in juvenile fall Chinomlay be desirable for

several reasons. Firstly, our models and the theory behind thggestuthat fish that are
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initiating migration via the growth efficiency threshold are woing so because they are
bioenergetically prepared to migrate, but to escape adverskedocditions. If there were no
thermal refuges and these fish were forced to complete thenamigration as subyearlings,
they would likely experience high mortality from a number of sour€gstly, fish migrating in
late summer would be exposed to maximum summer temperatuoeghbut the Snake and
Columbia Rivers and would incur significant thermal stress ($atal. 2001, Smith et al.
2003); the work of Tiffan et al. (2003) demonstrates how much thestreds fish can be
exposed to in a homothermic reservoir. Secondly, these fish woulg bkeéxposed to severe
predation mortality during their migration due to their smafieme than fish that initiated
migration due to the mass threshold and due to warm temperatureesetijiat favor salmon
predators (Vigg et al. 1991, Petersen and Kitchell 2001). Laséigethsh would be reaching the
ocean at a non-ideal time in very late summer or fall, and wikaly Isuffer severe mortality in
the ocean (Duffy and Beauchamp 2008, Petrosky and Schaller 2010, Spencel &2@iL®{a
Weitkamp et al. 2011). In addition to this, recent research has deateddtinat reservoir-type
juveniles have a high smolt-to-adult return ratio and potentially hififftmess than ocean-type
juveniles (Williams 2008, Marsh et al. 2010). In light of the threadestatus of Snake River fall
Chinook, managers may wish to support the reservoir-type life hibjorgaintaining thermal
refuges during the summer, as lack of thermal refuges could dJema¥e consequences for

reservoir-type juveniles.
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5.5 Chapter 5 Tables
Table5.1

Table of individually fitted consumption rates resulting Mass-Grawthilel predicted reservoir
entry. Year is the year in which the fish were tagged; # Fish is the numitgr of €ach year for
which all necessary data was present and a consumption rate lgther Granite Reservoir
could be individually fitted. The mean and variance of the resultitey fconsumption rates is
presented for each year.

Y ear # Fish Mean Fitted P Variancein Fitted P
1992 2 0.77 0.016

1993 29 0.90 0.020

1994 8 1.13 0.17

1995 71 0.90 0.035
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Tableb.2

Table of individually fitted consumption rates resulting Age-Growtideh predicted reservoir
entry. Year is the year in which the fish were tagged; # Fish is the numiisr iof each year for
which all necessary data was present and a consumption rate lgther Granite Reservoir

could be individually fitted. The mean and variance of the resultitey fconsumption rates is
presented for each year.

Y ear # Fish Mean Fitted P Variancein Fitted P
1992 2 0.80 0.026

1993 29 0.97 0.038

1994 30 1.40 0.099

1995 71 0.94 0.052
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Tableb.3

Summary of the full MGRC model, the multivariate linear modetamsumption rate in Lower
Granite Reservoir using Mass-Growth modeled migrafiéns the day a fish was tagged0 is

the fish’s mass on the tag day in grami@m is the modeled day a fish initiates migration
predicted by the Mass-Growth model, ad@m is the fish’s modeled mass predicted by the
Wisconsin bioenergetics model on d&§m. TO CPUE is the CPUE at the tag site on the tag
date, CPUE”2 is a squared term of CPUE,Temp is the daily mean temperature of the Snake
River on the tag date, and Temp”2 is a squared term of tempef@ufemp 1, 2, and 3 are
indices of temperature in Lower Granite Reservbd.Temp 1 is the daily mean temperature of
the scroll case reading at Lower Granite Dam onTday. T2 Temp 2 is the mean temperature
for the first week after day2m. T2 Temp 3 is the mean temperature for the first month after day
T2m. Squared terms for all three temperature indices are inclideldO and T2m:M2m are
interaction terms. No parameter estimates are significantly@ifférom zero at the 0.05 level.

Predictor Estimate Std. Error T Statistic P
Y-Intercept -1.231 3.555 -0.346 0.730
TO -0.00135 0.00462 -0.292 0.771
MO -0.367 0.472 -0.777 0.439
T2m 0.00151 0.00465 0.324 0.747
M2m 0.150 0.307 0.487 0.627
TO RKM -0.000383 0.000522 -0.733 0.466
TO CPUE 0.00190 0.00738 0.255 0.800
CPUE"2 -0.000120 0.000322 -0.373 0.710
TO Temp 0.243 0.180 1.350 0.180
Temp”2 -0.00958 0.00682 -1.405 0.163
T2 Templ -0.500 0.333 -0.157 0.875
T2 Templ”2 0.0162 0.0115 0.253 0.801
T2 Temp2 -0.0669 0.426 0.854 0.395
T2 Temp2/2 0.00350 0.0138 -0.622 0.535
T2 Temp3 0.289 0.338 -1.503 0.136
T2 Temp3"2 -0.00640 0.0103 1.409 0.162
TO:MO 0.0000286 0.0000370 0.773 0.442
T2m:M2m -0.0000143 0.0000244 -0.583 0.561

r’ 0.458 Adjustedr* 0.358

AlIC: -379.7 Parameters. 18
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Table5.4

Summary of the reduced MGRC model, the multivariate linear mafdebnsumption rate in
Lower Granite Reservoir using Mass-Growth modeled migratititm is the fish’'s modeled
mass predicted by the Wisconsin bioenergetics model ot 2layTO Temp”2 is the daily mean
temperature in the Snake River on the day the fish was taggededdquaTemp 1 and 3 are
indices of temperature in Lower Granite Reservb2.Temp 1 is the daily mean temperature of
the scroll case reading at Lower Granite Dam onTday. T2 Temp 3 is the mean temperature
for the first month after day2m. The squared term far2 Temp 1 was retained. All parameter
estimates are significantly different from zero at the 0.05 level.

Predictor Estimate Std. Error T Statistic P
Y-Intercept 4.475 1.073 4.169 6.4e-5
M2m -0.0246 0.00724 -3.403 0.00095
TO Temp”2 -0.00108 0.000446 -2.428 0.017

T2 Templ -0.627 0.0171 5.095 1.6e-6
T2 Templ”2 0.0210 0.137 -4.569 1.4e-5

T2 Temp3 0.0870 0.00451 4.662 9.3e-6

r% 0.405 Adjustedr® 0.376
AIC: -3935 Parameters. 6
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Tableb.5

ANOVA Table of the reduced MGRC model, the multivariate lineadeh of consumption rate
in Lower Granite Reservoir using Mass-Growth modeled migrakitdm is the fish’s modeled
mass predicted by the Wisconsin bioenergetics model ot 2layTO Temp”2 is the daily mean
temperature in the Snake River on the day the fish was taggededdquaTemp 1 and 3 are
indices of temperature in Lower Granite Reservb2.Temp 1 is the daily mean temperature of
the scroll case reading at Lower Granite Dam onTday. T2 Temp 3 is the mean temperature
for the first month after day2m. The squared term far2 Temp 1 was retained. The F-statistics
of T2 Temp 1 andl2 Temp 3 are significant at the 0.05 level; all other predictagsnat
statistically significant. All predictors combined explain 1.8734@61 total variance in the
response variable, fitted consumption rate.

Predictor D.F. SS Mean SS F P

M2m 1 0.0146 0.0146 0.549 0.46

TO Temp”2 1 0.00063 0.00063 0.0237 0.88
T2Temp 1 1 1.273 1.273 48.017 3.6e-10
T2 Temp 12 1 0.00905 0.00905 0.341 0.56
T2 Temp 3 1 0.576 0.576 21.739 9.3e-6
Error 104 2.757 0.0265

Total 109 4,631
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Table5.6

Summary of the full AGRC model, the multivariate linear modetafsumption rate in Lower
Granite Reservoir using Age-Growth modeled migratidghis the day a fish was taggéd( is

the fish’s mass on the tag day in gram2a is the modeled day a fish initiates migration
predicted by the Mass-Growth model, aM@a is the fish’'s modeled mass predicted by the
Wisconsin bioenergetics model on dé3a TO CPUE is the CPUE at the tag site on the tag date,
CPUE”2 is a squared term of CPUE), Temp is the daily mean temperature of the Snake River
on the tag date, and Temp”2 is a squared term of tempefB2ufemp 1, 2, and 3 are indices of
temperature in Lower Granite Reservd@i2 Temp 1 is the daily mean temperature of the scroll
case reading at Lower Granite Dam on di@g T2 Temp 2 is the mean temperature for the first
week after daylf2a T2 Temp 3 is the mean temperature for the first month afterT@ay
Squared terms for all three temperature indices are inclu@ed0 andT2aM?2a are interaction

terms. No parameter estimates are significantly different fromatethe 0.05 level.

Predictor Estimate Std. Error T Statistic P

Y-Intercept 3.192 4.852 0.658 0.51

TO -0.0181 0.0142 -1.278 0.20

MO -0.0870 0.734 -0.119 0.91

T2a 0.0182 0.0142 1.276 0.20

M2a -0.0418 0.469 -0.089 0.93

TO RKM 0.0000655 0.000612 0.107 0.91

TO CPUE 0.00516 0.00864 0.597 0.55

CPUE"2 -0.000127 0.000386 -0.328 0.74

TO Temp 0.372 0.219 1.700 0.092

Temp”2 -0.0151 0.00815 -1.848 0.067

T2 Templ -0.172 0.279 -0.617 0.54

T2 Templ”2 0.00639 0.00943 0.678 0.50

T2 Temp2 -0.431 0.371 -1.163 0.25

T2 Temp2/2 0.0131 0.0115 1.141 0.26

T2 Temp3 -0.205 0.542 -0.378 0.71

T2 Temp3"2 0.0105 0.0158 0.667 0.51

TO:MO 0.0000103 0.0000579 0.178 0.86

T2aM2a -0.00000059 0.0000368 -0.016 0.99
r> 0.624 Adjustedr* 0.568

AlIC: -404.3

Parameters. 18
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Tableb.7

Summary of the reduced AGRC model, the multivariate linear hmideonsumption rate in
Lower Granite Reservoir using Age-Growth modeled migrafib?a is the fish’s modeled mass
predicted by the Wisconsin bioenergetics model on @ag TO Temp is the daily mean
temperature in the Snake River on the day the fish was taggélcemp”2 is the squared term.
T2 Temp 2 and 3 are indices of temperature in Lower Gramgefoir.T2 Temp 2 is the mean
temperature of the scroll case reading at Lower Granite foathe first week after day2a T2
Temp 3 is the mean temperature for the first month aftef@dayThe squared term far2 Temp

2 was retained; the base term fi2 Temp 3 was dropped and only the squared term was
retained. All parameter estimates except the interceptaermignificantly different from zero at
the 0.05 level.

Predictor Estimate Std. Error T Statistic P
Y-Intercept 3.738 2.358 1.585 0.11

M2a -0.0380 0.00678 -5.608 1.3e-7
TO Temp 0.420 0.193 2.173 0.032

TO Temp”2 -0.0170 0.00727 -2.334 0.021
T2 Temp2 -0.800 0.270 -2.961 0.0037
T2 Temp2/2 0.0248 0.00826 3.007 0.0032
T2 Temp3"2 0.00476 0.000808 5.885 3.4e-8

r% 0.597 Adjustedr% 0578
AlIC: -417.2 Parameters. 7
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Tableb.8

ANOVA Table of the reduced AGRC model, the multivariate lineadeh of consumption rate
in Lower Granite Reservoir using Age-Growth modeled migratidda is the fish’s modeled
mass predicted by the Wisconsin bioenergetics model om23ayr0 Temp is the daily mean
temperature in the Snake River on the day the fish was taggélcemp”2 is the squared term.
T2 Temp 2 and 3 are indices of temperature in Lower Gramgefoir.T2 Temp 2 is the mean
temperature of the scroll case reading at Lower Granite foathe first week after day2a T2
Temp 3 is the mean temperature for the first month aftef@dayThe squared term far2 Temp

2 was retained; the base term fi2 Temp 3 was dropped and only the squared term was
retained. The F-statistics of all predictors exCEpfTemp”2 are significant at the 0.05 level. All
predictors combined explain 7.466 of 12.499 total variance in the responableafitted
consumption rate.

Predictor D.F. SS Mean SS F P

M2a 1 1.389 1.389 34.50 3.6e-8

TO Temp 1 0.200 0.200 4.97 0.028

TO Temp”2 1 0.127 0.127 3.15 0.078

T2 Temp 2 1 4.096 4.096 101.73 < 2.2e-16
T2Temp272 1 0.260 0.260 6.45 0.012

T2 Temp 32 1 1.395 1.395 34.64 3.4e-8
Error 125 5.033 0.0403

Total 131 12.499
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Table5.9

Distribution of detections of wild juvenile fall Chinook by dam andyiear. Total Detected =
total number of fish detected in that year; numbers of detectiadhg &arious locations are not
additive since fish can be detected at more than one location. LGD = Lowsate®am, LGS =
Little Goose Dam, LMN = Lower Monumental Dam, IHA = Ice Blar Dam, MCN = McNary
Dam, JDA = John Day Dam, BON = Bonneville Dam, Traps = SnakeCéalwater River
juvenile traps.

Year Total Detected LGD LGS LMN IHA MCN JDA BON Traps

1992 68 39 20 0 0 9 0 0 1
1993 393 270 68 54 0 40 0 0 3
1994 340 202 60 64 0 52 5 0 1
1995 3479 2097 1344 1303 0 946 31 11 0
1996 203 145 76 45 0 27 2 1 0
1997 223 135 106 47 0 32 2 2 0
1998 1024 571 631 295 0 217 75 19 1
1999 1062 608 544 364 0 142 73 40 0
2000 507 336 269 145 2 142 31 11 1

Total 7299 4403 3118 2317 2 1607 219 84 7
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Table5.10

Table of overall mean values from data and modeled statisti&889 confirmed ocean-type
fish and 1,724 confirmed reservoir-type fish. The mean values of &atbtic tested are
presented for both ocean-type and reservoir-type categorie€lch \two-sample T-Test was
performed between the distributions from the two life historysype each statisticCO andMO

are day of year of tagging and mass at tagglizgn andT2a are the day of year of migration
initiation predicted individually by the Mass-Growth model and the @Ggaath model
respectivelyM2m andM?2a are the mass at migration initiation predicted by the in-gvewth
model, and MGRCP and AGRCP are the consumption rates in Lower Granite Reservoir
predicted individually by the MGRC and AGRC consumption rate models.

Statistic Ocean Type Reservoir Type T-Statistic P

# Fish 6,889 1,724 - -

TO 158.9 166.4 -27.2 <2.2e-16
MO 7.39¢ 52749 32.9 <2.2e-16
T2m 163.6 176.0 -46.6 <2.2e-16
T2a 171.9 179.4 -33.1 < 2.2e-16
M2m 8.70 g 731¢g 24.9 <2.2e-16
M 2a 11.19¢ 8.13 g 40.8 < 2.2e-16
MGRC P 0.88 1.07 -38.0 <2.2e-16

AGRC P 0.99 1.17 -29.6 < 2.2e-16
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Table5.11

Table of the number of confirmed ocean-type and reservoir-type fish in eaaf geda.

Y ear # Ocean TypeFish # Reservoir TypeFish

1993 9 111

1995 975 167

1997 1163 863

1999 211 0
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Table5.12

Table of mean values for the year 1995 from data and modelestissator 975 confirmed
ocean-type fish and 167 confirmed reservoir-type fish tagged in 1995n&ae values of each
statistic tested are presented for both ocean-type and redgpaicategories; a Welch two-
sample T-Test was performed between the distributions frotwihdife history types for each
statistic.TO andMO are day of year of tagging and mass at taggi2g) andT2a are the day of
year of migration initiation predicted individually by the Mas®@th model and the Age-
Growth model respectivelyy12m andM2a are the mass at migration initiation predicted by the
in-river growth model, and MGR@ and AGRCP are the consumption rates in Lower Granite
Reservoir predicted individually by the MGRC and AGRC consumption rate models.

Statistic Ocean Type Reservoir Type T-Statistic P

# Fish 975 167 - -

TO 157.1 161.2 -7.0 3.2e-11
MO 452 ¢ 4429 0.77 0.45
T2m 169.3 172.5 -6.4 6.2e-10
T2a 171.7 175.4 -7.4 2.7e-12
M2m 7249 6.92 g 3.0 0.0025
M2a 7.909g 7.639 1.9 0.065
MGRC P 0.94 0.98 -5.3 2.7e-7

AGRC P 1.04 1.13 -1.4 3.3e-12
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Table5.13

Table of mean values for the year 1997 from data and modelestistator 1,163 confirmed
ocean-type fish and 863 confirmed reservoir-type fish tagged in 19@7m&hn values of each
statistic tested are presented for both ocean-type and redgpaicategories; a Welch two-
sample T-Test was performed between the distributions frotwihdife history types for each
statistic.TO andMO are day of year of tagging and mass at taggi2g) andT2a are the day of
year of migration initiation predicted individually by the Mas®@th model and the Age-
Growth model respectivelyy12m andM2a are the mass at migration initiation predicted by the
in-river growth model, and MGR@ and AGRCP are the consumption rates in Lower Granite
Reservoir predicted individually by the MGRC and AGRC consumption rate models.

Statistic Ocean Type Reservoir Type T-Statistic P

# Fish 1,163 863 - -

TO 164.1 167.5 -12.6 <2.2e-16
MO 7.209 5309 18.7 <2.2e-16
T2m 169.9 179.6 -26.7 <2.2e-16
T2a 175.9 180.3 -18.3 < 2.2e-16
M2m 8.70 g 7.79 ¢ 14.8 <2.2e-16
M2a 10.50 g 8.10 g 20.7 < 2.2e-16
MGRC P 0.93 1.08 -24.0 <2.2e-16

AGRC P 1.01 1.11 -14.4 < 2.2e-16
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Table5.14

Table of mean values for the year 1998 from data and modelestistator 4,384 confirmed
ocean-type fish and 403 confirmed reservoir-type fish tagged in 1988n€hn values of each
statistic tested are presented for both ocean-type and redgpaicategories; a Welch two-
sample T-Test was performed between the distributions frotwihdife history types for each
statistic.TO andMO are day of year of tagging and mass at taggi2g) andT2a are the day of
year of migration initiation predicted individually by the Mas®@th model and the Age-
Growth model respectivelyy12m andM2a are the mass at migration initiation predicted by the
in-river growth model, and MGR@ and AGRCP are the consumption rates in Lower Granite
Reservoir predicted individually by the MGRC and AGRC consumption rate models.

Statistic Ocean Type Reservoir Type T-Statistic P

# Fish 4,384 403 - -

TO 158.9 168.3 -26.6 <2.2e-16
MO 8.21¢ 570 g 20.8 <2.2e-16
T2m 160.4 169.6 -29.4 <2.2e-16
T2a 171.4 180.4 -31.1 < 2.2e-16
M2m 8.86 g 6.16 g 21.7 <2.2e-16
M 2a 12.19¢ 8.46 ¢ 26.0 < 2.2e-16
MGRC P 0.86 0.98 -31.3 <2.2e-16

AGRC P 0.98 1.30 -31.3 < 2.2e-16
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Tableb.15

Contingency table of life history type and the threshold of the {@ass/th model that resulted

in migration initiation datd2m. Of 6,889 ocean-type fish, 4340 initiated migration due to mass
growing larger tharMcrit, while 2,549 initiated migration due to growth efficiency dropping
below Gcrit. Of 1,724 reservoir-type fish, 864 initiated migration due to maswigg larger
than Mcrit, while 860 initiated migration due to growth efficiency droppintpWweGcrit. The
Pearson’sy® test of independence is highly significant, indicating that lifgohny affects the
proportion of fish initiating migration by the two processes.

Ocean-Type Reservoir-Type Total
Mcrit 4340 864 5204
Gerit 2549 860 3409
Total 6889 1724 8613

v 95.16 P: < 2.2e-16
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Tableb.16

Contingency table of life history type and the number of fish whiehewnodeled to arrest
migration or continue migrating. Of 2,549 ocean-type fish which tedianigration via th&crit
threshold and could arrest migration if their growth efficiency twsck abové&crit, 1,798 were
modeled to arrest migration, while 751 were modeled to continue mgyr&f 860 reservoir-
type fish which initiated migration via th@crit threshold and could arrest migration if their
growth efficiency rose back abo@erit, 689 were modeled to arrest migration, while 171 were
modeled to continue migrating. . The Pearsgfi'sest of independence is highly significant,
indicating that life history affects the proportion of fish which are modeled¢stanigration.

Ocean-Type Reservoir-Type Total
Arrested Migration 1798 689 2487
Continued Migration 751 171 922
Total 2549 860 3409

v 29.4 P: 5.8e-8
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5.6 Chapter 5 Figures

Figure5.1
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A diagrammatic depiction of the Snake River hahigd¢vant to our modelin The direction of
water flow and seaward migration of juvenile Chikde indicated with arrows. The poir
important to our modeling are labeled; the SnakeeRhabitat is broken into the ‘River’ a

‘Reservoir’ reaches, and the critical points ingiffi0-T4 indicate where in the habitat each e\
occurs.
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Figure5.2
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A diagrammatic depiction of our model ot-river growth. Tagging data for an individual fi
and environmental data are input into the Wiscomsodel, which produces modeled grov
within the ‘River’ reach of the Snake Riv
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Figure5.3

Modeling Migration Initiation
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A diagrammatic depiction of our models of migratiaitiation. The Mas-Growth model uses
mechanistic process to predict day of migratiotiation T2m from modeled growth and grow
efficiency. The Agesrowth model uses a correlative model to predigtafamigration initiation
T2ausing tagging and environmental d
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Figure5.4
Modeling Reservoir Growth
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A diagrammatic depiction of the process of modelgrgwth in Lower Granite Reservo
Environmental data from the gervoir and a starting time and mass generated &itimer the
Mass-Growth or Agésrowth models are used as inputs to the Wiscongerigrgetics Mode
which predicts growth. Environmental data in thsergoir includes temperature data from
scroll cae reading at Lower Granite Dam and prey energgitle



204

Figure5.5
Comparing Migration Model Results
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Comparison of the day of year of modelegh predicted by the Age-Growth model and modeled
T2m predicted by the Mass-Growth model for a set of 7,438 fish. Théoeoee line is shown
dashed. The solid line is the least-squares fitted linear mazidting from regressing modeled
T2aagainst modeled2m.
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Figure5.6
Critical Growth Efficiency and Temperature
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Plot of growth efficiency vs. temperature for multiple posstdasumption rates (P). Growth
efficiency of zero is the light dotted line; growth efficiency of 0.3 is the dartkedbkne.
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Figure5.7

Combined Model Test: Identifying Life History
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Plot of the life history outcomes predicted by the Mass-Grawbdel complex for 728 known
ocean-type fish and 374 known reservoir-type fish. Three different mmdebmes were
possible: fish that migrated by thdcrit threshold were modeled as ocean-type; fish that
migrated by thescrit threshold but did not arrest migration were also modeled as bgesn-
fish that migrated by th&crit threshold and were modeled to arrest migration were modeled as
reservoir-type. The fish in each known life history type thete modeled to follow the wrong

life history are labeled as misspecified.
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