

Gas Supersaturation May Reduce the Survival of Yearling Chinook Salmon in the Lower Columbia River and Ocean Plume

Ian Brosnan, NASA Ames Research Center David Welch, Kintama Research Services Melinda Jacobs Scott, formerly Kintama Research Services

American Fisheries Society 145th Annual Meeting, Portland, Oregon August 18th, 2015

2011 TDG below Bonneville Dam

What effect on smolts?

What effect on smolts?

Gas Bubble Trauma

Lethalit - 3-6 hours at 130% TDG - 40-120 hours at 120% TDG — None after 22d at 110% TDG Non-lethal experiences are harmful Susceptible to predation Bacterial and fungal infection Repeat exposures increase GBT susceptibility

Tagged smolts screened for scale loss, external marks, lesions, etc.

0

Estimating TDG Exposure Effect

- Model survival for each group in each migratory segment, with a common detection parameter at each subarray (AIC selection)
- Calculate daily survival as $S^{1/T}$
- Variance & percentile confidence intervals by bootstrap resampling
- Subtract low exposure survival from high for effect size

		Survival Rate (per day)			
		High Gas	Low Gas	Effect	
	de 1	(>120%)	(≤120%)	Size	
In-river Smolts	Lwr R				
	Plume				
Transport Smolts	Lwr R				
	Plume				

		Survival Rate (per day)		
		High Gas	Low Gas	Effect
		(>120%)	(≤120%)	Size
In-river Smolts	Lwr R	0.93 (.01)	0.99 (0.0)	<u>-0.06 (.01)</u>
	Plume	0.74 (.05)	0.89 (.02)	<u>-0.15(.05)</u>
Transport Smolts	Lwr R	0.96(.01)	0.95 (.01)	0.01(.02)
	Plume	0.66 (.20)	0.84(.12)	-0.18(.24)

- Chronic effects expressed during habitat transition?
- Likely not the saltwater transition

But wait, there's more...

- Temperature? 8-13 C
- Turbidity? Increases with TDG
- Disease? No significant change

Conclusions

- TDG has known, mechanistic effects on fitness
- Results are consistent with these effects
- Retrospective cohort study (observational) limits inference; we can examine but not conclusively eliminate alternative explanations
- Easy to conduct an experiment release treatment and control smolts at the same time.

Acknowledgements

- Ian Brosnan was supported by the U.S. Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program and gratefully acknowledges the access and support provided by everyone at Kintama Research
- The US Dept. of Energy, Bonneville Power Administration provided funding for research under Project No. 2003-114-00.

0

Questions?