Multifaceted Criteria used in Determining Acceptance of Survival Compliance Studies at Federally Operated Dams in the Columbia/Snake River

R L. Townsend, J. R. Skalski

M. A. Weiland, G. R. Ploskey, C. M. Woodley

G. Johnson, T. J. Carlson

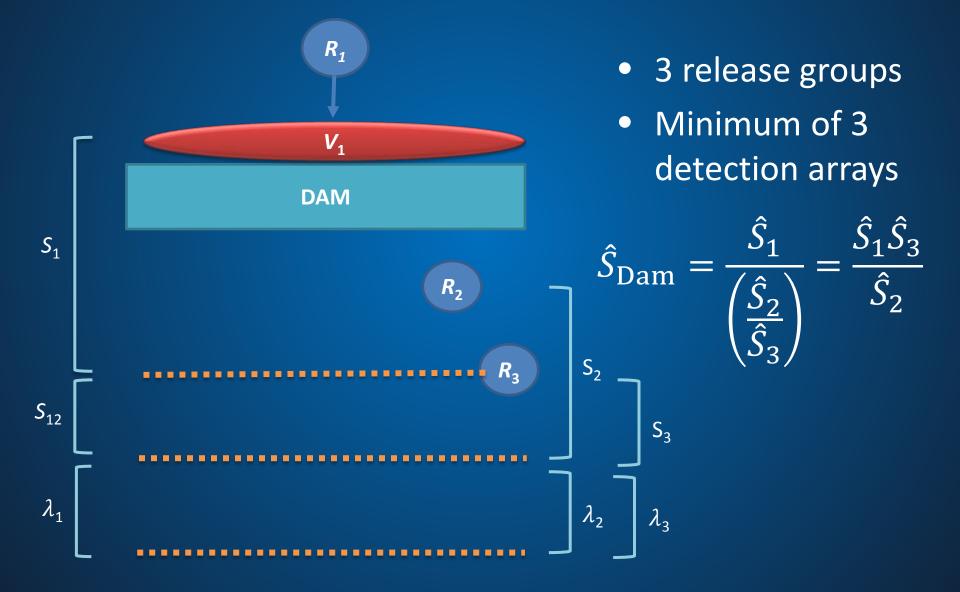
M. B. Eppard

Objective

Describe the various criteria used to assure:

- Accuracy
- Precision
- Representativeness
- Robustness

of acoustic-tagged juvenile salmonid studies in the FCRPS.


2008 BiOp

Stipulates survival standards for outmigrating juvenile salmonids

 Dam Passage survival = survival from dam face to tailrace mixing zone (≈1-2 km downstream)

 Triple release of acoustic-tagged smolts used to isolate survival to zone of inference

Virtual/Paired-Release Design

1. Three fish stocks

Survival Standard

```
Spring migrants: Yearling Chinook salmon

Steelhead

Suppose migrants: Subversling Chinook salmon

≥96%

>02%
```

Summer migrants: Subyearling Chinook salmon ≥ 293%

2. Precision

Standard error $(\hat{S}_{Dam}) \leq 1.5\%$

3. Replication

- 2 years per fish stock
- Successful trials must be consecutive

Minimum testing

8 dams × 3 stocks × 2 reps = 48 trials

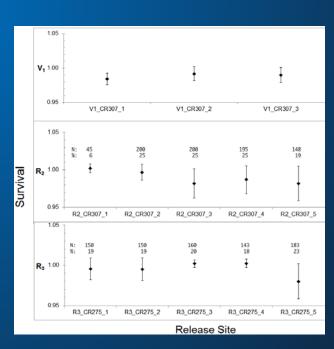
To date

- 29 trials at 6 dams
- >109,000 acoustic-tagged fish

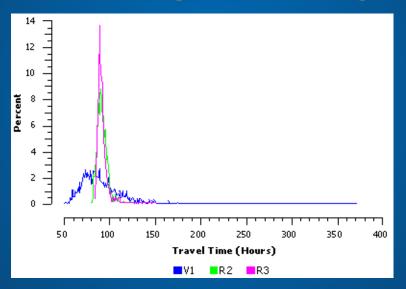
4. Model validity

A. Tagger effects

- Balanced effort across releases
- Comparison of reach survivals and cumulative survivals across taggers

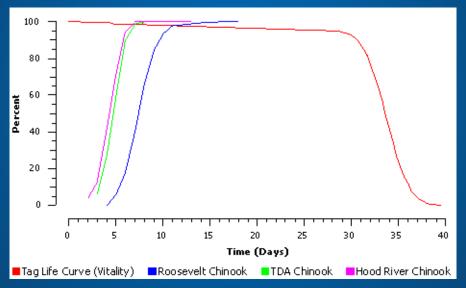

B. No delayed-handling or tag-burden effects

- Test whether downstream survival affected by release distance upstream
- C. Random and blind assignment of fish to release groups


4. Model Validity (continued)

- D. Representative release locations and time
 - Alternative Day/Night release times
 - Multiple releases across river at each location
 - Test for mortality "hot spots"

Example: Survival by release position of subyearling Chinook salmon released for the Dalles Dam study, 2012



- 4. Model Validity (continued)
 - E. Downstream mixing of release groups

Example: Mixing plot of yearling Chinook salmon, The Dalles Dam, rkm 234, in 2010

- 4. Model Validity (continued)
 - F. Tag-life-corrected survival estimates

Example: Arrival distributions vs. tag-life curve of yearling Chinook salmon, The Dalles Dam, 2010

4. Model Validity (continued)

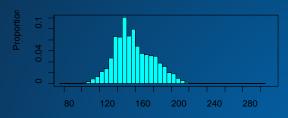
G. No false-positive detections of dead tagged fish

- Dead tagged fish releases to assure tailwater array far enough downstream
- Bias correction if problem

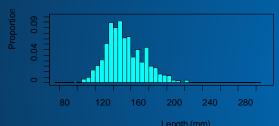
5. Representative Conditions (continued)

A. Fish source

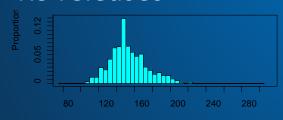
Run-of-river fish from subject dam

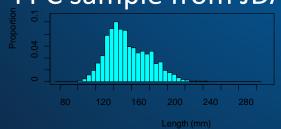

B. Fish condition

- No previously tagged fish (range 2-5%)
- No moribund fish or fish with progressive infection, open wound to body, or skeletal deformities (range 3-15%)

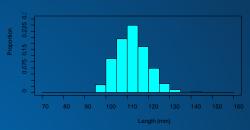

- 5. Representative Conditions
 - C. Fish size distribution compared across release groups and to fish monitoring program (FPC)
 - Example: Length distributions at The Dalles Dam, 2012

Yearling Chinook Salmon

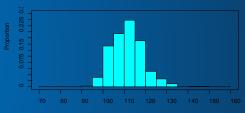

V1 releases


R2 releases

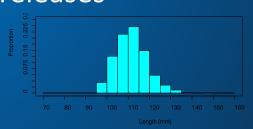
R3 releases

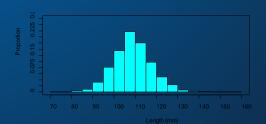


FPC sample from JDA



Subyearling Chinook salmon


V1 releases


R2 releases

• R3 releases

FPC sample from JDA

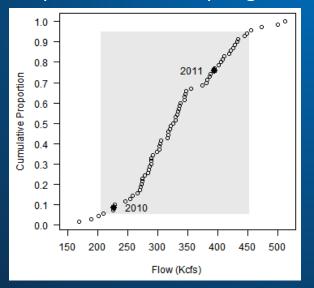
5. Representative Conditions (continued)

D. Migration timing

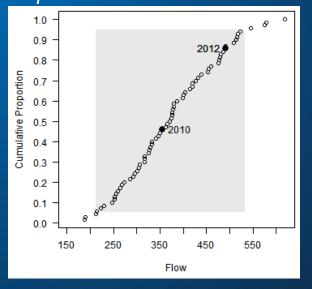
- Trials performed during middle of outmigration
- Example: Percentage of outmigration covered by compliance studies at The Dalles Dam, 2010-2012

Year	Yearling Chinook salmon	Juvenile Steelhead	Subyearling Chinook salmon*	
2010	81.0%	76.4%	80.5%	
2011	87.0%	73.1%	N/A 66.6%	
2012	N/A	N/A		
Average	84.5%	74.8%	73.6%	

^{*} Restricted to temperatures <20.5°C


- 5. Representative Conditions (continued)
 - E. Fish behavior at dams
 - Trial fish within historical range:
 - Spill passage efficiencies
 - Forebay residence times

5. Representative Conditions (continued)


F. Water years

 Trials must be conducted when project discharges are within the middle 90% of most recent 70 years of average flows

Example: The Dalles spring trials

Example: The Dalles summer trials

6. Consistency with Future Dam Operations

Trial conditions must be within:

±5% of targeted spill percentile

or

±5% kcfs of targeted spill volume

7. Hydraulic Diversity

- Assure trials over a variety of river conditions
 - 1. Average flows between trials ≥5% different
 - 2. Hydraulic patterns between trials ≥5% different

Summary

A cursory look at the overall results:

	Survival		
Stock	Mean	Range	Target
Yearling Chinook salmon (9)	0.9699	0.9597 - 0.9868	>0.96
Steelhead (9)	0.9795	0.9534 - 0.9952	>0.96
Subyearling Chinook salmon (11)	0.9466	0.9076 - 0.9789	>0.93
Average standard error	0.0098	0.0021 - 0.0212	<0.015

Summary

 As many as 18 criteria considered in assessing validity, robustness, and representativeness of compliance studies

- 29 trials at 6 dams conducted to date
 - 23 met survival standards
 - 26 met precision requirements
 - 2 to 4 may be voided for excess spill (McNary)

Acknowledgments

- Cascade Aquatics: B Ben James, P James, Z Jaques
- PNNL: E Arntzen, B Bellgraph, C Brandt, C Campbell, T Carlson, E Choi, D Deng, G Dirkes, E Fischer, A Flory, T Fu, N Fuller, D Geist, E Green, M Greiner, K Hall, K Ham, K Hand, J Hughes, B Jeide, B Jones, K Jung, R Karls, B Lamarche, K Lavender, X Li, T Linley, J Martinez, J Morasutti, R Mueller, E Oldenburg, D Parr, A Phillips, N Phillips, B Rayamajhi, S Saranovich, N Sather, S Southard, J Stevenson, A Stott, A Thronas, N Trimble, J Varvinec, J Vazquez, C Vernon, K Wagner, Y Yuan, and S Zimmerman
- PSFMC: R Martinson, G Kolvachuk, D Ballenger, C Golden and N Tancreto, along with the staff at John Day and Bonneville Dam Juvenile Smolt Facilities. We would also like thank the staff at PTAGIS and Nicole Tancreto for their assistance. In addition, L Baker, A Barnes, G Batten L Belcher, R Blanchard, S Carpenter, D Etherington, C Grady, K Klebes, T Mitchell, A Montgomery, T Royal, and R Wall
- **USACE**: B Eppard, E Hockersmith, S Fielding, M Langeslay, D Fryer, M Shutters, T Wik, and electricians, mechanics, riggers, operators, and biologists at McNary (C. Dugger), John Day (M. Zyndol) and Bonneville dams (B. Bissell, B. Hausmann, A. Traylor, I Royer)
- **UW:** T Lockhart and C Helfrich

Questions?