

Proudly Operated by Battelle Since 1965

Factors affecting survival of subyearling Chinook salmon at Little Goose Dam in 2013

RYAN HARNISH¹ KENNETH HAM¹ DANIEL DENG¹ XINYA LI¹ TAO FU¹ CHRIS PINNEY²

¹PACIFIC NORTHWEST NATIONAL LABORATORY ²US ARMY CORPS OF ENGINEERS, WALLA WALLA DISTRICT

Orientation

Proudly Operated by Battelle Since 1965

Background

- ► FCRPS BiOp calls for dam passage survival probability (S_{Dam}) of ≥ 0.93 for subyearling Chinook salmon (CH0)
- ~22,000 (total) acoustic (JSATS) tagged CH0 released in 2012 & 2013 to estimate dam passage survival at Little Goose (LGS) & Lower Monumental (LMN) dams

2012	Dam	Measure	Deep spill	Spillway weir	Turbine	JBS	Overall (SE)
	LGS	Proportion	0.248	0.477	0.049	0.226	
		Survival	0.942	0.962	0.813	0.981	0.9508 (0.0097)
	LMN	Proportion	0.252	0.584	0.076	0.088	
		Survival	0.979	0.986	0.899	1.012	0.9789 (0.0079)

	Dam	Measure	Deep spill	Spillway weir	Turbine	JBS	Overall (SE)
2013	LGS	Proportion	0.121	0.647	0.050	0.182	
		Survival	0.911	0.914	0.840	0.898	0.9076 (0.0139)
	LMN	Proportion	0.212	0.679	0.049	0.060	
		Survival	0.918	0.941	0.835	0.957	0.9297 (0.0105)

Objectives & Questions

Study objectives & questions

- Identify the factors that influenced survival at LGS in 2013
- What individual characteristics, environmental conditions, and dam operations contributed to the low survival observed in 2013?
- If operations contributed to the low survival, what can be done differently?

*p*₃ _____

40

Predictor variables

- Variables assigned to each fish based on time of passage and from data collected at the time of tagging
 - Environmental
 - Tailrace water temperature
 - Tailrace TDG
 - Discharge
 - Temporal
 - Day of passage
 - Diel period of passage (binomial day/night)
 - Dam operations
 - % Spill
 - Avian predator hazing (binomial hazing/no hazing)
 - Individual
 - Fork length
 - Relative condition factor
 - Tailrace egress rate

2013 water year – low discharge, high temperature

Proudly Operated by Battelle Since 1965

Below average discharge

Logistic regression modeling results

Bivariate modeling (relationship with survival)

- Day of passage (-)
- Tailrace temperature (-)
- Avian predator hazing (higher with hazing)
- Discharge (+)
- Tailrace TDG (-)
- Tailrace egress rate (+)
- Bayesian model averaging top model
 Tailrace temperature (-)

Effect test results $\chi^2 = 68.8; p < 0.001$ $\chi^2 = 67.1; p < 0.001$ $\chi^2 = 65.8; p < 0.001$ $\chi^2 = 50.8; p < 0.001$ $\chi^2 = 17.9; p < 0.001$ $\chi^2 = 6.7; p = 0.010$

Posterior prob. of inclusion 0.885

 $(\rho = -0.74)$

 $(\rho = 0.90)$

 $(\rho = -0.67)$

- High multicollinearity among predictor variables Correlation coeff.
 - Day of passage ~ Discharge
 - Day of passage ~ Tailrace temperature
 - Discharge ~ Tailrace temperature
 - Avian predator hazing ceased prior to onset of warm temps and low flows

Similar environmental conditions at LMN, but higher survival than LGS

- CH0 encountered similar environmental conditions at LMN in 2013 but achieved higher survival
 - Mean tailrace temperature
 - LGS = 16.28°C
 - LMN = 16.48°C
 - Mean discharge
 - LGS = 52.3 kcfs
 - LMN = 52.2 kcfs
 - Mean TDG
 - LGS = 112%
 - LMN = 116%
- Size and condition of CH0 were also similar between LGS and LMN
 - LGS = 109.1 mm, 12.9 g, 3.6% tag burden
 - LMN = 109.7 mm, 13.1 g, 3.6% tag burden
- Avian predation?
- Tailrace egress rate?
- Spill? (LGS mean ≈ 30%; LMN mean ≈ 40%)

- CH0 migrated through the tailrace of LMN (blue) at a much higher rate at all discharge levels than at LGS (red) in 2013
 - Positive correlation between discharge and tailrace egress rate
 - Logistic modeling: positive correlation between tailrace egress rate and survival

Tailrace environment at LGS vs. LMN

Proudly Operated by Battelle Since 1965

- Eddies form along both shorelines in the LGS tailrace
 - Eddy size varies with discharge and dam operations
- Flow more laminar in the LMN tailrace

50-59.9 kcfs

120-129.9 kcfs

A closer look at the effect of discharge on survival

Proudly Operated by Baffelle Since 1965

CH0 survival at LGS lowest when <50 kcfs

Pacific Northwest Proudly Operated by Battelle Since 1965

Year

Dam operations during which ≥ 50 tagged CH0 passed LGS in either 2012 or 2013

= no flow through route 14

Dam operations by discharge

Proudly Operated by Baffelle Since 1965

High tailrace egress rates during "operation 11" in 2013 Op Τ1

S4

Conclusions

Conclusions

- Temperature and discharge contributed to lower survival at LGS in 2013
 - Survival particularly low when discharge <50 kcfs
 - Similar environmental conditions at LMN with higher survival
- Tailrace egress rate was positively correlated with survival
 - Tailrace egress rates lower at LGS than LMN at all flow levels
 - Eddy formation in LGS tailrace varies with discharge
- Higher survival and egress rates when turbine unit 1 was off and units 2 & 3 used instead during low (<50 kcfs) flows</p>
- More spill may not result in higher survival during low (<50 kcfs) flows</p>

Management implications

- Turbine unit 1 currently thought to be important for adult ladder attraction
- Additional research
 - Identify costs/benefits of altering turbine priority during summer
 - Survival estimates with higher sample sizes during "operation 11"
 - Tailrace tracking of acoustic-tagged juveniles and adults

Acknowledgements

USACE: B. Eppard, D. Fryer, J. Gale, E. Hockersmith, S. Juhnke, E. Lindsey, G. Melanson, C. Pinney, A. Setter, M. Smith, B. Spurgeon, T. Wik UW: C. Helfrich, A. Seaburg, J. Skalski, R. Townsend **PSMFC:** A. Blake, H. Felmate, S. Gerlitz, T. Gish, M. Hicks, A. Huff, C. Kelly, D. Kunckel, A. Laydon, R. Martinson, B. Moore, A. Montgomery, K. Paine, M. Price, G. Rammers, S. Remples, J. Stanford, M. Stillwagon, P. Tramel, D. Trott, K. Tyrell, C. Waller, C. Williams WDFW: S. Lind Cascade Aquatics: A. LeBarge, N. Mucha **PNNL:** T. Abel, C. Allwardt, E. Arntzen, B. Bellgraph, R. Brown, T, Carlson, K. Carter, E. Choi, A. Coleman, A. Colotelo, K. Cook, C. Counts, K. Deters, G. Dirkes, C. Duberstein, J. Duncan, E. Fischer, A. Flory, T. Fu, D. Geist, K. Hall, K. Hand, A. Hanson, J. Hughes, M. Ingraham, J. Janak, B. Jeide, M. Johnson, B. Jones, E. Jones, R. Karls, F. Kahn, J. Kim, K. Klett, R. Klett, B. LaMarche, K. Larson, K. Lavender, X. Li, T. Linley, R. Mackley, J. Martinez, S. McKee, G. McMichael, B. Miller, R. Mueller, E. Oldenburg, B. Pflugrath, N. Phillips, G. Ploskey, C. Price, H. Ren, S. Schlahta, S. Southard, G. Squeochs, J. Stephenson, A. Thronas, S. Titzler, D. Trott, C. Vernon, R. Walker, M. Weiland, C. Woodley, J. Xu, Y. Yuan, S. Zimmerman August 27, 2015