

Does Passage through Snake River Dams Cause Latent Mortality?

• Northwest Fisheries Science Center

SHFRIFS

Tiffani Marsh, Steven G. Smith, and Benjamin Sandford 18 August 2015

- Background
- Study design
- Analysis

NOAA FISHERIES

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Northwest Fisheries Science Cente

- Background
 - Plan for Analyzing and Testing Hypotheses (PATH)

- Background
 - Plan for Analyzing and Testing Hypotheses (PATH)
 - Decrease in SARs was greater than direct mortality

- Background
 - Plan for Analyzing and Testing Hypotheses (PATH)
 - Decrease in SARs was greater than direct mortality
 - Must be due to passage through the dams and reservoirs; estimated to be 59-64% (4 dams)

- Background
 - Plan for Analyzing and Testing Hypotheses (PATH)
 - Decrease in SARs was greater than direct mortality
 - Must be due to passage through the dams and reservoirs; estimated to be 59-64% (4 dams)
 - No experimental data available

- Background
 - Plan for Analyzing and Testing Hypotheses (PATH)
 - Decrease in SARs was greater than direct mortality
 - Must be due to passage through the dams and reservoirs; estimated to be 59-64% (4 dams)
 - No experimental data available
 - Goal
 - Determine whether migration as smolts through Snake River dams and reservoirs causes latent mortality

- Study design
 - Hatchery Spring/Summer Chinook Salmon

- Study design
 - Hatchery Spring/Summer Chinook Salmon
 - Each hatchery enters the hydrosystem at a different time, and each has a different SAR

- Study design
 - Hatchery Spring/Summer Chinook Salmon
 - Each hatchery enters the hydrosystem at a different time, and each has a different SAR
 - Timing affects SARs

- Study design
 - Hatchery Spring/Summer Chinook Salmon
 - Each hatchery enters the hydrosystem at a different time, and each has a different SAR
 - Timing affects SARs
 - Tag fish at Lower Granite Dam

- Study design
 - Hatchery Spring/Summer Chinook Salmon
 - Each hatchery enters the hydrosystem at a different time, and each has a different SAR
 - Timing affects SARs
 - Tag fish at Lower Granite Dam
 - 20-25 April to mid-May

- Study design
 - Hatchery Spring/Summer Chinook Salmon
 - Each hatchery enters the hydrosystem at a different time, and each has a different SAR
 - Timing affects SARs
 - Tag fish at Lower Granite Dam
 - 20-25 April to mid-May
 - 10 replicates, with each replicate tagged over 2 days

Ice Harbor (IH)
Lower Granite (LG)
Truck effects

- Analysis
 - Study years 2005-2011

- Analysis
 - Study years 2005-2011
 - <10 replicates released in 2005 (construction; 7) and 2007 (change in river operations; 6)

- Analysis
 - Study years 2005-2011
 - <10 replicates released in 2005 (construction; 7) and 2007 (change in river operations; 6)
 - Lowest SARs in 2005 and 2011; Highest SARs in 2008

- One-sided hypothesis test:
 - $H_0: SAR_{LG} \ge SAR_{IH}$ vs. $H_A: SAR_{LG} < SAR_{IH}$
 - Rejection of Null Hypothesis Means:
 - There is evidence that SAR *after leaving McNary Dam* was lower for group released in Lower Granite tailrace than for group released in Ice Harbor tailrace
 - McNary-to-Bonneville SARs
 - 3 dams, not 4 dams
 - Extant river and operations conditions, with dams

• Method: "Bootstrap Everything"

• Bootstrap at level of release group

• From bootstrap sample, construct one-sided 95% confidence intervals and calculate P values

Example of Data

			Tr	ucked and		Trucked and		
			Release	ed in LG tail	race	Released in IH tailrace		
				Detected			Detected	
Year	Week	Rep	Released	at McNary	Adults	Released	at McNary	Adults
2009	1	1	873	370	3	846	304	3
		2	4,496	1,788	19	2,353	907	6
		3	6,902	2,722	15	3,884	1,737	18
	2	4	5,812	2,218	12	3,499	1,630	15
		5	5,008	1,878	13	3,772	1,667	13
		6	5,445	2,152	14	3,488	1,468	8
	3	7	4,295	1,824	15	2,717	1,107	14
		8	2,953	1,179	7	2,110	899	6
		9	6,321	1,691	10	3,487	1,313	2
	4	10	3,406	888	3	2,722	1,083	7
		Total	45,511	16,710	111	28,878	12,115	92

Smolt-to-Adult Return % - Pooled across replicates each week

Smolt-to-Adult Return % - Pooled across replicates each week

Estimated SAR ratios LG/IH – Pooled across replicates each week Matched by Release Date

Estimated SAR ratios LG/IH – Reps pooled across years Matched by Release Date

Median arrival date at McNary - Pooled across replicates each week

- Match by McNary Date, by using:
 - LGR tailrace replicates 1 through 7
 - IHR tailrace replicates 4 through 10

Estimated SAR ratios LG/IH – Reps pooled across years Matched by McNary Date

Estimated SAR ratios LG/IH – Reps pooled across years Matched by Release Date

- Logistic Regression on individuals detected at McNary
 - Predict adult return using predictors:
 - Year
 - Release date
 - McNary date
 - Length at Tagging
 - Release location

- Summary of Logistic Regression results
 - Significant variation among years
 - McNary date a better predictor than release date
 - Larger at tagging = more likely to return

• Logistic Regression summary of results

- Adjusting for McNary date and length at tagging:
 - Release location not significant (P = 0.29)

