
Coast Model

Documentation Manual

By

James G. Norris, Troy Frever, and Susannah Iltis

Columbia Basin Research

University of Washington

Seattle, WA 98195

Prepared For:

U.S. Department of Commerce

National Oceanic and Atmospheric Administration

National Marine Fisheries Service

Northwest Fisheries Science Center

2725 Montlake Blvd. E.

Seattle, WA 98112-2097

April 2001

2

Table of Contents

1 Introduction .. 11

1.1 Background... 11

1.2 Code Framework Overview.. 11

1.3 Specific Code Features ... 12

1.3.1 Discrete Time Chronology.. 12

1.3.2 Cohort Based .. 12

1.3.3 Processes and Data Controlled by “Managers” .. 12

1.3.4 Data Access by Generic Array.. 13

1.3.5 Data Request Manager.. 13

1.3.6 Input/Output Using Existing Tools ... 13

1.3.7 Multi-Timestep Iteration Capability ... 13

1.4 Code Limitations .. 13

1.5 Pacific Salmon Commission Chinook Model ... 14

1.5.1 General Description of the PSC Chinook Model .. 14

1.5.2 - Brief History of the PSC Chinook Model... 16

2 Coast Model Processes ... 19

2.1 Computation Flow .. 19

2.1.1 Overview... 19

2.1.2 PSC Chinook Model Implementation ... 19

2.1.3 Future Processes ... 20

2.2 Cohort Ageing .. 21

2.2.1 Overview... 21

2.2.2 PSC Chinook Model Implementation ... 21

2.2.3 Future Ageing Processes... 22

2.3 Natural Mortality .. 22

2.3.1 Overview... 22

3

2.3.2 PSC Chinook Model Implementation ... 22

2.3.3 Future Natural Mortality Processes... 23

2.4 Fishing Mortality .. 24

2.4.1 Overview... 24

2.4.2 Legal Catches.. 24

2.4.2.1 SingleCohort ... 24

2.4.2.2 Multiple Cohorts (Safe-Guarded Secant Algorithm) .. 25

2.4.3 Incidental Mortalities .. 26

2.4.3.1 Shakers.. 26

2.4.3.1.1 Compute the “StockWts”.. 27

2.4.3.1.2 Compute the “TotalPNV” and “TotalPV”... 27

2.4.3.1.3 Compute the “EncounterRate”... 27

2.4.3.1.4 Compute the “FracNV”.. 27

2.4.3.1.5 Compute “TotalShakers”.. 27

2.4.3.1.6 Distribute “TotalShakers” by stock and age using the FracNVs 28

2.4.3.2 Chinook Non-Retention Mortalities.. 28

2.4.3.2.1 Compute the ratios relating legal CNR mortalities to the legal catch and sublegal CNR
mortalities to the shakers. ... 28

2.4.3.2.2 Compute legal and sublegal CNR mortalities without considering multiple encounters
.. 31

2.4.3.2.3 Adjust CNR mortalities for multiple encounters .. 31

2.5 Maturation... 35

2.5.1 Overview... 35

2.5.2 PSC Chinook Model Implementation ... 35

2.5.3 Future Maturation Processes... 36

2.6 Spawning .. 36

2.6.1 Overview... 36

2.6.1.1 LinearProduction .. 38

2.6.1.2 RickerProduction .. 39

4

2.6.1.3 EnhancedRickerProduction... 39

2.6.1.4 VariableTruncatedRickerProduction .. 40

2.6.2 PSC Chinook Model Implementation ... 41

2.6.3 Future Spawning Processes... 41

2.7 Migration .. 42

2.7.1 Overview... 42

2.7.2 PSC Chinook Model Application ... 42

3 Input Language ... 45

3.1 Introduction... 45

3.2 Token Types ... 45

3.2.1 Simple Tokens .. 45

3.2.2 Command Block Tokens .. 45

3.2.3 Generic Array Tokens... 46

3.2.4 Subtokens.. 46

3.2.5 Special Tokens.. 46

3.3 Generic Arrays.. 46

3.3.1 Generic Array Subtokens.. 48

3.3.2 Generic Array Dimension Specifiers .. 49

3.4 Top Level Tokens ... 50

3.5 Configuration Tokens ... 50

3.5.1 Fishery Configuration Tokens .. 50

3.6 Stock Configuration Tokens ... 51

3.7 Harvest Rate Tokens... 51

3.8 Ceiling Tokens.. 52

3.8.1 CeilingScalars ... 52

3.8.2 MultiTimeStepCeilingScalars... 53

3.8.3 CeilingData ... 53

3.9 CNRData Tokens.. 54

5

3.9.1 CNR Methods ... 54

3.10 Cohorts.. 56

3.11 FPData Tokens.. 57

3.12 FisherySchedule Tokens ... 57

3.13 MaturationData Tokens .. 58

3.14 NatMortRateData Tokens ... 59

3.15 PnvData Tokens.. 59

3.16 ProductionFunctions Tokens .. 60

3.16.1 Production Function Types ... 60

3.17 ShakerData Tokens ... 62

3.17.1 Shaker Methods .. 62

3.17.2 VulnerabilityTable Tokens ... 63

3.18 TransitionMatrix Tokens .. 63

3.18.1 Transition Matrix Data.. 63

4 Output Language .. 65

4.1 Overview... 65

4.2 CohortID... 65

4.3 Output Sentences Supported by Coast Model... 66

4.3.1 CABN sentence for cohort abundance.. 66

4.3.2 NMRT sentence for natural mortality ... 66

4.3.3 FMRT sentence for fishing mortality.. 67

4.4 Proposed Output Sentences For Future Use ... 67

4.4.1 CMIG sentence for cohort migration .. 67

4.4.2 SABN sentence for stock abundance in a region .. 68

4.4.3 CLHD sentence for cohort life history data .. 68

4.5 Generating the Output Data File ... 68

5 Code Description .. 69

5.1 Introduction... 69

6

5.2 Naming Conventions .. 69

5.3 Class Overview... 69

5.3.1 Monostates and Managers... 69

5.3.2 Globals.. 70

5.3.3 Other Important Classes.. 70

5.4 Process Overview ... 70

5.4.1 Simulation Processes .. 70

5.5 Class and Object Detail... 71

5.5.1 Managers and Other Globals .. 71

5.5.2 Common Fundamental Objects... 71

5.5.2.1 Cohort and CohortID .. 72

5.5.2.2 GenericArray and GenericArrayIndex.. 72

5.5.2.3 GenericArrayFactory .. 75

5.5.2.4 Example: Adding a New Cohort Characteristic.. 76

5.5.2.5 Iteration... 77

5.5.2.5.1 State .. 77

5.5.2.5.1.1 SystemState ... 78

5.5.2.5.2 IterationControl .. 78

5.5.2.5.3 IterationManager .. 79

5.5.2.6 DataRequest .. 79

5.5.2.7 LogMsg... 79

5.5.3 Special Purpose Classes and Objects .. 80

5.5.3.1 Harvest Classes ... 80

5.5.3.1.1 FisheryUnit ... 80

5.5.3.1.2 FisheryPolicy.. 81

5.5.3.1.3 PolicyControl.. 81

5.5.3.1.4 HvMort and HarvestProcess ... 81

5.5.3.1.5 Legal Catch Process Detail ... 82

7

5.5.3.1.5.1 Harvest Computation Flow (Legal Catch)... 83

5.5.3.1.6 Incidental Mortalities.. 84

5.5.3.1.6.1 Shaker .. 84

5.5.3.1.6.2 CNR... 84

5.5.3.2 Production Classes.. 84

5.5.3.2.1 Production and ProductionFunction ... 84

5.5.3.2.2 CohortGenerator ... 85

5.5.3.3 Data Output... 85

5.5.3.4 Data Input Parser .. 85

5.5.3.4.1 HarvestParser – An In-depth Example ... 86

5.5.3.4.1.1 HarvestParser Declarations.. 86

5.5.3.4.1.2 HarvestParser Definitions.. 87

5.5.3.4.1.3 Using the HarvestParser .. 90

5.6 Process Detail ... 90

5.6.1 Initialization and Cleanup... 90

5.6.2 The Engine.. 91

Appendix A: Glossary .. 92

Appendix B: Examples ... 95

B.1 Introduction... 95

B.2 Prototypes With No Harvest ... 95

B.2.1 Proto 0 (One chinook stock over 100 years)... 96

B.2.2 Proto 1 (Like PSC chinook model, but only one stock).. 96

B.2.3 Proto 1a (Like PSC chinook model, but simulating one coho stock).................................... 96

B.2.4 Proto 2 (Add "estuary" and more ocean regions; stock distribution by ocean region).......... 97

B.2.5 Proto 3 (Add more terminal regions; stock distribution by region) 97

B.2.6 Proto 4 (Increase timesteps to 13; spread natural mortality over timesteps; migration during
most timesteps) ... 97

B.2.7 Proto 5 (Maturation occurs during timesteps 4 to 7 in all ocean regions)............................. 98

8

B.2.8 Proto 6 (same as Proto 5, but add the coho stock) .. 98

B.2.9 Proto 7 (each stock different natural mortality, maturation, and migration process) 98

B.3 Prototypes With Harvest ... 99

B.3.1 Proto 8 (Same as Proto 7, but add an ocean fishery)... 99

B.3.2 Proto 9 (Same as Proto 8, but add an inside fishery that has a multi-phase catch ceiling that
spans three timesteps) ... 99

B.3.3 Proto 10 (Same as Proto 8, but add a third fishery; all fisheries have multi-phase catch
ceilings spanning five timesteps) .. 100

Appendix C: Discussion Papers.. 101

C.1 Overview... 101

C.2 Ageing Process ... 101

C.2.1 Spring Stock Algorithms... 101

C.3 Mortality Processes... 102

C.3.1 State Space Model Considerations.. 102

C.3.1.1 Background... 103

C.3.1.2 Harvest Process... 103

C.3.1.3 Fishing Process ... 104

C.3.1.4 Code Issues ... 104

C.3.1.5 Code Solution ... 104

C.3.1.6 Code/Algorithm Problems .. 104

C.3.1.7 SSM Parameter Estimation ... 105

C.3.1.8 Final Thought.. 106

C.3.2 Shaker Algorithm.. 106

C.3.2.1 Non-ocean net fisheries with no terminal stocks .. 106

C.3.2.2 Non-ocean net fisheries with at least one terminal stock .. 107

C.3.2.3 Ocean net fisheries with no terminal stocks.. 108

C.3.2.4 Ocean net fisheries with at least one terminal stock ... 108

C.3.3 Results of multi-phase catch ceiling algorithm test. ... 110

C.4 Maturation Process ... 115

9

C.4.1 The Biological Process ... 116

C.4.2 Mathematical Modeling Problem.. 116

C.4.3 New Main Engine ... 116

C.4.4 Cohort Objects and Data Tracking.. 117

C.4.5 Relationship to State Space Model ... 117

C.5 Production Processes .. 118

C.5.1 Pre-Spawning Mortality And Production Functions... 118

C.5.2 Variable Truncated Ricker Function... 119

C.5.3 Adult Equivalent Factors In Production Functions ... 121

C.6 Migration Process ... 122

C.6.1 Synthesizing Commonly Used Migration Algorithms.. 122

C.6.1.1 Background... 122

C.6.1.2 Notation .. 122

C.6.1.3 State Space Model .. 123

C.6.1.4 PSC Chinook Model ... 124

C.6.1.5 PSC Selective Fisheries Model ... 126

C.6.1.6 Proportional Migration (PM) Model... 130

C.6.1.7 Fishery Resource Allocation Model (FRAM)... 136

C.6.2 Beta Advection-Diffusion Model ... 136

C.6.2.1 Background... 136

C.6.2.2 The Model... 136

C.6.2.3 Model Properties... 137

C.6.2.4 Discussion... 137

10

List of Figures

Figure 1 Expected step size as a function of relative location (i.e., Dist_Scalar) and relative time
(Time_Scalar). .. 139

Figure 2 Expected step size as a function of current location for five values of relative t. 139

Figure 3 "Attraction Location" as a function of relative time for several values of Move_Alpha......... 140

List of Tables

Table 1 Fisheries included in PSC Chinook Model ... 15

Table 2 Stocks included in CRiSP Harvest Model .. 16

Table 3 Managers and other global classes and objects... 71

Table 4 Available ProductionFunction derived classes ... 85

Table 5 Percent change in ceilinged fishery catches by year between PSC and NMFS catch ceiling
algorithms. The four multi-phase ceiling fisheries (7, 8, 9, 20) are listed at the far right side of the
table. .. 112

Table 6 Percent change in non-ceilinged fishery catches by year between PSC and NMFS catch ceiling
algorithms. .. 113

Table 7 Percent change in stock escapements by year between PSC and NMFS catch ceiling algorithms
(fisheries 1-15).. 114

Table 8 Common notation used in this report (also see Figure 1). .. 122

Table 9 Dispersion parameters by week for the PSC Selective Fishery Model. 128

Table 10 Dispersion and non-dispersion (= 1 - dispersion) rate parameters for the South Puget Sound
stock during week 40 used in the PSC Selective Fishery Model. ... 130

Table 11 Expected Step Size for values of relative location and time (Move_Alpha = 8.735; ? = 3.0).138

Table 12 "Attraction Location" by Relative Time and Move_Alpha. .. 140

11

1 Introduction

1.1 Background

The National Marine Fisheries Service (NMFS) has responsibility for administering the US Endangered
Species Act (ESA) for anadromous fish and shared responsibility for managing ocean salmon fisheries.
Because of this dual responsibility, NMFS has a need to evaluate the constraints of ESA considerations on
harvest management, and the impacts of harvest and habitat management on the recovery of depleted
stocks. These evaluations need to be made on a coastwide basis and should be internally consistent and
consistent with models used in other management arenas.

In 1997 NMFS contracted with the University of Washington School of Fisheries to begin developing a
single broad modeling framework that will assist NMFS in meeting its salmon management
responsibilities. A Model Committee, composed of State, Tribal, and Federal salmon biologists and
modelers, was formed to help develop model specifications, identify research priorities, ensure consistency
with existing models, and certify research models for management use. Initial meetings with the Review
Committee resulted in the following overall objectives for this modeling project:

1. Provide a common framework for both conservation risk assessment and harvest management
analysis;

2. Expand the geographic scope of current harvest models;
3. Link coho and chinook salmon models;
4. Incorporate life cycle (production) models for both species to evaluate long-term harvest and

conservation strategies;
5. Allow flexibility to accommodate new methods and model designs;
6. Provide an interface with a large subset of ocean and freshwater databases maintained by the

Pacific States Marine Fisheries Commission.

Objective six was postponed because it was deemed beyond the scope of this project. During 1999 the
Pacific Salmon Commission contracted with ESSA Technologies Ltd (Vancouver, BC) and UW to develop
several enhancements to its Chinook Model, including an interface to databases.

1.2 Code Framework Overview

The Coast Model is not a single “model,” but instead is a code framework that can be configured to
represent many different models depending upon the specific process algorithms and data specified in the
input files. At the present time (December 1999) the Coast Model only contains algorithms used by the
Pacific Salmon Commission (PSC) chinook model. Section 1.5 gives an overview of the PSC chinook
model; Section 2 describes its algorithms in detail. To configure the Coast Model to represent other salmon
harvest models, such as the Fishery Regulation Analysis Model (FRAM) or the Proportional Migration
(PM) model, new algorithms must be added to the processes. The general idea is to build up a library of
algorithms for each process so the same code framework can be configured to represent a wide variety of
models.

A key feature of the code is the clear separation of the fishing mortality and migration processes. All
current salmon harvest models simulate changes in regulations by scaling fishery harvest rates up or down
compared to some base period. Thus, it is difficult to simulate harvest regimes that differ significantly from
the base period, especially in terms of changing the timing and location of individual fisheries. In contrast,
the Coast Model performs three basic functions:

12

1. Divides time and space into any number of timesteps and regions;
2. Creates a biological system composed of any number and types of stocks that suffer natural

mortality, mature, spawn, and migrate discretely through the time/space grid;
3. Superimposes a harvesting process over the biological system.

The Coast Model code framework is flexible because it uses an object-oriented programming language
(C++) that encapsulates algorithms representing model processes (e.g., natural mortality, fishing mortality,
maturation, migration, spawning) and associated data into single code objects. Thus, the new framework
removes the need to require that all stocks use the same algorithms and data types, or the need for
complicated branching code to treat stocks differently (e.g., if Stock A, do it this way; if Stock B, do it
another way; if Stock C, do it a third way; etc.).

1.3 Specific Code Features

1.3.1 Discrete Time Chronology

The Coast Model is a discrete time model that loops over years and timesteps within each year. The user
can specify any number of years and timesteps. The following processes occur within each timestep (in this
order):

• Cohort Ageing

• Natural Mortality

• Fishing Mortality

• Maturation

• Spawning

• Migration

The above processes were needed to simulate the PSC Chinook Model. Additional processes could be
added as more complicated algorithms are developed. For example, processes to update the physical
characteristics of each geographic region (e.g., average sea surface temperature, average surface current
direction and speed) and/or the biological characteristics (e.g., average abundance of prey species, average
abundance of predator species) could be included at the start of each timestep. All following processes
could have algorithms that use these region characteristics (e.g., natural mortality could depend on sea
surface temperature and predator abundance; migration could depend on surface current direction and
speed).

1.3.2 Cohort Based

The fundamental biological unit in the model is a cohort (i.e., a group of fish having the same biological
characteristics). Cohorts can be defined by species, brood year, sex, growth group, maturation status, mark
status, or tag status. Note the inclusion of maturation status. Immature and mature fish from the same brood
year have different migration patterns and thus are treated as separate cohorts. As described later, the
Maturation Process creates new mature cohorts.

1.3.3 Processes and Data Controlled by “Managers”

A “Manager” controls each process within a timestep. Each manager stores individual process objects and
controls computation flow, but does not dictate specific process algorithms. For example, the
SpawningManager stores a spawning process for each stock in each year and knows at which timestep(s)
and region(s) to activate the processes. When it is time to perform spawning, the SpawningManager loops
through all the stocks, passes the stock its correct spawning process, and directs the stock to implement the

13

process. Each spawning process contains all the data and algorithms necessary for a stock to perform
spawning (i.e., generate one or more new cohorts of fish). Thus, some stocks might use a Ricker function,
others might use a Beverton-Holt function, and still others might use a truncated linear function
representing hatchery production.

1.3.4 Data Access by Generic Array

One of the greatest limitations of conventional model code is the fixed dimensionality of parameters. For
example, a natural mortality rate might be indexed by age; or stock and age; or by stock, age, and location.
Whenever the dimensionality changes, considerable re-coding is required. In the Coast Model, parameters
are dimensioned at run time via “generic arrays.” The first line of each data input file specifies the
dimensionality of the parameter.

1.3.5 Data Request Manager

Process algorithms often require intermediate variables (e.g., sum of catches by fishery over a base period).
To facilitate computing and storing intermediate variables, the Coast Model uses a Data Request Manager.
At the end of each process, the manager checks to see if there are any data requests that require some
action. If yes, the data are gathered and stored.

1.3.6 Input/Output Using Existing Tools

The Coast Model uses a “token-based” data input system. Each datafile contains key words, or tokens, that
specify the type of data expected next. When duplicating the PSC chinook model, a utility program
translates data from existing files into the token-based format. Output from the Coast Model is formatted
into a single stream of Standardized Data Sentences (e.g., cohort abundance sentence, natural mortality
sentence). Instead of creating formatted reports directly from the program, utility programs must be written
to generate reports from the standard data sentences. Section 4 Output Language describes the output
sentences in detail.

1.3.7 Multi-Timestep Iteration Capability

An “Iteration Manager” allows the code to:

• stop at the end of a timestep to evaluate certain conditions (e.g., the total catch in a fishery over
several previous timesteps compared to catch quota);

• restart the model at a previous timestep using different values for control variables (e.g.,
fishing effort levels);

• repeat the above steps until the condition is satisfied.

1.4 Code Limitations

At the present time (December 1999), the Coast Model code has the following limitations:

• all processes are deterministic (i.e., there is no stochastic capability);

• current algorithms are limited to those used in the PSC Chinook Model;

• parameter estimation techniques have not been perfected (especially for the migration process
and region specific harvest rates).

14

1.5 Pacific Salmon Commission Chinook Model

1.5.1 General Description of the PSC Chinook Model

The PSC Chinook Model was developed by the PSC Chinook Technical Committee to examine alternative
management approaches to implement the PSC chinook rebuilding program (the next section contains a
brief history of the model). The model is capable of simulating a large number of years, stocks (hatchery
and natural), and fisheries (troll, net, and sport). (See Table 1 and Table 2.) A key feature of the model is
the interaction between stocks through annual catch ceilings imposed upon fisheries that harvest multiple
stocks. As stocks rebuild or decline at different rates over time, relative harvest rates in ceilinged fisheries
also change. Single stock models cannot simulate this type of interaction.

Simulations are divided into two time periods: (1) a calibration period; and (2) a management simulation,
or projection, period. The calibration period runs from 1979 through the last year for which model
parameters can be estimated (usually one year earlier than the current year). The simulation period runs
from the current year to any future year (usually about 10-15 years in the future). The PSC Chinook Model
produces information to help evaluate the effects of changes in brood year survival rates and several
management actions:

• pre-recruitment (i.e., age one) survival projections

• pre-spawning survival (i.e., inter-dam losses)

• enhancement activities

• catch ceilings (catch quotas)

• harvest rate strategies

• size limits.

Production parameters for both hatchery and natural stocks are estimated from historical data. Ocean
survival rates for ages one through five are assumed fixed (at 0.5, 0.6, 0.7, 0.8, and 0.9, respectively) for all
stocks. Survival rates to age one (also called Environmental Variability, or “EV,” scalars) are estimated
during the calibration process. Other parameters are estimated by a technique known as “cohort analysis”
or “virtual population analysis.” This type of analysis involves reconstructing an annual series of
abundance estimates using catch and escapement data and making assumptions about natural and incidental
mortalities. Once each cohort has been reconstructed, the following parameters are estimated:

• Cohort size for each age class at the beginning of each year

• Age specific harvest rates for each fishery

• Maturity schedule for all ages

• Estimates of incidental fishing mortalities.

The PSC chinook model is calibrated by finding a suite of stock and year-specific smolt to age one survival
rates (EV scalars) that results in model outputs that most closely match user specific terminal run sizes,
escapements, or catches for individual stocks during the base period. The user specifies the EV scalars for
the simulation period, often taken to be the average of the base period values. The model results are known
to be sensitive to the selection of the EV scalars for the simulation period.

Management changes are evaluated by changing key parameters, such as future catch ceilings or harvest
rates, and rerunning the model.

15

Table 1 Fisheries included in PSC Chinook Model

Number Fisheries Abbreviation

1 Alaska Troll Alaska T
2 Northern B.C. Troll North T
3 Central B.C. Troll Centr T
4 West Coast Vancouver Island Troll WCVI T
5 Washington/Oregon Troll WA/OR T
6 Strait of Georgia Troll Geo St T
7 Alaska Net Alaska N
8 Northern B.C. Net North N
9 Central B.C. Net Centr N

10 West Coast Vancouver Island Net WCVI N
11 Juan de Fuca Net J De F N
12 North Puget Sound Net PgtNth N
13 South Puget Sound Net PgtSth N
14 Washington Coast Net Wash Cst N
15 Columbia River Net Col R N
16 Johnstone Strait Net John St N
17 Fraser River Net Fraser N
18 Alaska Sport Alaska S
19 North/Central B.C. Sport Nor/Cen S
20 West Coast Vancouver Island Sport WCVI S
21 Washington Ocean Sport Wash Ocn S
22 North Puget Sound Sport PgtNth S
23 South Puget Sound Sport PgtSth S
24 Strait of Georgia Sport Geo St S
25 Columbia River Sport Col R S

16

Table 2 Stocks included in CRiSP Harvest Model

Number Stocks Abbreviation

1 Alaska South SE AKS
2 Northern/Central B.C. NTH
3 Fraser River Early FRE
4 Fraser River Late FRL
5 West Coast Vancouver Island Hatchery RBH
6 West Coast Vancouver Island Natural RBT
7 Upper Strait of Georgia GSQ
8 Lower Strait of Georgia Natural GST
9 Lower Strait of Georgia Hatchery GSH

10 Nooksack River Fall NKF
11 Puget Sound Fingerling PSF
12 Puget Sound Natural Fingerling PSN
13 Puget Sound Yearling PSY
14 Nooksack River Spring NKS
15 Skagit River Wild SKG
16 Stillaguamish River Wild STL
17 Snohomish River Wild SNO
18 Washington Coastal Hatchery WCH
19 Columbia River Upriver Brights URB
20 Spring Creek Hatchery SPR
21 Lower Bonneville Hatchery BON
22 Fall Cowlitz River Hatchery CWF
23 Lewis River Wild LRW
24 Willamette River WSH
25 Spring Cowlitz Hatchery CWS
26 Columbia River Summers SUM
27 Oregon Coastal ORC
28 Washington Coastal Wild WCN
29 Snake River Wild Fall LYF
30 Mid Columbia River Brights MCB

1.5.2 - Brief History of the PSC Chinook Model

During the negotiations which led to the Pacific Salmon Treaty in 1985, efforts to reach agreement on
chinook management focused on strategies which would rebuild depressed natural stocks within an agreed-
upon time period. At the technical level, several microcomputer models were developed to provide a
method of consistently and objectively analyzing alternative options under consideration during the
negotiations.

The computer models were designed to analyze how various combinations of fisheries management actions
would affect rebuilding. Prior to the development of the models, information on the production levels for
natural chinook stocks was often limited to measurements of catch and escapement in or near the

17

corresponding river of origin. Direct estimates of a significant component of overall production (i.e.,
harvest levels in ocean and near-shore mixed stock fisheries) were often not available for the natural stocks
of interest. By integrating chinook life history assumptions with coded-wire-tag (CWT) recovery data, the
models permitted the simulation of ocean and terminal harvest and escapement patterns.

The models simulated the process of rebuilding under hypothetical fishery policies that reduced harvest
rates over time. As spawning escapements of depressed stocks increased to optimum levels, production
increased. By maintaining fishery regimes, such as harvest ceilings, as run sizes progressively increased,
rebuilding accelerated.

The models were initially designed to evaluate alternative fishery management regimes with respect to their
implications for successfully rebuilding depressed chinook stocks by 1998. They progressed from simple
cohort analyses designed to evaluate overall harvest rates and patterns of exploitation for single stocks or
groups of stocks, to a “Multiple Stock Model” which incorporated multiple fisheries, stocks and brood
years as well as stock- recruitment production functions. Intermediate steps included a simple “Forward
Cohort Analysis” and a “Single Stock” multiple brood and fishery model (also including the stock-
recruitment function).

While the “Single Stock” model achieved the goal of providing a set of mutually acceptable rules for
evaluating proposals under consideration when the Pacific Salmon Treaty was being negotiated, it did not
adequately represent results expected when several stocks were involved. Under the single stock approach,
the progressive reductions in harvest rates in fisheries with ceilings resulting from increasing stock size
over the course of the rebuilding cycle are transferred entirely to the single stock in the Model. In reality,
the harvest rate changes in pre-terminal fisheries would be influenced by the abundance of the aggregate of
stocks available. However, while the abundance of depressed components of the aggregate would be
expected to increase as a result of increased escapement, the abundance of many components would remain
relatively stable. As a result, the single stock approach would tend to underestimate the time required for
rebuilding; it would present an overly optimistic picture of the effects of future reductions in harvest rates
resulting from increased production.

Application of the Model to describe these mechanisms requires the assumption that proportional changes
in total model fishery catch are represented by the actual changes in the real world catch. It also assumes
that the stock composition in the Model catch reflects the relative contribution of these stocks to the actual
catch (the abundance of unrepresented stocks is assumed to be constant).

If these assumptions are not met, the ceiling or quota mechanism on rebuilding will produce incorrect
rebuilding schedules. The quota or ceiling mechanism will take effect at different harvest levels for each
particular stock depending on the abundance of other stocks in the catch. For example, the rate at which a
particular stock rebuilds may be accelerated by the presence of other stocks in the ceiling fisheries. If these
other stocks respond to management measures at a faster rate, their abundance is increased and the relative
contribution of the stock of interest to the fishery is reduced. This effect is similar to that resulting from
enhancement where the increased abundance of hatchery fish will “saturate” the fishery under a fixed
harvest ceiling and dilute the impact on wild stocks resulting in increased savings of wild fish to
escapement.

More detailed stratification of fisheries was required to respond to a number of policy questions that were
raised over time. The resolution needed for modeling may vary from issue to issue, depending upon the
questions to be addressed and the availability of necessary data. The final Model used for the Pacific
Salmon Treaty negotiations in 1984 incorporated four stocks and nine fisheries. The Model was modified
in 1987 to enable it to simulate up to 25 fisheries and 26 stocks. In 1993 and 1994 the number of stocks was
increased to 29 and 30, respectively.

By 1987, the effects of incidental mortality losses to the chinook rebuilding program had increasingly
become a matter of concern as management agencies implemented various changes to fishing regulations to
increase benefits under the fishery regimes established through the Pacific Salmon Commission. The

18

Model has been modified to more realistically reflect incidental mortality losses and permit the evaluation
of regulations such as non-retention restrictions and size limit changes.

The Model was recoded into Microsoft QuickBasic language beginning in 1986 and was revised in a
number of important ways to better meet needs under implementation of the Pacific Salmon Treaty.

The listing of the Snake River Fall Chinook stock as “endangered” under the US Endangered Species Act
generated interest in harvest management decisions from stakeholders outside the normal harvest
management “family.” In 1993 the University of Washington School of Fisheries, with funding from the
Bonneville Power Administration, began creating a user-friendly version of the PSC Chinook Model. The
goal was to create a tool that both scientists and the general public could use to explore the effects of
various harvest management regulations on chinook stock rebuilding.

The new user-friendly model, called CRiSP Harvest, was initially created in C++ under the UNIX
operating system and was completed in 1995. In 1996 a PC version was developed to make the model more
accessible to the general public. At the April 1996 Sustainable Fisheries Conference held in Victoria,
British Columbia, Canada a new modeling approach was presented in which the harvest and migration
processes were separated by using a State Space Model (Newman 1998). Discussions at that conference
lead to the project to develop the Coast Model.

19

2 Coast Model Processes

2.1 Computation Flow

The text of Chapter 2 which follows discusses a number of Coast Model objects. The actual names of the
objects as they appear in the source code are reflected here in bold type, as in IterationManager or
FisheryQuotaPolicy. As a general rule the name of the object (or class) is the same as the base portion of
both the .cpp file and .h file containing the code which implements that class, as in
“IterationManager.cpp”. The text below references actual methods from the Coast Model in bold type
followed by parenthesis, as in maxAge() (from the Stock class). See Section 5.2 for more information
about the Coast Model source code naming conventions.

2.1.1 Overview

The Coast Model is a discrete time model that loops over years and timesteps within each year (see Section
5.6.2 for a description of main computation engine). Any number of years and timesteps can be specified
by the user, but each year has the same number of timesteps. Any number of regions can be specified, but
the number of regions must be the same in all years and timesteps. The following code segment from the
“config.data” input file illustrates how time and space are controlled by the user.

Configuration data for the NMFS Coast Model.

Configuration
 StartYear 1979
 EndYear 1999
 TimeSteps 4
 Regions 4

The following processes occur within each timestep (in this order):

• Cohort Ageing

• Natural Mortality

• Fishing Mortality

• Maturation

• Spawning

• Migration

Process algorithms loop over regions, stocks, ages, and fisheries, but not always in that order. Some process
algorithms, such as fishing mortalities, may span multiple timesteps and require some iteration (i.e., making
computations over the same timesteps multiple times with different values for some control variables). For
example, prototype 10 in Appendix Section B.3.3 has three fisheries that have catch quotas over different
time steps. An IterationManager is activated at the beginning and end of each timestep to control
computation flow during iteration routines. See Section 5.5.2.5.2 (IterationControl), Section 5.5.2.5.3
(IterationManager), and Section 5.6.2 (The Engine) for more details.

2.1.2 PSC Chinook Model Implementation

Life cycle computations in the PSC chinook model are performed on an annual basis. There are no
timesteps within years. The sequence of computations reverses the procedures employed in the cohort
analysis used to generate the stock-specific input data. The annual computational sequence is outlined
below:

20

• Population ageing

• Natural ocean mortality

• Preterminal (ocean) fishing mortality

• Maturation

• Terminal (nearshore and river) fishing mortality

• Pre-spawning mortality (inter-dam losses) for some stocks

• Production of progeny in the next year.

A modified version of the PSC chinook model (CRiSP Harvest) divided the terminal fishing mortality
phase into separate nearshore and river harvest periods, thus giving three harvesting periods. Thus, within
each timestep the PSC chinook model and its derivative have two instances of natural mortality (ocean and
pre-spawning) and three instances of fishing mortality, whereas the Coast Model only has one natural
mortality and fishing process per timestep.

The maturation process effectively creates a new mature cohort from each stock/age cohort, called the
“Terminal Run.” There is no specific migration algorithm in the PSC chinook model. Instead, there is an
implied migration of mature fish from the ocean to the spawning region, because the terminal fishing
mortality, pre-spawning mortality, and production processes only affect the terminal runs.

To cast the PSC chinook model in the Coast Model framework we used four timesteps and four regions
(ocean, nearshore, river, and spawning). The table below shows which processes were activated in each of
the four timesteps (indicated by an X).

Coast Process T1 T2 T3 T4

Ageing X

Natural Mortality X X (IDLs)

Fishing Mortality X (ocean) X (nearshore) X (river)

Maturation X

Spawning X

Migration X X X X

Migration is the only process activated in all timesteps and is used to move mature fish from the ocean to
the nearshore, river, and spawning regions (see Section 2.7.2 for more details).

2.1.3 Future Processes

During the design stage for the Coast Model we envisioned three additional processes. The first would
update the physical environment of each region (e.g., sea surface temperature, surface currents); the second
would update the non-salmonid biological environment of each region (e.g., prey abundance, predator
abundance). These two processes would be the first to occur within each timestep. These regional
environmental parameters would then be available for other processes. The third additional process would
be a growth process to update the average length of fish within a cohort. This process would occur after
ageing and before natural mortality.

21

2.2 Cohort Ageing

2.2.1 Overview

Each cohort maintains an Age property (see Section 5.5.2.1 for more details about Cohort objects). Cohort
age in years is defined to be the current year minus the brood year (i.e., the year in which spawning
occurred). The “config.data” file lists all cohorts needed to seed the model (sample code below). New
cohorts created by the spawning process are assigned age 0 (see Section 5.5.3.2.2 for more details about
generating new Cohort objects). The ageing process occurs first during each timestep, and is currently
activated only during the first timestep of each year.

It is not necessary that each cohort have the same number of age classes. In fact, each Stock has three
additional age-related properties: maxAge(), FirstHarvestAge, and AdultAge.

2.2.2 PSC Chinook Model Implementation

In the PSC chinook model configuration of the Coast Model spring stocks have six age classes, whereas
fall stocks have five age classes (see Appendix Section C.2 for a complete discussion about spring and fall
stock ageing in the PSC chinook model). Here is a sample from the “config.data” file for simulating the
9812 version of the PSC chinook model:

Stock names and abbreviations.
 StockName "Alaska South SE"
 StockNumber 1
 StockAbbreviation AKS
 Run Spring
 ProductionType Wild
 MaxAge 6
 FirstHarvestAge 3
 AdultAge 4
 end Stock
…
 StockName "Fraser Early"
 StockNumber 3
 StockAbbreviation FRE
 Run Fall
 ProductionType Wild
 MaxAge 5
 FirstHarvestAge 2
 AdultAge 3
 end Stock

Below is an example from the Val98.coh input file that initializes cohorts for the 9812 version of the PSC
chinook model (see Section 3.10 for further code input language details). Each record lists the brood year,
starting abundance, and the region in which to place the abundance. In this case, all abundances are placed
in the ocean region (1). Note that six cohorts are initialized for spring stocks and five for fall stocks.

Initial cohorts by stock and brood year.
Brood year, initial abundance, initial region.

Cohorts
 Stock "Alaska South SE" # Initial cohorts for stock number: 1
 Cohort 1973 3345.02050867604 1
 end Cohort

22

 Cohort 1974 20295.0016210456 1
 end Cohort
 Cohort 1975 44085.8599317261 1
 end Cohort
 Cohort 1976 99300.8052578326 1
 end Cohort
 Cohort 1977 296962.592912911 1
 end Cohort
 Cohort 1978 379046.727021314 1
 end Cohort
 end Stock
…
 Stock "Fraser Early" # Initial cohorts for stock number: 3
 Cohort 1974 31588.8350783806 1
 end Cohort
 Cohort 1975 152651.339455101 1
 end Cohort
 Cohort 1976 205339.159233051 1
 end Cohort
 Cohort 1977 324139.988558743 1
 end Cohort
 Cohort 1978 697510.038476283 1
 end Cohort
 end Stock

2.2.3 Future Ageing Processes

Future versions of the Coast Model could maintain age at higher resolution (e.g., 4.3 years) by having
ageing algorithms that update age at every timestep. Higher resolution ages may then be used for other
processes (e.g., harvest algorithm that require fish size as a function of age).

2.3 Natural Mortality

2.3.1 Overview

The Coast Model has only one natural mortality process:

NatMort N r= ⋅

where N = the cohort abundance at the start of the natural mortality process and r is the natural mortality
rate. This is defined in the Coast Model code in NaturalMortalityManager::takeNaturalMortality().

2.3.2 PSC Chinook Model Implementation

The PSC chinook model has two types of natural mortality:

• Natural mortality for all stocks in the ocean

• Natural mortality for stocks migrating up the Columbia and Snake Rivers

Natural mortality in the ocean is age specific and occurs only during the first timestep. Here is a code
segment from the Val98.nat input data file. Note that age 1 cohorts from spring stocks do not suffer any

23

natural mortality while in the river. The basic idea of this model is that all stocks suffer the same natural
ocean mortality based on their “ocean age” (i.e., number of years spent in the ocean).

NatMortRateData StockXyearXageXtimeXregion

TimeStep 1
 Region 1
 Stock 1 # Alaska South SE // Run type = Spring
 Age 1 NaturalMortality 0.0
 Age 2 NaturalMortality 0.5
 Age 3 NaturalMortality 0.4
 Age 4 NaturalMortality 0.3
 Age 5 NaturalMortality 0.2
 Age 6 NaturalMortality 0.1
 end Stock
…
 Stock 3 # Fraser Early // Run type = Fall
 Age 1 NaturalMortality 0.5
 Age 2 NaturalMortality 0.4
 Age 3 NaturalMortality 0.3
 Age 4 NaturalMortality 0.2
 Age 5 NaturalMortality 0.1
 end Stock

Three stocks suffer mortality while migrating up the Columbia and Snake Rivers. The mortality rates are
stock, year, and age specific. The PSC chinook model refers to these mortalities as “Inter-Dam Losses” or
IDLs. These are simulated in the Coast Model by assigning natural mortalities in the last timestep (4) and
region (4). Below is a code segment from the Val98.nat input data file assigning mortalities to the upriver
bright (URB) stock.

TimeStep 4
 Region 4
 Stock URB # Fall stock.
 Age 1 NaturalMortality 0.0
 Ages 2:5
 Year 1979 NaturalMortality 0.0774
 Year 1980 NaturalMortality 0.4479
 Year 1981 NaturalMortality 0.5152
 Year 1982 NaturalMortality 0.4627
 Year 1983 NaturalMortality 0.1098
 Year 1984 NaturalMortality 0.0352
… etc

2.3.3 Future Natural Mortality Processes

The current framework allows natural mortalities to be stock, age, year, timestep, and region specific.
While this allows considerable flexibility in assigning natural mortalities, future users may wish to use
more complicated algorithms. For example, the natural mortality rate could be a function of predator and/or
prey abundance within a region, or it might depend on river temperatures and flow. The code framework

24

can be modified to accommodate these more complicated algorithm by defining new natural mortality
methods.

The current Coast Model framework does not support using instantaneous total mortality rates (i.e., natural
plus fishing). See Appendix Section C.3 for a discussion of how natural and fishing mortality rates can be
combined into a single “mortality process.”

2.4 Fishing Mortality

2.4.1 Overview

Computing fishing mortalities is the most complex portion of the Coast Model (see Section 5.5.3.1 for
complete details). Our goal was to create a flexible code framework that would allow scientists and
modelers to add new algorithms with a minimum of coding effort. The specific algorithms currently
supported in the Coast Model are based on those from the PSC chinook model. The actions taken during
the harvest process are the following:

1. Generate temporary data storage for the harvest mortality data. (This results in the creation of
FisheryUnit and HvMort objects.)

2. Instruct the PolicyControlManager to perform preHarvestManagement().
3. For each Fishery:

• Compute legal catches.

• Compute shaker incidental mortality.

• Compute CNR incidental mortality.
4. Instruct the PolicyControlManager to perform postHarvestManagement().
5. Update all cohort abundances by applying the computed harvest mortalities from each Fishery.

Note that the organization of the harvest process presumes that within a timestep harvests for individual
fisheries may be computed independently. It also presumes that legal catches and incidental mortalities
within the same fishery/region/timestep can be computed independently. The only way to achieve
interactive effects across fisheries is by using the Iteration feature of the model (see Section 5.5.2.5).
Similarly, it is further assumed that harvest in a specific fishery and region (in a particular timestep) may be
computed independently from other fisheries and/or regions. It is possible that this last requirement may be
loosened at some point in the future, but for the moment the code structure adopts this as an invariant.

The discrete nature of the Coast Model harvest process may be a significant limitation. Appendix Section
C.3 provides a detailed discussion of the harvest process limitations in the Coast Model and discusses
possible code changes to remove these limitations. With a moderate amount of re-coding the Coast Model
harvest process could be expanded to use instantaneous mortality rate equations which would allow full
interaction between fisheries operating within the same region and timestep. This would require combining
the natural mortality and fishing mortality processes into a single mortality process.

2.4.2 Legal Catches

2.4.2.1 SingleCohort

In the Coast Model, the HarvestProcess object contains the information necessary to compute catches by a
single fishery of legal sized fish from a cohort within a given year, timestep, and region. Only one
algorithm is currently supported, as follows:

25

LegalCatch N PV HR FP EffortScalar= ⋅ ⋅ ⋅ ⋅

where N is the regional cohort abundance (at the start of the fishing mortality process), PV is the proportion
of the regional abundance that is vulnerable to the gear (e.g., due to size limits), HR is the “base period”
harvest rate, FP is a “fishery policy” input scalar to adjust the base period harvest rate for the current year,
timestep, and region, and EffortScalar is an additional policy control variable that can be adjusted during
iteration routines. PVs, HRs, and FPs are defined via separate input data files and can have almost any
dimensionality using the generic array data storage system. Thus, this simple linear harvest equation
combined with flexible parameter dimensionality provides an extremely robust tool for computing legal
catches. This equation is actually in the LinearHarvestProcess::computeCatch() method, which
(contrary to the usual naming convention) is found in file “HarvestProcess.cpp”.

2.4.2.2 Multiple Cohorts (Safe-Guarded Secant Algorithm)

Some harvest policies require that the catch of all cohorts within a single year, timestep, and fishery are
equal to a given number. If the single cohort algorithm described above is used for all HarvestProcesses,
then the EffortScalars for each process can all be adjusted by the same amount such that the total catch of
all cohorts equals the desired amount. The catch ceiling algorithm of the PSC chinook model operates in
this fashion. If any HarvestProcesses are non-linear, then this methodology will not work.

The safe-guarded secant algorithm solves for the effort level in a fishery during a given timestep and region
such that the total catch in that fishery hits a specific catch quota (ceiling), regardless of the types of
equations used to compute the cohort specific catches. One nice feature of this algorithm is that when all
the catch equations are linear (as is the case for the PSC Chinook Model), then the safe-guarded secant
method solves in a single iteration, just as the PSC Chinook Model algorithm does. The following brief
description of the safe-guarded secant algorithm is from Jan 19, 1999 minutes.

Since each HarvestProcess object can have a different type of algorithm to compute legal catch at the
cohort level, a FisheryPolicy object that has a catch quota objective requires a general algorithm that will
adjust the effort level in a fishery to meet the quota. Mathematically, we have the following problem:

Find E such that

C = F(E) = K

where

C = total catch in a fishery;
E = relative effort level in the fishery;
K = desired catch quota;
F(E) = unknown function.

The unknown function F(E) is the sum of all the unknown HarvestProcess functions for each cohort. The
problem can be restated as follows:

Find E such that

G(E) = F(E) - K = 0.

The code used in the Coast Model is similar to the secant method used in Function RTSEC in Numerical
Recipes. For further algorithm details see the code and comments in the Coast Model. The
MultiCeilingIterationConrol class implements this functionality. Also see section 5.5.2.5 for a
description of the code implementing the harvest iteration system.

26

2.4.3 Incidental Mortalities

Virtually all “real world” fishing processes kill more fish than are landed legally. Some fish encounter the
fishing gear and suffer mortality, but are never brought on board the vessel. For example, in salmon
fisheries some fish hooked by commercial troll and sport fishermen or gilled by net fishermen escape the
gear before it is retrieved. A portion of these fish may die from their encounter with the gear. These types
of mortalities are referred to as “drop off” mortalities. Since these fish are never even seen by scientific
observers on board the vessel, drop off mortalities are difficult to study and estimate.

Fish brought on board the vessel but not landed are generally referred to as “bycatch.” For example, many
fisheries have size limits. Any captured fish whose length is below the size limit must be released. In
salmon hook and line fisheries, these undersized fish are referred to as “shakers” because they are “shaken”
off the gear. Some of the shakers survive, but others die due to the stress of being captured and released.
The shaker mortality rate (i.e., the fraction of shakers that die) is gear dependent. Troll and sport gears
cause relatively low shaker mortality, since the fish are captured individually and in many cases can be
released without serious injury. Net fisheries cause higher shaker mortalities, because the capture process is
more stressful.

Another type of salmon bycatch occurs when it is illegal to keep some species of salmon. For example, it
may be legal to keep all species of salmon except chinook. Incidental mortalities caused by releasing
prohibited species are called “non-retention” mortalities. Note that non-retention mortalities include both
legal and sub-legal sized fish. The Coast Model supports several PSC chinook model algorithms for
computing “chinook non-retention,” or “CNR,” mortalities.

In the Coast Model the HarvestManager maintains a generic array of Shaker and CNR objects. Each of
these objects contains all the data and algorithms for computing incidental mortalities and is specified by
the user via the *.shk and *.cnr input files. If the user does not want the model to compute incidental
mortalities, these two files can be omitted. The following sections briefly describe the algorithms.

2.4.3.1 Shakers

As noted above, the legal catches are computed first and stored by fishery, stock, and age during each
timestep and region. Legal catches are computed for each fishery independently. Thus, during one loop
through the fisheries, the catches of one fishery in a timestep and region are not affected by catches of other
fisheries operating in that same timestep and region.

Shakers must be computed before the CNRs. In the 1995 version of PSC chinook model the only mortality
rate parameter required was a “ShakerMortRate” that was gear specific (Troll = 0.30; Net = 0.90; Sport =
0.30). In the 1998 version there are three fishery specific incidental mortality rates:

• SublegalShakerMortRate;

• LegalShakerMortRate;

• DropOffRate.

Shakers are fish that are killed incidentally while harvesting legal size fish. These include “DropOffs”
(sublegal and legal size fish that drop off the gear before being brought to the boat) and “Releases”
(sublegal size fish that are brought to the boat, but are released because they are below the legal size limit).

The PSC Chinook Model shaker algorithm was difficult to implement in the Coast Model because it relied
upon a subjective concept (preterminal vs terminal; ocean net fishery) of which stocks were considered
vulnerable to each fishery during a timestep. The new Coast Model shaker algorithm resolves this dilemma
by including a “vulnerability” table in each Shaker object for which not all stocks are vulnerable. Since
shakers are computed for each fishery independently, each fishery/region/timestep has a Shaker object.

27

Appendix Section C.3.2 contains a detailed discussion (including examples) of the shaker algorithm and
how vulnerability tables are created for various situations in the PSC chinook model. The following
sections describe how shaker mortalities are computed for the stocks that are considered vulnerable to a
fishery. Thus, keep in mind that all references to stocks in the following equations refer only to stocks that
are vulnerable to the referenced fishery.

The shaker equations shown below are implemented in the classes derived from the base Shaker class.
PSCShaker contains most of the code while other subclasses contain further specializations. See Section
5.5.3.1.6.1 for a list of the various Shaker subclasses.

2.4.3.1.1 Compute the “StockWts”

The relative contribution of each stock in each fishery (called the “stock weight”) is computed by:

StkWgt
FP Catch

FP Catchs f

s f s a f
a

s f s a f
as

,

, , ,

, , ,

=
⋅∑
∑∑

Note that the numerator is the catch of stock s by fishery f and denominator is the total catch by fishery f.
Note also that if all catches by fishery f are multiplied by a common scaling factor, the stock weight term is
unchanged.

2.4.3.1.2 Compute the “TotalPNV” and “TotalPV”

These variables represent the total number of sublegal and legal fish recruited to the gear in fishery f.

TotPNV N PNV StkWgtf s a a f s f
as

= ⋅ ⋅∑∑ , , ,

TotPV N PV StkWgtf s a a f s f
as

= ⋅ ⋅∑∑ , , ,

2.4.3.1.3 Compute the “EncounterRate”

The encounter rate for each fishery is computed by

EncRte
TotPNV
TotPVf

f

f

=

2.4.3.1.4 Compute the “FracNV”

FracNV
StkWgt N PNV

TotPNVs a f
s f s a a f

f
, ,

, , ,=
⋅ ⋅

2.4.3.1.5 Compute “TotalShakers”

28

Total shakers in fishery f is the product of the total catch by fishery f times the encounter rate times the
shaker mortality rate. Note that if all the catches in a given fishery are multiplied by a common scaling
factor, total shakers is also multiplied by that factor.

TotShak ShakMortRte EncRte FP Catchf f f s f
f

s a f
a

= ⋅ ⋅ ⋅∑ ∑, , ,

where

ShakMortRte SublegalShakMortRte DropOffRatef f f= +

2.4.3.1.6 Distribute “TotalShakers” by stock and age using the FracNVs

Total shakers are distributed by stock and age to get sublegal shakers. These sublegal shakers are stored
separately (from the legal drop offs) for possible use in subsequent CNR computations.

SublegalShak TotShak FracNFf s a f s a, , ,= ⋅

LegalDropOffs are added to the sublegal shakers to get total shakers:

TotShak SublegalShak LegalDropOffsf s a f s a f s a, , , , , ,= +

where

LegalDropOffs LegalCatch DropOffRatef s a f s a f, , , ,= ⋅

Since the LegalShakerMortRate parameter is not used to calculate shakers, the Coast model does not
include that parameter with the input specifications for shakers.

 [Programming Note: The PSC chinook model QuickBasic code computes the encounter rate and the
FracNVs in Sub CalcEncRte (this sub appears to be identical in CTC95, CTC98, and CTC99). Sub
CalcShaker is called at the end of Sub CalcEncRte to compute the total shakers and distribute them
among the cohorts. Sub CalcShaker also computes the CNR mortalities.]

2.4.3.2 Chinook Non-Retention Mortalities

Chinook Non-Retention (CNR) mortalities are sublegal and legal size fish killed in fisheries targeting on
other salmon species. In CTC98 the computation of these mortalities proceeds in three steps:

• Compute CNR ratios (e.g., legal CNR morts to legal catch);

• Compute CNR mortalities without considering multiple encounters (e.g., apply CNR ratio to
legal catch);

• Adjust CNR mortalities for multiple encounters (e.g., multiply CNR morts by a multiple
encounter adjustment scalar).

2.4.3.2.1 Compute the ratios relating legal CNR mortalities to the legal catch and sublegal CNR
mortalities to the shakers.

This is the same idea as in CTC95; the only difference is the mortality rate used. Three methods can be
used to compute these ratios. The naming of the methods shown below reflects the naming of the

29

subclasses deriving from CNR which implement each of the equations. See also Section 5.5.3.1.6.2 for a
full list of the CNR subclasses.

CNR_HarvestRatio Method

If the current year relative effort level is between zero and one (i.e., 0 < RelHR < 1), then compute the
ratios as follows:

CNRSublegalRatio CNRSublegalSel
RelHR

RelHRf f
f

f

= ⋅
−1

CNRLegalRatio CNRLegalSel LegalCNRMortRate
RelHR

RelHRf f f
f

f

= ⋅ ⋅
−1

where

LegalCNRMortRate LegalShakerMortRate DropOffRatef f f= +

CNR_SeasonLength Method

This method is similar to the ratio method, except the relative effort level is determined by the season
lengths. Note that the DropOffRate is not used in this method.

CNRSublegalRatio CNRSublegalSel
CNRSeasonLength
LegalSeasonLengthf f

f

f

= ⋅

CNRLegalRatio CNRLegalSel LegalShakerMortRate
CNRSeasonLength
LegalSeasonLengthf f f

f

f

= ⋅ ⋅

Possible QB Program Bug. There is an inconsistency in the 1998 QuickBasic code that needs to be
resolved. The inconsistency is in the 1999 code as well. For fisheries that do not have incidental mortality
rate changes, the above formula for calculating the CNRLegalRatio uses only the LegalShakerMortRate.
On the other hand, fisheries that do have incidental mortality rate changes use the sum of the
LegalShakerMortRate and the DropOffRate. Adding the DropOffRate would be consistent with the
HarvestRatio method. The QuickBasic code is below, with the important lines in bold:

CASE 0 '....RT

IF RT > 0 AND RT < 1

TmpR = (1 - RT) /

Tmp4 = CNRSelect(0, CNRIndx%) * TmpR '.....

'..... CNRSelect is the selectivity factors

'compute legal IM+ dropoff and check for changes 2/9/98

TmpSM = ShakerMortRte(Fish%, 2) + ShakerMortRte(Fish%, 3)

FOR ICheck% = 1 TO NumIMChange%

30

TestFish% = IMChange!(ICheck%, 1)

TestYr% = IMChange!(ICheck%, 2)

IF TestFish% = Fish% AND Yr% >= TestYr% - 79 THEN

TmpSM = IMChange!(ICheck%, 4) + IMChange!(ICheck%, 5)

END IF

NEXT ICheck%

'.....

Tmp5 = CNRSelect(1, CNRIndx%) * TmpSM * TmpR '..... Legals

END IF

CASE 1 '....Season Length

Tmp6 = CNRData(Yr%, CNRIndx%, 1) / CNRData(Yr%, CNRIndx%, 0) '..... CNR/Regular
Season

Tmp4 = CNRSelect(0, CNRIndx%) * Tmp6 '..... SubLegal

TmpSM = ShakerMortRte(Fish%, 2)

[?? TmpSM = ShakerMortRte(Fish%, 2) + ShakerMortRte(Fish%, 3) ??]

'......Now check for changes in IM rates and substitute if needed 2/9/98

FOR ICheck% = 1 TO NumIMChange%

TestFish% = IMChange!(ICheck%, 1)

TestYr% = IMChange!(ICheck%, 2)

IF TestFish% = Fish% AND Yr% >= TestYr% - 79 THEN

TmpSM = IMChange!(ICheck%, 4) + IMChange!(ICheck%, 5)

END IF

NEXT ICheck%

Thus, it appears that the equation above should be:

CNRLegalRatio CNRLegalSel LegalCNRMortRate
CNRSeasonLength
LegalSeasonLengthf f f

f

f

= ⋅ ⋅

31

where

LegalCNRMortRate LegalShakerMortRate DropOffRatef f f= +

CNR_ReportedEncounter Method

This method uses reported encounters to determine the relative effort levels.

CNRSublegalRatio CNRMortRate
EncRate

RptSublegalEncounters

RptLegalCatchf f
f

f

f

= ⋅ ⋅1

 [Programming Note: The QuickBasic code does not use 1/EncRate. Instead it effectively back-calculates
the encounter rate from TotalCatch and SublegalShakers (before DropOffs are added).]

CNRLegalRatio CNRMortRate
RptLegalEncounters

RptLegalCatchf f
f

f

= ⋅

where

CNRMortRate SublegalShakerMortRate DropOffRatef f f= +

 [Question: Should the CNRMortRate be the same for both the sublegals and legals? Seems like the rate use
for the legal CNRs should be the sum of the LegalShakerMortRate plus the DropOffRate.]

2.4.3.2.2 Compute legal and sublegal CNR mortalities without considering multiple encounters

Note that for the sublegals, the ratio is applied only to the sublegal shakers, not the sublegal shakers plus
the drop offs.

SublegalCNRMorts CNRSublegalRatio SublegalShakersf s a f f s a, , , ,= ⋅

LegalCNRMorts CNRLegalRatio LegalCatchf s a f f s a, , , ,= ⋅

If the Reported Encounter method was used in Step 1, then no further adjustments are necessary and the
CNR computations are finished. The CNR_HarvestRatioMultipleEncounter and
CNR_SeasonLengthMultipleEncounter methods require an adjustment for multiple encounters.

2.4.3.2.3 Adjust CNR mortalities for multiple encounters

If appropriate, adjust the CNR mortalities by computing a CNRScalar adjustment factor (“appropriateness”
is explained later). All methods start by computing the number of potential encounter periods during the
base period, as follows:

32

BaseEncounterPeriods
BasePeriodSeason
RecaptureIntervalf

f

f

=

[Programming Note: We can compute this with the utility and pass it in as data from the cnr file.]

The following computations are done for each cohort (i.e., fishery, stock, age).

CNR_HarvestRatioMultiple Encounter Method

This method is applied only if two conditions are satisfied. First, the base period exploitation rate for this
cohort must be greater than zero (i.e., this cohort must be harvested by this fishery). Second, the scalar used
to adjust the cohort specific catches by this fishery to meet its ceiling (RelHRf) is between zero and one
(i.e., the CNR season must have increased relative to the base period).

First, convert the discrete-time base period exploitation rate to an instantaneous rate (scaled to the number
of base period encounter periods).

InstBaseHR
BaseHR

BaseEncounterPeriodsf s a
f s a

f
, ,

, ,ln()
=

− −1

This base period instantaneous rate is then adjusted to reflect the new amount of effort or season length.
This factor is then used to compute the scalar. The adjustment factor is computed by

Adjust RelHR BaseEncounterPeriodsf f= − ⋅()1

A new temporary instantaneous rate is given by

TempRate Adjust InstBaseHR f s a= ⋅ , ,

Use this temporary rate is used to back-calculate a new discrete exploitation rate:

ER ef s a
TempRate

, , = − −1

If this value is > 1, the sublegal and legal CNR scalars are both given by:

CNRScalar
ER

BaseHR RelHRf s a
f s a

f s a f
, ,

, ,

, , ()
= ⋅ −1

The sublegal and legal CNR mortalities computed in step 2 are multiplied by this scalar value to get the
final CNR mortalities.

CNR_SeasonLengthMultipleEncounter Method

Computations are slightly different for sublegal and legal size fish. Both methods use an adjustment factor
to reflect changes in season length.

33

Adjust
CNRSeasonLength

CNRSeasonLength LegalSeasonLength
f

f f

= +

Note that Adjust is always less than zero.

Sublegal Computations

An adjusted base harvest rate is computed by

AdjBaseHR Adjust BaseHR SublegalSelf s a f s a f, , , ,= ⋅ ⋅

If this adjusted base harvest rate is zero, then the sublegal scalar is set to zero. If it is greater than zero, a
new instantaneous rate is computed as

TempRate AdjBaseHR LegalShakerMortRate Adjustf s a= − − ⋅ ⋅ln(), ,1

This temporary rate is used to back-calculate a new discrete exploitation rate:

ER ef s a
TempRate

, , = − −1

The sublegal CNR scalar is

SublegalCNRScalar
ER

AdjBaseHR LegalShakerMortRatef s a
f s a

f s a
, ,

, ,

, ,

= ⋅

The sublegal CNR mortalities computed in Step 2 are multiplied by this scalar to get the final sublegal
CNR mortalities.

Legal Computations

An adjusted base harvest rate is computed by

AdjBaseHR Adjust BaseHR LegalSelf s a f s a f, , , ,= ⋅ ⋅

If this adjusted base harvest rate is zero, then the legal CNR scalar is set to zero. If it is greater than zero
(but not = 1), a new instantaneous rate is computed as

TempRate AdjBaseHR LegalShakerMortRate Adjustf s a= − − ⋅ ⋅ln(), ,1

This temporary rate is used to back-calculate a new discrete exploitation rate:

ER ef s a
TempRate

, , = − −1

The legal CNR scalar is

34

LegalCNRScalar
ER

AdjBaseHR LegalShakerMortRatef s a
f s a

f s a
, ,

, ,

, ,

= ⋅

The legal CNR mortalities computed in Step 2 are multiplied by this scalar to get the final legal CNR
mortalities.

Possible Program Bug. Once the legal and sublegal CNR scalars are computed, the program only applies
the scalars if the Adjust term is greater than one. However, as noted above, this term is always less than
one. Thus, the scalars are never applied. The ultimate effect is that multiple encounters are never actually
accounted for whenever the season length method is used. To verify this, we inserted debugging code
within the program to print out the maximum values for the Adjust term and the two scalars (sublegal and
legal) whenever the season length method is used. The code and results are listed below.

' so if adjust >1 then did multiple encounters

IF Adjust > 1 THEN

'..... Estimate CNR mortality losses

CNRShakCat(LocF, CNRIndx%, Stk%, Age%) = Tmp * Tmp4 * SSub

CNRLegal(LocF, CNRIndx%, Stk%, Age%) = MDLCatch!(LocF, Fish%, Stk%, Age%) * Tmp5 * SLeg

ELSE

 '..... Estimate CNR mortality losses

'... recall that Tmp has TotShak (hence IM rate) already in it

CNRShakCat(LocF, CNRIndx%, Stk%, Age%) = Tmp * Tmp4

CNRLegal(LocF, CNRIndx%, Stk%, Age%) = MDLCatch!(LocF, Fish%, Stk%, Age%) * Tmp5

END IF

' Norris CNR debugger.

 IF CNRMeth%(Yr%, CNRIndx%) = 1 THEN

 PRINT #20, Yr%, Fish%, Stk%, Age%, Adjust, SSub, SLeg

 END IF

' End debugger.

END IF

END IF

NEXT Age%

NEXT Stk%

EXIT SUB

35

2.5 Maturation

2.5.1 Overview

The Coast Model supports only one maturation algorithm— a simple rate model. When the
MaturationManager invokes the maturateCohorts() method, the following steps occur:

• Loop through all cohorts;

• If the cohort is immature, loop through all regional abundances for that cohort;

• Apply the appropriate maturation rate and decrement the regional abundance;

MatureFish N r= ⋅

N N MatureFish' = −

where N is the starting (i.e., pre-maturation process) regional abundance, N’ is the ending (i.e., post-
maturation process) regional abundance, and r is the maturation rate.

• If a corresponding mature cohort (i.e., same CohortID (see “Cohort.cpp”) except for
maturation status) already exists within this region, add the new mature fish to the existing
mature cohort.

• If a corresponding mature cohort does not exist within this region, create one and add the new
mature fish to the new mature cohort.

2.5.2 PSC Chinook Model Implementation

In the PSC chinook model maturation only occurs during the first timestep and the ocean region (1). All
stocks have age specific maturation rates, and some stocks have the same maturation rates every year.
Below is a code sample from the Val98.mrt input file assigning fixed maturation rates. Note that the oldest
age cohorts always have a 1.0 maturation rate (age 6 for spring stocks and age 5 for fall stocks).

MaturationData StockXyearXageXtimeXregion

No maturation occurs during timesteps 2:4.
TimeSteps 2:4 MatRate 0.0

Maturation only occurs at the end of the first timestep.
TimeStep 1
 Regions 2:4 MatRate 0.0
 Region 1 # Preterminal region.
 Age 1 MatRate 0.0

 # Data for stocks with fixed maturation rates for all years.
 # Years 1979:1999

 Stock NTH # All years; run type = Spring
 Age 2 MatRate 0.0
 Age 3 MatRate 0.051396523
 Age 4 MatRate 0.14471728
 Age 5 MatRate 0.69004977
 Age 6 MatRate 0.99999988
 end Stock

36

 Stock FRE # All years; run type = Fall
 Age 2 MatRate 0.026498009
 Age 3 MatRate 0.1446432
 Age 4 MatRate 0.68596339
 Age 5 MatRate 1

Below is a code sample from the Val98.mrt input file assigning maturation rates that vary by year.

Data for stocks with variable maturation rates.
 Stock AKS
 Year 1979 # Stock AKS; run type = Spring
 Age 2 MatRate 0.0
 Age 3 MatRate 0.0576
 Age 4 MatRate 0.1212
 Age 5 MatRate 0.6487
 Age 6 MatRate 0.99999994
 end Year
 Year 1980 # Stock AKS; run type = Spring
 Age 2 MatRate 0.0
 Age 3 MatRate 0.0576
 Age 4 MatRate 0.1212
 Age 5 MatRate 0.6487
 Age 6 MatRate 0.99999994
 end Year
 Year 1981 # Stock AKS; run type = Spring
 Age 2 MatRate 0.0
 Age 3 MatRate 0.0045
 Age 4 MatRate 0.1212
 Age 5 MatRate 0.6487
 Age 6 MatRate 0.99999994
 end Year

2.5.3 Future Maturation Processes

Future versions of the Coast Model could have more complicated maturation algorithms. For example, the
maturation rate could be dependent on the physical characteristics of the region (e.g., water temperature) or
the average individual size of the cohort (e.g., larger fish could have a higher maturation rate).

2.6 Spawning

2.6.1 Overview

The SpawningManager controls when spawning will occur by maintaining a ProductionTable (generic
array) of Production objects (see “SpawningManager.h” and Section 5.5.3.2 for more details). A
Production object contains all the information necessary to compute the number of new age 0 fish
produced by the mature adult spawners from a given stock. At each timestep, every stock and region are
examined. If there is a ProductionTable entry for that stock and region in the current timestep, then
production will occur. The total adult mature regional abundance for that stock and region (regional
escapement) is calculated, and the spawn() method of the appropriate Production object is invoked. The
output is the new abundance of age 0 fish for that stock and region.

Note that the above code structure gives the Coast Model the flexibility to allow spawning in any region or
timestep. This is accomplished by assigning Production objects to regions and timesteps via the *.prd

37

input file. The CohortGenerator always places the new age 0 cohorts in the region in which they spawn
(see Section 5.5.3.2.2 for more details). Users are cautioned that they must properly assign age-specific
transition matrices in the *.tm input file to move age 0 cohorts from their spawning region at the desired
time.

Each Production object maintains a list of ProductionFunctions (see Section 5.5.3.2.1), each of which
describes the relationship between a number of mature adult spawners from a given stock and the new age
0 fish they will produce. Note the use of the indefinite article “a” instead of the definite article “the” before
the phrase “number of adult spawners.” This is to emphasize that a ProductionFunction does not
necessarily describe the relationship between the total adult spawners and their progeny. We do this
because many salmon production algorithms involve several functions.

Consider the case of a hatchery stock for which the hatchery has a limited capacity, say 5,000 adult
spawners, and any excess escapement is allowed to spawn in the wild. If the total escapement is 7,500 in a
given year, production from the first 5,000 spawners would use one function (e.g., a linear function) and
the remaining 2,500 spawners would use a different function (e.g., a Ricker function).

All ProductionFunctions have minimum and maximum spawner values to define which portion of the
total escapement is to be used for each function (input as the first and second parameters in the input file;
see Section 3 for complete input code specifications). The age 0 fish produced by each function are added
together to get total production. In the above example, the linear function would use 5,000 spawners and
the Ricker function would use 2,500 spawners. Mathematically, the rule for determining the number of
adult spawners passed to a ProductionFunction (as a function of total adult escapement) is given by:

AdultSpawners
TotAdltEsc min

TotAdltEsc min min TotAdltEsc max
max max TotAdltEsc

=
<

− ≤ <
≤

0

All ProductionFunctions also have a parameter called the Environmental Variability (EV) Scalar (input as
the third parameter in the input file; see Section 3 for complete input code specifications). This parameter is
used to account for known or predicted deviations around the deterministic functions.

The following code segment from the Val98.prd input file illustrates how ProductionFunctions are linked
to create a Production object. Note that the minimum and maximum spawner values for each function
occur in sequence and do not overlap. For example, in 1983 the first 5,318 spawners use the first linear
function, the next 244 spawners (= 5,562 - 5,318) use the second linear function, the next 5,000 spawners
(= 10, 318 – 5,318) use the Ricker function, and any additional escapement is ignored. Also note that the
EVScalar values for all functions within the same year are equal, but between years they are different.

StockNum 9 #Production functions for stock: GSH
 Year 1979 #For stock: GSH
 Production Linear 0 5318 0.576309919 101.088866871763
 Production Ricker 5318 10318 0.576309919 2.813 72371.2428651556
0.181012304888616
 end Year
 Year 1980 #For stock: GSH
 Production Linear 0 5318 0.338252485 101.088866871763
 Production Ricker 5318 10318 0.338252485 2.813 72371.2428651556
0.181012304888616
 end Year
 Year 1981 #For stock: GSH
 Production Linear 0 5318 1.36516976 101.088866871763
 Production Ricker 5318 10318 1.36516976 2.813 72371.2428651556
0.181012304888616

38

 end Year
 Year 1982 #For stock: GSH
 Production Linear 0 5054.47415595914 1.3196733 101.088866871763
 end Year
 Year 1983 #For stock: GSH
 Production Linear 0 5318 0.560896635 101.088866871763
 Production Linear 5318 5562.0650328853 0.560896635 17.5666110352434
 Production Ricker 5562.0650328853 10562.0650328853 0.560896635 2.813
72371.2428651556 0.181012304888616

2.6.1.1 LinearProduction

A linear function is typically used for hatchery production and requires the following parameters:

• min (minimum number of adult spawners)

• max (maximum number of adult spawners)

• EVScalar

• Slope

The specific formula is a straight line through the origin (with the effective slope of the line equal to the
product of the Slope and EVScalar parameters):

AgeZeroFish AdultSpawners Slope EVScalar= ⋅ ⋅

If the hatchery production is less efficient beyond a given level of spawners, more than one
ProductionFunction can be assigned to a Production object. Consider the example below for the RBH
stock from the PSC chinook model (sample code from the Val98.prd input file). In 1979-1981 there is a
single linear ProductionFunction with a maximum of 6,472 adult spawners, a slope of 250.6 (i.e., each
spawner produces 250.6 age 0 fish deterministically), and EV Scalar values of 1.04, 0.77, and 0.44,
respectively. In 1982 a second linear function is added. This second function is invoked only for adult
escapement in excess of 6,472 up to a maximum of 8,971. This indicates that the hatchery capacity has
increased to 8,971 adult spawners, but note that the slope is reduced from 250.6 to 94.1 signifying less
efficient production. The table below shows the number of age 0 fish produced by 7,500 spawners given
the example ProductionFunctions for the RBH stock.

Year TotAdltEsc AdultSpawners EffectiveSlope Age 0 Fish

1979 7,500 6,472 260.1 1,689,049
1980 7,500 6,472 192.8 1,247,22
1981 7,500 6,472 109.6 709,313
1982 7,500 6,472 (first function) 100.0 647,177

1,028 (second function) 37.5 38,581
Total 1982 685,758

ProductionFunctions StockXyearXtimeXregion #Production functions by stock and
year.
TimeStep 4
Region 4

StockNum 5 #Production functions for stock: RBH
 Year 1979 #For stock: RBH
 Production Linear 0 6472 1.04126465 250.635577084189
 end Year

39

 Year 1980 #For stock: RBH
 Production Linear 0 6472 0.769133806 250.635577084189
 end Year
 Year 1981 #For stock: RBH
 Production Linear 0 6472 0.4372769 250.635577084189
 end Year
 Year 1982 #For stock: RBH
 Production Linear 0 6472 0.398971677 250.635577084189
 Production Linear 6472 8970.96933755731 0.398971677 94.0663138467215
 end Year
 Year 1983 #For stock: RBH
 Production Linear 0 6472 0.0862767845 250.635577084189
 Production Linear 6472 9973.86853326432 0.0862767845 94.0663138467215
 end Year

2.6.1.2 RickerProduction

This function is the familiar Ricker spawner/recruit function multiplied by the EVScalar parameter (to
account for annual variability) and a parameter to convert predicted adult recruitment to age 1 fish
(RectAtAgeOne). The required parameters are

• min (minimum number of adult spawners)

• max (maximum number of adult spawners)

• EVScalar

• α (Ricker A parameter)

• β (Ricker B parameter)

• RectAtAgeOne

The specific formula is:

AgeZeroFish EVScalar RectAtAgeOne AdultSpawners e
AdultSpawners

= ⋅ ⋅ ⋅
⋅ −α β()1

2.6.1.3 EnhancedRickerProduction

This function was developed to implement an algorithm in the PSC chinook model. It allows for
enhancement of natural stocks (also called supplementation) in which a portion of the natural spawners are
removed for hatchery production. The following parameters are required for this function:

• min (minimum number of adult spawners)

• max (maximum number of adult spawners)

• EVScalar

• α (Ricker A parameter)

• β (Ricker B parameter)

• RectAtAgeOne

• Density dependence flag

• HatchProd (hatchery productivity parameter)

• SmoltSurvRt (smolt survival rate to age one)

• EnhProp (maximum proportion of the wild stock that can be removed for hatchery production)

40

• Smolts (smolt production change over some base period)

The first step is to determine number of wild spawners that must be removed to meet the smolt production
goal (Smolts). These are called enhancement spawners (EnhSpawners) and are computed as follows:

EnhSpawners
Smolts SmoltSurvRt

e HatchProd= ⋅

The number of enhancement spawners removed may not exceed a maximum allowable percentage of the
adult spawners, called the MaxBrood:

MaxBrood EnhProp AdultSpawners= ⋅

EnhSpawners is truncated to MaxBrood, if necessary.

Smolts from hatchery production are returned back to the river of origin. If no competition between wild
and hatchery smolts is assumed (i.e., density dependence flag is false), then natural and hatchery production
are computed independently and added together. The naturally produced smolts are computed from the
remaining natural spawners using the Ricker function

AgeZeroFish EVScalar RectAtAgeOne WildSpawners e
WildSpawners

= ⋅ ⋅ ⋅
⋅ −α β()1

where WildSpawners = AdultSpawners – EnhSpawners. The hatchery produced smolts are computed using
a linear function, as follows:

AgeZeroFish AdultSpawners e EVScalarEnhProd= ⋅ ⋅

When density dependence is assumed (i.e., density dependence flag is true), AgeZeroFish is computed
using a Ricker curve, but the “effective” size of the spawning stock is increased to reflect the fact that eggs
from some of the spawners are reared in a hatchery. The enhancement efficiency of the hatchery is given by

EnhEff
e

e

EnhProd

= α

In general, HatchProd is greater than α so EnhEff is usually greater than one. The effective number of
spawners is given by

EffectiveSpawners EnhSpawners
EnhEff

AdltEsc EnhSpawners= ⋅ + −α ()

Age 0 fish are then computed with the Ricker function using effective spawners.

AgeZeroFish EVScalar RectAtAgeOne EffSpawners e
WildSpawners

= ⋅ ⋅ ⋅
⋅ −α β()1

2.6.1.4 VariableTruncationRickerProduction

This function was created to implement an algorithm from the PSC chinook model. However, it appears
that there is a bug in this algorithm and we anticipate that it will be removed. For a complete discussion of
this production function see Appendix Section C.5.2.

41

2.6.2 PSC Chinook Model Implementation

Production functions in the PSC chinook model use data from several files. For example, the 9812 version
of the model uses the following files (production related parameters are in parens):

• 9812v.op6 (density dependence flag)

• Cal9807.bse (natural ocean mortality rates, α, optimum escapement, truncation flag)

• Enhanc98.enh (HatchProd, SmoltSurvRt, EnhProp, Smolts)

• Mat98.msc (stock and year specific maturation rate parameters)

• 9801.idl (natural pre-spawning mortality rates)

• 9812p.evo (EVScalar)

Our goal with the Coast Model was to consolidate all data required for Production objects into a single
file. We wrote a utility program that converts data from CTC chinook model input files to a single Coast
Model production file (*.prd). The following CTC chinook model parameters were used in Coast Model
ProductionFunctions without modification:

• Density dependence flag

• α
• HatchProd

• SmoltSurvRt

• EnhProp

• Smolts

• EVScalar

The utility program computer code used to convert PSC chinook model input files to Coast Model input
files contains comment statements describing the algorithms. The methods are briefly described here.

The min and max spawners used in all Coast Model ProductionFunctions were computed from the natural
ocean and pre-spawning mortality rates, maturation rates, optimum escapements, and truncation flags.
These natural mortality and maturation rates also were used to compute the RectAtAgeOne Coast Model
parameter. The Slope parameter in the Coast Model LinearProduction functions is given by eα for
hatchery stocks without enhancement and by e HatchProd for the second linear function used by hatchery
stocks with enhancement. In the Ricker functions, the β parameter was computed as follows (Hilborn’s
approximation):

β α= − ⋅
OptimumEscapement

05 0 07. .

2.6.3 Future Spawning Processes

A limiting feature of the Coast Model is that the SpawningManager passes total adult escapement to all
ProductionFunctions. Thus, the Coast Model spawning process tacitly assumes that spawners from all
adult ages are equally productive. Each stock has a property called AdultAge which defines the youngest
age to include in adult spawners. The SpawningManager computes the total adult spawners before passing
that argument to the Production object. Thus, in its current form, the Coast Model cannot support any
production function that requires age specific data. More generally, it cannot support any production
function that requires partitioning total adult escapement into age, sex, size, or other components. Any
future spawning processes that require such partitioning will require some code changes to the
SpawningManager in addition to writing new ProductionFunctions.

42

2.7 Migration

2.7.1 Overview

The Coast Model migration process currently has only one algorithm, which is based on the transition
matrix algorithm used in Ken Newman’s State Space Model (SSM) (Newman 199?). All commonly used
migration algorithms can be modeled using the SSM approach (see Appendix Section C.5 for a complete
report on using the SSM approach to model other salmon model migration algorithms).

In matrix notation, the deterministic SSM consists of two equations:

n M S nt t t t= − 1 (state process)

c H nt t t= (observation process)

The abundance vectors n t and n t − 1 are composed of R elements (one abundance for each region). Each

migration matrix M t is an R x R square matrix of mi j, elements (mi j, = the fraction of the abundance in

region j moving to region I). The elements in each column must sum to one. Each survival matrix S t and

each harvest matrix H t is a diagonal matrix with R elements (e.g., sr t, , hr t,). In expanded form the state

process equation looks like this:

n

n

m m

m m

s

s

n

n

t

R t

R

R R R

t

R t

t

R t

1 1 1 1

1

1 1 1

1

,

,

, ,

, ,

,

,

,

,

M
L

M M
L

O M

=

−

−

In terms of the Coast Model processes, the product of the survival matrix S t and the abundance vector

n t − 1 is simply an updated abundance vector after the natural mortality, fishing mortality, maturation, and
spawning processes have occurred. Thus, we can define a new updated abundance vector by
n S nt t t− −=1 1

' . Thus, the migration matrix can be thought of as being applied to the updated cohort
abundance vector. Each element of the abundance vector after migration can be written

n m nr t r j
j

R

r t, , ,
'=

=
−∑

1
1 .

The migration process is controlled in the Coast Model by the MigrationManager and implemented in the
TransitionMatrix.

2.7.2 PSC Chinook Model Application

The migration matrices used to simulate the 9812 version of the PSC chinook model are given below. Note
the following:

43

• Separate matrices are given for fall and spring stocks to reflect the fact that spring stocks
remain in the river for their first year of life (see Appendix Section C.2 for a complete
discussion about spring and fall stock ageing in the PSC chinook model).

• Immature fall stocks of all ages do not migrate during timesteps 1 – 3. However, during the
last timestep (4), the new cohorts produced by the spawning process (which precedes the
migration process) are moved from the river region (4) to the ocean region (1).

• The spawning process places new cohorts into the river region. Thus, immature age 0 spring
cohorts have the identity migration matrix to keep these cohorts in the river. At age 1 they are
moved from the river to the ocean.

• Mature fall and spring stocks of all ages follow a “boxcar” style migration (i.e., moving from
one region to the next at the end of each timestep until reaching the river region). During the
last timestep (4), the fish located in the river region do not migrate anywhere to simulate
killing the fish that have spawned.

TransitionMatrix RunXageXmaturityXtime

Run Fall
 Immature # Immature cohorts.
 TimeSteps 1:3
 Data
 1.0 0.0 0.0 0.0
 0.0 1.0 0.0 0.0
 0.0 0.0 1.0 0.0
 0.0 0.0 0.0 1.0
 TimeStep 4
 Data
 1.0 0.0 0.0 1.0
 0.0 1.0 0.0 0.0
 0.0 0.0 1.0 0.0
 0.0 0.0 0.0 0.0
 end maturity

 Mature # Mature cohorts.
 TimeSteps 1:3
 Data
 0.0 0.0 0.0 0.0
 1.0 0.0 0.0 0.0
 0.0 1.0 0.0 0.0
 0.0 0.0 1.0 1.0
 TimeStep 4
 Data
 0.0 0.0 0.0 0.0
 1.0 0.0 0.0 0.0
 0.0 1.0 0.0 0.0
 0.0 0.0 1.0 0.0
 end Maturity
end Run
Run Spring
 Immature # Immature cohorts.

44

 Age 0
 Data
 1.0 0.0 0.0 0.0
 0.0 1.0 0.0 0.0
 0.0 0.0 1.0 0.0
 0.0 0.0 0.0 1.0
 Age 1
 Data
 1.0 0.0 0.0 1.0
 0.0 1.0 0.0 0.0
 0.0 0.0 1.0 0.0
 0.0 0.0 0.0 0.0
 Ages 2:6
 Data
 1.0 0.0 0.0 0.0
 0.0 1.0 0.0 0.0
 0.0 0.0 1.0 0.0
 0.0 0.0 0.0 1.0
 end Maturity

 Mature # Mature cohorts.
 TimeSteps 1:3
 Data
 0.0 0.0 0.0 0.0
 1.0 0.0 0.0 0.0
 0.0 1.0 0.0 0.0
 0.0 0.0 1.0 1.0
 TimeStep 4
 Data
 0.0 0.0 0.0 0.0
 1.0 0.0 0.0 0.0
 0.0 1.0 0.0 0.0
 0.0 0.0 1.0 0.0
 end Maturity
end Run
end transition matrix

45

3 Input Language

3.1 Introduction
The Coast model employs a hierarchical token-based language to process input data. The basic form is:

[token] [data]

All tokens and data are case sensitive. Whitespace is ignored, allowing tokens to span as many or as few
lines as desired. Strings consisting of more than one word (such as fishery names or stock names) may be
specified in quotation marks (“ ”).

For the purposes of this document [int] is used to represent a single data item which should be an integer value,
and [float] is used to represent a single floating point value (either single or double precision is acceptable). In
general, brackets [] are used in this document to denote some type of data item whose literal value is dependent
upon the data. The brackets themselves do not appear in the input data files.

3.2 Token Types

Tokens fall into the general categories described below.

3.2.1 Simple Tokens

Simple tokens consist of a [token] [data] pair.

Example:

StartYear 1979

This sets the value of the StartYear variable to 1979.

3.2.2 Command Block Tokens

Command block tokens are those where data is another series of token/data units. A command block defines a
new nested context wherein only selected tokens specific to that command block are recognized. The context is
exited upon reading an “end” token, at which time the previous context is reactivated. The basic form for a
command block token is

[token] [data] end

Example:

Configuration
 StartYear 1979
 EndYear 1999
end

In this example, “Configuration” is a command block token. “StartYear” and “EndYear” are simple tokens
within the “Configuration” context. Thus, they may also be described as “Configuration” subtokens (see
section 3.2.4).

46

3.2.3 Generic Array Tokens

Generic array tokens are a special subset of command block tokens. All generic array tokens share a common
set of tokens used to specify slices of the array data, as well as any tokens specific to the array used to specify
the final parameter data. Generic array tokens are described further below.

3.2.4 Subtokens

Subtokens are tokens valid only in a particular context defined by a command block. As such, this is not really
a special type of token. Simple tokens, command blocks, and generic array tokens may all be considered
subtokens if they are specific to a particular containing command block.

3.2.5 Special Tokens

include [filename] This token is valid in all contexts, and specifies that subsequent token/data pairs
will be read from the given filename until that file is exhausted, after which
processing will continue with the next line in the current file. A typical top-level
data file will exist exclusively of “include” specifications, with each referenced
file containing a subset of the model data.

end [optional comment] Specifies the end of a command block. This token has no [data] component.
The remainder of the line following the “end” command is ignored, and may be
used for comments.

End Same as “end.”
This symbol denotes a comment. The remainder of the line is ignored.

Example:

The current top-level file for the Coast model, “coast.data” consists of the following:

include Val98.bhr
include Val98.cei
include Val98.cnr
include Val98.coh
include Val98.fp
include Val98.fsh
include Val98.mrt
include Val98.nat
include Val98.pnv
include Val98.prd
include Val98.shk
include Val98.tm

3.3 Generic Arrays

Generic array tokens are command block tokens used to provide parameter data for a generic array. They take
the following form:

[generic array token] [generic array dimension specifier] [data] end

where the data typically consists of a number of token/data pairs, including both generic array subtokens
(described below) and simple tokens. The generic array dimension specifier describes the dimensionality of the
array data about to be provided. Any of the available dimension specifiers may be used with any generic array

47

token, providing the user the flexibility of defining the dimensionality of the given parameter data at runtime.
All available dimension specifiers and generic array subtokens are described below.

The [data] portion of a generic array command block applies to all the data in the array, unless specific slices
are referenced through the use of generic array subtokens, which are special types of command block tokens.

Example:

MaturationData StockXyearXageXtimeXregion

 # No maturation occurs during timesteps 2:4.
 TimeSteps 2:4 MatRate 0.0
end MaturationData

In this example, “MaturationData” is the generic array token specifying a new context, which will contain
maturation rate data. “StockXyearXageXtimeXregion” is the generic array dimension specifier, which
defines 5 dimensional array to hold the maturation rate data, to be indexed by stock, year, age, time, and
region. “TimeSteps” is a generic array subtoken specifying that upcoming data will be applied to the slice
of the array corresponding to the time dimension. “2:4” is the data for the “TimeSteps” token, specifying
the particular group of timesteps for the upcoming data. “MatRate” is a simple token and “0.0” is the data
for that token. This data will be applied to all elements of the array specified by the current slice (in this
case timesteps 2, 3, and 4). “end” is the end token for the “MaturationData” command block. The
remainder of the line after the “end” token is ignored, so the final “MaturationData” is simply a comment
for the reader.

The effect in this example is to set the maturation rate for all stocks, years, ages, and regions in timesteps 2, 3,
and 4 to the value 0.0. Maturation rates for all other timesteps are left at the default value.

Data for a generic array is typically specified by nesting several layers of generic array subtokens. In this way
the set of all the parameter data is successively narrowed until only the group of desired elements are being
referenced, after which a simple token is provided to specify the data for those elements.

Example:

MaturationData StockXyearXageXtimeXregion

No maturation occurs during timesteps 2:4.
TimeSteps 2:4 MatRate 0.0

Maturation only occurs at the end of the first timestep.
TimeStep 1
 Regions 2:4 MatRate 0.0
 Region 1 # Preterminal region.
 Age 1 MatRate 0.0

 # Data for stocks with fixed maturation rates for all years.
 Stock NTH # All years; run type = Spring
 Age 2 MatRate 0.0
 Age 3 MatRate 0.051396523
 Age 4 MatRate 0.14471728
 Age 5 MatRate 0.69004977
 Age 6 MatRate 0.99999988
 end Stock
 end Region 1
end TimeStep 1
end MaturationData

48

This example builds upon the previous one by specifying further maturation rate data for timestep 1. Generic
array subtokens shown here are “TimeSteps,” “TimeStep,” “Regions,” “Region,” “Stock,” and “Age.” Each
describes a particular dimension of the generic array for which data is about to be provided. Starting at the top,
the example specifies maturation rates as follows:

0.0 for timesteps 2-4 (all regions, stocks, ages, etc.);
0.0 for regions 2-4 in timestep1 (all stocks, ages, etc.);
0.0 for age1, region 1, timestep1;
specific rates for ages 2-6, stock NTH, region 1, timestep 1.

Since the years are not specified, all of the data applies to all years.

3.3.1 Generic Array Subtokens

Generic array subtokens are command block tokens valid within the context of any generic array token
command block. However, generic array subtokens behave differently than normal command block tokens in
one respect. The “end” token, which normally closes a command block, is used at all levels in a generic array
specification except for the innermost. The simple token which finally specifies data for some portion of the
array subsumes the “end” token for the innermost block and renders it unnecessary. It is a syntax error to use an
“end” token immediately following a simple token/data pair in a generic array specification.

Look again at the previous example. After the first maturation rate of 0.0 is given, no “end” is supplied for the
enclosing “TimeSteps 2:4” block. That “end” is subsumed by the “MatRate” simple token, and the context
reverts to the enclosing one, which references all elements of the array. Next the context is refined to timestep
1, then to regions 2-4. Another simple token is given specifying a rate of 0.0. This subsumes the “end” for the
enclosing “Regions” block, and the context reverts to the most recent “TimeStep 1.” This is then refined to
region 1, then again to age 1, at which another final simple token appears, providing a maturation rate for that
context (0.0 for all age 1, region 1, timestep1 entries). No “end” is supplied for that “Age 1” context, and the
most recent context is again reverted to. At this point the context is region 1, timestep 1 (all stocks, ages, and
years are implicit, since they have not been refined in the current context). A stock refinement is given,
followed by a number of age refinements. For each age, a simple “MatRate” token subsumes the “end” which
would normally appear with a command block. After the “MatRate” specification for “Age 6” the context
reverts to the enclosing level, which is “Stock NTH.” The writer wished to close that level without specifying
any further maturation rates. Thus, the “end” token appears to close out that level of refinement (the word
“Stock” after the token “end” is just a comment for the reader). Similarly, the enclosing refinements of Region
and TimeStep are closed before finally supplying the “end” token for the entire generic array command block.
Note that the contexts created by the generic array subtoken command blocks are nested, and thus represent an
ordering. The successive “end” tokens each exit the most recent enclosing block. All “end” tokens for all
nesting levels are required, with the exception of the innermost level, which includes the final simple token
specifying actual parameter data, as discussed here.

49

The following is a list of all generic array subtokens, valid in the context of any generic array token. Note that
data of the form x:y represents a range of values where x<=y.

Token Data Meaning

Year [int] new year context
Years [int:int] new year range context
TimeStep [int] new timestep context
TimeSteps [int:int] new timestep range context
Region [int] new region context
Regions [int:int] new region range context
Stock [stockname] new stock context
Stock [stockabbrev] new stock context
Stock [int] new stock context
Stocks [int:int] new stock range context
Fishery [fisheryname] new fishery context
Fishery [fisheryabbrev] new fishery context
Fishery [int] new fishery context
Fisheries [int:int] new fishery range context
Age [int] new age context
Ages [int:int] new age range context
Run [runtype] new run type context. Valid run types are “Spring” and “Fall”

3.3.2 Generic Array Dimension Specifiers

The following is a list of all generic array dimension specifiers. Each is used to specify the dimension of a
generic array as shown in Section 3.3. Any generic array dimension specifier may be used with any generic
array token. This list will be expanded as needs require.

StockXageXtime
StockXyear
StockXyearXtimeXregion
StockXyearXageXtime
StockXyearXageXtimeXregion
StockXyearXageXtimeXmaturity
XFishery
FisheryXyear
FisheryXregionXtimeXstockXage
FisheryXregionXtimeXstockXageXmark
FisheryXyearXage
FisheryXyearXstock
FisheryXyearXstockXage
FisheryXyearXrunXage
MaturityXtime
RunXageXmaturityXtime

50

3.4 Top Level Tokens

The following tokens are valid at the top level of the hierarchy. The term “gen array dim spec” is used as an
abbreviation for “generic array dimension specifier.”

Token Data Meaning

Configuration [command block data] end new configuration context
HarvestRateData [gen array dim spec] [data] end harvest rate data
CeilingScalars [command block data] end new ceiling scalar context
MultiTimeStepCeilingScalars [command block data] end new multiceiling context
CeilingData [command block data] end new ceiling context
CNRData [gen array dim spec] [data] end chinook non-retention
Cohorts [command block data] end new cohort context
FPData [gen array dim spec] [data] end fp (fishery policy) data
FisherySchedule [command block data] end new fishery schedule context
MaturationData [gen array dim spec] [data] end maturation rate data
NatMortRateData [gen array dim spec] [data] end natural mortality data
PnvData [gen array dim spec] [data] end percent non-vulnerable
ProductionFunctions [gen array dim spec] [data] end production data
ShakerData [gen array dim spec] [data] end shaker data
TransitionMatrix [gen array dim spec] [data] end transition matrices

3.5 Configuration Tokens

The “Configuration” command block token opens a context where all global configuration information for the
model simulation is specified. The following tokens are valid within that context:

Token Data Meaning

StartYear [int] calendar year of simulation start
EndYear [int] calendar year of simulation end
TimeSteps [int] simulation timesteps per year
Regions [int] number of regions
FisheryName [fishery name]

[command block data] end new fishery configuration context
StockName [stock name]

[command block data] end new stock configuration context

3.5.1 Fishery Configuration Tokens

The “FisheryName” token opens a new fishery configuration context for the specification of basic fishery
information. The following tokens are valid within that context:

Token Data Meaning

FisheryNumber [int] integer reference number
GearType [gear type] valid gear types are “troll,” “net,” and “sport”
FisheryAbbreviation [abbrv] abbreviation for fishery

51

3.6 Stock Configuration Tokens

The “StockName” token opens a new stock configuration context for the specification of basic stock
information. The following tokens are valid within that context:

Token Data Meaning

StockNumber [int] integer reference number
Run [run type] valid run types are “Fall” and “Spring”
ProductionType [prod type] valid prod types are “Wild” and “Hatchery”
StockAbbreviation [abbrv] abbreviation for this stock
MaxAge [int] maximum stock age
FirstHarvestAge [int] youngest age harvested for this stock
AdultAge [int] adult age for this stock

Example:

Configuration
 StartYear 1979
 EndYear 1999
 TimeSteps 4
 Regions 4

Fishery names and gear types.
 FisheryName "Alaska T"
 FisheryNumber 1
 GearType troll
 end Fishery

Stock names and abbreviations.
 StockName "Alaska South SE"
 StockNumber 1
 StockAbbreviation AKS
 Run Spring
 ProductionType Wild
 MaxAge 6
 FirstHarvestAge 3
 AdultAge 4
 end Stock
end Configuration

3.7 Harvest Rate Tokens

The token “HarvestRateData” is a generic array token which enters a new context for providing harvest rate
data. In addition to all generic array subtokens, the following tokens are valid in this context:

Token Data Meaning

BaseHR [float] base harvest rate

52

3.8 Ceiling Tokens

There are three ways to enter ceiling data. The “CeilingScalars,” “MultiTimeStepCeilingScalars,” and
“CeilingData” command block token each open new contexts.

3.8.1 CeilingScalars

The “CeilingScalars” token opens a context for the input of fishery ceiling scalar data. The scalar
parameters given are used to scale average catches over the base period to set a quota for the desired fishery
in each region and timestep for the specified year. Valid tokens in this context are:

Token Data Meaning

Fishery [fishery name]
[command block data] end new fishery context

BasePeriodStart [int] calendar year of start of base period
BasePeriodEnd [int] calendar year of end of base period

Within the context opened by the “Fishery” command block the following tokens are valid:

Token Data Meaning

Year [int] [forceflag] [float] these fields specify the ceiling year, force flag, and scalar
value, respectively. Valid values for forceflag are “forced”
and “unforced.”

Example:

CeilingScalars
 BasePeriodStart 1979
 BasePeriodEnd 1984
 Fishery "Alaska T" # Fishery number 1
 Year 1985 forced 0.7787260906481610 #catch
 Year 1986 forced 0.8500192082294420 #catch
 Year 1999 unforced 0.7135184337829930 #ceiling control
 end Fishery
 Fishery "North T" # Fishery number 2
 Year 1985 forced 1.1421682619914400 #catch
 end Fishery
end CeilingScalars

53

3.8.2 MultiTimeStepCeilingScalars

The “MultiTimeStepCeilingScalars” token opens a context for the input of fishery ceiling scalar data that
enforces constant effort scalars over multiple timesteps. The scalar parameters given are used to scale
average catches over the base period to set a quota for the desired fishery in the specified year. Valid tokens
in this context are:

Token Data Meaning

Fishery [fishery name]
[command block data] end new fishery context

BasePeriodStart [int] calendar year of start of base period
BasePeriodEnd [int] calendar year of end of base period
FirstTimeStep [int] first time step of ceiling management each year
LastTimeStep [int] last time step of ceiling management each year

Within the context opened by the “Fishery” command block the following tokens are valid:

Token Data Meaning

Year [int] [forceflag] [float] these fields specify the ceiling year, force flag, and scalar value,
respectively. Valid values for forceflag are “forced” and
“unforced.”

Example:

MultiTimeStepCeilingScalars
 BasePeriodStart 1979
 BasePeriodEnd 1984
 FirstTimeStep 1
 LastTimeStep 2
 Fishery "Alaska N" # Fishery number 7
 Year 1985 forced 1.2161450300168500 #catch
 Year 1986 forced 0.7290534608357260 #catch
 end Fishery
end MultiTimeStepCeilingScalars

3.8.3 CeilingData

Ceiling data may also be entered directly, without the use of base period scalars. The “CeilingData” token
is used to enter this context. It functions as a generic array token, except that no generic array dimension
specifier is used, and valid tokens are restricted to only certain generic array subtokens.

54

Valid tokens in this context are:

Token Data Meaning

Year [int] new year context
Years [int:int] new year range context
TimeStep [int] new timestep context
TimeSteps [int:int] new timestep range context
Region [int] new region context
Regions [int:int] new region range context
Fishery [fisheryname] new fishery context
Fishery [fisheryabbrev] new fishery context
Fishery [int] new fishery context
Fisheries [int:int] new fishery range context
Ceiling [forceflag] [float] these fields specify the force flag and quota, respectively.

Valid values for forceflag are “forced” and “unforced.”

Note that the “Ceiling” token is the only simple token valid in this context. Since this context is a variation
on a generic array command block, the “end” token for any innermost block will be subsumed by the
“Ceiling” token, just as in any other generic array.

3.9 CNRData Tokens

The token “CNRData” is a generic array token that enters a new context for providing Chinook non-
retention (CNR) data. In addition to all generic array subtokens, the following tokens are valid in this
context:

Token Data Meaning

CNR_Method [cnr method specifier]
[command block data] end

new CNR method context

Since there are no simple tokens associated with this generic array (only the CNR_Method command block
token), “end” tokens are required for all levels of the generic array.

3.9.1 CNR Methods

The “CNR_Method” token enters a new context depending on the accompanying cnr method specifier.
Each CNR_Method command block causes the creation of a CNR object of the corresponding type, which
will be assigned to all applicable locations in the generic array. Valid cnr method specifiers and the
subtokens valid within each context are:

cnr method specifier: HarvestRatio

Token Data Meaning

CNRLegalSelectivity [float] legal selectivity value
CNRSubLegalSelectivity [float] sublegal selectivity value

55

cnr method specifier: SeasonLength

Token Data Meaning

CNRLegalSelectivity [float] legal selectivity value
CNRSubLegalSelectivity [float] sublegal selectivity value

cnr method specifier: ReportedEncounter

Token Data Meaning

CNRLegalSelectivity [float] legal selectivity value
CNRSubLegalSelectivity [float] sublegal selectivity value
LegalEncounters [float] legal encounters
SubLegalEncounters [float] sublegal encounters
LandedCatch [float] landed catch

cnr method specifier: HarvestRatioMultipleEncounter

Token Data Meaning

CNRLegalSelectivity [float] legal selectivity value
CNRSubLegalSelectivity [float] sublegal selectivity value
BaseSeason [float] base season length
RecaptureInterval [float] recapture interval
LegalReleaseMortRate [float] legal release mortality rate

cnr method specifier: SeasonLengthMultipleEncounter

Token Data Meaning

CNRLegalSelectivity [float] legal selectivity value
CNRSubLegalSelectivity [float] sublegal selectivity value
BaseSeason [float] base season length
RecaptureInterval [float] recapture interval
LegalReleaseMortRate [float] legal release mortality rate
LegalSeason [float] legal season length
CNRSeason [float] cnr season length

Example:

CNRData FisheryXyear

Fishery 1 # Alaska T
 Year 1981
 CNR_Method ReportedEncounter
 CNRLegalSelectivity 0.34
 CNRSubLegalSelectivity 1
 LegalEncounters 18225
 SubLegalEncounters 18578
 LandedCatch 248791
 end CNR_Method

56

 end Year
end Fishery
end CNRData

3.10 Cohorts

The “Cohorts” token enters a new context for the specification of initial model cohorts. There is one token
valid at this level:

Token Data Meaning

Stock [stock name]
[command block data] end

new context for specifying initial cohorts of
the specified stock

Within the “Stock” context there is one valid token:

Token Data Meaning

Cohort [int] [float] [int]
[command block data] end

brood year, initial abundance, initial region;
new context for specifying characteristics of
this initial cohort

Within the “Cohort” context the following tokens are valid. Note that these simple tokens are unusual in
that they have no data fields. They are all optional, and the cohort will assume the given default values if
not specified. In cases where more that one token share the same meaning, they are mutually exclusive,
and the token encountered last will be the value assigned to the cohort.

Token Data Default Meaning

Wild [none] stock value production type
Hatchery [none] stock value production type
Immature [none] Immature maturation status
Mature [none] Immature maturation status
Marked [none] Unknown mark status
Unmarked [none] Unknown mark status
Tagged [none] Unknown tag status
Untagged [none] Unknown tag status
Male [none] Unknown sex
Female [none] Unknown sex
G1 [none] Unknown growth group
G2 [none] Unknown growth group
G3 [none] Unknown growth group
G4 [none] Unknown growth group
G5 [none] Unknown growth group

Example:

Cohorts
 Stock "Alaska South SE" # Initial cohorts for stock number: 1
 Cohort 1973 3345.02050867604 1
 end Cohort
 end Stock
end Cohorts

57

3.11 FPData Tokens

The token “FPData” is a generic array token which enters a new context for providing “fp” (fishery policy)
data. In addition to all generic array subtokens, the following tokens are valid in this context:

Token Data Meaning

FP [float] fp value

Example:

FPData FisheryXyearXstockXage

Fishery 1 # Alaska T

 Year 1979 # For fishery: Alaska T
 Stock AKS # Alaska South SE
 Age 3 FP 1
 Age 4 FP 1
 Age 5 FP 1
 Age 6 FP 1
 end Stock
 end Year
end Fishery
end FPData

3.12 FisherySchedule Tokens

The “FisherySchedule” token begins a new context used for specifying information as to when fisheries are
active. It functions as a generic array token, except that no generic array dimension specifier is used, and valid
tokens are restricted to only certain generic array subtokens. Valid tokens in this context are:

Token Data Meaning

Year [int] new year context
Years [int:int] new year range context
TimeStep [int] new timestep context
TimeSteps [int:int] new timestep range context
Region [int] new region context
Regions [int:int] new region range context
Fishery [fisheryname] new fishery context
Fishery [fisheryabbrev] new fishery context
Fishery [int] new fishery context
Fisheries [int:int] new fishery range context
Active [none] fishery is active in this time and region

Note that the “Active” token is the only simple token valid in this context. Since this context is a variation on a
generic array command block, the “end” token for any innermost block will be subsumed by the “Active”
token, just as in any other generic array.

58

Example:

FisherySchedule

 Fishery 1 # Alaska T
 TimeStep 1 # PreTerminal timestep
 Region 1 # PreTerminal region
 Active
 end TimeStep
 end Fishery
end FisherySchedule

3.13 MaturationData Tokens

The token “MaturationData” is a generic array token which enters a new context for providing maturation rate
data. In addition to all generic array subtokens, the following tokens are valid in this context:

Token Data Meaning

MatRate [float] maturation rate

Example:

MaturationData StockXyearXageXtimeXregion

No maturation occurs during timesteps 2:4.
TimeSteps 2:4 MatRate 0.0

Maturation only occurs at the end of the first timestep.
TimeStep 1
 Regions 2:4 MatRate 0.0
 Region 1 # Preterminal region.
 Age 1 MatRate 0.0

 # Data for stocks with fixed maturation rates for all years.
 # Years 1979:1999

 Stock NTH # All years; run type = Spring
 Age 2 MatRate 0.0
 Age 3 MatRate 0.051396523
 Age 4 MatRate 0.14471728
 Age 5 MatRate 0.69004977
 Age 6 MatRate 0.99999988
 end Stock
 end Region 1
end TimeStep 1
end MaturationData

59

3.14 NatMortRateData Tokens

The token “NatMortRateData” is a generic array token which enters a new context for providing natural
mortality rate data. In addition to all generic array subtokens, the following tokens are valid in this
context:

Token Data Meaning

NaturalMortality [float] natural mortality rate

Example:

NatMortRateData StockXyearXageXtimeXregion

TimeStep 1
 Region 1
 Stock 1 # Alaska South SE // Run type = Spring
 Age 1 NaturalMortality 0.0
 Age 2 NaturalMortality 0.5
 Age 3 NaturalMortality 0.4
 Age 4 NaturalMortality 0.3
 Age 5 NaturalMortality 0.2
 Age 6 NaturalMortality 0.1
 end Stock
 end Region 1
end Timestep1
end NatMortRateData

3.15 PnvData Tokens

The token “PnvData” is a generic array token which enters a new context for percent non-vulnerable data. In
addition to all generic array subtokens, the following tokens are valid in this context:

Token Data Meaning

PNV [float] percent non-vulnerable

Example:

PnvData FisheryXyearXrunXage

Data for fisheries that have constant PNVs for all years.

Fishery 2 # Variable PNV fishery: North T
 Years 1979:1986
 Run Fall
 Age 2 PNV 0.5938
 Age 3 PNV 0.3868
 Age 4 PNV 0.0332
 Age 5 PNV 0.0049
 end Run
 Run Spring
 Age 3 PNV 0.5938
 Age 4 PNV 0.3868
 Age 5 PNV 0.0332
 Age 6 PNV 0.0049

60

 end Run
 end Years
end Fishery
end PnvData

3.16 ProductionFunctions Tokens

The token “ProductionFunctions” is a generic array token which enters a new context for providing production
function data. In addition to all generic array subtokens, the following tokens are valid in this context:

Token Data Meaning

Production [production function type]
[production function data]

production function selection
production data

The nature of the production function data varies depending on the particular production function specified.
The “Production” token is a special type of token that does not subsume the “end” token for the enclosing level
of the generic array. Thus, “end” tokens are required for all levels of the generic array. Multiple “Production”
functions may be specified simultaneously at a given level.

3.16.1 Production Function Types

The following are the valid production function types and the associated production function data for each.
Please note that for a given production function, all of the specified data fields are required and must appear in
the proper order.

Production Function Type Token Data Meaning

Linear [float] minimum number of spawners
[float] maximum number of spawners
[float] ev value
[float] slope

Ricker [float] minimum number of spawners
[float] maximum number of spawners
[float] ev value
[float] Ricker A value
[float] Ricker B value
[float] recruits to age 1 ratio

EnhancedRicker [float] minimum number of spawners
[float] maximum number of spawners
[float] ev value
[float] Ricker A value
[float] Ricker B value
[float] recruits to age 1 ratio
[int] density dependence flag (0=false;1=true)
[float] productivity parameter
[float] smolt at age 1

61

Production Function Type Token Data Meaning

EnhancedRicker (continued) [float] max brood proportion
[float] smolt production change

VariableTruncationRicker [float] minimum number of spawners
[float] maximum number of spawners
[float] ev value
[float] Ricker A value
[float] Ricker B value
[float] recruits to age 1 ratio

Example:

ProductionFunctions StockXyearXtimeXregion #Production functions by
 #stock and year.
TimeStep 4
Region 4
StockNum 9 #Production functions for stock: GSH
 Year 1979 #For stock: GSH
 Production Linear 0 5318 0.576309919 101.088866871763
 Production Ricker 5318 10318 0.576309919 2.813
72371.2428651556 0.181012304888616
 end Year
 Year 1980 #For stock: GSH
 Production Linear 0 5318 0.338252485 101.088866871763
 Production Ricker 5318 10318 0.338252485 2.813
72371.2428651556 0.181012304888616
 end Year
 Year 1981 #For stock: GSH
 Production Linear 0 5318 1.36516976 101.088866871763
 Production Ricker 5318 10318 1.36516976 2.813
72371.2428651556 0.181012304888616
 end Year
 Year 1982 #For stock: GSH
 Production Linear 0 5054.47415595914 1.3196733 101.088866871763
 end Year
 Year 1983 #For stock: GSH
 Production Linear 0 5318 0.560896635 101.088866871763
 Production Linear 5318 5562.0650328853 0.560896635
17.5666110352434
 Production Ricker 5562.0650328853 10562.0650328853 0.560896635
2.813 72371.2428651556 0.181012304888616
 end Year
end Stock
end Region
end TimeStep
end Production

62

3.17 ShakerData Tokens

The token “ShakerData” is a generic array token which enters a new context for shaker mortality data. In
addition to all generic array subtokens, the following tokens are valid in this context:

Token Data Meaning

Method [shaker method specifier]
[command block data] end new shaker method context

Since there are no simple tokens associated with this generic array (only the Method command block token),
“end” tokens are required for all levels of the generic array.

3.17.1 Shaker Methods

The “Method” token enters a new context depending on the accompanying shaker method specifier. Each
Method command block causes the creation of a shaker object of the corresponding type, which will be
assigned to all applicable locations in the generic array. Valid shaker method specifiers and the subtokens valid
within each context are:

shaker method specifier: Simple

Token Data Meaning

SubLegalReleaseMortRate [float] sublegal release mortality rate

cnr method specifier: SimpleDrop

Token Data Meaning

SubLegalReleaseMortRate [float] sublegal release mortality rate
DropOffRate [float] drop-off mortality rate

shaker method specifier: Custom

Token Data Meaning

SubLegalReleaseMortRate [float] sublegal release mortality rate
VulnerabilityTable [generic array dim spec]

[data] end
vulnerability table data

cnr method specifier: CustomDrop

Token Data Meaning

SubLegalReleaseMortRate [float] sublegal release mortality rate
DropOffRate [float] drop-off mortality rate
VulnerabilityTable [generic array dim spec]

[data] end
vulnerability table data

63

3.17.2 VulnerabilityTable Tokens

The token “VulnerabilityTable” is a generic array token which enters a new context for entering shaker
vulnerability data. In addition to all generic array subtokens, the following tokens are valid in this context:

Token Data Meaning

Vulnerable [none] cohort is vulnerable to the given fishery
Invulnerable [none] cohort is not vulnerable to the given fishery

Example:

ShakerData FisheryXyear

Fishery 6 # Geo St T
 Method SimpleDrop

 SubLegalReleaseMortRate 0.255
 DropOffRate 0.017
 end Method
end Fishery

Fishery 7 # Alaska N
 Method CustomDrop
 SubLegalReleaseMortRate 0.9
 DropOffRate 0
 VulnerabilityTable StockXageXtime
 TimeStep 1 # Preterminal
 Ages 3:4 # Spring stocks.
 Stock 1 Vulnerable # Alaska South SE
 Stock 2 Vulnerable # North/Centr
 Stock 14 Vulnerable # Nooksack Spring
 Stock 24 Vulnerable # Willamette R
 Stock 25 Vulnerable # Spr Cowlitz Hat
 end Ages
 end TimeStep
 end VulnerabilityTable
 end Method
end Fishery
end ShakerData

3.18 TransitionMatrix Tokens

The token “TransitionMatrix” is a generic array token which enters a new context for entering transition matrix
data. In addition to all generic array subtokens, the following tokens are valid in this context:

Token Data Meaning

Data [transition matrix data] cohort transition matrix

3.18.1 Transition Matrix Data

The transition matrix data is a sequence of n X n [float] entries, where n is the number of regions specified in
the “Configuration” context. Altogether the matrix is taken as a simple token, and thus subsumes the “end” for
the innermost generic array level.

64

Example:

TransitionMatrix RunXageXmaturityXtime

Run Spring
 Immature # Immature cohorts.
 Age 0
 Data
 1.0 0.0 0.0 0.0
 0.0 1.0 0.0 0.0
 0.0 0.0 1.0 0.0
 0.0 0.0 0.0 1.0
 Age 1
 Data
 1.0 0.0 0.0 1.0
 0.0 1.0 0.0 0.0
 0.0 0.0 1.0 0.0
 0.0 0.0 0.0 0.0
 Ages 2:6
 Data
 1.0 0.0 0.0 0.0
 0.0 1.0 0.0 0.0
 0.0 0.0 1.0 0.0
 0.0 0.0 0.0 1.0
 end Maturity
end Run
end TransitionMatrixOutput Language

65

4 Output Language

4.1 Overview

Pacific salmon researchers and managers use many computer programs and models. There is a need to
communicate information between programs and from individual programs to users. Three general data
communication methods are:

1. Raw data from one program is used by other programs for further analysis (e.g., FRAM to
TAMM communication);

2. Raw data from one program is used by auxiliary programs to create formatted reports (e.g.,
PSC Chinook Model raw data dump); or

3. Each program creates model specific formatted reports (e.g., PSC Chinook Model and FRAM
formatted reports).

PSC Chinook Model users have found Method 2 to be effective in creating reports and analyzing output
data. As the program moves through a simulation, raw data are output to an ASCII text file in a specific
format. Any auxiliary programs must know the format of the output file in order to use the data. The intent
of the Coast Model is to adopt a standardized output format to improve data communication within and
between programs.

The basic idea is to stream standardized data sentences from a model to a text file. Then anyone who knows
the formats can write a program using any type of software and hardware to read the data stream, extract
the data of interest, and use that data as desired (e.g., further analysis or formatted report). The advantage of
using standardized data sentences is that users can export any data in any order and at any interval. The
disadvantage of this system is that there may be considerable duplication of information in each sentence,
thus making for a large output file.

The following sections define the standardized data sentences used by the Coast Model. Additional
sentences can be defined as necessary. We envision that one agency (e.g., NMFS or the Pacific States
Marine Fisheries Commission) will supervise and maintain a list of standardized data sentences.

4.2 CohortID

Each cohort has a 14 digit unique identifier code composed of the parent stock abbreviation, the brood year
(using all four digits for Y2K compatibility), and a string of single character codes representing each
remaining cohort property in a fixed order (see table below). For example, the cohort identifier code
URB1985FWIXXXX is a cohort from the URB stock, brood year 1985, wild production type, immature,
and unknown mark, tag, sex, and growth group status.

Digit(s) Permitted Values Meaning

1-3 Stock Abbreviations Stock identifier
4-7 Any 4 digit year
8 S,F Spring (S) or Fall (F) stock
9 W,H Wild (W) or Hatchery (H) stock
10 I,M Immature (I) or Mature (M)
11 M,U,X Mark status: Marked (M), Unmarked (U), Unknown (X)
12 T,U,X Tag status: Tagged (T), Untagged (T), Unknown (X)
13 M,F,X Sex: Male (M), Female (F), Unknown (X)
14 1,2,3,4,5,X Growth Group: 1-5 or Unknown (X)

66

4.3 Output Sentences Supported by Coast Model

4.3.1 CABN sentence for cohort abundance

Field Data Sample

1 Sentence ID = CABN CABN
2 Year 1985
3 TimeStep 3 (or TimeStep abbreviation)
4 Region 4 (or Region abbreviation)
5 CohortID URB1986FWIXXXX
6 StartAbn 378947.1438 (a double)

Example:

CABN, 1979, 1, 1, STL1974FWIXXXX, 105.468
CABN, 1979, 1, 1, STL1975FWIXXXX, 1616.72
CABN, 1979, 1, 1, STL1976FWIXXXX, 4267.45
CABN, 1979, 1, 1, STL1977FWIXXXX, 6578.15
CABN, 1979, 1, 1, STL1978FWIXXXX, 13283.2
CABN, 1979, 1, 1, VGT1976FHIXXXX, 6815.32
CABN, 1979, 1, 1, VGT1977FHIXXXX, 72867.8
CABN, 1979, 1, 1, VGT1978FHIXXXX, 164354
CABN, 1979, 2, 2, STL1974FWIXXXX, 31.6403
CABN, 1979, 2, 2, STL1975FWIXXXX, 485.017
CABN, 1979, 2, 2, STL1976FWIXXXX, 1280.24
CABN, 1979, 2, 2, STL1977FWIXXXX, 1973.44
CABN, 1979, 2, 2, STL1978FWIXXXX, 3984.95
CABN, 1979, 2, 2, VGT1976FHIXXXX, 681.532

4.3.2 NMRT sentence for natural mortality

Field Data Sample

1 Sentence ID = NMRT NMRT
2 Year 1985
3 TimeStep 3 (or TimeStep abbreviation)
4 Region 4 (or region abbreviation)
5 CohortID URB1986FWIXXXX
6 Mortality 25.283949 (a double)

Example:

NMRT, 1979, 2, 2, STL1974FWIXXXX, 0.2766
NMRT, 1979, 2, 2, STL1975FWIXXXX, 8.93546
NMRT, 1979, 2, 2, STL1976FWIXXXX, 37.493
NMRT, 1979, 2, 2, STL1977FWIXXXX, 82.2433
NMRT, 1979, 2, 2, STL1978FWIXXXX, 223.659
NMRT, 1979, 2, 2, VGT1976FHIXXXX, 19.9594
NMRT, 1979, 2, 2, VGT1977FHIXXXX, 303.677
NMRT, 1979, 2, 2, VGT1978FHIXXXX, 922.452
NMRT, 1979, 2, 3, STL1974FWIXXXX, 0.3688
NMRT, 1979, 2, 3, STL1975FWIXXXX, 11.914

67

4.3.3 FMRT sentence for fishing mortality

Field Data Sample

1 Sentence ID FMRT
2 Year 1985
3 TimeStep 3 (or TimeStep abbreviation)
4 Region 4 (or region abbreviation)
5 Fishery 2 (or fishery abbreviation)
6 CohortID URB1986FWIXXXX
7 LegalCatch 345.192837 (a double)
8 ShakerMort 43.1288393 (a double)
9 DropOffMort 5.68459 (a double)

10 CNRSubLegalMort 15.7398 (a double)
11 CNRMort 21.1093994 (a double)
12 EffortScalar 0.95 (a double)

Example:

FMRT, 1983, 7, 5, 13, STL1978FWMXXXX, 1.33668, 0, 0, 0, 0, 1
FMRT, 1983, 7, 5, 13, STL1979FWMXXXX, 17.7754, 0, 0, 0, 0, 1
FMRT, 1983, 7, 5, 13, STL1980FWMXXXX, 3.80355, 0, 0, 0, 0, 1
FMRT, 1983, 7, 5, 13, STL1981FWMXXXX, 0.0863695, 0, 0, 0, 0, 1
FMRT, 1983, 7, 6, 13, STL1978FWMXXXX, 0.765205, 0, 0, 0, 0, 1
FMRT, 1983, 7, 6, 13, STL1979FWMXXXX, 10.8742, 0, 0, 0, 0, 1
FMRT, 1983, 7, 6, 13, STL1980FWMXXXX, 2.22352, 0, 0, 0, 0, 1
FMRT, 1983, 7, 6, 13, STL1981FWMXXXX, 0.0494872, 0, 0, 0, 0, 1
FMRT, 1983, 7, 7, 13, STL1978FWMXXXX, 0.222199, 0, 0, 0, 0, 1
FMRT, 1983, 7, 7, 13, STL1979FWMXXXX, 3.65069, 0, 0, 0, 0, 1

4.4 Proposed Output Sentences For Future Use

4.4.1 CMIG sentence for cohort migration

Field Data Sample

1 Sentence ID = CMIG CMIG
2 Year 1985
3 TimeStep 3 (or TimeStep abbreviation)
4 FromRegion 4 (or region abbreviation)
5 ToRegion 6 (or region abbreviation)
6 NumMigrants 25.49304958 (a double)

68

4.4.2 SABN sentence for stock abundance in a region

Field Data Sample

1 Sentence ID SABN
2 Year 1985
3 TimeStep 3 (or TimeStep abbreviation)
4 Region 4 (or region abbreviation)
5 StockID URB
6 StartAbn 378947.1438 (a double)

4.4.3 CLHD sentence for cohort life history data

Field Data Sample

1 Sentence ID = CLHD CLHD
2 Year 1985
3 TimeStep 3 (or TimeStep abbreviation)
4 Region 4 (or region abbreviation)
5 CohortID URB1986FWIXXXX
6 StartAbn 28394.1928 (a double)
7 NatMort 28.3941928 (a double)
8 TotCat 3564.19283 (a double)
9 TotShakers 32.9238287 (a double)

10 TotCNR 27.3984749 (a double)
11 TotOutMig 283.193993 (a double)
12 TotInMig 11.9384773 (a double)
13 EndAbn 23392.1958 (a double)

4.5 Generating the Output Data File

At the end of each process during a timestep the DataRequestManager has the opportunity to stream data to
a data file (named coast_output.txt). To save space, null data (e.g., zero catches, zero natural mortalities,
zero migrations) are not be streamed. Currently, the type and frequency of data streaming to the data file is
fixed (i.e., not configurable by the user). Future versions of the model should allow the user to configure
the output data streaming. See Section 5.5.3.3 for further details.

69

5 Code Description

5.1 Introduction

This document provides a general overview of the primary modules, classes, and structures used in the Coast
model. It is not intended to provide a detailed listing of all classes, variables, and routines, as such information
can best be distilled by using any software browsing tool designed for that purpose. Class-level documentation
is provided as inline comments, usually in the .h file declaring the class.

It is assumed that the reader of this document is familiar with the overall function and approach of the
simulation engine, as described in Section 2 Coast Model Processes. This section focuses on issues relevant to
the design and implementation of the code itself.

5.2 Naming Conventions

In accordance with common C++ practice, class names typically consist of sequences of words run together and
capitalized, e.g. FisheryQuotaPolicy. Class declarations appear in .h files corresponding to the class name, and
definitions are in .cpp files of the same name. Exceptions occasionally occur for classes that operate very
closely together, in which case more than one related class declaration or definition may appear in the same file.

Class methods are named with sequences of words run together with all except the first word capitalized, as in
makeHarvestList(). Class member variables typically are also sequences of words with all but the first word
capitalized, and with an underscore appended, as in legalReleaseMortRate_.

Global variables and routines with external linkage are capitalized.

There are exceptions to these rules, particularly in some of the older sections of code written before these
particular naming conventions became common in the C++ community.

5.3 Class Overview

Many classes and objects participate in the Coast Model application. The more important and pervasive ones
are listed here and described in more detail in subsequent sections.

5.3.1 Monostates and Managers

A monostate is a pattern that describes a class where all methods and members are static. It is a variation on the
Singleton pattern1 and is used to provide the effect of a globally accessible object. The predominant paradigm
of input parameter organization in the Coast model is to have a number of monostates that control the main
Simulation Processes and house most of the parameter data in tables. For clarity of usage, methods and
members of monostates are typically accessed directly through the use of the scope operator (‘::’), without
creating a local object. The most common form of monostate in the Coast model is the “manager”, of which
there are a number, correspondingly roughly to the simulation processes. The following is a list of the
managers in the Coast model: IterationManager, CohortManager, DataRequestManager,
NaturalMortalityManager, FisheryManager, HarvestManager, PolicyControlManager,
MaturationManager, SpawningManager, MigrationManager, and StandardDataOutputManager.

1 Gamma, Helm, Johnson, Vlissides, “Design Patterns”, pp. 127-134

70

Other monostates providing important functions are Geographer and Historian.

These classes are described in more detail elsewhere in this document.

5.3.2 Globals

Three classes are currently implemented as global objects. Fisheries and Stocks are anachronistic, and it is
expected that eventually these objects would be moved into the FisheryManager and StockManager (not yet
extant), respectively. SystemClock is a global object of type Chronograph that keeps track of time during the
simulation.

5.3.3 Other Important Classes

Other classes that carry out fundamental tasks in the model include: Parser, GenericArray,
GenericArrayIndex, Cohort, CohortID, Fishery, Stock, DataRequest, IterationControl, and State.
Additionally, each of the Simulation Processes utilizes a number of classes to perform its task. The harvest
process is particularly complex and warrants special attention. Important classes in that module include:
FisheryUnit, FisheryPolicy, HvMort, and HarvestProcess. These classes are examined in more detail below.

5.4 Process Overview

The entry points for the model code are found in file c2main.cpp. These consist of main() for a Windows
console application, or activeXentry() for an ActiveX component. In very brief (and with some details elided),
the process level overview of a single simulation run is as shown below. Filenames appear in braces.

main() { c2main.cpp }
 ModelConfig() { init.cpp }
 RunTheModel() { engine.cpp }
 SimulationWrapup() { init.cpp }
 ModelCleanup() { init.cpp }

Other sections of this document will examine each of the above core processes in more detail.

5.4.1 Simulation Processes

As described in Section 2, the simulation engine consists of a nested looping of years and timesteps, within
which each of the Simulation Processes is executed in turn. These Simulation Processes presently consist of the
following calls (from “engine.cpp”):

CohortManager::ageCohorts();
 NaturalMortalityManager::takeNaturalMortality();
 FisheryManager::takeHarvests();
 MaturationManager::maturateCohorts();
 SpawningManager::spawnCohorts();
 MigrationManager::migrateCohorts();

71

5.5 Class and Object Detail

This section provides further information on some of the major classes and objects used in the Coast Model.

5.5.1 Managers and Other Globals

The following table describes the basic duties of each of the Managers.

Table 3 Managers and other global classes and objects

CohortManager Creation and ageing of cohorts.

NaturalMortalityManager Cohort natural mortality processes and data.

FisheryManager Entry point for harvest process and storage of FisheryPolicy data.

HarvestManager Harvest rate data storage and calculation of harvest sub-processes (shaker,
CNR, etc.).

MaturationManager Cohorts maturation processes and data.

PolicyControlManager Manages PolicyControl objects used for some types of harvest
management.

SpawningManager Cohort spawning processes and data.

MigrationManager Cohort migration processes and data.

Fisheries Fishery object storage.

Stocks Stock object storage.

IterationManager Handles iteration across timesteps.

DataRequestManager Summary and output data calculation and storage.

StandardDataOutputManager Outputs Standard Data Sentences to file.

SystemClock Manages system time (timesteps and years).

Geographer Manages information about geographic regions.

Historian Makes certain common summary data available to all processes.

5.5.2 Common Fundamental Objects

The following sections describe some of the common objects used throughout the model.

72

5.5.2.1 Cohort and CohortID

Cohort is one of the most basic classes in the model. One object of this class is created for every cohort in the
system. The purpose of this object is twofold: to store identification information about a particular cohort in the
simulation, and to store and manage information about that cohort’s regional abundance as the simulation
progresses.

Cohort identification information is handled by the CohortID class (because of its close association with
Cohort, it is also declared in Cohort.h.) Every Cohort object contains a constant CohortID. This very simple
class contains all the identifying information concerning a cohort, with each characteristic typically being
implemented as an instance of an enumerated type. The Cohort class duplicates the interface of the CohortID
class and thus serves as an “envelope”2 for it. Existing cohort characteristics include stock_, broodYear_,
age_, run_, prodType_, maturity_, mark_, tag_, sex_, and growthGroup_. Of these, run_ refers to the run
timing (spring or fall) and prodType_ refers to the production type (wild or hatchery). Otherwise, the
meanings of these identifiers should be self-evident (refer to the code for more details). See below for an
example of how to add a new type of cohort characteristic to the model.

The Cohort class maintains the regional abundances for a cohort in a simple contained vector of type
AbundanceVector. For active cohorts, this represents the current abundance distribution for that cohort across
all the regions at any given moment during the simulation. Methods for accessing and manipulating these
abundances are also provided. The temporal granularity for abundance calculations is the “Simulation Process”
(Section 5.4.1), meaning that it is required that all cohort abundances be current and correct before entering and
after exiting each Simulation Process. Note that since cohort abundances are accurate at this moment between
Simulation Processes, but will be updated during the subsequent Simulation Process, the
DataRequestManager is called at each of these times to record (if configured to do so) cohort abundances for
the purposes of data output.

The Cohort class also contains an AbundanceVector for the purpose of storing mortalities calculated during
the natural mortality Simulation Process. This is an anachronistic implementation maintained for convenience.
In the long run this data would be better handled by new structures in the NaturalMortalityManager.

Cohort objects are created and managed by the CohortManager, which serves (among other things) as a
factory (i.e. implements a modified Factory Pattern3) for Cohort objects. The CohortManager also provides
access to all Cohort objects. At configuration time, the initial set of Cohort objects is created according to
specifications given by the user in the input data files. These cohorts maintained by the CohortManager on a
pending list. At the start of each timestep, the CohortManager determines which pending cohorts should be
activated based on the brood year of the cohort, and activates the cohort if appropriate. New cohorts created
during the course of the simulation (due to maturation or spawning, for example) are typically activated
immediately. The CohortManager also conceptually maintains the list of active cohorts. However, the current
implementation has the contents of this list distributed over the Stock objects. All handles to cohorts should be
acquired through the CohortManager, although in older sections of code there are still a small number of
anachronistic references to active cohorts obtained directly from the Stock objects.

5.5.2.2 GenericArray and GenericArrayIndex

The Generic Array system used in the Coast Model is fundamental to the storage of input parameter data. This
system is employed to achieve maximum flexibility in the specification of parameter dimensionality at runtime,
while still providing rapid data access during the simulation. The basic concept is that there are a fixed number
of possible dimensions for parameters, and that indices for all known dimensions are provided during lookup.

2 Coplien, “Advanced C++”, pp. 133-140

3 Gamma, Helm, Johnson, Vlissides, “Design Patterns”, pp. 107-116

73

However, the dimensionality for a given parameter is fixed at initialization time (based on input file data), and
the parameter tables configure themselves appropriately, making use only of the correct indices when accessing
data elements. The GenericArray abstract base class provides the interface for data parameter tables exhibiting
this functionality, and the GenericArrayIndex concrete class encapsulates the indices for all known
dimensions for the purpose of indexing a particular element in the array.

Possible dimensions dereferenced by a GenericArray are:

• Cohort characteristics: stock, brood year, run type (fall or spring), production type (wild or
hatchery), maturity, mark status, tag status, sex, growth group, age;

• Process parameters: fishery, region;

• Clock parameters: year, timestep.

All possible dimensions are contained in the GenericArrayIndex, which provides a number of constructors.
The most basic GenericArrayIndex constructor is (from GenericArray.h):

GenericArrayIndex(const Cohort* c, unsigned fishery=0,
unsigned region=0, unsigned year=0, unsigned time=0);

All of the cohort related indices are initialized from the cohort object, while indices into the global lists of
fisheries and regions may also be supplied, as well as year and timestep references.

Since the purpose of the Generic Array system is to allow parameter tables to change dimensionality at runtime,
it is important to always supply information about every possible dimension during table lookup. Following is
an example table lookup from the HarvestManager.

Example:

// base harvest rate * fp
double HarvestManager::
hvRate(const HvMort* hvmort)
{
 GenericArrayIndex id(&(hvmort->cohort()),
 hvmort->fishery().index(),
 hvmort->region().index(),
 ::SystemClock->currentYearIndex(),
 ::SystemClock->currentTimeIndex());

 return ((*hvRateTable_)[id] * (*fpTable_)[id]);
}

In this example, hvRateTable_ and fpTable_ are GenericArray objects representing tables of base harvest
rates and FP values respectively. In the last line, each is dereferenced (using operator[]) with the local
GenericArrayIndex object id. The constructor shown above is used to create id, utilizing information from the
passed in HvMort pointer to obtain the proper cohort, fishery, and region. Note that Fishery and Region
objects are each able to supply the proper index for use in Generic Array lookups. The global SystemClock is
used to obtain the current simulation year and timestep. Thus, regardless of what the actual dimensionalities of
the harvest rate and FP tables are (as defined by the user in configuration files) the proper data will be extracted,
because indices for all possible dimensions are supplied.

74

Classes that derive from GenericArray are straightforward. FisheryYearArray is an example of a two
dimensional generic array that uses the fishery and year dimensions for indexing. The definitions of the
inherited lookup methods and private member data are (from FisheryYearArray.h):

template <class T>
class FisheryYearArray : public GenericArray<T> {
 //…
 // generic interface
 virtual const T& operator[](const GenericArrayIndex& id) const
 { return array_[id.fisheryIndex][id.yearIndex]; }

 virtual T& operator[](const GenericArrayIndex& id)
 { return array_[id.fisheryIndex][id.yearIndex]; }
 //…

 private:
 size_t nFisheries_;
 size_t nYears_;

 Array2D<T> array_;
};

In this example, array_ is a member variable of type Array2D<T> which provides a simple two dimensional
array with the expected operator[] interface. The FisheryYearArray class also provides constructors(not
shown above) to create the underlying array in the proper size and possibly initialize it with default values, as
well as the required definition for the inherited abstract virtual method newGenericIndexList(). This last
method is required in every concrete GenericArray derived class. Its purpose is to create one
GenericArrayIndex on the heap for every possible element in the array and add each to the supplied list. This
can be used by the caller to iterate over the entire array. For FisheryYearArray the definition of this method is:

// append to a list of GenericArrayIndex one new entry (on the heap) for
each index in the array.
template <class T>
void FisheryYearArray<T>::
newGenericIndexList(RWTPtrOrderedVector<GenericArrayIndex>& indexList) const
{
 for (int f=0; f<nFisheries_; ++f) {
 for (int y=0; y<nYears_; ++y) {
 GenericArrayIndex* id = new GenericArrayIndex(0, f, 0, y, 0);
 indexList.append(id);
 }
 }
}

In this example, nFisheries_ and nYears_ are class member variables initialized in the constructor to values
corresponding to the proper sizes of the two dimensions.

75

5.5.2.3 GenericArrayFactory

Generic Arrays are created at runtime upon user request (from specifications in data input files) by using the
GenericArrayFactory class. The class contains an enumerated type listing all GenericArray derived concrete
classes currently available. More Generic Arrays may be added to this list as they are developed without
disrupting the operation of existing ones. At present this enumeration consists of:

// all types of generic arrays
 enum GenericArrayType
 { TimeStep,
 StockAgeTime,
 StockYear, StockYearTimeRegion,
 StockYearAgeTime, StockYearAgeTimeRegion, StockYearAgeTimeMaturity,
 FisheryRegionTimeStockAge, FisheryRegionTimeStockAgeMark,
 FisheryYearAge, FisheryYearStock, FisheryYearStockAge,

 FisheryYear, FisheryYearRunAge, Fishery,
 RunAgeMaturityTime,
 MaturityTime,
 NTypes
 };

Note that the final value, NTypes is not an array, but rather an indicator of the end of the list. New Generic
Arrays are obtained by calling one of the four factory methods made available by this class, shown below.
These methods differ only in whether maximum dimension sizes are explicitly specified (by using a
GenericArrayIndex parameter) and whether a default value for the elements of the array is specified. Function
overloading was not used in the naming of these methods simply because at the time of coding the Microsoft
compiler could not handle this language construct for template classes.

// build a new array of a particular dynamic type. dimension
// sizes maxima by default, or are passed in the appropriate
// fields of the GenericArrayIndex parameter. the caller is
// responsible for deleting this array.
GenericArray<T>*
newGenericArrayFn0(GenericArrayFactory<T>::GenericArrayType);

GenericArray<T>*
newGenericArrayFn1(GenericArrayFactory<T>::GenericArrayType,
 const T& dfltVal);

GenericArray<T>*
newGenericArrayFn2(GenericArrayFactory<T>::GenericArrayType,
 const GenericArrayIndex&);

GenericArray<T>*
newGenericArrayFn3(GenericArrayFactory<T>::GenericArrayType,
 const GenericArrayIndex&, const T& dfltVal);

Whenever a new concrete GenericArray derived class is created which is to be made available to the user, the
GenericArrayFactory class must be updated. The new array should be added to the GenericArrayType
enumeration, and the constructor and the newGenericArrayFn2() and newGenericArrayFn3() methods
updated.

76

The constructor for GenericArrayFactory creates the mapping between available array types and the actual
strings that appear in user data files to request a particular type. Note also that in the constructor there is a
special check that is activated in debug compilations to provide increased assurance that all is in order:

#ifdef DEBUG
 // make sure all the types are accounted for
 assert(MaturityTime == 16 && MaturityTime == NTypes-1);
#endif // DEBUG

This check must be also be updated. The convention is to always keep MaturityTime as the last array in the
enumeration, and update its index accordingly here.

See the HarvestParser example below for an illustration of how to use GenericArrayFactory.

5.5.2.4 Example: Adding a New Cohort Characteristic

Although highly configurable during runtime, there are obviously some Coast model modifications which
would need to occur at the code level. One example is adding a new cohort characteristic. This section shows
all the steps necessary to implement a change of this sort.

Let’s assume a new cohort characteristic, “color” is to be added. First, the characteristic is added to the
CohortID class found in Cohort.h, as in:

enum Color { C_UNKNOWN, REDFISH, BLUEFISH, N_COLORS };

A new member variable, color_ would be added to the private sections of CohortID and the initializer lists in
all of the constructors in the CohortID class would be updated. The operator==() method and the idString()
methods for this class would also be updated. A new accessor method would also be added:

Color color() const { return color_; }

Next, a similar accessor method would be added to the Cohort class:

CohortID::Color color() const { return id_.color_; }

Since Generic Arrays work closely with cohort characteristics, the GenericArrayIndex class in GenericArray.h
must also be updated. A new member variable for indexing on color would be added:

unsigned color;

The initializer lists in all GenericArrayIndex constructors would be updated to reflect the new field. The
method operator==() would also be updated. The member method resetToSizes() would be updated by adding
the following new line:

color = CohortID::N_COLORS;

This completes the basic modifications necessary in order to use the new cohort characteristic in new
algorithms. However, it is also necessary to make modifications to allow the user to specify this characteristic
as part of the cohort definitions in the input files. To achieve this, new methods are added for each of the
possible new characteristic values in the CohortParser class (see the Harvest Parser example in Section
5.5.3.4.1 for a more general explanation of the operation of the Parser and its derived classes):

void redfish();
void bluefish();

The definitions for these methods in CohortParser.cpp are straightforward:

void CohortParser::redfish()

77

{ cohortID_.color_ = CohortID::REDFISH; }
void CohortParser::bluefish()
{ cohortID_.color_ = CohortID::BLUEFISH; }

Additionally, new tokens to specify these values are declared in CohortTokens.h and defined in
CohortTokens.cpp, and included in CohortParser::initKeymap(), e.g.:

keymap_.insert(CohortTokens::REDFISH, redfish);
keymap_.insert(CohortTokens::BLUEFISH, bluefish);

Finally, the user needs the ability to specify these characteristic values as possible dimensions in input files that
handle Generic Arrays (on the assumption that eventually a concrete Generic Array will be built which offers
this dimension). This is done by modifying the GenArrayParser class. New methods are added for each of the
new cohort characteristic values:

void GenArrayParser::redfish()
void GenArrayParser::bluefish()

A new method to push state for the color dimension is also added:

 void pushStateColor(const Range<int> colors);

The definitions for similar methods in GenArrayParser.cpp should be examined for examples on how to
implement these methods. Member method

template<class T> void initGenArrayKeymap(KeywordProcessor<T>& keymap)

is modified by adding code to connect the new characteristic value methods with the proper tokens (this method
is found in GenArrayParser.h):

keymap.insert(CohortTokens::REDFISH, &T::redfish);
keymap.insert(CohortTokens::BLUEFISH, &T::bluefish);

This completes the implementation of the new cohort characteristic.

5.5.2.5 Iteration

The Coast Model can handle iteration over timesteps (and years) during the course of simulation. This feature
is typically used to achieve particularly complex harvest management objectives. In the Coast Model, an
iterative algorithm begins operating in a fixed and predetermined first timestep, and completes in a fixed last
timestep. The process of iteration is straightforward: when the first timestep is reached the state of the system is
recorded. When the last timestep is reached, an analysis is carried out to determine whether or not iteration is
required. If iteration is required, then the system clock is reset to the first timestep, iteration control variables
are modified with new data, and the previously recorded state is restored. If iteration is not required, then the
simulation proceeds in a normal manner. A number of classes work together to implement this type of
simulation iteration, including IterationManager, IterationControl, and State. The reader should examine
comments in the code for these classes and derived classes for detail concerning the working of this system
beyond the brief overview provided below.

5.5.2.5.1 State

The concept of state is fundamental to the working of the iteration system. All data parameters in the system
are divided into one of three categories:

Static state: data parameters whose value does not change over the lifetime of the simulation.
Variable state: non-control data parameters that may change value during the simulation.
Control variables: data parameters modified by iterative algorithms to achieve end conditions.

78

All FisheryPolicy objects, as kept in the policyTable_ maintained by the FisheryManager, are considered
control variables. These are the only control variables in the system, and thus are the only permissible data to
be overwritten by IterationControl objects when making adjustments in order to meet end conditions. Most
other input data parameters are part of the static state of the system. Variable state information includes all of
the Cohort objects (which includes current abundances) and all of the DataRequest objects in the system (each
of which may maintain local data.)

At the start of an iteration algorithm, the state of the system is saved. At some later point in time, if the end
condition for that algorithm is not met, then the clock will be reset to the start time of the algorithm, the system
state will be restored, and control variables will be modified so that the end condition might possibly be met on
the upcoming iteration. The State class is the abstract class used for saving state information. The SystemState
class records the state of the entire system for the purpose of later restoration as part of an iterative algorithm.
Since static state information never changes, it is not saved as part of the SystemState. Since the control
variables are modified in order to meet end conditions during iteration, and since multiple iterative algorithms
may be operating simultaneously all modifying different subsets of the available control variables, none of the
control variables are saved as part of the SystemState. Therefore, only variable state information is saved.

5.5.2.5.1.1 SystemState

The SystemState class is derived from the State abstract base class. As described above, it records all of the
variable state information in the system. It employs the Composite4 pattern in its implementation. Thus, it
maintains a list of other State objects, which together encapsulate the entire variable state of the system. Since
each State derived object maintains whatever local data is necessary and responds to messages to saveState()
and restoreState() it is straightforward to carry out those operations for the entire system.

The SystemState class also implements an internal reference counting5 system as a space optimization (see files
RCObject.h and RCPtr.h.)

5.5.2.5.2 IterationControl

The basic abstract class involved in simulation iteration is IterationControl. It provides member data to track
the first and last timestamps of the desired iterative algorithm (a timestamp includes both the year and the
timestep). A handle for recording the SystemState at the start of iteration is also provided, along with some
utility routines for manipulating this state. Three methods form the primary interface for this class.
iterationRequired(), tests whether or not iteration is required given the current state of the system. A default
definition for this method is provided which calls the pure virtual method endConditionSatisfied(), where the
actual work of evaluating the end condition is performed in the derived class. resetControlVariables() is used
to calculate new values for the iteration control variables at the start of each new iterative loop.

At present the only IterationControl derived class available is MultiCeilingIterationControl. An object of
this class is used to implement the harvest management policy in which a single fishery harvests a fixed quota
over multiple timesteps while maintaining a constant harvest rate over those timesteps. Many different objects
of this class may all operate simultaneously in order to achieve this management objective for several fisheries
in the same time period.

4 Gamma, Helm, Johnson, Vlissides, “Design Patterns”, pp. 163-173

5 Meyers, “More Effective C++”, pp. 183-213

79

5.5.2.5.3 IterationManager

The iteration system is controlled by the monostate IterationManager. This class organizes all of the
IterationControl derived class objects. It ensures that for each,

• the system state is recorded and stored (in the IterationControl object) upon entry into the
first timestep of interest for that control;

• that each IterationControl object evaluates its end condition at the completion of the last
timestep of interest; and

• that iteration actually occurs when necessary, including resetting the system clock and causing
IterationControl objects to reset their control variables when appropriate.

There is an implied ordering of IterationControl objects in which those with more recent “first” timesteps
iterate to completion before those with earlier “first” steps. The IterationManager enforces this ordering by
using a somewhat complicated internal ordered list implementation to contain the registered IterationControl
objects.

In order to accomplish its tasks, the IterationManager must receive two messages at particular points during
the simulation. At the start of each timestep, beginTimeStep() must be called, while endTimeStep() must be
called at the end of each timestep. These calls are found in RunTheModel() in engine.cpp.

5.5.2.6 DataRequest

During the course of the simulation various data may be tracked, cumulated, or analyzed. For maximum
flexibility, this is performed through the use of DataRequest objects. This abstract base class provides four
methods as the primary portion of its interface: config(), collect(), output(), and clear(). The canonical usage
is to register (or, more accurately, schedule()) any desired DataRequest objects with the
DataRequestManager. This monostate ensures that the collect() methods are called for each DataRequest
after every Simulation Process. Similarly, each of the output() methods is called after the simulation is
complete.

Although the primary purpose of DataRequest objects is to collect output data, they may be used for other
purposes as well. For example, the Historian monostate schedules a TrackDetailedFisheryCatches object
(derived from DataRequest) with the DataRequestManager in order to efficiently collect a specific type of
harvest data and make it available to any object during the course of the simulation. Certain harvest
management algorithms make use of this summary data to analyze and implement management actions.

5.5.2.7 LogMsg

Warning and error messages are output to the user via the static function LogMsg(). This allows the
programmer to output a printf style message to the screen (when the model is compiled as a console
application.) Messages at various different “levels” may be created. Eventually this would allow the user to
filter messages based on log level, although that functionality is not currently available. Additionally, all
logged messages are copied to file coast_log.txt. The code for this module may be found in log.h and log.cpp.

80

5.5.3 Special Purpose Classes and Objects

The following sections describe a few of the classes and objects that participate in some of the more
complicated operations in the model.

5.5.3.1 Harvest Classes

The most complex Simulation Process is harvest. The entry point for this process is
FisheryManager::takeHarvests() (this call is found in engine.cpp), which is called to invoke the harvest
process in each timestep. The workings of this method also provide an overview of the entire harvest process.
The actions taken are:

1. Generate temporary data storage for the harvest mortality data. (This results in the creation of
FisheryUnit and HvMort objects.)

2. Instruct the PolicyControlManager to perform preHarvestManagement().
3. For each Fishery:

• Compute legal catches.

• Compute shaker incidental mortality.

• Compute CNR incidental mortality.
4. Instruct the PolicyControlManager to perform postHarvestManagement().
5. Update all cohort abundances by applying the computed harvest mortalities from each

Fishery.

It is worthwhile to note that the organization of the harvest process presumes that within a timestep harvests for
individual fisheries may be computed independently. The only way to achieve interactive effects across
fisheries is by using the Iteration feature of the model (described above). Similarly, it is further assumed that
harvest in a specific fishery and region (in a particular timestep) may be computed independently from other
fisheries and/or regions. It is possible that this last requirement may be loosened at some point in the future, but
for the moment the code structure adopts this as an invariant.

These sub-processes and the classes that implement them are described in further detail in subsequent sections.

5.5.3.1.1 FisheryUnit

Harvest actions occur independently in each region for each fishery. The FisheryUnit class encapsulates this
intersection. At the start of the harvest process in each timestep, each fishery constructs a list of FisheryUnit
objects representative of the regions in which harvest will occur for each fishery. This is accomplished via the
method Fishery::makeHarvestList(). Each fishery is configured (from runtime data) with “schedule”
information that specifies the times and regions in which it is to be active. This information is used to construct
the proper FisheryUnit lists in each timestep.

Fisheries perform harvesting by sending a message instructing the FisheryUnit to do so. Each FisheryUnit
contains a list of HvMort objects to contain the harvest mortality data. The HvMort class represents the
intersection of a fishery, region, and cohort, and is responsible for the harvest calculation. A FisheryUnit will
contain one HvMort object for each cohort to be harvested by the fishery in a particular region. Since cohorts
are created and destroyed during the course of the simulation, this list of HvMort objects is also reconstructed
at the start of each harvest process in each timestep, at the same time that the FisheryUnit lists are created. The
actual work of creating the HvMort objects is performed by HarvestManager::createHarvestMorts() (called

81

by the FisheryUnit). The FisheryUnit retains ownership of these objects, and references are also handed to the
fishery to ease certain accounting tasks. The HarvestManager considers whether the cohort is of harvestable
age and has non-zero abundance in the region when deciding whether to create a corresponding HvMort object.

5.5.3.1.2 FisheryPolicy

FisheryPolicy is an abstract base class for conducting harvest under particular management policies. The
interface includes two public methods: harvest() for performing all harvest in a single Fishery and Region; and
effortScalar() to access the effort scalar used by that policy in its harvest computation. There are currently two
concrete FisheryPolicy classes, FixedHarvestRatePolicy and FixedQuotaPolicy.

The FixedHarvestRatePolicy class performs harvest using a fixed harvest rate provided by input data (i.e. the
effort scalar and base harvest rate do not change while executing this policy in a particular timestep).

The FixedQuotaPolicy enforces a quota upon the harvest for a single fishery in a single region in the current
timestep. The quota may either be “forced” or not as specified by input data. An unforced quota means that
harvest for a fishery will be truncated to the level of the quota, but harvest initially computed to be below the
level of the quota is also allowed. A forced quota ensures that the final harvest of the fishery will meet the
quota nearly exactly (within a certain tolerance, currently set at 0.001% of the quota). The FixedQuotaPolicy
will select a new effort scalar and recompute harvest as necessary in order to meet the quota. This ability to
search for the proper effort scalar is especially important if the harvest function itself is non-linear. The search
is conducted using Search class object, which employs a guarded secant method (see inline comments in
Search.h and Search.cpp for details).

It is required that there exist a FisheryPolicy object for every combination of Fishery, Region, and timestep in
which harvest occurs. The FisheryManager maintains a PolicyTable for this data. At configuration time this
table is initialized with default FixedHarvestRatePolicy objects with an effort scalar of 1.0 in each element.
Input parameter data then overrides selected elements where other harvest management policies are desired.

5.5.3.1.3 PolicyControl

Some harvest management policies may span multiple timesteps. For example, the current PSC configuration
of the model requires that fishery harvests be tracked over a base period before generating FisheryQuotaPolicy
objects for the remainder of the simulation, using the base period average harvest as well as other scalars
supplied as input data. The PolicyControl abstract class supports this type of functionality.
CeilingScalarPolicyControl is the only derived PolicyControl class currently available. The interface of the
PolicyControl class includes simply the preHarvestManagementAction() and
postHarvestManagementAction() methods, called at the start and finish of the harvest process in each
timestep, as described above. The PolicyControlManager monostate manages all the PolicyControl objects
active in the system and ensures that each is called at the appropriate times.

5.5.3.1.4 HvMort and HarvestProcess

As described above, the HvMort class represents the intersection of a fishery, region, and cohort, and acts as a
repository for the harvest mortality data (both legal and incidental) for that grouping. Its interface contains the
harvest() method which takes the policy-determined effort scalar as a parameter in order to perform the harvest
calculation.

Each HvMort object is configured with a HarvestProcess object used to finally calculate harvest mortality.
The abstract HarvestProcess class contains a single method, computeCatch(). There is currently one
HarvestProcess derived class, LinearHarvestProcess, which implements the simple formula:

catch = cohort_abundance * (base_harvest_rate * (1 - pnv) * fp *
policy_effort_scalar)

82

The various parameters are obtained by instructing the HarvestManager to perform lookups into the data
parameter generic array tables it maintains.

The HvMort class contains the following member variables, which serve as the repository for harvest mortality
data: legalCatch_, shakers_, dropOffs_, cnrSublegal_, and cnrLegal_.

5.5.3.1.5 Legal Catch Process Detail

To summarize, using the classes and objects described in the preceding sections, legal catch is calculated as
follows:

• The FisheryManager calls Fishery::takeHarvests() for each Fishery.

• The Fishery calls FisheryUnit::harvest() for each FisheryUnit.

• The FisheryUnit calls FisheryManager::findPolicy(FisheryUnit*) to retrieve the correct
FisheryPolicy object.

• The FisheryUnit invokes the harvest(FisheryUnit*) method of the FisheryPolicy in order to
allow the management policy to control the harvesting.

• The FisheryPolicy computes the proper effort scalar and invokes the harvest(double
effortScalar) method of the FisheryUnit. The FisheryPolicy may repeat these actions as
necessary until its management objectives are met (e.g. to enforce a quota.)

• The FisheryUnit calls the harvest(double effortScalar) method for each of its HvMort
objects.

• The HvMort invokes the computeCatch(const HvMort&, double policyScalar) method of
its contained HarvestProcess object.

• The HarvestProcess computes and returns a catch to the HvMort object, which saves this
mortality data. This completes the computation of legal catch of a single cohort by a single
fishery in a single region in a single timestep.

83

5.5.3.1.5.1 Harvest Computation Flow (Legal Catch)

FisheryManager

takeHarvests
findPolicy (FU)

PolicyTable

Fishery

takeHarvests

FU

PolicyControl

FisheryPolicy

harvest(FisheryUnit)

EffortScalar
FisheryUnit

harvest
harvest(EffortScalar)

fishery
region

HVMort

Cohort

abundance (R)

currentAbd [R]

Quota

harvest

EffortScalar

FixedHR

harvest

EffortScalar

HVMort

harvest (E)
cohortAbundance

cohort
fishery
region
legalCatch
HarvestProcess

HarvestManager

HVRate (HVM)
PV (HVM)

HVRateTable
FPTable
PNVTable

HarvestProcess

computeCatch (HVM, E)

c = n*hr*fp*pv c = n(1-exp(-qE))

1

23

4

6
5

10

7

118

9

84

5.5.3.1.6 Incidental Mortalities

As described in Section 5.5.3.1, after the FisheryManager computes legal catch for a fishery, it then proceeds
to compute incidental mortalities for shakers and CNRs by invoking the Fishery methods setShaker() and
setCNR(), respectively.

5.5.3.1.6.1 Shaker

The Fishery computes shakers for all of its harvests simultaneously. It retrieves from the HarvestManager the
correct Shaker object. Shaker is an abstract base class which supplies the setShakers() method as part of its
interface for this purpose. The result of this operation is that the shakers_ and dropOffs_ data elements of all
the HvMort objects associated with the fishery will be set to new mortality values.

Concrete classes derived from Shaker that perform the computations in a variety of different ways
(documented elsewhere) and are currently available are: PSCShaker, PSCCustomShaker, PSCDropShaker,
and PSCCustomDropShaker.

5.5.3.1.6.2 CNR

The Fishery generates CNR mortalities by calling the setCNR() method of each of its HvMort objects. The
HvMort then instructs the HarvestManager to return the correct CNR object. The HvMort then invokes the
sublegalMort() and legalMort() methods of the CNR object, whose return values are used to set the
cnrSublegal_ and cnrLegal_ member variables, respectively.

CNR is an abstract base class. The concrete classes derived from CNR that are currently available are:
CNR_HarvestRatio, CNR_HarvestRatioMultipleEncounter, CNR_ReportedEncounter,
CNR_SeasonLength, and CNR_SeasonLengthMultipleEncounter. The function of each of these classes is
described elsewhere. This use of the CNR hierarchy is an implementation of the Strategy6 design pattern.

5.5.3.2 Production Classes

The SpawningManager controls the Simulation Process that handles the production of fish. This monostate
provides the process entry point spawnCohorts(). It also maintains a ProductionTable (generic array) of
Production class objects. The basic procedure for spawning is fairly straightforward. Spawning is done at the
stock level (as opposed to the cohort level). At each timestep, every stock and region are examined. If there is
a ProductionTable entry for that stock and region (in the current timestep) then production will occur. The
total adult mature regional abundance for that stock and region (regional escapement) is calculated, and the
spawn() method of the appropriate Production object is invoked. The output of this method is the new
abundance of age 0 fish for that stock and region. CohortManager::makeNewAge0Cohorts() is then called to
create new active cohorts for the newly spawned fish. Some of the constituent classes in this process are
described in further detail in the next sections.

5.5.3.2.1 Production and ProductionFunction

The Production class’ primary function is to return a value (from the Spawn() method) representing the
abundance of newly spawned fish from the given regional escapement. This is accomplished by maintaining a
list of ProductionFunctions, and calling the spawn() method on each, supplying the full escapement value as
argument, and totaling the results. ProductionFunction is an abstract base class. A typical
ProductionFunction derived class will calculate the value of a particular production function using some

6 Gamma, Helm, Johnson, Vlissides, “Design Patterns”, pp.

85

portion of the total escapement, usually accomplished by enforcing the minimum and maximum escapement
values of interest to that function. It is up to the user to ensure at data input time that the various minima and
maxima for the group of ProductionFunctions in a given Production object combine to cover the full range of
possible escapement values (unless implicit truncation is desired). For example, three functions might be
configured such that the first would operate on the portion of the escapement abundance from 0 to 10,000 fish,
while the next function would handle the portion of the escapement in the 10,000 to 15,000 range, while the last
would handle all the remaining escaped fish above the level of 15,000 (if any).

At present, there are four available ProductionFunction derived classes, although more may be added in the
future. These are described in the following table.

Table 4 Available ProductionFunction derived classes

LinearProduction Simple linear function

RickerProduction Ricker function

VariableTruncationRickerProduction Ricker function with run-time variable truncation

EnhancedRickerProduction Ricker function with enhancement and optional density
dependence

5.5.3.2.2 CohortGenerator

After the abundance of new age 0 fish is calculated, the CohortManager is instructed to create new active
cohorts via a call to CohortManager::makeNewAge0Cohorts(). This in turn invokes newAge0Cohorts() on
the stock in question, supplying the abundance, region, and brood year. Each Stock is configured with a
CohortGenerator derived class, which performs the work of creating new age 0 cohorts. By default, a stock is
configured with a DefaultCohortGenerator object. (At present, there is no user interface for selecting any
cohort generator other than this default one.) The DefaultCohortGenerator simply creates a CohortID using
the given stock and brood year, allowing other cohort characteristics to assume default values. This CohortID
is used to search for currently active cohorts matching the id. If one is found, then the regional abundance of
that cohort is incremented by the new abundance of age 0 fish. If a matching active cohort is not found, then a
new one is created with the new regional abundance of age 0 fish set appropriately. The final effect is to create
new age 0 fish for the current brood year in the region where they are spawned. It is expected that the age-
specific transition matrices will be used to migrate those fish to the ocean at the appropriate time.

5.5.3.3 Data Output

As described above, data output for the model is handled by scheduling DataRequest objects with the
DataRequestManager. At present there are three text output files generated in this manner.
OutputFisheryCatches cumulates legal catch by year and fishery and outputs this data to file stndcat.prn.
OutputPSCStockEscapements tracks escapement by stock and year and outputs this data to file stndesc.prn.
Output file coast_output.txt contains Standard Data Sentence format output for the model run. The
StandardDataOutputManager manages this file and generates the output data by scheduling DataRequest
derived classes SDS_Cabn, SDS_Nmrt, and SDS_Fmrt with the DataRequestManager. The Standard Data
Sentence format is described in Section 4. All of these DataRequest file output data objects are scheduled with
the DataRequestManager during the initialization phase of the model.

5.5.3.4 Data Input Parser

The parser is a tool usable by other applications. In the Coast Model, it is employed by several of the
initialization routines for the purpose of reading input data from text files. The input language for the Coast

86

Model is described Section 3. The fundamental abstract class for processing input file data is Parser. This class
is derived from FreeFormReader, which processes sequential tokens from a file without formatting, while
handling comments and special characters. Finally, this class contains a LineBuffer that is used to process a file
a line at a time and extract tokens.

Parameter data is read by classes that derive from abstract base class Parser. TopLevelParser is one such
class, responsible for processing tokens at the top level of the input hierarchy. Parameter data at other levels is
handled by deriving from abstract class SubParser, which itself is derived from Parser. The purpose of
SubParser is to handle the coordination of nested command block data (see Section 3). Examples of concrete
classes deriving from SubParser include ConfigParser, CohortParser, StockConfigParser, and others.

GenArrayParser is another abstract class deriving from SubParser. It is used to process any parameter data
which consists of a Generic Array (see Section 3 as well as descriptions of Generic Arrays in Section 5.5.2.2).
Concrete classes deriving from GenArrayParser include HarvestParser, FpParser, ProductionParser, and
many others.

Concrete classes deriving from Parser typically accomplish the work of processing tokens and calling
corresponding class methods by using template class KeywordProcessor.

5.5.3.4.1 HarvestParser – An In-depth Example

This section examines the HarvestParser class in detail as an example of how to build modules to parse
parameter data. The reader should first examine all the inline comments in the Parser and derived classes,
including GenArrayParser, before attempting to follow this example. The reader should also be familiar with
the GenericArray and GenericArrayIndex classes, with the coast model input language (described in Section
3), and in particular with the format for specifying generic array data in the input files.

5.5.3.4.1.1 HarvestParser Declarations

Basic harvest rates reside in a generic array table HvRateTable in the HarvestManager class. It consists of a
generic array of double. A programmer wishing to write code to process input data for this generic array would
begin by creating the HarvestParser class and making it a friend of the HarvestManager. Examining
HarvestParser (the following code is found in HarvestParser.h):

// the harvest parser is a generic array parser

class HarvestParser : public GenArrayParser {

The purpose of this class is to parse data for a generic array. Therefore, it derives from GenArrayParser in
order to parse all of the generic array tokens.

public:
 HarvestParser(Parser& p, RWCString dimension);

The constructor takes as arguments a parser with a currently open file, and the token that represents the
dimension of the generic array requested by the user in the file.

protected:
 virtual void processKeyword(const RWCString& token)
 { keymap_.processKeyword(*this, token); }

The only public methods are those specified in the base classes. The virtual method processKeyword() is the
canonical way to invoke processing functions on tokens. The member variable keymap_ is the mapping
between valid tokens and the corresponding class methods.

private:
 friend class KeywordProcessor<HarvestParser>;

87

 KeywordProcessor<HarvestParser> keymap_;

The mapping between tokens and methods is defined using template class
KeywordProcessor<HarvestParser>, which must also be given friendship privileges.

 const RWCString dimension_; // string rep of dimensionality

The dimensionality of the generic array as given in the constructor is retained for future use.

 virtual void initKeymap();
 virtual void initState();
 void configHvRate(State* state);

These three initialization methods are all used by the constructor. initKeymap() sets up the token/method
mapping. initState() initializes the state stack in the GenArrayParser portion of the class, necessary for
processing nested layers of generic array tokens. configHvRate() sets up the actual generic array used to store
the input data.

 void hvRate();
};

There is only one simple token for the harvest rate data processed by this class. hvRate() is the method used to
process the final harvest rate data when specified in the input file. This method is entered in the keymap with
its corresponding token.

5.5.3.4.1.2 HarvestParser Definitions

This example is continued by examining the method definitions for the HarvestParser class, found in file
HarvestParser.cpp.

// ctor utility fns
void
HarvestParser::initKeymap()
{
 keymap_.insert(HarvestTokens::HVRATE, hvRate);

The single simple token for this class is inserted into the keymap along with the address of the appropriate
processing method. The actual string value of HarvestTokens::HVRATE happens to be "BaseHR", and is
found in file HarvestTokens.cpp. This string is what appears in the input data file when the user specifies final
base harvest rate values.

 initGenArrayKeymap(keymap_);
}

All of the common tokens for processing generic arrays and their corresponding methods are also inserted into
the keymap by calling this GenArrayParser base class method.

void
HarvestParser::initState()
{
 // configure the initial state with the correct id list.
 State* state = new State;

The State class is declared in the GenArrayParser base class, and is used to handle the processing of nested
levels of generic array specifications. (Note that this is a contained class in GenArrayParser for use in that
class and classes derived from it. This is not the same as the system-wide State class described in Section
5.5.2.5.1.) Here a new state is created for the HarvestParser class to do its work. This state object is deleted in
method GenArrayParser::parseEnd() when the final “end” token for this generic array is processed.

 state->context = "HarvestData";

88

A string describing the context of the current state is supplied for user messages.

 configHvRate(state);

This class method is called to create the generic array storage, and to configure the state object with the initial
list of all of the GenericArrayIndex objects necessary to reference every possible element of this particular
generic array.

 stateStack.push(state);
}

Finally the properly configured state object is pushed onto the stateStack maintained by the GenArrayParser
base class portion of this HarvestParser.

HarvestParser::HarvestParser(Parser& p, RWCString dimension)
 : GenArrayParser(p), dimension_(dimension)
{
 initState();
 initKeymap();
}

The constructor initializes the base class, stores the dimension token, and calls the two initialization methods.
All parsers derived from GenArrayParser will have constructors similar or identical to this one.

// create a generic array for harvest rate data of the requested
// dimension size and configure the HarvestManager with it. also add
// the list of generic ids to index every element of the array to the
// current state.

void
HarvestParser::configHvRate(State* state)
{
 GenericArrayFactory<double> hvFactory;

GenericArrays are created with GenericArrayFactory.

 GenericArrayFactory<double>::GenericArrayType arraytype =
 hvFactory.genericArrayType(dimension_);

Use the factory to identify the array type requested by the user with the token saved in dimension_.

 if (arraytype != hvFactory.NTypes) {

This tests whether the dimension specified by the user is valid.

 HvRateTable* hvRateTable =
 hvFactory.newGenericArrayFn1(arraytype,
 HarvestManager::defaultHvRate_);

Create the actual generic array using the factory and the default harvest rate as retrieved from the
HarvestManager.

 HarvestManager::configHvRates(auto_ptr<HvRateTable>(
 hvRateTable)); // hand off harvest storage to the manager

As the comment indicates, this hands off the new GenericArray to the HarvestManager, which is where the
final data is stored.

 hvRateTable->newGenericIndexList(state->ids); //
 create the proper list of generic ids
 }

89

Create a list of GenericArrayIndex objects, one to reference every possible element in the generic array, and
insert the items into the list at the top of the State stack.

 else {
 // unidentified dimension. log an error, but allow this
 // parser to continue with an empty id list in the state, so
 // as to skip as much data as possible without generating
 // further messages.
 logError(pError(ParseError::BadData,
 dimension_ + " is not a valid configuration for"
 + state->context + "; discarding data")
 .errorMessage());
 }
}

Use the global error logger to generate an error message if the user requested generic array dimension was
invalid.

// read in one harvest object and place it in the HarvestManager
// at every generic id region in the current list
void
HarvestParser::hvRate()
{
 double rate;
 parseVar(rate);

This routine has been called through the keymap processor in response to the final “BaseHR” token. The parent
class parseVar() method reads the actual data from the file, or throws an exception if the data is not of the
proper type.

// iterate through the ids in the current state
 RWTPtrOrderedVector<GenericArrayIndex>::iterator iter =
 (stateStack.top()->ids).begin();
 while (iter != (stateStack.top()->ids).end()) {

At this point any number of generic array tokens may have been processed, each of which reduced the list of
GenericArrayIndex objects to the subset desired by the user. Now the data just read is to be assigned to all of
the indices currently being referenced. The list is kept by the top object in the stateStack in the
GenArrayParser portion of this class. The above lines of code set up an iterator to visit each of these
GenericArrayIndex objects.

 GenericArrayIndex* id = *iter;

Dereference the iterator to obtain the GenericArrayIndex object.

// hand off the ptr to the migration manager
 HarvestManager::insertHvRate(rate, *id);
 ++iter;

Insert the harvest rate data item at the index by handing it to the HarvestManager. Increment the iterator.

}
 // pop one level of state after processing the data
 parseEnd();
}

All generic array blocks pop one level of state after parsing the final simple data token. This has the effect of
subsuming the “end” token that would normally be required at every generic array level in the data file. See the
coast model input language description in Section 3 for more details.

90

5.5.3.4.1.3 Using the HarvestParser

All that remains is to create a token for the generic array that will be created by the HarvestParser and to use it
in an existing parser. File TopTokens.cpp contains the following definition:

const RWCString TopTokens::HVRATE = "HarvestRateData";

This is declared in TopTokens.h. A new method is created in the TopLevelParser class, harvestData(). This
method is connected with the new token in the keymap in the TopLevelParser:

TopLevelParser::
TopLevelParser(const RWCString& fileName)
: Parser(fileName, &::errorLogObject)
{
//… other tokens are also inserted into the keymap here
 keymap_.insert(TopTokens::HVRATE, harvestData);
//…

The new harvestData method will be invoked by the keymap when the new token is encountered in the data
file, at which time a HarvestParser object will be created to continue processing the file, as shown below.

void
TopLevelParser::harvestData()
{
 RWCString dimension = nextToken();
 HarvestParser hp(*this, dimension);
 hp.parse();
}

The dimension token is read following the “HarvestRateData” token and passed to the HarvestParser, whose
virtual parse() method is then called. Upon completion, the HarvestParser is discarded and file processing
continues in the TopLevelParser with the next token.

5.6 Process Detail

This section provides further information on two fundamental processes in the application which are not
controlled by system monostates or other classes.

5.6.1 Initialization and Cleanup

Initialization code is located in file init.cpp. Initialization consists of three distinct steps. ::ModelConfig()
executes each of these steps in turn. First is configuration. In this phase the configuration data file is read
(config.data), after which the static and global constructs are set up, typically by calling config() methods in
each of the managers. Next the general model data file is read (coast.data) in routine ::ModelDataRead()
which establishes the parameter data for the model from the user input files. Finally, ::ModelInit performs per-
simulation initializations as final preparation for the model run. For calibration runs a separate entry point,
::activeXcalibrationReentry() is provided for iterations subsequent to the first one. This is a speed
optimization, in which the full original data file is not reread. In this case ::ModelConfig() is not called.
Instead, a supplemental data file (calib.data) is read using ::ModelDataRead(), which allows the user to
overwrite only the new calibration input data (typically ev scalars) and retain the remainder of the original data
set. ::ModelInit() is then called as usual. Some peculiarities may limit the use of this optimization for
configurations other than a PSC calibration run. Please see comments in the code for more details.

There are two phases to cleanup. ::SimulationWrapup() occurs after every simulation run.
::ModelCleanup() is the final cleanup routine called on exit. In an ActiveX application, the former is called at

91

the end of each simulation run, while the latter is not called until the component itself exits (which occurs when
the calling application exits). Both of these routines are found in init.cpp.

5.6.2 The Engine

The simulation is controlled by routine RunTheModel() in file engine.cpp. It loops through years and
timesteps, within which each of the Simulation Processes are executed through a call to the appropriate
manager. The IterationManager is informed of the beginning and ending of each timestep, and after each
Simulation Process, the DataRequestManager is afforded the opportunity to store any requested data. The
entire routine is reproduced below.

/* main engine for the nmfs coastal simulation. */

void RunTheModel()
{
 for (::SystemClock->resetClock(); !(::SystemClock->yearExpired());
 ::SystemClock->incrementYear()) {
 ::LogMsg(L_Msg, "year %d\n", ::SystemClock->currentCalendarYear());

 for (::SystemClock->resetTimeSteps(); !(::SystemClock->timeExpired());
 ::SystemClock->incrementTimeStep()) {

 // the IterationManager could reset the SystemClock to an earlier time
 IterationManager::beginTimeStep();

 // aging up to the current year/time needs to happen before any data
collection
 CohortManager::ageCohorts();

 DataRequestManager::collect(SystemProcesses::SP_BeforeFirstProcess);

 NaturalMortalityManager::takeNaturalMortality();
 DataRequestManager::collect(SystemProcesses::SP_NaturalMortality);

 FisheryManager::takeHarvests();
 DataRequestManager::collect(SystemProcesses::SP_Harvest);

 MaturationManager::maturateCohorts();
 DataRequestManager::collect(SystemProcesses::SP_Maturation);

 SpawningManager::spawnCohorts();
 DataRequestManager::collect(SystemProcesses::SP_Spawn);

 MigrationManager::migrateCohorts();
 DataRequestManager::collect(SystemProcesses::SP_Migration);

 IterationManager::endTimeStep();
 }
 }
}

92

Appendix A: Glossary
The following is a partial glossary of terms used in the Coast Model.

Term Definition

Abundance Index The expected catch given the current year size limits and cohort sizes
but the base period (1979-1981) harvest rates.

Adult Equivalence Factors Used to adjust fishery catches to a common impact on the spawning
stock. For example, on average a three year old fish harvested by an
ocean fishery has less impact on the spawning stock than a five year old
fish harvested by a river fishery, because some three year old fish would
normally die of natural causes before they had an opportunity to spawn.
Thus, one three year old fish eliminated from the ocean catch will result
in less than one additional fish in the spawning stock, whereas one five
year old fish eliminated from the river catch will result in one additional
fish in the spawning stock.

Adult Escapement Terminal Run fish that survive the terminal fisheries and pre-spawning
mortality. Age two fish returning to the river are not considered
reproductively viable and are not included in the adult escapement for
each stock.

Base Period Harvest Rate Average stock, age, and fishery specific harvest rate between 1979-
1982. Harvest Rate scalars are relative to this rate.

Brood Year The year in which a fish was propagated or spawned (i.e., the year in
which the eggs were fertilized). Chinook salmon typically migrate
downstream the following year (most Fall chinook), or the year after
(most Spring chinook).

Catch Ceilings Maximum catch (numbers of fish) for a fishery or group of fisheries for
a specified time period. These are not established for specific stocks.
This is the Pacific Salmon Commission’s primary management tool.

Chinook Non-Retention
Mortalities

Mortalities of legal and sub-legal chinook that are caught and brought
up to the boat in coho fisheries at times when it is not legal to land and
sell any chinook.

CNR (mortalities) See Chinook Non-Retention Mortalities.

Coded-Wire-Tag (CWT) Tiny wire tags (1.0 x 0.25 mm) inserted in the nose cartilage of salmon
fingerlings or fry, typically in the hatchery, to identify the origin of an
individual fish. Each tagged fish has the adipose fin clipped to indicate
that it has a CWT in its snout. Scientists use CWT recoveries to estimate
harvest rates and migration patterns.

Cohort A group of fish that have the same demographic characteristics, such as
belonging to the same age class of a given stock.

Cohort Analysis Same as Virtual Population Analysis.

Enhancement Production of fish at facilities such as hatcheries.

Escapement Fish that are not caught by any fisheries (i.e., they "escape" the
fisheries).

EV Scalar Scalars used to adjust the average production of age one fish by a
spawning stock to account for inter-annual Environmental Variability
(EV).

93

Term Definition

Gillnet A harvest method in which fish are trapped in a net stretched across their
migration path. The net may either be set from a drifting boat (drift
gillnetting) or from a fixed position (set gillnetting). The fish become
entangled by their gill plates or jaws, and can neither back out nor move
forward.

Harvest Rate Scalars Scalars used to adjust the harvest rate during a given year compared to
the Base Period.

IDL (rate) See Inter-Dam Loss rate.

Inter-Dam Loss rate These are actually survival rates between the last fishery and the
spawning grounds. Also called the Pre-spawning mortality. IDLs are
stock specific, but are not age (or size) specific. This mortality is applied
to Columbia River stocks that spawn upriver from dams and is assessed
after fishing mortality to account for losses between dams.

Legal (size) Above a certain size criteria.

Maturation Rates The proportion of a stock that is mature and ready to return to the
spawning ground. These are age and stock specific and can vary across
years as well. However the model does not allow for age 6 fish so the
MR for age 5 fish should always be 1. The stock that is mature is
considered the terminal run.

Natural Ocean Mortality Non-fishing mortality assessed at the beginning of each year in the
model. This mortality is age specific, but not stock specific.

Net Fisheries In CRiSP Harvest, this refers to fisheries using gillnet and purse seine
gears.

Pacific Salmon Commission International regulatory agency created by the 1985 Pacific Salmon
Treaty between the United States and Canada with responsibility for
management of North American salmon stocks and fisheries.

Percent Non-Vulnerable Fraction of a cohort that is below the legal size limit. PNVs vary by
year, age, and fishery, but not by stock.

PNV See Percent Non-Vulnerable.

Pre-Spawning Mortality See Inter-Dam Loss.

Preterminal (catch) Catch that occurs before the mature segment of a cohort begins
migrating back to the spawning grounds. Thus, preterminal catches are
primarily ocean catches.

PSC See Pacific Salmon Commission.

Purse Seine A commercial fishing system in which a school of fish are encircled by a
vertically hanging net and then are trapped by closing the bottom of the
net (pursing).

Recruitment Fish from a given stock that become available (i.e., recruit) to a fishery.

Recruitment Age The age at which fish from a given stock become available to a fishery.

Ricker Function A popular type of Spawner/Recruit Relationship (named after Dr.
William Ricker) in which the number of recruits per spawner declines
exponentially. The resulting curve has a descending right hand limb (i.e.,
too many spawners produce fewer recruits).

Shakers Sublegal chinook that are caught (i.e., hooked and brought up to the
boat) and released (i.e., “shaken” off the gear) during directed chinook
fisheries.

94

Term Definition

Spawner/Recruit Relationship A mathematical relationship between the number of spawners in a given
year and the resulting number of progeny that become available (i.e.,
recruit) to the fisheries in some future year. Usually estimated from
historical data and used in simulation models to predict future
recruitment from a given spawning stock.

Sub-legal (size) Below a certain size criteria.

Supplementation Artificial propagation intended to reestablish or increase the abundance
of natural populations.

Terminal Catch Catch of the mature segment of a cohort as it migrates back to the
spawning grounds. Some ocean net catches that occur in nearshore
waters are considered terminal catches.

Terminal Run Mature fish leaving the open ocean and returning to the spawning
grounds. Compare to True Terminal Run.

Total Catch Sum of the Preterminal and Terminal catches.

Troll A commercial harvest method for chinook and coho salmon, usually in
the open ocean, that captures individual fish on lures or baited hooks
being slowly pulled through the water.

True Terminal Run The Terminal Run minus nearshore ocean net catches. Thus, it is the
number of fish entering the natal river (as opposed to the number of
mature fish leaving the ocean feeding areas). Compare to Terminal Run.

Virtual Population Analysis A technique (sometime referred to as VPA) for reconstructing the
history of a cohort of fish. By counting the number of spawners and the
catches and making estimates of the natural mortalities it is possible to
reconstruct the history of a cohort.

95

Appendix B: Examples

B.1 Introduction

We have developed several examples of Coast Model configurations to illustrate how the code can be used
to build progressively more complex models. The distribution includes the Coast Model executable
(coast.exe) and separate folders containing the input files for each prototype. However, since the data and
executable must be in the same directory to run the model, you should create a shortcut for coast.exe in
each prototype folder that you wish to run. The following steps describe how to create this shortcut:

1. Drag the "coast.exe" icon into one or more prototype folders as desired. This creates the
shortcut.

2. Within each prototype folder, set the executable link to start in the prototype folder, as follows:

• Right click on “Shortcut to coast.exe” to bring up a menu list;

• Select Properties;

• Click on the Shortcut tab;

• Type in the complete path to the prototype folder in the Start In text box;

• Click OK.

To run the model, double click on “Shortcut to coast.exe” within each prototype folder.

When the simulation is complete, the program will generate three files:

• coast_output.txt (standard data sentences)

• stndcat.prn (catches by fishery and year)

• stndesc.prn (escapements by stock and year)

The coast_output.txt file can be quite large. If the distribution is from a floppy disk, do not attempt to run
any of the examples from the floppy disk-the resulting output file will be too large to save on the disk.

The examples which follow demonstrate the flexibility of the Coast Model with respect to the number of
Stocks, Fisheries, Regions and Timesteps. The model itself can handle a wide range configurations for any
of these parameters simply by changing the input data files. Considerations which must be weighed when
changing these parameters are more closely related to the nature of the related data. For example,
Transition Matrices are specified by Region and Timestep. Thus, if the number of Timesteps or Regions is
increased, all of the TransitionMatrix data (“.tm” file) must be modified to reflect this change. The same
holds true for Maturation data (“.mat” file). Base harvest rates (“.bhr” file) are specified by Fishery,
Region, Timestep, Stock, and Age, so a change to any of these must be addressed in that data. Some of the
relationships between the various possible GenericArray dimensions and the bulk of the input data are
rather subtle, so care should be taken to understand the nature of all of the data and algorithms in the model
when making these changes. A careful study of the following examples and a comparison of the data files
which implement them can provide a great deal of insight into this issue.

B.2 Prototypes With No Harvest

These prototypes illustrate how to build a biological system (no harvesting) of increasing complexity, or
resolution. Proto 0 shows how the code can be used to plot a stochastic Ricker function. Prototypes 1
through 5 all have a single stock with the same production function, but increasing time/space resolution.
The Stndesc.prn files for each of these prototypes are identical, even though the biological processes within
each year are simulated differently. Prototypes 6 and 7 include both chinook and coho stocks.

96

B.2.1 Proto 0 (One chinook stock over 100 years)

• Stocks: 1 chinook.

• Regions: 2 (R1:R2).

• Timesteps: 2 (T1:T2).

• Natural Mortality: Only in T1, R1.

• Harvest: None.

• Maturation: Only at end of T1.

• Spawning: Only in T2, R2; Ricker production with random EV Scalars for each year.

• Migration: All mature fish migrate to R2 at end of T1.

B.2.2 Proto 1 (Like PSC chinook model, but only one stock)

• Stocks: 1 chinook.

• Regions: 4 (R1:R4).

• Timesteps: 4 (T1:T4).

• Natural Mortality: Only in T1, R1.

• Harvest: None.

• Maturation: Only at end of T1.

• Spawning: Only in T4, R4.

• Migration: PSC style.

B.2.3 Proto 1a (Like PSC chinook model, but simulating one coho stock)

• Stocks: 1 coho.

• Regions: 4 (R1:R4).

• Timesteps: 4 (T1:T4).

• Natural Mortality: Only in T1, R1.

• Harvest: None.

• Maturation: Only at end of T1; all age 3 fish 100% maturation.

• Spawning: Only in T4, R4.

• Migration: PSC style.

97

B.2.4 Proto 2 (Add "estuary" and more ocean regions; stock distribution by ocean
region)

• Stocks: 1 chinook.

• Regions: 7 (R1 = Estuary; R2:R4 = ocean; R5 = terminal; R6 = river; R7 = spawning).

• Timesteps: 5 (T1:T5); T1 used to distribute fish from estuary (R1) to ocean regions (R2:R4).

• Natural Mortality: Occurs only in T2 in regions R1:R5.

• Harvest: None.

• Maturation: Only occurs at end of T2 in regions R2:R4.

• Spawning: Only in R7, T5.

• Migration: Migration at end of first step distributes immature fish from the estuary to the ocean
regions. Mature fish move to R5 after T2, R6 after T3, and R7 after T4.

B.2.5 Proto 3 (Add more terminal regions; stock distribution by region)

• Stocks: 1 chinook.

• Regions: 9 (R1 = estuary; R2:R4 = ocean; R5:R7 = terminal; R8 = river; R9 = spawning).

• Timesteps: 5 (T1:T5); T1 used to distribute fish from estuary (R1) to ocean regions (R2:R4).

• Natural Mortality: Only in T2 in all regions R1:R9.

• Harvest: None.

• Maturation: Only occurs at end of timestep 2 in ocean regions R2:R4.

• Spawning: Only in R9, T5.

• Migration: Migration at end of first step distributes immature fish from the estuary to the ocean
regions (R2:R4). Mature fish move to terminal regions (R5:R7) after T2, to R8 after T3, and
R9 after T4.

B.2.6 Proto 4 (Increase timesteps to 13; spread natural mortality over timesteps;
migration during most timesteps)

• Stocks: 1 chinook.

• Regions: 9 (R1 = estuary; R2:R4 = ocean; R5:R7 = terminal; R8 = river; R9 = spawning).

• Timesteps: 13 (T1:T13); T1 used to distribute fish from estuary (R1) to ocean regions (R2:R4).

• Natural Mortality: Occurs equally over T2:T6 in all regions R1:R9.

• Harvest: None.

• Maturation: Only occurs at end of T6 in ocean regions R2:R4.

• Spawning: Only in R9, T13.

• Migration: Migration at end of first step distributes immature fish from the estuary to the ocean
regions (R2:R4). During timesteps T2:T13 immature fish move around the ocean areas. Mature
fish move to terminal regions (R5:R7) after T6 and then through the terminal and river areas
during T7:T12, winding up in the spawning area in T13.

98

B.2.7 Proto 5 (Maturation occurs during timesteps 4 to 7 in all ocean regions)

• Stocks: 1 chinook.

• Regions: 9 (R1 = estuary; R2:R4 = ocean; R5:R7 = terminal; R8 = river; R9 = spawning).

• Timesteps: 13 (T1:T13); T1 used to distribute fish from estuary (R1) to ocean regions (R2:R4).

• Natural Mortality: Occurs equally over timesteps T1:T12 and all regions R1:R9.

• Harvest: None.

• Maturation: Occurs during T4:T7 in all regions R1:R9.

• Spawning: Only in R9, T13.

• Migration: Migration at end of first step distributes immature fish from the estuary to the ocean
regions (R2:R4). During timesteps T2:T13 immature fish move around the ocean areas. During
T5:T12 mature fish move systematically from the ocean regions to the spawning region.

B.2.8 Proto 6 (same as Proto 5, but add the coho stock)

• Stocks: 2 (1 chinook; 1 coho).

• Regions: 9 (R1 = estuary; R2:R4 = ocean; R5:R7 = terminal; R8 = river; R9 = spawning).

• Timesteps: 13 (T1:T13); T1 used to distribute fish from estuary (R1) to ocean regions (R2:R4).

• Natural Mortality: Occurs equally over timesteps T1:T12 and all regions R1:R9.

• Harvest: None.

• Maturation: Occurs during T4:T7 in all regions R1:R9; coho stock has cumulative 100%
maturation rate (over T4:T7) for age 3 fish.

• Spawning: Only in R9, T13.

• Migration: Migration at end of first step distributes immature fish from the estuary to the ocean
regions (R2:R4). During timesteps T2:T13 immature fish move around the ocean areas. During
T4:T12 mature fish move systematically from the ocean regions to the spawning region.

B.2.9 Proto 7 (each stock different natural mortality, maturation, and migration
process)

• Stocks: 1 chinook; 1 coho.

• Regions: 9 (R1 = estuary; R2:R4 = ocean; R5:R7 = terminal; R8 = river; R9 = spawning).

• Timesteps: 13; T1 used to distribute fish from estuary (R1) to ocean regions (R2:R4).

• Natural Mortality: Occurs equally over timesteps T1:T12 and all regions R1:R9, but different
values for each stock.

• Harvest: None.

• Maturation: Occurs during T4:T7 in all regions R1:R9; coho stock has cumulative 100%
maturation rate (over T6:T9) for age 3 fish.

• Spawning: Only in R9, T13.

• Migration: Different parameters for each stock. Migration at end of first step distributes
immature fish from the estuary to the ocean regions (R2:R4). During timesteps T2:T13
immature fish move around the ocean areas. For chinook stock during T4:T12 mature fish
move systematically from the ocean regions to the spawning region. For coho stock during
T7:T12 mature fish move systematically from the ocean regions to the spawning region.

99

B.3 Prototypes With Harvest

These examples superimpose fishing processes over the biological system of Proto 7. Proto 10 illustrates
how the model can handle catch ceilings for fisheries operating in different regions and during different
timesteps.

B.3.1 Proto 8 (Same as Proto 7, but add an ocean fishery)

• Stocks: 1 chinook; 1 coho.

• Regions: 9 (R1 = estuary; R2:R4 = ocean; R5:R7 = terminal; R8 = river; R9 = spawning).

• Timesteps: 13; T1 used to distribute fish from estuary (R1) to ocean regions (R2:R4).

• Natural Mortality: Occurs equally over timesteps T1:T12 and all regions R1:R9, but different
values for each stock.

• Harvest: F4 (WCVI ocean troll fishery) operates in regions R2:R4 during timesteps T5:T6.

• Maturation: Occurs during T4:T7 in all regions R1:R9; coho stock has cumulative 100%
maturation rate (over T6:T9) for age 3 fish.

• Spawning: Only in R9, T13.

• Migration: Different parameters for each stock. Migration at end of first step distributes
immature fish from the estuary to the ocean regions (R2:R4). During timesteps T2:T13
immature fish move around the ocean areas. For chinook stock during T4:T12 mature fish
move systematically from the ocean regions to the spawning region. For coho stock during
T7:T12 mature fish move systematically from the ocean regions to the spawning region.

B.3.2 Proto 9 (Same as Proto 8, but add an inside fishery that has a multi-phase
catch ceiling that spans three timesteps)

• Stocks: 1 chinook; 1 coho.

• Regions: 9 (R1 = estuary; R2:R4 = ocean; R5:R7 = terminal; R8 = river; R9 = spawning).

• Timesteps: 13; T1 used to distribute fish from estuary (R1) to ocean regions (R2:R4).

• Natural Mortality: Occurs equally over timesteps T1:T12 and all regions R1:R9, but different
values for each stock.

• Harvest: F4 (WCVI ocean troll fishery) operates in regions R2:R4 during timesteps T5:T6;
F13 (Puget Sound South Net fishery) operates in regions R5:R7 during timesteps T7:T9 and
has annual catch ceilings.

• Maturation: Occurs during T4:T7 in all regions R1:R9; coho stock has cumulative 100%
maturation rate (over T6:T9) for age 3 fish.

• Spawning: Only in R9, T13.

• Migration: Different parameters for each stock. Migration at end of first step distributes
immature fish from the estuary to the ocean regions (R2:R4). During timesteps T2:T13
immature fish move around the ocean areas. For chinook stock during T4:T12 mature fish
move systematically from the ocean regions to the spawning region. For coho stock during
T7:T12 mature fish move systematically from the ocean regions to the spawning region.

100

B.3.3 Proto 10 (Same as Proto 8, but add a third fishery; all fisheries have multi-
phase catch ceilings spanning five timesteps)

• Stocks: 1 chinook; 1 coho.

• Regions: 9 (R1 = estuary; R2:R4 = ocean; R5:R7 = terminal; R8 = river; R9 = spawning).

• Timesteps: 13; T1 used to distribute fish from estuary (R1) to ocean regions (R2:R4).

• Natural Mortality: Occurs equally over timesteps T1:T12 and all regions R1:R9, but different
values for each stock.

• Harvest: F4 (WCVI ocean troll fishery) operates in regions R2:R4 during timesteps T5:T7;
F11 (Juan de Fuca Net fishery) operates in region 5 during timesteps T6:T9; F13 (Puget Sound
South Net fishery) operates in regions R6:R7 during timesteps T8:T10 (see Proto10.bhr for all
fisheries); all fisheries have annual catch ceilings defined over timesteps T5:T10 (see
Proto10.cei).

• Maturation: Occurs during T4:T7 in all regions R1:R9; coho stock has cumulative 100%
maturation rate (over T6:T9) for age 3 fish.

• Spawning: Only in R9, T13.

• Migration: Different parameters for each stock. Migration at end of first step distributes
immature fish from the estuary to the ocean regions (R2:R4). During timesteps T2:T13
immature fish move around the ocean areas. For chinook stock during T4:T12 mature fish
move systematically from the ocean regions to the spawning region. For coho stock during
T7:T12 mature fish move systematically from the ocean regions to the spawning region.

101

Appendix C: Discussion Papers

C.1 Overview

Throughout the course of this project there were many discussions about how best to model each process.
These discussions were documented in the meeting minutes and other discussion papers. To provide
background information about why the Coast Model is designed the way it is, the following sections
summarize these discussions. We hope that future programmers and modelers find these discussions
helpful.

C.2 Ageing Process

C.2.1 Spring Stock Algorithms

Here's the sequence of events for spring stocks. The initial abundances for ages 2:5 are contained in *.stk.
These are read in and then stored in a random access file. The age 1 initial abundance is computed using the
Scale2To1 factor as for the fall stocks. The new wrinkle is that a new abundance called SprAge1
(effectively an age 0 abundance) is created and set equal to the initial Age 1 abundance. Here's the QB code
(in Chinpt8.bas):

'..... Initial cohort sizes
 '***** 2/96 save FirstCohort data as random access file ******
 'FOR age% = 2 TO NumAges
 ' INPUT #3, FirstCohort(age%, Stk%)
 'NEXT age%
 'FirstCohort(1, Stk%) = FirstCohort(2, Stk%) * Scale2TO1
 '***************** 1/96 SPRING STOCK PROVISION ********
 'Spring(Stk%) = FirstCohort(1, Stk%)
 '**
 INPUT #3, CO.CohAge2
 INPUT #3, CO.CohAge3
 INPUT #3, CO.CohAge4
 INPUT #3, CO.CohAge5
 CO.CohAge1 = CO.CohAge2 * Scale2TO1
 CO.SprAge1 = CO.CohAge1
 PUT #COFile%, Stk%, CO
 '**

Thus, there are essentially six initial cohort abundances created, with CO.SprAge1 being an age zero
abundance. In module Chsim8.bas the Sub IResetIter retrieves the data from the random access file. The
initial abundances are scaled by the EV scalars (called StkSclr in the code). Again, an age zero abundance
is created by setting a variable called Spring(Stk%) equal to the age one abundance. Note that the
CO.SprAge1 variable (assigned during data input) is not used. Here's the code:

'***** 2/96 ***** Get initial cohort sizes from random access file ****
 GET #COFile%, Stk%, CO
 Cohort(1, Stk%) = CO.CohAge1 * StkSclr(-1, Stk%)
 Cohort(2, Stk%) = CO.CohAge2 * StkSclr(-2, Stk%)
 Cohort(3, Stk%) = CO.CohAge3 * StkSclr(-3, Stk%)
 Cohort(4, Stk%) = CO.CohAge4 * StkSclr(-4, Stk%)
 Cohort(5, Stk%) = CO.CohAge5 * StkSclr(-5, Stk%)
 Spring(Stk%) = Cohort(1, Stk%)

102

The Cohort(1,Stk%) and Spring(Stk%) variables are not used again until its time to produce new fish for
the next year. Here’s the production code:

'..... Compute age 1 cohort size
'*********** 1/96 SPRING STOCK PROVISION **********************
 IF HatchFlg%(Stk%) > 1 THEN
 '..... This is a spring stock, delay recruitment by a year
 Cohort(1, Stk%) = Spring(Stk%) * StkSclr(Yr%, Stk%)
 Spring(Stk%) = Age1Fish
 ELSE
 '..... This is a fall stock
 Cohort(1, Stk%) = Age1Fish * StkSclr(Yr%, Stk%)
 END IF
 '********** END CHANGE **

Note that when the initial Age 0 spring stock cohort is finally brought into the model at the end of the first
model year, it gets multiplied by two EV scalars. After algebra, the net effect is:

Cohort(1, Stk%) = CO.CohAge1 * StkSclr(-1, Stk%) * StkSclr(Yr%, Stk%)

Thus, the Age 0 cohorts for spring stocks must be multiplied by two EV Scalars in the Coast Model *.coh
file.

In later years, the variable Age1Fish is computed normally using one of the production functions. However,
note that this Age1Fish does not include the effects of the EV scalar, but we DO include EV scalars in our
production function. This is not a problem if its a fall stock because the CTC code immediately applies the
EV scalar to the Age1Fish when assigning the age to a cohort abundance.

If its a spring stock, the Age1Fish variable is assigned to the Spring(Stk%) variable (essentially the age 0
abundance) without applying the EV value. The EV value is applied the following year when the
Spring(Stk%) variable is assigned to age 1 abundance. The net effect is that for spring stocks the EV scalar
from year y+1 is applied to the fish generated in year y (as shown in the above code).

Thus, the Coast Model production functions will still work OK for spring stocks PROVIDED WE GET
THE RIGHT EV APPLIED IN THE RIGHT YEAR. This can be accomplished by replacing EV(y) with
EV(y+1) in the production function specified in the *.prd file. Algebraically we have

Age1Fish(y) = F(spawners(y))
Spring(y) = Age1Fish(y)
Cohort1(y) = Spring(y)*EV(y+1) = Age1Fish(y)*EV(y+1)

What happens in the last year (y = last year of model run)? It doesn't matter because the new production is
never used. Soooo … . we just set EV(y+1) = 1 for the production function in the last year.

C.3 Mortality Processes

C.3.1 State Space Model Considerations

A critical assumption of this project was that Ken Newman’s State Space Model (SSM) and Kalman filter
estimation methodology would eventually be used to estimate natural mortality, harvest, and migration
parameters for a new generation of management models. Because this methodology uses instantaneous
mortality rates in the underlying sub-models, there was concern that the Coast Model code frame be
consistent with those equations. The following discussion paper on this subject was posted by Jim Norris
on the web site on July 23, 1998 and was discussed at the July 30, 1998 committee meeting.

103

C.3.1.1 Background

At the July 2, 1998 meeting Jim Scott asked whether or not harvest parameter estimates from the State
Space Model (SSM) would be compatible with our proposed Harvest Process and Fishing Process
concepts. Before discussing compatibility, I summarize these concepts. Our purpose in rigorously defining
these concepts is to clearly identify the inputs, outputs, data requirements, and functions of these critical
code objects.

C.3.1.2 Harvest Process

Within a given year, timestep, region, and fishery a harvest process defines the interaction between the
amount of fishing effort (i.e., number of people involved) and the number of fish from a given stock and
cohort. In this context we define a "fishery" to include all regulations and properties other than the amount
of fishing effort (e.g., size limits, bag limits, and selective fishery rules). A cohort is defined to be any
group of fish having the same identifying characteristics and demographic features (e.g., parent stock, tag
status, mark status, sex, growth group, and genetic group).

In virtually all types of fishery simulation models, there is a line of code (occasionally more than one line)
that assigns a legal catch at the year, timestep, region, fishery, stock, and cohort level. In most cases, this
line of code represents what we call a harvest process. Three common types of equations are the following:

1. Simple Linear Rate (used by FRAM & PSC chinook model).

C(c,f) = HR(c,f)*N(c)

where

C(c,f) = catch of cohort c in fishery f
HR(c,f) = harvest rate for cohort c in fishery f
N(c) = abundance of cohort c at start of period.

2. Non-Linear Relationship (similar to PM Model).

C(c,f) = (1 - exp(-q(c,f)*E(f)))*N(c)

where

q(c,f) = catchability coefficient for cohort c in fishery f
E(f) = effort in fishery f during period.

3. Instantaneous Rates (used by SSM).

F(c,f)
 C(c,f) = ------ * (1 - exp(-Z(c))) * N(c)
 Z(c)

where

F(c,f) = instantaneous rate of fishing mort
Z(c) = instantaneous rate of total mortality for cohort c, and

Z(c) = M(c) + Sum[F(c,f)] over all f
F(c,f) = q(f)*E(f)
M(c) = instantaneous rate of natural mortality for cohort c.

104

C.3.1.3 Fishing Process

For each year, timestep, region, and fishery a fishing process defines the amount of fishing effort to be
input into the harvest processes for all cohorts residing in the given time and region in order to satisfy some
management objective. Note that under this formulation, a fishing process does not compute any fishing
mortalities--it only determines the inputs to the harvest processes. Only harvest processes compute fishing
mortalities. Note also that a fishing process applies only to a single year, timestep, region, and fishery. This
is the issue I think Jim Scott was concerned about.

In the PSC Chinook Model, non-ceilinged fisheries have a fixed harvest rate management objective. Thus,
the FPs are set for each fishery at config time and are passed into each harvest process without
modification. On the other hand, each simple ceilinged fishery adjusts the effort level for all harvest
processes in a given year, region, and timestep by a scalar (called the RT factor) in order to make the sum
of the legal catches meet the management objective.

C.3.1.4 Code Issues

Up until now we had not considered implementing instantaneous rate equations. From a code perspective,
instantaneous rate equations for harvest processes are fundamentally different from the linear and non-
linear equations because all the required information is not autonomous within a single fishery.
Specifically, the instantaneous natural mortality rate for each stock is needed, along with the instantaneous
fishing mortality rates for all other fisheries within the same region. Thus, to implement instantaneous rate
equations, a fishery object must have access to this outside information. If two fisheries operating in the
same region at the same time both have quotas, whenever effort in one fishery is adjusted to meet its quota,
the Z value (total instantaneous mortality rate) changes for all stocks. Thus, even simple quota fisheries will
have to be solved together through a common algorithm. At a more fundamental level, the natural mortality
and fishing mortality processes are intertwined and must be computed simultaneously. That is, one cannot
compute natural mortalities and then move on to computing fishing mortalities , unless the fishing effort
levels do not require adjustment to meet some objective. For all of the above reasons, I conclude that our
proposed code structure is not compatible with using instantaneous rate equations.

C.3.1.5 Code Solution

First, we must combine the Natural Mortality process and the Fishing Mortality process into a single
Mortality process during each timestep of a model run. A model can be configured to use one of two types
of Mortality processes. One type can compute natural mortalities and fishing mortalities independently (as
most models currently do). Or, in a second type, the natural and fishing mortalities can be computed
simultaneously using instantaneous rates. At the start of the mortality process, all instantaneous rates would
have to be determined. For example, the natural mortality rates could be related to the physical
environment of the region and/or the average size (length) of the individual in the cohort. Likewise, the
fishing mortality rates could be determined by fixed effort levels, or the effort levels for some fisheries
could be set dynamically via some algorithm. The key point is that somehow all the rates are established
prior to any computations. Once the rates are established, the natural mortality computations and fishing
mortality computations can be made independently. If there are any constraints within the given timestep
and region (e.g., quotas, escapement goals, allocations), then an algorithm must be written to adjust fishing
effort levels at the start of the total mortality process level.

C.3.1.6 Code/Algorithm Problems

Finding effort levels to meet some constraints using instantaneous rate equations can be tricky. The fact
that the total instantaneous mortality rate (Z) is the sum of several individual fishery rates can lead to an
infinite number of acceptable solutions. For example, if there is an allocation goal to equalize the sum of all
Treaty fisheries with all Non-Treaty fisheries within a region, there can be many solutions (unless
allocations WITHIN the Treaty and Non-Treaty groups are also specified). I used an Excel spreadsheet
with Solver to model four fisheries, four stocks, and two timesteps (using instantaneous rate equations), and
found that one must be very specific about the constraints in order to have a unique solution. The bottom

105

line is that it is easy to make the model framework compatible with instantaneous rate equations, provided
there is never any need to adjust fishing effort levels to meet management constraints. If constraints must
be met, it looks like the algorithms might be tricky.

C.3.1.7 SSM Parameter Estimation

The SSM uses instantaneous rate equations and provides estimates of catchability coefficients (q) for each
fishery. However, up to this point we do not have a formal description of a SSM that includes multiple
fisheries operating within the same region at the same time. The two fisheries modeled in the prototype
SSM (Canadian Troll, US Troll) operate simultaneously, but in different regions. I think I know what that
formulation will look like, but we need to formalize it. Once the model is formulated, we need to answer
the following questions:

Q1. If the SSM is fit to data for individual stocks, should the forward simulation model use separate q's for
each fishery and stock? The alternative is to fit the SSM to multiple stocks assuming a common q. Is this
biologically appropriate (i.e., are all stocks equally vulnerable to a fishing gear)? Is this feasible? How will
it be done?

Q2. Regardless of how Q1 is resolved, the q estimates for each fishery will reflect all regulations associated
with each fishery during the time frame when the data were collected (e.g., size limits, bag limits, selective
fishery rules). If we desire to simulate changes in size limits, bag limits, and selective fishery rules, how
will the SSM be modified to reflect these changes? The Lawson and Sampson (1996) model might be
appropriate.

Q3. In forward simulation, how will the SSM handle incidental mortalities? The q's estimated by the SSM
reflect legal catches and will not provide information about incidental mortalities related to fishing. I
believe all incidental mortalities will be absorbed by the instantaneous natural mortality parameter (M) in
the SSM, provided it is not assumed to be zero. I suppose we can use auxiliary data to partition M into all
types of non-legal catch mortalities. How will we do this?

Q4. The q's estimated by the SSM will be instantaneous rates based on a daily timestep. If a forward
simulation model is configured to operate on a weekly or monthly basis, must the model use instantaneous
rate equations, or can we convert the q's (and associated effort levels) to what Ricker calls "conditional
rates" (i.e., the fraction of a cohort that dies within a given time period) and use other equations?

These questions were discussed at the July 30, 1998 meeting. There were no minutes published for the July
30, 1998 meeting. However, a summary of the July 30, 1998 meeting was included in the minutes for the
august 27, 1998 meeting. Below are the comments related to the above four questions are from email
correspondence from Jim Norris to Troy Frever.

Q1. Using a common catchability coefficient for each stock is biologically acceptable, desirable, and
feasible. Ken thinks he can solve for more than one stock at the same time.

Q2. Any other adjustments to fishing mortalities (e.g., due to bag limits, size limits, drop-offs, etc) can be
incorporated into the instantaneous catch equations used by the SSM. However, they cannot be estimated
by the SSM ... they must come from outside the SSM (e.g., from the accepted values used by other models,
such as the Lawson and Sampson equations used in PM model). The key issue for our coding is that we
will have more parameters to deal with, but we knew we would have to deal with them anyway. In many
cases these will be fixed parameters that will be constant across stocks, fisheries (or gear types), regions,
and timesteps (e.g., drop off rates, mark recognition rates, shaker mortality rates). The bigger issue is for
parameter estimation. If those additional parameters will be used with instantaneous rate equations, then
they must be input as parameters into the equations during the estimation process. This means that Ken will
need more than just catches and efforts to do his estimation. Someone (probably Jim Scott and/or Robert
Kope) will have to get these parameters together for Ken before he can go into production mode for

106

parameter estimation. Jim Scott reported that he still doesn't have all the effort data yet, so this parameter
estimation process is getting even more complicated and time consuming.

Q3. Incidental mortalities will have to be handled like the other mortality adjustments discussed above in
Q2. Again, these will have to be provided to Ken before he can do the estimations.

Q4. No problem converting q values estimated using instantaneous rate equations in the SSM to a discrete
model case. Jim Scott gave me a paper to read about the meaning of "catchability coefficient." This paper
deals with exactly the types of questions you were asking me about the definition of q at our last meeting.
I'm about half way through and will give you an update next week.

C.3.1.8 Final Thought

It seems that the theoretical model we seek is some combination of the detailed migration sub-model of the
SSM with the detailed harvesting sub-model proposed by Lawson and Sampson (1996). The question is: If
we include the detailed harvesting sub-model into the SSM, can the SSM estimate all the parameters? Can
we make some simplifying assumptions and use auxiliary data to make the problem tractable?

C.3.2 Shaker Algorithm

The following discussion is taken from the minutes of the April 19, 1999 meeting.

The PSC Chinook Model shaker algorithm was difficult to implement in the Coast Model because it relied
upon a subjective concept (preterminal vs terminal; ocean net fishery) of which stocks were considered
vulnerable to each fishery during a timestep. The new Coast Model shaker algorithm resolves this dilemma
by including a “vulnerability” table in each shaker object. Since shakers are computed for each fishery
independently, each fishery/region/timestep has a shaker object. There are essentially four different cases
(described in the following sections).

C.3.2.1 Non-ocean net fisheries with no terminal stocks

For these fisheries, all cohorts (ages) from all stocks are vulnerable only during the preterminal timestep
and region. In the 1998 mode configuration, all troll fisheries, most sport fisheries, and a few net fisheries
fall into this category. We call this the “SimpleDrop” shaker method because it does not require a
vulnerability table. The input data file looks like this:

Fishery 1 # Alaska T
 Method SimpleDrop
 SubLegalReleaseMortRate 0.255
 DropOffRate 0.008
 end Method
end Fishery

107

Fisheries that have different rates in different years look like this:

Fishery 5 # WA/OR T
 Years 1979:1984
 Method SimpleDrop
 SubLegalReleaseMortRate 0.255
 DropOffRate 0.017
 end Method
 end Years
 Years 1985:1999
 Method SimpleDrop
 SubLegalReleaseMortRate 0.220
 DropOffRate 0.025
 end Method
 end Years
end Fishery

C.3.2.2 Non-ocean net fisheries with at least one terminal stock

For these fisheries, all ages for all non-terminal stocks are vulnerable during the preterminal timestep and
region, and all ages for all terminal stocks are vulnerable during the terminal timestep and region. We call
this (and cases 3 and 4) the “CustomDrop” method, because it requires a vulnerability table. Here’s a
sample:

Fishery 25 # Col R S
 Method CustomDrop
 SubLegalReleaseMortRate 0.123
 DropOffRate 0.069
 VulnerabilityTable StockXageXtime
 TimeStep 1 # Preterminal
 Ages 2:5 # non-terminal stocks
 Stock 1 Vulnerable # Alaska South SE
 Stock 2 Vulnerable # North/Centr
 Stock 3 Vulnerable # Fraser Early
 Stock 4 Vulnerable # Fraser Late
 Stock 7 Vulnerable # Georgia St. Upper
 Stock 8 Vulnerable # Georgia St. Lwr Nat
 Stock 9 Vulnerable # Georgia St. Lwr Hat
 Stock 10 Vulnerable # Nooksack Fall
 Stock 11 Vulnerable # Pgt Sd Fing
 Stock 12 Vulnerable # Pgt Sd NatF
 Stock 13 Vulnerable # Pgt Sd Year
 Stock 14 Vulnerable # Nooksack Spring
 Stock 15 Vulnerable # Skagit Wild
 Stock 16 Vulnerable # Stillaguamish Wild
 Stock 17 Vulnerable # Snohomish Wild
 Stock 18 Vulnerable # WA Coastal Hat
 Stock 28 Vulnerable # WA Coastal Wild
 end Ages
 end TimeStep
 TimeStep 2 # Terminal
 Ages 2:5 # terminal stocks
 Stock 5 Vulnerable # WCVI Hatchery
 Stock 6 Vulnerable # WCVI Natural
 Stock 19 Vulnerable # UpRiver Brights
 Stock 20 Vulnerable # Spring Creek Hat

108

 Stock 21 Vulnerable # Lwr Bonneville Hat
 Stock 22 Vulnerable # Fall Cowlitz Hat
 Stock 23 Vulnerable # Lewis R Wild
 Stock 24 Vulnerable # Willamette R
 Stock 25 Vulnerable # Spr Cowlitz Hat
 Stock 26 Vulnerable # Col R Summer
 Stock 27 Vulnerable # Oregon Coast
 Stock 29 Vulnerable # Lyons Ferry
 Stock 30 Vulnerable # Mid Col R Brights
 end Ages
 end TimeStep
 end VulnerabilityTable
 end Method
end Fishery

C.3.2.3 Ocean net fisheries with no terminal stocks

For these fisheries all stocks have ages 2 and 3 vulnerable during the preterminal timestep and ages 4 and 5
vulnerable during the terminal timestep. For example:

Fishery 7 # Alaska N
 Method CustomDrop
 SubLegalReleaseMortRate 0.9
 DropOffRate 0
 VulnerabilityTable StockXageXtime
 TimeStep 1 # Preterminal
 Ages 2:3
 Vulnerable
 end TimeStep
 TimeStep 2 # Terminal
 Ages 4:5
 Vulnerable
 end TimeStep
 end VulnerabilityTable
 end Method
end Fishery

C.3.2.4 Ocean net fisheries with at least one terminal stock

These fisheries have ages 2 and 3 from non-terminal stocks vulnerable during the preterminal timestep,
ages 4 and 5 from non-terminal stocks vulnerable during the terminal timestep, and all ages from terminal
stocks vulnerable during the terminal timestep.

Fishery 12 # PgtNth N
 Method CustomDrop
 SubLegalReleaseMortRate 0.9
 DropOffRate 0
 VulnerabilityTable StockXageXtime
 TimeStep 1 # Preterminal
 Ages 2:3 # non-terminal stocks
 Stock 1 Vulnerable # Alaska South SE
 Stock 2 Vulnerable # North/Centr
 Stock 3 Vulnerable # Fraser Early
 Stock 4 Vulnerable # Fraser Late
 Stock 5 Vulnerable # WCVI Hatchery
 Stock 6 Vulnerable # WCVI Natural

109

 Stock 7 Vulnerable # Georgia St. Upper
 Stock 8 Vulnerable # Georgia St. Lwr Nat
 Stock 9 Vulnerable # Georgia St. Lwr Hat
 Stock 18 Vulnerable # WA Coastal Hat
 Stock 19 Vulnerable # UpRiver Brights
 Stock 20 Vulnerable # Spring Creek Hat
 Stock 21 Vulnerable # Lwr Bonneville Hat
 Stock 22 Vulnerable # Fall Cowlitz Hat
 Stock 23 Vulnerable # Lewis R Wild
 Stock 24 Vulnerable # Willamette R
 Stock 25 Vulnerable # Spr Cowlitz Hat
 Stock 26 Vulnerable # Col R Summer
 Stock 27 Vulnerable # Oregon Coast
 Stock 28 Vulnerable # WA Coastal Wild
 Stock 29 Vulnerable # Lyons Ferry
 Stock 30 Vulnerable # Mid Col R Brights
 end Ages
 end TimeStep
 TimeStep 2 # Terminal
 Ages 4:5 # non-terminal stocks
 Stock 1 Vulnerable # Alaska South SE
 Stock 2 Vulnerable # North/Centr
 Stock 3 Vulnerable # Fraser Early
 Stock 4 Vulnerable # Fraser Late
 Stock 5 Vulnerable # WCVI Hatchery
 Stock 6 Vulnerable # WCVI Natural
 Stock 7 Vulnerable # Georgia St. Upper
 Stock 8 Vulnerable # Georgia St. Lwr Nat
 Stock 9 Vulnerable # Georgia St. Lwr Hat
 Stock 18 Vulnerable # WA Coastal Hat
 Stock 19 Vulnerable # UpRiver Brights
 Stock 20 Vulnerable # Spring Creek Hat
 Stock 21 Vulnerable # Lwr Bonneville Hat
 Stock 22 Vulnerable # Fall Cowlitz Hat
 Stock 23 Vulnerable # Lewis R Wild
 Stock 24 Vulnerable # Willamette R
 Stock 25 Vulnerable # Spr Cowlitz Hat
 Stock 26 Vulnerable # Col R Summer
 Stock 27 Vulnerable # Oregon Coast
 Stock 28 Vulnerable # WA Coastal Wild
 Stock 29 Vulnerable # Lyons Ferry
 Stock 30 Vulnerable # Mid Col R Brights
 end Ages
 Ages 2:5 # terminal stocks
 Stock 10 Vulnerable # Nooksack Fall
 Stock 11 Vulnerable # Pgt Sd Fing
 Stock 12 Vulnerable # Pgt Sd NatF
 Stock 13 Vulnerable # Pgt Sd Year
 Stock 14 Vulnerable # Nooksack Spring
 Stock 15 Vulnerable # Skagit Wild
 Stock 16 Vulnerable # Stillaguamish Wild
 Stock 17 Vulnerable # Snohomish Wild
 end Ages

110

 end TimeStep
 end VulnerabilityTable
 end Method
end Fishery

C.3.3 Results of multi-phase catch ceiling algorithm test.

The following discussion is taken from the minutes of the January 19, 1999 meeting. Note that although
this discussion states that the Coast Model does not have an iteration capability to handle catch ceilings
over multiple timesteps, such an algorithm was developed shortly thereafter. We include this discussion
here because it is informative about how catch ceiling management can behave.

Some fisheries in the PSC Chinook Model that are controlled by catch ceilings have harvests in both the
preterminal and terminal time steps (we call these multi-phase ceiling fisheries). The algorithm used to
compute catches for these fisheries assumes (1) a single catch ceiling that covers both time steps, and (2)
that the input fishing effort levels in both time steps are adjusted by the same relative amounts in order to
meet the catch ceiling. There is no analytical solution for catches in multi-phase ceiling fisheries, because
any change in the preterminal effort changes the stock abundances vulnerable to terminal effort. Instead,
the algorithm iterates over both time steps, and on each iteration scales the effort levels in the preterminal
and terminal timesteps by the same relative amount until the total catch from both timesteps equals the
desired catch ceiling.

The NMFS Coast Model allows catch ceilings to be specified for individual timesteps and regions, but does
not have an algorithm to ensure equal relative effort levels across timesteps. Thus, the NMFS Coast Model
algorithm works fine for ceilinged fisheries that have catches only in one timestep/region (we call these
single-phase ceiling fisheries), but does not work for multi-phase ceiling fisheries (i.e., does not always
give the same catches as the PSC Chinook Model).

We were interested in knowing the extent of the differences between the two algorithms. This report
describes a simple, but informative, experiment to gain insight into the differences.

We prepared a *.cei file that included 16 fisheries, four of which were multi-phase ceiling fisheries (Alaska
Net, Northern Net, Central Net, and WCVI Sport). The base period was defined to be 1979-1984. From
1985-1994, ceilings were forced (i.e., model catches were required to equal the ceiling exactly) for all but
two fisheries (North and South Puget Sound Sport), which were forced from 1985-1993. Catch ceilings
during the period 1995-1997 were unforced and set extremely high to simulate fishery policy (FP) control
(i.e., model catches were always below the ceiling and were not adjusted upward to equal the ceiling; thus,
the ceilings had no effect). For 1998 and beyond, ceilings were unforced and set to the average 1991-1994
catches.

Both the PSC Chinook Model and the NMFS Coast Model were run using the same *.cei file data. A catch
file (*cat.prn) and escapement file (*esc.prn) were printed for each model. The absolute values of the catch
and escapement differences between models were computed.

111

Table 5 and 0 give the percentage change from the PSC Chinook Model to the NMFS Coast Model for
catches and escapements. The catch results are summarized below:

• Both models gave the same results for the base period 1979-1984;

• Catches in all ceilinged fisheries were the same when the ceilings were forced;

• Catches in all ceilinged fisheries were not the same when ceilings were unforced and set very
high (1995-1997);

• Beyond 1997, catches in some ceilinged fisheries were the same, but in others were off by
small amounts (the primary exception was the WCVI Sport fishery which had catches up to
10% off);

• Catches in all non-ceilinged fisheries were not the same for all years beyond the base period.

The escapement results are summarized below:

• Escapements were different for all years beyond the base period;

• The greatest differences were in the WCVI stocks (RBT and RBH), which were up to 14% off
during the period 1985-1993;

• The GSQ stock also was off by up to 12% during the period 1985-1994.

When ceilings are forced, the PSC Chinook Model algorithm maintains a constant relative EFFORT level
between the preterminal and terminal timesteps, whereas the NMFS Coast Model algorithm maintains a
constant relative CATCH level between the preterminal and terminal timesteps. Thus, as long as catch
ceilings are forced, both algorithms give the same total catch, even for the multi-phase ceiling fisheries
(e.g., 1985-1994 period in Table 5). However, each algorithm will distribute the total catch differently
between the preterminal and terminal timesteps for the multi-phase ceiling fisheries due to the different
assumptions. The difference in catch distribution in the multi-phase ceiling fisheries affects the relative
abundances of the stocks, leading to differences in catches in non-ceilinged fisheries and to differences in
spawning escapements for individual stocks. The abundance and escapement differences are most
pronounced for stocks that are heavily harvested by a multi-phase ceiling fishery, such as the RBH and
RBT stocks in the WCVI Sport fishery.

When ceilings are not forced, the effects on catches can be variable, depending on the level of the ceiling.
If the ceiling is very low such that the unconstrained model catch in a multi-phase ceiling fishery is always
above both the associated preterminal and terminal ceilings in the NMFS Coast Model, the net effect is the
same as when ceilings are forced because the catches always have to be reduced to meet the ceiling. For
example, during the period 1998-2005 the catches for fisheries 1-3, 5-9, and 21 were identical for both
models. For the other ceilinged fisheries, the catches were generally different by a small amount (less than
one percent), except for the WCVI Sport fishery, which had differences up to 10%.

The WCVI Sport fishery is an interesting case that deserves further discussion. During the period of forced
ceilings (1985-1994), the total catch in the WCVI Sport fishery is the same under both algorithms, but the
distribution of the catch is probably very different. This large difference in distribution leads to the large
differences in escapements for the RBH and RBT stocks during this period. Once the ceilings become
unforced, the catch differences between the two algorithms are large due to the large differences in stock
abundances. One unexplained anomaly is that the catch differences are very small during the first three
years (1995-1997) of the unforced ceilings.

112

Table 5 Percent change in ceilinged fishery catches by year between PSC and NMFS catch
ceiling algorithms. The four multi-phase ceiling fisheries (7, 8, 9, 20) are listed at the far right side of
the table.

Year 1 2 3 4 5 6 18 19 21 22 23 24 7 8 9 20

1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994 0.4 0.3
1995 0.0 0.1 0.1 0.4 0.4 0.6 0.2 0.0 0.4 0.3 0.3 0.5 0.2 0.2 0.2 0.5
1996 0.2 0.2 0.2 0.2 0.4 0.4 0.4 0.1 0.3 0.1 0.2 0.3 0.4 0.4 0.4 0.3
1997 0.4 0.3 0.3 0.1 0.2 0.3 0.5 0.0 0.2 0.1 0.2 0.2 0.5 0.4 0.2 0.2
1998 0.1 0.2 0.0 0.1 0.2
1999 0.2 0.0 0.2 0.2
2000 0.3 0.1 0.0 0.2 0.2 0.3 0.3
2001 0.2 0.0 0.0 0.2 0.1
2002 0.2 0.1 0.1 0.2 0.2
2003 0.2 0.2 0.1 0.2 0.2
2004 0.2 0.1 0.1 0.2 0.1
2005 0.2 0.1 0.1 0.1 0.1

Min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Avg 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0
Max 0.4 0.3 0.3 0.4 0.4 0.6 0.5 0.1 0.4 0.4 0.3 0.5 0.5 0.4 0.4 0.5

113

Table 6 Percent change in non-ceilinged fishery catches by year between PSC and NMFS catch
ceiling algorithms.

Year 10 11 12 13 14 15 16 17 25

1979
1980
1981
1982
1983
1984
1985 0.1 0.0 0.0 0.0 0.1 0.0 0.2 0.0
1986 0.3 0.2 0.1 0.1 0.2 0.3 0.2 0.2 0.1
1987 0.4 0.1 0.1 0.2 0.4 0.3 0.2 0.3 0.1
1988 0.2 0.2 0.1 0.1 0.2 0.2 0.3 0.1 0.3
1989 0.2 0.2 0.1 0.2 0.1 0.2 0.1 0.5 0.2
1990 0.4 0.1 0.2 0.5 0.3 0.4 0.4 0.4 0.1
1991 0.8 0.0 0.4 0.9 0.7 0.7 0.1 0.5 0.0
1992 0.9 0.1 0.4 0.9 0.9 0.8 0.1 0.6 0.0
1993 0.8 0.2 0.5 0.8 1.0 0.7 0.2 0.9 0.0
1994 0.6 0.2 0.5 0.7 0.9 0.4 0.2 0.8 0.1
1995 0.1 0.2 0.4 0.3 0.6 0.3 0.1 0.7 0.1
1996 0.6 0.1 0.2 0.2 0.2 0.2 0.3 0.5 0.2
1997 0.6 0.2 0.1 0.1 0.1 0.0 0.2 0.5 0.1
1998 0.4 0.1 0.2 0.2 0.0 0.1 0.2 0.5 0.1
1999 0.0 0.2 0.3 0.3 0.1 0.2 0.1 0.5 0.1
2000 0.1 0.2 0.2 0.3 0.2 0.3 0.0 0.4 0.0
2001 0.0 0.1 0.2 0.3 0.3 0.3 0.0 0.4 0.1
2002 0.1 0.1 0.2 0.3 0.2 0.3 0.0 0.4 0.1
2003 0.2 0.1 0.2 0.3 0.2 0.3 0.1 0.4 0.1
2004 0.1 0.1 0.2 0.3 0.2 0.3 0.1 0.4 0.1
2005 0.2 0.1 0.2 0.3 0.2 0.3 0.0 0.3 0.1

Min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Avg 0.3 0.1 0.2 0.3 0.3 0.2 0.1 0.4 0.1
Max 0.9 0.2 0.5 0.9 1.0 0.8 0.4 0.9 0.3

114

Table 7 Percent change in stock escapements by year between PSC and NMFS catch ceiling
algorithms (fisheries 1-15).

Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1979
1980
1981
1982
1983
1984
1985 0.5 2.1 0.4 0.0 7.4 4.8 7.6 1.7 1.2 0.2 0.0 0.0 0.3 0.0 0.1
1986 1.1 3.6 0.7 0.0 12.7 7.9 11.1 2.2 2.9 0.5 0.0 0.0 0.5 0.1 0.3
1987 0.3 0.7 0.5 0.1 0.7 0.7 1.1 0.4 0.2 0.0 0.1 0.1 0.1 0.2 0.5
1988 0.8 1.0 0.6 0.1 7.7 5.9 5.8 1.4 1.5 0.2 0.1 0.0 0.2 0.1 0.4
1989 1.4 1.6 0.7 0.1 6.2 10.5 3.6 2.1 3.7 0.1 0.2 0.1 0.3 0.1 0.4
1990 0.9 2.8 0.6 0.6 9.4 7.7 12.2 2.7 4.1 0.2 0.4 0.4 0.4 0.2 0.4
1991 0.6 0.1 0.7 1.0 13.6 12.3 7.6 0.7 1.1 1.1 0.9 0.8 0.7 0.3 1.0
1992 1.0 1.6 0.9 1.4 9.3 9.6 6.6 1.7 1.2 1.2 0.7 0.7 0.7 0.3 1.2
1993 1.0 0.2 1.0 1.2 12.5 13.6 3.9 2.0 1.3 0.9 0.7 0.7 0.5 0.4 1.0
1994 0.4 1.0 0.7 1.0 2.3 6.7 6.1 0.7 0.6 0.6 0.5 0.4 0.4 0.4 1.0
1995 0.1 1.1 0.5 0.9 0.4 2.5 3.7 0.2 0.1 0.3 0.2 0.2 0.7 0.4 1.0
1996 0.5 0.1 0.5 0.9 0.0 3.2 3.1 0.8 0.2 0.1 0.0 0.2 0.7 0.3 0.9
1997 0.5 0.1 0.3 0.7 0.0 3.1 3.4 0.7 0.7 0.0 0.0 0.1 0.5 0.3 0.7
1998 0.7 0.7 0.3 0.6 5.5 7.3 6.8 0.9 1.2 0.2 0.1 0.2 0.2 0.3 0.8
1999 0.5 0.4 0.4 0.7 5.2 6.2 7.3 0.7 0.7 0.0 0.2 0.2 0.6 0.5 1.0
2000 0.5 0.4 0.4 0.8 5.1 6.2 5.0 0.7 0.8 0.0 0.2 0.1 0.6 0.3 0.9
2001 0.5 0.4 0.4 0.7 5.1 6.9 4.5 0.7 0.6 0.0 0.2 0.1 0.4 0.4 0.9
2002 0.6 0.5 0.4 0.6 5.1 7.4 5.6 0.6 0.4 0.0 0.2 0.1 0.3 0.5 0.9
2003 0.6 0.5 0.4 0.6 5.0 7.3 7.5 0.5 0.4 0.0 0.2 0.2 0.5 0.4 1.0
2004 0.5 0.5 0.4 0.6 5.1 7.3 7.0 0.5 0.3 0.0 0.2 0.2 0.6 0.4 0.9
2005 0.6 0.5 0.4 0.6 5.1 7.5 5.5 0.5 0.4 0.0 0.2 0.2 0.4 0.4 0.9

Min 0.1 0.1 0.3 0.0 0.0 0.7 1.1 0.2 0.1 0.0 0.0 0.0 0.1 0.0 0.1
Avg 0.6 0.9 0.5 0.6 5.9 6.9 6.0 1.1 1.1 0.3 0.2 0.2 0.5 0.3 0.8
Max 1.4 3.6 1.0 1.4 13.6 13.6 12.2 2.7 4.1 1.2 0.9 0.8 0.7 0.5 1.2

115

Table 7 Continued (fisheries 16-20).

Year 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1979
1980
1981
1982
1983
1984
1985 0.2 0.1 1.2 0.6 0.0 0.1 0.0 0.6 0.0 0.0 0.1 2.7 3.2 0.0 0.5
1986 0.6 0.3 0.6 1.1 0.1 0.0 0.0 0.9 0.2 0.1 0.4 0.4 0.0 0.0 0.0
1987 0.8 0.5 0.3 0.1 0.0 0.1 0.1 0.0 0.2 0.1 0.1 0.0 0.2 0.0 0.3
1988 0.7 0.4 1.4 0.9 0.0 0.1 0.1 0.5 0.2 0.1 0.1 1.4 1.9 0.3 0.3
1989 0.9 0.4 1.3 0.1 0.1 0.3 0.4 0.3 0.2 0.1 0.0 0.3 0.7 0.0 0.1
1990 2.5 0.5 0.2 0.1 0.3 1.1 1.1 0.3 0.2 0.1 0.3 0.3 2.3 0.0 0.9
1991 3.3 0.9 0.0 0.2 0.6 2.6 1.8 0.3 0.2 0.2 0.1 0.1 0.4 1.8 0.1
1992 4.8 1.1 1.6 0.3 0.9 2.8 1.7 0.9 0.3 0.2 0.2 0.3 0.4 1.7 0.4
1993 4.7 1.1 0.5 0.1 0.8 2.2 1.8 0.3 0.3 0.2 0.1 0.2 2.2 1.3 0.2
1994 4.7 1.0 0.6 0.5 0.4 1.2 1.9 0.2 0.3 0.2 0.1 0.2 0.7 1.3 0.1
1995 3.7 0.9 0.5 0.3 0.3 0.6 1.8 0.1 0.2 0.1 0.1 0.2 0.5 1.6 0.2
1996 3.6 0.5 0.2 0.2 0.6 0.1 1.7 0.1 0.0 0.0 0.1 0.0 0.2 1.6 0.3
1997 3.5 0.4 0.0 0.1 0.2 0.0 1.8 0.1 0.0 0.0 0.1 0.0 0.2 1.3 0.2
1998 3.6 0.6 0.7 0.5 0.1 0.2 2.0 0.4 0.0 0.0 0.1 0.4 0.7 1.6 1.2
1999 4.1 0.7 0.6 0.4 0.1 0.4 2.0 0.3 0.1 0.1 0.0 0.3 0.3 1.6 0.8
2000 4.1 0.6 0.5 0.3 0.2 0.4 2.0 0.3 0.1 0.1 0.0 0.2 0.3 1.7 0.6
2001 4.3 0.6 0.4 0.2 0.2 0.4 2.1 0.3 0.1 0.1 0.1 0.2 0.3 1.7 0.6
2002 4.3 0.7 0.5 0.3 0.1 0.4 2.2 0.3 0.1 0.1 0.1 0.3 0.3 1.9 0.6
2003 4.7 0.7 0.5 0.3 0.2 0.4 2.3 0.3 0.1 0.1 0.1 0.3 0.3 1.8 0.6
2004 5.0 0.7 0.4 0.3 0.1 0.4 2.3 0.3 0.1 0.1 0.0 0.3 0.2 1.9 0.6
2005 5.3 0.7 0.4 0.3 0.2 0.4 2.3 0.3 0.1 0.1 0.0 0.3 0.3 1.9 0.6

Min 0.2 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Avg 3.3 0.6 0.6 0.3 0.3 0.7 1.5 0.3 0.1 0.1 0.1 0.4 0.7 1.2 0.4
Max 5.3 1.1 1.6 1.1 0.9 2.8 2.3 0.9 0.3 0.2 0.4 2.7 3.2 1.9 1.2

C.4 Maturation Process

Initially, we envisioned using the migration process to simulate maturation. At the November 6, 1997
meeting the model committee pointed out that this formulation would not work. Jim Norris posted the
following discussion on the web site on December 10, 1997.

First, I want to thank members of the Model Committee for pointing out our failure to properly code the
maturation process. This was a significant oversight on our part. Fortunately, at this stage in development it
is fairly easily fixed. Below is a summary of our proposed changes.

116

C.4.1 The Biological Process

Our understanding is that for almost all salmon stocks, individuals within a cohort may or may not mature
and return in a given year. At the individual fish level, the decision to return is determined by both genetic
factors and environmental factors. On the genetic side, each salmon species has a fairly consistent
maturation process (e.g., chinook mature over several years; coho tend to mature all in same year). On the
environmental side, individual fitness (e.g., general body chemistry) during the spring or early summer may
determine which individuals actually decide to migrate home, and when.

C.4.2 Mathematical Modeling Problem

The above biological realities imply that at any given time and region a cohort may be divided into two
distinct components (immature and mature) that will have different migration patterns. The modeling
question is whether or not it is necessary to model each component of the cohort separately.

If we assume no fishing mortality, ignore mature and immature status, divide time and space into discrete
units, and track the movement of each individual fish, at any time step we could determine the fraction of
the fish that move from each cell to each other cell. From these data we could define transition matrices for
each time step that fully describe the movement of the entire cohort, regardless of maturation status. In this
perspective (no fishing), it does not seem necessary to track mature and immature fish separately.

However, the fishing process will alter the relative composition of immature/mature fish within a time/area
cell. Since these two components have different migration patterns, the migration pattern for the combined
cohort (immature and mature) can no longer be expressed by a single transition matrix.

C.4.3 New Main Engine

We will add a new maturation process to the main engine just before the migration process. Thus, the main
loop in the computation engine will look something like this:

YearInit(year);

 TimeStepIter time(clock);
 while (++time) {
 naturalMortalityManager.takeNaturalMortality(clock);
 FisheryManager.takeFishingMortality(clock);
 spawningManager.spawnCohorts(clock);
 NEW ==> maturationManager.maturateCohorts(clock);
 migrationManager.migrateCohorts(clock);
 }

 for (i = 0; i < Stocks.num(); ++i) {
 Stocks[i].year_wrapup();
 }

It may seem odd to place the maturation process after the spawning process. We do this because for
modeling purposes the maturation process is most closely linked to the migration process rather than the
spawning process. I don't think the order matters much because the spawning process will only be activated
in certain time steps and/or regions. We are still evaluating this ordering and haven't made a firm decision
yet. Any comments?

117

C.4.4 Cohort Objects and Data Tracking

At the meeting we discussed two possible approaches to coding the maturation process. One was to treat
the immature and mature components as separate cohorts; the other was to keep separate abundance vectors
for immature and mature components within the same cohort.

We note that maturation is the only model process that transfers fish from one abundance vector
(immature) to another (mature) within the same time/area cell. We also note that the immature and mature
components share many characteristics (e.g., species, stock, brood year, age, mark status, tag status).
Despite these considerations that suggest keeping immature and mature vectors within the same cohort, we
decided to use the first alternative and treat immature and mature fish as separate cohorts. Our reasons are:

1. From a biological perspective, the immature and mature components are biologically separate
cohorts, in the sense that they have significantly different demographic characteristics, mainly
a different migration pattern. They also may have a different growth rate or size distribution.

2. From a coding perspective, tracking two components within the same cohort would be messy
(separate abundance vectors, separate transition matrices, maybe separate growth functions,
etc.) and would violate our basic concept of what a cohort is.

At config time, all the cohorts can still be created. Mature/Immature will be a part of the CohortID. The
abundance vectors for mature cohorts will be initialized at zero, and will be filled in during the maturation
process at appropriate time steps.

This approach will require twice the number of cohorts as previously planned, and twice the data storage
requirements (assuming we need to track data for immature and mature cohorts separately).

C.4.5 Relationship to State Space Model

An important consideration is how the maturation process will be estimated. As a first step, I've added the
maturation process to the SSM. I have no idea whether or not the parameters in the new formulation can be
estimated, but the exercise helps clarify some of the modeling questions. I'm hoping that these ideas will
spark further ideas from those more familiar with the estimation procedures.

Recall that the SSM formulation (in matrix notation) is:

n(t) = M(t) S(t) n(t-1)
c(t) = H(t) n(t)

This formulation assumes that the cohort abundance being tracked is the mature cohort. Or stated another
way, this model assumes that the maturation process occurred prior to time t = 0. This may be a reasonable
assumption for coho, but not for chinook.

Now consider tracking the mature and immature components separately. Let

n'(t) = immature abundance vector at time t;
n"(t) = mature abundance vector at time t;
M'(t) = transition matrix for immature fish;
M"(t) = transition matrix for mature fish;
m(t) = maturation matrix at time t,

where m(t) is a diagonal matrix with diagonal elements equal to the maturation rates by region for time step
t and all other elements = 0. In most cases I suspect that at any time t, the elements of m(t) will be assumed
identical, implying that the maturation process is the same over all regions.

118

To simplify, assume that immature fish do not migrate during the modeling period, and thus M'(t) = I (the
identity matrix). If we further assume that mature and immature fish have the same survival and harvest
matrices (in practical terms this probably means assuming they have the same size, vulnerability to gear,
feeding behavior, etc), we can write the SSM as:

n'(t) = [I - m(t)] S(t) n'(t-1)
n"(t) = M"(t) [S(t) n"(t) + m(t) S(t) n'(t)]
c(t) = H(t) [n'(t) + n"(t)]

In considering how to model the maturation process, I see three key parameters: (1) what is the total
maturation rate for the given year--15% ? 75% ?; (2) when is the peak maturation date--the date on which
the most immature fish become mature fish--Julian day 156?, 275?; and (3) over what time range does the
maturation process continue--two weeks?, two months?.

If one assumes that the maturation process is independent of region (i.e., for any given time t, the diagonal
elements of m(t) are identical) and fixes one or two of the parameters mentioned above (based on other
biological information), it seems that the maturation process could be modeled with only one or two
additional parameters to estimate.

C.5 Production Processes

C.5.1 Pre-Spawning Mortality And Production Functions

The following discussion is from the minutes of the October 6, 1998 meeting.

The PSC Chinook Model uses a truncated Ricker function for natural stocks. The Ricker A parameter and
an optimum escapement level are the input parameters. The Ricker B parameter is determined from the
Ricker A parameter using Hilborn's Approximation. If there is no additional mortality after all harvesting
(this is true for all but 3 stocks), the maximum escapement level at which to truncate the function is given
by RickerB/RickerA.

For three Columbia River stocks, the escapement from the fisheries is adjusted by a pre-spawning survival
factor (called the IDL, or "inter-dam loss", factor). For these stocks, the maximum escapement level is
increased to account for pre-spawning mortality. Here's the code.

FUNCTION FRicker (ESC, Stk%, Yr%)
 A = RickerA(Stk%)
 B = Optimum(Stk%) / (.5 - .07 * A)
 FRicker = ESC * EXP(A * (1 - ESC / B))
 '..... If escapement exceeds level producing maximum recruitment,
 '..... keep recruits at maximum. cf Ricker 1975, p. 347, eq. 10
 MaxEsc! = B / (A * IDL!(Stk%, Yr%))
 IF ESC > MaxEsc! THEN
 FRicker = B * EXP(A - 1) / A
 END IF
END Function

There was a lot of discussion about this algorithm. The main point of contention was why the maximum
escapement value should be adjusted if the escapement value ("ESC") being passed into the function
already had been adjusted for pre-spawning escapement. My understanding (readers please correct me if
I'm wrong!) is the following.

The Ricker function parameters are estimated from observed spawners and observed recruitment to the
fisheries. Thus, the parameters do not incorporate any non-fishing mortality after fishing but before
spawning. Since the parameters do not incorporate pre-spawning survival, the computed maximum

119

escapement doesn't incorporate it either. That is, the maximum escapement parameter assumes there is no
pre-spawning mortality. Thus, adjusting the maximum escapement level by pre-spawning mortality is to
correct the maximum escapement parameter value, not to correct the escapement passed into the function.

In the new model we treat the pre-spawning mortality as a form of non-fishing, or natural, mortality that
may occur during any timestep and in any region, depending on how the user configures the natural
mortality process. Thus, the new model may be configured to have pre-spawning mortality during several
timesteps and regions, depending on the model resolution. For example, separate "natural" mortalities could
be assessed as fish pass each dam.

To extend the concept of pre-spawning mortality to variable timesteps and regions, we need a parameter
that represents natural mortality of the escapement (all age classes) from the fisheries to the spawning
grounds. Currently, the stock/year specific IDL parameters serve this purpose. An analogous parameter for
the generalized case is the weighted average of the IDLs for each age class in the escapement, where the
weights are the relative contributions of each age class to the total escapement. The current algorithm is a
special case of the weighted average algorithm. Troy reported that he has already implemented this general
structure and it validates with the old code.

C.5.2 Variable Truncated Ricker Function

The following is from an email message from Jim Norris to the model committee dated March 18, 1999
describing the need to create a variable truncated Ricker production function. This discussion is closely
related to that presented above. No response from the model committee was received.

Hello All,

In the process of validating the new Coast Model (the preferred name for the model we have been working
on) Troy and I discovered a behavior in the Ricker function of the CTC model that we would like to have
clarified. The behavior only occurs for natural stocks that have variable IDLs. In the 1995 configuration we
have been using for validation, only the URB stock falls into this category. In the 1998 version, the LYF
stock also will be in this category.

In order to explain the problem, let's use the following definitions related to a Ricker function:

ESC = adult (ages 3, 4, 5) escapement arriving on the spawning grounds (i.e., after Inter-Dam
Losses have been removed);

OPT = optimum escapement level (i.e., number of spawners that produces the greatest difference
between the exact replacement line and recruitment line);

Smax = escapement level that produces the maximum number of recruits (i.e., the highest point on
the Ricker function and mathematically = RickerB/RickerA parameters);

MaxEsc = an intermediate variable used by the PSC chinook model function FRicker to adjust
Smax for inter-dam losses (= Smax/IDL). Note that since IDL is usually < 1, MaxEsc is
usually > Smax.

Here is the FRicker code from the CTC model:

' ÉÍÍÍ»
 FUNCTION FRicker (ESC, Stk%, Yr%)
' ÉÍÍÍ»
' º Purpose: Computes the production, expressed in terms of º
' º adult equivalents using a truncated form of a º
' º Ricker stock-recruitment function. Prior to º
' º 1988, the model did not allow spawning escmts toº
' º exceed escapement goals. However, not all º

120

' º stocks have terminal fisheries capable of º
' º controlling escapements. While escapements are º
' º allowed at any level, production is truncated atº
' º the maximum. This formulation thus prevents º
' º production from decreasing at high levels of º
' º spawning escapements. An optimistic view may º
' º result, however, production response at high º
' º escapement levels is unknown for nearly all º
' º stocks. º
' º º
' º Arguments: Esc = Age 3+ spawning escapement º
' º Stk% = Stock index number º
' º º
' º Inputs: IDL!() º
' º Optimum() º
' º RickerA() º
' º º
' º Called By: CatchTermFinal º
' º º
' º Output: Adult equivalent production º
' º º
' º Externals: None. º
' º º
' º Module: CHSIMUL.DOC º
' º º
' ÈÍÍÍ1/4
A = RickerA(Stk%)
B = Optimum(Stk%) / (.5 - .07 * A)
FRicker = ESC * EXP(A * (1 - ESC / B))

'..... If escapement exceeds level producing maximum recruitment,
'..... keep recruits at maximum. cf Ricker 1975, p. 347, eq. 10
MaxEsc! = B / (A * IDL!(Stk%, Yr%))
IF ESC > MaxEsc! THEN
 FRicker = B * EXP(A - 1) / A
END IF

END FUNCTION

For all natural stocks, prior to passing ESC into FRicker, ESC is truncated to OPT if the SkipMSH variable
= 0. For the URB stock, SkipMSH = 1, so ESC is not truncated to OPT. Thus, ESC can be quite large when
passed into FRicker.

If ESC < MaxEsc, then ESC is used to compute recruits. Note that it is possible that Smax < ESC <
MaxEsc, in which case recruits are computed using the upper portion of the descending right limb of the
Ricker function.

However, if ESC > MaxEsc, then the number of recruits is computed using Smax. This is because the
variable B*EXP(A-1)/A is equivalent to computing the Ricker function using ESC = Smax = B/A.

121

The net result is a production function that:

• increases from zero to maximum recruitment as spawners increase from 0 to Smax;

• then descends when spawners are between Smax and MaxEsc:

• then jumps up to the maximum recruitment again whenever spawners > MaxEsc.

For IDL values > 0.8, it doesn't make too much difference. But when the IDL values get smaller, the gap
between Smax and MaxEsc gets bigger.

This seems like a strange function. Is this what was intended?

-- Jim

C.5.3 Adult Equivalent Factors In Production Functions

The following discussion is from the minutes of the October 6, 1998 meeting.

The production functions in the PSC Chinook Model relate spawners to ADULT recruitment. Adult
recruitment is converted back to "Age1Fish" by a factor called "RectAtAge1". In essence, the RectAtAge1
factor defines the relationship between adult recruitment and Age1Fish in the equilibrium condition with no
harvesting. Thus, the RectAtAge1 factor is defined by the maturation and natural mortality schedules for
each stock. For the Coast Model, three situations need to be considered.

(1) If the maturation and natural mortality schedules do not change over time and space, each stock has a
unique RectAtAge1 factor. About 2/3 of the stocks in the PSC Chinook Model fall in this category. Note
that the RectAtAge1 factors could be computed before a model run and passed in as input data along with
other production function parameters.

(2) If the schedules do change over time and space, then each stock will have a different RectAtAge1 factor
for each year. About 1/3 of the stocks in the PSC Chinook model fall in this category. These stocks have
constant natural mortality schedules, but variable maturation schedules. At the start of each year, a new
RectAtAge1 factor is computed for each stock. As with case (1), since all schedules are included with the
input data, the RectAtAge1 factors could be computed before a model run and passed in as input data along
with other production function parameters.

(3) Cases (1) and (2) can be generalized to variable timesteps and regions, provided the timestep and region
definitions and the maturation and natural mortality schedules for each stock are all defined during the
model configuration. We envision the Coast Model will have timesteps and regions defined during
configuration, but we would like to allow for the possibility that maturation and survival schedules may be
determined dynamically based on model predicted environmental conditions.

Jim and Troy proposed that for forward simulation runs RectAtAge1 factors be considered as part of the
production parameters for each stock and should become part of input data. This should be the case even if
natural mortality and maturation schedules are determined dynamically. In other words, the model user
must have some previously estimated relationship between adult recruits and Age1Fish for each stock and
year. If a model dynamically computes natural mortality and maturation schedules, the model predicted
RectAtAge1 factors could be stored and reported as output.

122

C.6 Migration Process

C.6.1 Synthesizing Commonly Used Migration Algorithms

An important goal of this project was to synthesize commonly used migration algorithms into a common
mathematical framework. The following report was presented by Jim Norris at the June 19, 1998 meeting.
It concludes that the State Space Model migration matrix formulation can be used to represent all
commonly used migration algorithms.

C.6.1.1 Background

The two salmon management models currently used most extensively for fisheries that impact stocks listed
under the ESA are the Pacific Salmon Commission (PSC) Chinook Model and the Fishery Regulation
Analysis Model (FRAM). Neither of these models include specific migration algorithms to simulate the
movement of fish through a gauntlet fishery. Three new models have been proposed to simulate salmon
migration more accurately: a State Space Model (Newman, 1995), the PSC Selective Fishery Model (PSC
1995), and the Proportional Migration (PM) Model (Moore et al., 1996). The purpose of this report is to
describe the migration algorithms used in these five salmon management models.

The State Space Model is the most general of the five models and has been proposed for use in a new
salmon life cycle model. Thus, this report describes the existing algorithms in terms common with the State
Space Model.

C.6.1.2 Notation

The notation used in this report follows that commonly used by the State Space Model. I describe the
migration algorithms with reference to a single cohort of fish. A cohort may be a single age class from a
single stock, or it may be a marked/tagged sub-component of that age class. No stock or age subscripts are
used to make the notation easier to read. All of the models use discrete time steps and the notation is
defined with respect to time interval [t-1, t). Table 8 lists the notation and Figure 1 illustrates the notation
graphically.

Table 8 Common notation used in this report (also see Figure 1).

Variable Definition

Index Variables
t Time index.
r Geographic region index. For models in which there is a one-to-one

correspondence between geographic region and fishery, r also indexes
fishery.

R The total number of geographic regions in the model.

State Variables

nr t,
Abundance of fish in region r at the start of time interval [t, t+1).

cr t,
Observed catch in region r during the time interval [t,t+1).

nsr t, − 1
Abundance of fish in region r that do not suffer natural mortality and/or
fishing mortality during the time interval [t-1,t). Equal to the abundance of
fish in region r at the end of the time interval [t-1,t) just prior to
instantaneous migration.

123

Variable Definition

Natural Mortality and Survival Parameters

M r t,
Instantaneous natural mortality rate in region r during the time interval [t-
1,t).

υr t,
Fraction of the cohort in region r killed by natural mortality during the
time interval [t-1,t).

sr t,
Total survival rate in region r during the time interval [t-1,t).

Fishing Mortality Parameters

Er t, − 1
Amount of fishing effort in region r during the time interval [t-1,t).

hr t, − 1
Regional harvest rate defined as the fraction of the cohort located in region
r harvested as legal catch in region r during the time interval [t-1,t).

Fr t, − 1
Instantaneous total fishing mortality rate in region r during the time
interval [t-1,t).

µr t, − 1
Fraction of the available cohort in region r killed by all types of fishing
mortality (including incidental mortalities) during the time interval [t-1,t).

Migration Parameters

Dr t,
A set of donor regions that contribute fish to region r at the end of time
period t-1 (e.g., used in the PM Model).

mi j,
For a given cohort and time, the fraction of the abundance in region j
moving to region i.

Note that the total fishing mortality rate includes both legal and incidental mortalities. Thus, the legal
harvest rate is not necessarily equal to the total fishing mortality rate (i.e., hr t r t, ,≠ µ). Also note the

following relationships:

υr t
Me r t

,
,= − −1

µr t
Fe r t

,
,= − − −1 1

()s er t
M Fr t r t

,
, ,= − + − 1

ns n sr t r t r t, , ,− −=1 1

The variable nsr t, − 1 can be thought of as the number of fish in region r at the end of time interval [t-1, t)

just before they are redistributed among the geographic regions for the start of the next time interval [t,
t+1).

C.6.1.3 State Space Model

In matrix notation, the deterministic State Space Model consists of two equations:

n M S nt t t t= − 1

c H nt t t=

The abundance vectors n t and n t − 1 are composed of R elements (one abundance for each region). Each

migration matrix M t is an R x R square matrix of mi j, elements, and the elements in each column must

124

sum to one. Each survival matrix S t and each harvest matrix H t is a diagonal matrix with R elements

(e.g., sr t, , hr t,). In expanded form equations (1) and (2) look like this:

n

n

m m

m m

s

s

n

n

t

R t

R

R R R

t

R t

t

R t

1 1 1 1

1

1 1 1

1

,

,

, ,

, ,

,

,

,

,

M
L

M M
L

O M

=

−

−

c

c

h

h

n

n

t

R t R R

t

R t

1 1 1 1 1

1

,

,

,

,

,

,

M O M

=

−

−

Note that we can define a new vector ns S nr t t t, − −=1 1 that represents the fish that do not suffer natural or

fishing mortality during the interval [t-1,t). Thus, the migration matrix can be thought of as being applied to
the surviving cohort at the end of the time interval, and each element of the new abundance vector can be
written

n m nsr t r j
j

R

j t, , ,=
=

−∑
1

1 .

In Ken Newman’s application of the State space Model, he sets M r t, = 0 for all r and t. Thus, in his

application we have

s er t
Fr t

,
,= − − 1

υr t, = 0

µr t
F

r te sr t
, ,

,
−

−= − = −−
1 1 11 .

C.6.1.4 PSC Chinook Model

The PSC Chinook Model defines no specific geographic regions, and therefore has no specific fish
migration algorithm. However, by separating the 25 model fisheries into preterminal and terminal
categories, the model assumes a de facto concept of fish migration from the preterminal area to the terminal
area. The preterminal fisheries are generally offshore ocean fisheries (e.g., ocean troll fisheries), while
terminal fisheries are generally nearshore and river fisheries (e.g., ocean net and sport fisheries).

Once the preterminal fishery harvests and incidental mortalities have been taken, the model separates each
cohort into an ocean run (that stays in the ocean and is available for harvest the following year) and a
terminal run (that is available for harvest by terminal fisheries). Thus, what are termed maturation rates in
the PSC Chinook Model can be thought of as migration rates from the ocean (preterminal area) to the
nearshore and river areas (collectively called the terminal area).

Some ocean net fisheries are considered to be terminal fisheries for older age classes, even though these
fisheries are not physically located near the natal stream. The idea is that at some point during the year the
older (mature) members of each cohort decide to start migrating down the coast. It is assumed that the older
fish captured by the nearshore net fisheries are part of the mature migrating portion of the stock.

125

Using the mathematical notation of the PSC Chinook Model, the maturation rates are applied to each cohort
as follows:

TermRun OcnRun PreTermMort MatRt= − ⋅()

where

TermRun = the abundance of fish in the terminal area at the start of the terminal time period;
OcnRun = the abundance of fish in the preterminal area during the preterminal time period

after natural mortalities have been removed;
PreTermMort = total fishing mortalities (i.e., legal catches plus incidental mortalities) in the

preterminal area during the preterminal time period.

The term “OcnRun - PreTermMort” is the abundance of fish not suffering natural mortality and surviving
the fishing process during the preterminal time period. In the notation of the State Space Model, this term
is equivalent to the first element of the ns t − 1 vector. The second element of the ns t − 1 vector is zero
because it is assumed that no fish are located in the terminal area during the preterminal time period.

The term “TermRun” is equivalent to the second element of the n t vector (i.e., abundance in region 2 at

the start of time period 2). The first element of the n t vector is the number of fish from the cohort that
remain in the preterminal (or ocean) area.

In matrix notation the annual migration pattern for each cohort is expressed as follows (where 1 =
preterminal area and time step; 2 = terminal area and time step):

n
n

m m
m m

ns
ns

m ns m ns
m ns m ns

1 2

2 2

1 1 1 2

2 1 2 2

1 1

2 1

1 1 1 1 1 2 2 1

2 1 1 1 2 2 2 1

,

,

, ,

, ,

,

,

, , , ,

, , , ,

=

⋅

=

+
+

where

n1 2, = preterminal area (i.e., ocean) abundance at the start of the terminal time step

n2 2, = terminal area abundance at the start of the terminal time step

m1 1, = 1 - MatRt

m1 2, = 0 (i.e., no fish move from the terminal area to the preterminal area)

m2 1, = MatRt

m2 2, = 0 (i.e., there are no fish in the terminal area to keep in the terminal area)

ns1 1, = preterminal area (i.e., ocean) abundance at the end of the preterminal time step

ns2 1, = 0 (i.e., no fish in the terminal area at the end of the preterminal time step)

These equations are now in the same form as Equation (3) for the State Space Model. In terms of the
maturation rate we have

n MatRt ns1 2 1 11, ,()= − ⋅

n MatRt ns2 2 1 1, ,= ⋅ .

126

C.6.1.5 PSC Selective Fisheries Model

This model can have any number of marine geographic areas, but in its initial application contains just five:

• West Coast Vancouver Island (OCNN);

• Washington/Oregon Ocean (OCNS);

• Strait of Georgia (GEOS);

• Strait of Juan de Fuca and San Juan Islands (SJDF);

• South Puget Sound (SSND).

Some stocks also have terminal areas (e.g., CRTM = Columbia River terminal area) and all stocks have a
generic escapement, or spawning, area (ESCP).

This model was designed primarily as a coho model in which all members of a cohort (or brood) mature
and return to the natal stream in the same year. The model is generally used to examine the potential effects
of selective fishery management on a limited number of stocks during a single year. Thus, this model is not
designed to simulate the effects of coastwide management regulations on all stock and fisheries.

This model can be run in either deterministic or stochastic mode. The model flow is as follows:

1. Compute initial abundance of each stock;
2. Distribute initial abundance to the five fishing areas;
3. Time loop with:

a. Natural mortality;
b. Fishing mortality;
c. Redistribute the fish (including escapement).

Several simplifying assumptions were made to estimate the proportion of each stock in each area migrating
in each time step:

1. No migration occurred between geographic regions during statistical weeks 1 through 32;
2. All migration was directed toward the river of origin;
3. Hatchery and wild fish had the same migration timing and pathway;
4. 33% of InStk1 in the OCNN region migrated around the north end of Vancouver Island to the

GEOS region; and
5. Catch per unit effort in a fishery provided an unbiased measure of stock abundance.

Mathematically, the migration component of this model is virtually identical in structure to the State Space
Model. During each time step, natural and fishing mortalities (including incidental mortalities) are removed
from the cohort first. The remaining fish in a given area are then redistributed among the areas by assigning
“dispersion” rates to each area. In the notation of the PSC Selective Fishery Model, the new abundances are
computed by the following equation:

N I
s a t s a a t

a

A

, , , , ,
*

' '=
=
∑

1

where

N s a t, , = the abundance of stock s in area a at time t;

I s a b t, , , = the number of fish from stock s that move from area a to area b at time t.

127

In stochastic mode, the elements of the migration matrix are selected randomly from a multinomial
distribution with parameters:

γs a b t, , , = probability that a fish from stock s moves from area a to area b at time t

These probabilities are estimated from catch and effort data using a “solver” routine in Microsoft Excel.
Table 9 lists the dispersion parameters. In deterministic mode, the probabilities are replaced by the fractions
moving from one region to another. Thus, in the PSC Selective Fishery Model the γs a b t, , , are equivalent to

the mi j, elements of the migration matrix of the state space model.

128

Table 9 Dispersion parameters by week for the PSC Selective Fishery Model.

Stock Donor Receiver 32 33 34 35 36 37 38 39 40 41 42

WCVI OCNN ESCP 0.00 0.01 0.03 0.06 0.07 0.17 0.14 0.38 0.26 0.40 0.47

WCVI SJDF OCNN 0.17 0.19 0.16 0.17 0.13 0.13 0.10 0.12 0.16 0.24 0.35

LFGS OCNN SJDF 0.00 0.00 0.01 0.09 0.15 0.23 0.15 0.39 0.59 0.86 0.89

LFGS OCNS SJDF 0.00 0.12 0.12 0.28 0.30 0.56 0.40 0.26 0.00 0.00 0.00

LFGS SJDF GEOS 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.22 0.31 0.24 0.31

LFGS GEOS ESCP 0.00 0.00 0.00 0.05 0.05 0.11 0.11 0.16 0.16 0.29 0.29

NPSD OCNN SJDF 0.01 0.00 0.02 0.13 0.22 0.33 0.22 0.47 0.34 0.36 0.03

NPSD OCNS SJDF 0.00 0.07 0.07 0.23 0.30 0.62 0.52 0.43 0.11 0.38 0.67

NPSD GEOS SJDF 0.00 0.00 0.00 0.00 0.00 0.01 0.05 0.05 0.06 0.07 0.18

NPSD SJDF NSND 0.00 0.01 0.01 0.02 0.01 0.05 0.09 0.20 0.28 0.35 0.34

NPSD NSND ESCP 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.67 1.00 1.00 1.00

SPSD OCNN SJDF 0.00 0.00 0.00 0.12 0.20 0.31 0.19 0.44 0.67 0.98 0.98

SPSD OCNS SJDF 0.00 0.07 0.07 0.23 0.30 0.63 0.71 0.79 0.79 0.89 1.00

SPSD GEOS SJDF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.07 0.15

SPSD SJDF SSND 0.00 0.00 0.00 0.02 0.03 0.03 0.10 0.12 0.21 0.16 0.29

SPSD SSND ESCP 0.00 0.00 0.00 0.00 0.00 0.33 0.33 0.67 0.54 0.87 0.87

NWAC OCNN OCNS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.40 0.40 0.50

NWAC OCNS WCTM 0.00 0.00 0.00 0.09 0.22 0.43 0.68 0.88 1.00 1.00 1.00

NWAC SJDF OCNS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.14 0.27

NWAC WCTM ESCP 0.01 0.00 0.34 0.33 0.33 0.00 0.00 0.00 0.00 0.14 0.14

CRIV OCNS CRTM 0.00 0.06 0.10 0.21 0.42 0.38 0.60 0.65 0.99 0.99 1.00

CRIV SJDF OCNS 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.12 0.22 0.11 0.31

CRIV CRTM ESCP 0.10 0.10 0.19 0.17 0.17 0.07 0.00 0.00 0.29 0.40 0.40

129

Table 9 Concluded.

Stock Donor Receiver 43 44 45 46 47 48 49 50 51 52

WCVI OCNN ESCP 0.81 1.00 1.00 1.00 1.00

WCVI SJDF OCNN 0.60 0.82 0.99 0.99 1.00

LFGS OCNN SJDF 0.94 1.00

LFGS OCNS SJDF 0.00 0.00 0.00 0.00 0.00 0.05 0.12 0.46 0.74 1.00

LFGS SJDF GEOS 0.39 0.31 0.28 0.13 0.14 0.03 0.11 0.11 0.44 1.00

LFGS GEOS ESCP 0.45 0.45 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

NPSD OCNN SJDF 0.03 0.35 0.67 1.00

NPSD OCNS SJDF 1.00

NPSD GEOS SJDF 0.27 0.23 0.12 0.00 0.00 0.00 0.00 0.00 0.00 1.00

NPSD SJDF NSND 0.31 0.25 0.21 0.17 0.11 0.09 0.06 0.09 0.12 1.00

NPSD NSND ESCP 1.00 1.00 1.00 0.73 0.73 0.73 0.76 0.76 0.49 1.00

SPSD OCNN SJDF 0.98 1.00

SPSD OCNS SJDF

SPSD GEOS SJDF 0.29 0.25 0.16 0.00 0.00 0.00 0.00 0.00 0.33 1.00

SPSD SJDF SSND 0.32 0.41 0.32 0.20 0.07 0.02 0.15 0.15 0.46 1.00

SPSD SSND ESCP 1.00 0.76 0.50 0.30 0.20 0.13 0.00 0.22 0.56 1.00

NWAC OCNN OCNS 0.67 1.00

NWAC OCNS WCTM 0.67 0.67 0.67 0.67 0.33 0.33 0.67 1.00 1.00 1.00

NWAC SJDF OCNS 0.21 0.24 0.23 0.23 0.12 0.03 0.07 0.17 0.47 1.00

NWAC WCTM ESCP 0.17 0.13 0.15 0.18 0.08 0.19 0.27 0.57 0.78 1.00

CRIV OCNS CRTM 1.00 1.00 1.00 1.00

CRIV SJDF OCNS 0.44 0.76 0.90 1.00

CRIV CRTM ESCP 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 1.00

The following example illustrates the relationship between the γs a b t, , , and the mi j, . Table 10 lists the

dispersion rate (and “Non-Dispersion Rate”) parameters for the South Puget Sound stock during week 40.

130

Table 10 Dispersion and non-dispersion (= 1 - dispersion) rate parameters for the South Puget
Sound stock during week 40 used in the PSC Selective Fishery Model.

Donor Region Receiving Region Dispersion Rate Non-Dispersion Rate

Ocean North Strait Juan de Fuca 0.67 0.33
Ocean South Strait Juan de Fuca 0.79 0.21
Georgia Strait Strait Juan de Fuca 0.03 0.97

Strait Juan de Fuca South Puget Sound 0.21 0.79
South Puget Sound Escapement 0.54 0.46

It is assumed that fish that do not disperse from a donor region remain in the donor region. There are six
areas counting the “Escapement” area (1 = OCNN; 2 = OCNS; 3 = SJDF; 4 = GEOS; 5 = SSND; and 6 =
ESCP). The corresponding State Space Model migration matrix representing this movement pattern is:

M 40

0 33 0 0 0 0 0
0 0 21 0 0 0 0
0 0 0 97 0 0 0

0 67 0 79 0 03 0 79 0 0
0 0 0 0 21 0 46 0
0 0 0 0 054 100

=

.
.

.
. . . .

. .
. .

Note that values along the diagonal represent the non-dispersion rates (i.e., the fraction of the cohort that
remains in the region).

C.6.1.6 Proportional Migration (PM) Model

The PM model does not have specific geographic objects. However, fishery definitions act as de facto
geographic objects. For example, the sport fisheries are generally defined by statistical reporting area, such
as “Area 7”, “Area 8”, “Buoy 10”, etc. There are 45 fisheries/geographic areas in this model.

There are three gear types used to define fisheries and each gear type partitions the geographic range
differently. For example, within the troll gear group there is a Northwest Vancouver Island and a Southwest
Vancouver Island and within the sport gear group there is only one fishery for all of the West Coast of
Vancouver Island. This methodology assumes that fish available for the WCVI sport fishery are not the
same fish that are also available for the two WCVI troll fisheries. In other words, the model tacitly assumes
that there are three distinct geographic regions off WCVI. In terms of the notation used in this report, the
subscript r indexes both geographic regions and their associated fisheries.

There is no explicit movement of fish between fishing regions. However, the fisheries are assumed to have
a geographic and temporal ordering such that the fish available in a given fishery and time are received
only from designated donor fishing regions (designated by the set Dr t,). Note that several receiving

regions may share some of the donor regions. For example, region 2 may receive fish from regions 1 and 2
and region 3 may receive fish from regions 2 and 3.

The model expresses changes in fishery mortalities relative to a base year. For a given base year and stock,
the model begins with input data for three parameters (obtained from run reconstructions): cr t, , hr t, and

Er t, . The harvest rates (hr t,) are assumed to be fishery and time specific, but not stock specific. That is,

the same hr t, term is applied to all stocks harvested in region (fishery) r at time t.

131

The region and time specific abundances at the start of time interval [t-1,t) are computed by

n
c
h

EVr t
r t

r t
,

,

,
− = ⋅1

where EV is a stock and year specific “Environmental Variability” scalar. For the base year EV = 1. For
years other than the base year, these initial abundances are adjusted by the EV scalars to reflect the brood
year strength relative to the base year. These scalars have the same effect as EV scalars in the PSC chinook
model.

Note that the regional abundances are determined solely from the input data for that region and time step.
Thus, it is possible for the total abundance for a stock to be greater at time t than at time t-1. That is,

n nr t
r

r t
r

,

?

,∑ ∑> = < − 1 .

The survivors after the fishing process during the period [t-1,t) are computed by

ns n cr t r t r t, , ,− −= −1 1

The model simulates the impacts of changes in region specific harvest rates as follows (primes in the
notation indicate variables under the new harvest management scenario). Let Er t,

' be the new effort level

in region r at time t. Let the associated new harvest rate be some function of the base period effort, base
period harvest rate, and the new effort level. That is,

()h f h E Er t r t r t r t,
'

, , ,
', ,=

This function may be a simple linear scaling, such as

h h
E
Er t r t

r t

r t
,

'
,

,
'

,

= ⋅

In the first time step the new harvest rate is applied to the original abundance (nr ,0) to get the new catch:

c h nr r r,
'

,
'

,1 1 0=

New survivors in the first time step are computed by

ns n cr r r,
'

, ,
'

1 0 1= −

Thus, during the first time step we have

c h nr r r, , ,1 1 0=

c h nr r r,
'

,
'

,1 1 0=

and we can write

c
h

c
h

r

r

r

r

,

,

,
'

,
'

1

1

1

1

= .

Solving for the new catch we get

132

c c
h
hr r

r

r t
,

'
,

,
'

,
1 1

1=

Thus, the new regional catches in the first time step are just the old regional catches scaled up or down by
the ratio of the new and old harvest rates. Note that the scaling is based on the relative harvest rates, not the
effort levels. If a non-linear relationship is used to relate effort and harvest rate, doubling the effort may not
necessarily double the harvest rate and the catch.

In subsequent time steps, the new harvest rate is not applied to the original local abundance. Instead, the
original local abundance is scaled up or down to reflect the total changes in fishing mortality in the donor
regions during the previous time step. The scaling factor is the ratio of the new survivors to original
survivors (from the donor areas) during the previous time step, and the new abundance is computed as
follows:

n n

ns

nsr t r t

r t
r D

r t
r D

r t

r t

,
'

,

,
'

,

,

,

= ⋅
−

∈

−
∈

∑
∑

1

1

where the new survivors at time t-1 are computed by

ns n cr t r t r t,
'

,
'

,
'

− −= −1 1 .

If we separate the original (base) variables from the adjusted variables we can write

n
n

ns
nsr t

r t

r t
r D

r t
r D

r

r

,
' ,

,
,

'= ⋅
−

∈

−
∈∑ ∑

1
1

Note that this equation is quite similar to the equation for the elements of the new abundance vector in the
State Space Model formulation, namely:

n m nsr t r j
j

R

j t, , ,=
=

−∑
1

1

Recall that mr j, is the fraction of the fish located in donor region j moving into region r. If one assumes a

constant migration rate during the interval [t-1,t) from all donor regions j into region r (call the constant
K mr t r j, ,= for all j), the migration rate terms can be moved outside the summation sign:

n K nsr t r t j t
j

R

, , ,= −
=
∑ 1

1

For the PM model, we can set

K
n

nsr t
r t

r t
r Dr

,
,

,

=
−

∈
∑ 1

.

In the PM model the term Kr t, must be thought of as a migration index, rather than a migration rate. It is

the ratio of the fish located in region r at the start of time period t to the total potential donor fish for region

133

r at the end of time period t-1. Since the abundances for different time periods are computed independently,
this ratio can be greater than one and does not represent a movement of fish from one area to another.

Regardless of the biological interpretation of the Kr t, terms, the important point is that the mathematical

computations of the PM Model can be conducted using the matrix formulation of the State Space Model by
substituting the Kr t, terms in the appropriate position of the migration matrix. For time t, each Kr t, term

is placed in each column of the r th row that corresponds to a donor region for region r.

The State Space Model formulation of the PM model is best explained with an example. Consider a case of
three fisheries (regions) and two time steps. Assume that for the second time step the donor regions are as
follows:

Receiving Region Donor Regions

1 1
2 1 and 2
3 2 and 3

Then from the input data we have:

K
n
ns1 2

1 2

1 1
,

,

,

=

K
n

ns ns2 2
2 2

1 1 2 1
,

,

, ,

= +

K
n

ns ns3 2
3 2

2 1 3 1
,

,

, ,

= +

In terms of the matrix computations we have

n
n
n

K
K K

K K

ns
ns
ns

1 2

2 2

3 2

1 2

2 2 2 2

3 2 3 2

1 1

2 1

3 1

0 0
0

0

,
'

,
'

,
'

,

, ,

, ,

,
'

,
'

,
'

=

where the ns1
' abundance vector represents the fish surviving the new harvest regime during the first time

step. In practice ns1
' vector would be computed by multiplying a new survival matrix (with the diagonal

elements representing the new survivals determined from the original and new effort levels) times the
original abundance vector.

The specific element formulas for the n2
' vector are:

n n
ns
ns1 2 1 2

1 1

1 2
,

'
,

,
'

,

= ⋅

n n
ns ns
ns ns2 2 2 2

1 1 2 1

1 1 2 1
,

'
,

,
'

,
'

, ,

= ⋅
+
+

134

n n
ns ns
ns ns3 2 3 2

2 1 3 1

2 1 3 1
,

'
,

,
'

,
'

, ,

= ⋅
+
+

To compare these values with values determined from a migration matrix we rearrange terms to get:

n
n
ns

ns K ns1 2
1 2

1 2
1 1 1 1 1 1,

' ,

,
,

'
, ,

'= ⋅ = ⋅

()n
n

ns ns
ns

n
ns ns

ns K ns ns2 2
2 2

1 1 2 1
1 1

2 2

1 1 2 1
2 1 2 2 1 1 2 1,

' ,

, ,
,

' ,

, ,
,

'
, ,

'
,

'= + ⋅ + + = ⋅ +

()n
n

ns ns
ns

n
ns ns

ns K ns ns3 2
3 2

2 1 3 1
2 1

3 2

2 1 3 1
3 1 3 2 2 1 3 1,

' ,

, ,
,

' ,

, ,
,

'
, ,

'
,

'= + + + = ⋅ +

The corresponding values assuming a given migration matrix are:

n m ns1 2 1 1 1 1,
'

, ,
'= ⋅

n m ns m ns2 2 2 1 1 1 2 2 2 1,
'

, ,
'

, ,
'= ⋅ + ⋅

n m ns m ns3 2 3 2 2 1 3 3 3 1,
'

, ,
'

, ,
'= ⋅ + ⋅

If the terms in the transition matrix represent the true movement of fish between areas, then it is clear that
the new regional abundances (due to a different fishing regime) predicted by the PM model are correct only
under very limited circumstances. To see the relationship between the true migration rates and the K terms
we set the new abundance values equal and solving for the K terms to get:

K m1 1 1 1, ,=

() ()K
ns

ns ns
m

ns

ns ns
m2 2

1 1

1 1 2 1

2 1
2 1

1 1 2 1

2 2,
,

'

,
'

,
' ,

,
'

,
'

,
' ,=

+
⋅ +

+
⋅

() ()K
ns

ns ns
m

ns

ns ns
m3 2

2 1

2 1 3 1

3 2
3 1

2 1 3 1

3 3,
,

'

,
'

,
' ,

,
'

,
'

,
' ,=

+
⋅ +

+
⋅

The PM model will give correct predictions only when the above relationships are true.

In conclusion, it is possible to cast the PM model in the general matrix framework as follows:

• Use the regional abundances at the start of the first time step for the initial abundance vector;

• Use the input catch and harvest rate data to compute the Kr t, terms;

• Use the input and adjusted effort data to create new survival matrices;

• Place the Kr t, terms in the appropriate location in the migration matrices;

• Perform the matrix computations in chronological order.

It is clear from the above formulae that the PM model makes the tacit assumption that for a given cohort
and time step, fish migrate from all donor regions at the same rate. This is very different from the PSC
Selective Fishery Model that estimates separate migration rates for each donor area. Recall from the PSC
example for week 40 for the SPSD stock that fish migrate into the SJDF area from four other areas at very

135

different rates: OCCN = 0.67; OCNS = 0.79; GEOS = 0.03; and SJDF = 0.79. The PM model would
require that fish would enter the SJDF area at the same rate from each of the four areas.

To clearly see the relationship between the estimated abundances used by the PM model and those
determined

Assume the matrix M represents the true movement of a cohort between areas and let h

We also note that if the set of donor regions for each area and time step (Dr t,) is the entire set of possible

regions, the PM model is virtually identical to a single pool model in which the original regional harvest
rates are defined with respect to the total abundance of the cohort at any given time (instead of local
abundance within a region). That is, under a single pool model the pooled harvest rate (phr t,) is defined

as:

ph
c

nr t
r t

r t
r

,
,

,

=
−∑ 1

.

The catch equation is:

c ph nr t r t r t
r

, , ,= −∑ 1 .

The base regional catches are the same under both formulations of the harvest rate (PM and Single Pool),
so we can write:

ph n h nr t r t
r

r t r t, , , ,− −∑ =1 1

and

ph h
n

nr t r t
r t

r t
r

, ,
,

,

= −

−∑
1

1

Thus, the base harvest rate in a single pool model is equal to the base local harvest rate in the PM model
scaled by the fraction of the total cohort abundance located in the region.

Recall that during the first time step of the PM model, the local abundances are not adjusted before
applying the adjusted harvest rates and the adjusted catches are just scaled by the ratio of the new to the old
harvest rate:

c c
h
hr r

r

r t
,

'
,

,
'

,
1 1

1=

For the single pool model, the same is true. Here we have

c ph nr r r
r

, , ,1 1 0= ∑
c ph nr r r

r
,

'
,

'
,1 1 0= ∑

136

Thus, we can write

c
ph

c
ph

r

r

r

r

,

,

,
'

,
'

1

1

1

1

=

and

c c
ph
phr r

r

r t
,

'
,

,
'

,
1 1

1=

Thus, at the first time step the regional catches are scaled up and down to reflect the changes in the harvest
rates. If the set of donor regions for each area and time step is the entire set of possible regions, then the
same will be true for all time steps.

C.6.1.7 Fishery Resource Allocation Model (FRAM)

This model is similar to the PSC Chinook Model in that it has no specific geographic areas, but does
partition the fisheries into preterminal and terminal categories, and also includes separate extreme terminal
areas. This model uses monthly time steps. At each time step the maturation algorithm is called, but it is
unclear whether or not a maturation calculation actually occurs at each time step. Need further clarification
on this.

The Terminal Area Management Modules (TAMMs) used in FRAM do not have any migration
components. The harvest rates in the extreme terminal areas are all defined with respect to the abundance
of fish entering the extreme terminal area.

C.6.2 Beta Advection-Diffusion Model

C.6.2.1 Background

The initial migration sub-model used in Ken Newman's State Space Model (SSM) was loosely called a
Beta Advection-Diffusion model. The SSM estimates a single parameter (Move_Alpha) that completely
describes the movement of fish over all time periods and locations. At the August 27, 1998 model
committee meeting many members asked for an intuitive description of how this single parameter
characterized fish migration. The purpose of this note is to define the Beta Advection-Diffusion model and
describe its behavior. Another description is given in Ken's latest draft of his paper.

C.6.2.2 The Model

Let lt be the current location of a fish (at time t). Then the next location of that fish (at time t + 1) is
described by a Beta(α,β) probability distribution where β is assumed constant (= 3.0) and α is a function of
Move_Alpha, current location (lt), and current time (t) as follows:

α = ⋅ ⋅(_) (_) (_)Move Alpha Dist Scalar Time Scalar

where the distance scalar (Dist_Scalar) represents how close the fish is to the natal stream and is given by

Dist Scalar
l
D

t_ =

(D = maximum possible distance from the natal stream) and the time scalar (Time_Scalar) represents how
close the current time is to the last time period (T) and is given by

137

Time Scalar
T t

T
_ = + −

+
1

1
.

The "1" in the numerator prevents a zero value for Time_Scalar and the "1" in the denominator roughly
offsets the "1" in the numerator. The net effect is that as a fish moves closer to the natal stream (lt gets
smaller) and as time increases, both scalars get smaller and the α parameter of the Beta distribution gets
smaller.

C.6.2.3 Model Properties

The expected value of a Beta distributed random variable isα α β()+ . Thus, as time increases and the α
parameter gets smaller, the expected new location moves toward the natal stream.

The expected step size for a fish located at lt and time t is

E Step lt() = − +
α

α β .

Since β is fixed and α is a function of Move_Alpha, lt , and t, expected step size can be computed for all
possible combinations of location and time. Or more generally, one can compute expected step size as a
function of Dist_Scalar and Time_Scalar.

To get a better "feel" for this migration model, I created an Excel Spreadsheet to compute a table of
expected step sizes for combinations of Dist_Scalar (0 to 1 in 0.1 increments) and Time_Scalar (also 0 to 1
in 0.1 increments) given Move_Alpha and β (Table 11). I plotted the resulting expected step size surface as
a 3D plot (Figure 1) and also plotted expected step size as a function of current location for five relative
time values (0.1, 0.3, 0.5, 0.7, and 0.9;Figure 2). The table values and plots update automatically whenever
Move_Alpha and β are changed.

The general migration pattern is the following: at any given time, there is an "Attracting Location" at which
the expected step size is zero. Fish located to the right of this location (i.e., Current Location > Attracting
Location) have a negative expected step size (i.e., they move toward the Attracting Location); fish located
to the left of this location (i.e., Current Location < Attracting Location) have a positive expected step size
(i.e., they also move toward the Attracting Location). As the season progresses (i.e., time gets bigger), the
Attracting Location moves in the direction of the natal stream (i.e., the origin).

With β fixed at 3.0, increasing values of Move_Alpha move the initial Attracting Location further from the
origin. I created a table (Table 12) and graph (Figure 3) to illustrate the relationship between Attracting
Location and time for values of Move_Alpha ranging from 3.0 to 15.0. When Move_Alpha is about 5.0, the
Attracting Location is near the origin for all times. When Move_Alpha = 9.0, the Attracting Location starts
out at about 0.67 and when current time reaches about 0.67 the Attracting Location is the origin. When
Move_Alpha = 15.0, the Attracting Location starts out at about 0.80 and when current time reaches 0.80 the
Attracting Location is the origin.

C.6.2.4 Discussion

What follows is a summary of email correspondence between Jim Norris and Ken Newman.

Norris: Although the Beta Advection-Diffusion model has some appealing properties (e.g., Attracting
Location moves toward the origin as time increases), I find the property of an Attracting Location early in
the season somewhat disturbing because it implies a directed movement toward a specific location other
than the natal stream. And for coastal stocks, such as the Humptulips, it implies that fish located north and

138

south of the natal stream during the first part of the modeling period have directed movement toward
different locations (i.e., there are two Attracting Locations, one north and one south of the natal stream).

Newman: Ken offered another interpretation. Early in the season, fish near the natal area are "free" to keep
moving away from the natal area ...they're closing enough that they've got time to "dawdle," while fish
further away need to get moving home.

Norris: I'm having difficulty linking this type of movement model with my intuition about how salmon
behave in the ocean. I think the initial fish distribution is determined by a combination of genetic factors
and physical and biological oceanographic conditions. The genetic factors seem to put limits on the range
of latitudes the fish are willing to inhabit, while oceanographic conditions determine the degree of
patchiness, or aggregations, within those limits (e.g., due to prey, predators, temperature, salinity, olfactory
cues, etc). Thus, I think it is possible for the initial distribution of a stock to have one or more
concentrations. In our modeling effort I think we need a flexible distribution to account for skewed initial
distributions.

Newman: Ken noted that another factor affecting initial fish distribution is size and time of release for
hatchery fish. This also affects maturation rates for chinook. With the Humptulips stocks apparently
"turning" south and north--a bimodal initial distribution could make some sense.

Norris: Given the initial distribution of the fish, I think the migration model should be founded, as much as
possible, on what is known about individual fish behavior. Unfortunately, not much is known! And since
we all have our own ideas about what that behavior is, I think we'll have to try several types of models to
see which ones fit real data the best, and also make the most sense biologically. As you mentioned in one of
your emails, the fact that the Beta Advection-Diffusion model predicts some unrealistically high migration
rates late in the season may not be a problem because those unrealistic rates are only predicted for fish
residing outside the realistic domain of the fish at that time. The same is true for the "Increasing" migration
model I used to generate synthetic data--by the time the last time steps are reached, the daily rate is pretty
high, but all the fish are already in the river.

Newman: Your key statement is "not much is known" -- which has kept me pointed towards doing largely
data driven selection of models. If someone comes up with an alternative "module" for initial distribution,
survival/harvest, and/or migration and it fits better for a relatively large set of stocks and cohorts than does
a current configuration, then that's as good an argument as any to pick the alternative.

Table 11 Expected Step Size for values of relative location and time (Move_Alpha = 8.735; ? =
3.0).

Rel Relative Elapsed Time

Loc 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.1 0.13 0.11 0.09 0.07 0.05 0.03 0.00 -0.02 -0.04 -0.07 -0.10
0.2 0.17 0.14 0.12 0.09 0.06 0.03 -0.01 -0.05 -0.10 -0.14 -0.20
0.3 0.17 0.14 0.11 0.08 0.04 0.00 -0.04 -0.09 -0.15 -0.22 -0.30
0.4 0.14 0.11 0.08 0.05 0.01 -0.03 -0.08 -0.14 -0.21 -0.30 -0.40
0.5 0.09 0.07 0.04 0.00 -0.03 -0.08 -0.13 -0.20 -0.27 -0.37 -0.50
0.6 0.04 0.01 -0.02 -0.05 -0.09 -0.13 -0.19 -0.26 -0.34 -0.45 -0.60
0.7 -0.03 -0.05 -0.08 -0.11 -0.15 -0.20 -0.25 -0.32 -0.41 -0.53 -0.70
0.8 -0.10 -0.12 -0.15 -0.18 -0.22 -0.26 -0.32 -0.39 -0.48 -0.61 -0.80
0.9 -0.18 -0.20 -0.22 -0.25 -0.29 -0.33 -0.39 -0.46 -0.56 -0.69 -0.90
1.0 -0.26 -0.28 -0.30 -0.33 -0.36 -0.41 -0.46 -0.53 -0.63 -0.77 -1.00

139

0

0.
2

0.
4

0.
6

0.
8 1

0
0.5

1.0-1.00

-0.80

-0.60

-0.40

-0.20

0.00

0.20

E
xp

ec
te

d
S

te
p

S
iz

e

Relative Location

Relative Time

Figure 1 Expected step size as a function of relative location (i.e., Dist_Scalar) and relative
time (Time_Scalar).

-0.80
-0.70
-0.60

-0.50
-0.40
-0.30
-0.20
-0.10

0.00
0.10
0.20

0 0.2 0.4 0.6 0.8 1

Current Location

E
xp

ec
te

d
S

te
p

S
iz

e

t = 0.1

t = 0.3

t = 0.5

t = 0.7

t = 0.9

Figure 2 Expected step size as a function of current location for five values of relative t.

140

Table 12 "Attraction Location" by Relative Time and Move_Alpha.

Move_Alpha
Rel Time 3.00 5.00 7.00 9.00 11.00 13.00 15.00

0 0.00 0.40 0.57 0.67 0.73 0.77 0.80
0.1 -0.11 0.33 0.52 0.63 0.70 0.74 0.78
0.2 -0.25 0.25 0.46 0.58 0.66 0.71 0.75
0.3 -0.43 0.14 0.39 0.52 0.61 0.67 0.71
0.4 -0.67 0.00 0.29 0.44 0.55 0.62 0.67
0.5 -1.00 -0.20 0.14 0.33 0.45 0.54 0.60
0.6 -1.50 -0.50 -0.07 0.17 0.32 0.42 0.50
0.7 -2.33 -1.00 -0.43 -0.11 0.09 0.23 0.33
0.8 -4.00 -2.00 -1.14 -0.67 -0.36 -0.15 0.00
0.9 -9.00 -5.00 -3.29 -2.33 -1.73 -1.31 -1.00

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0 0.2 0.4 0.6 0.8 1

Relative Time Elapsed

A
tt

ra
ct

io
n

Lo
ca

tio
n

3.00

5.00

7.00

9.00

11.00

13.00

15.00

Figure 3 "Attraction Location" as a function of relative time for several values of
Move_Alpha.

	Coast Model
	Table of Contents
	List of Figures
	List of Tables

	1 Introduction
	1.1 Background
	1.2 Code Framework Overview
	1.3 Specific Code Features
	1.4 Code Limitations
	1.5 Pacific Salmon Commission Chinook Model

	2 Coast Model Processes
	2.1 Computation Flow
	2.2 Cohort Ageing
	2.3 Natural Mortality
	2.4 Fishing Mortality
	2.5 Maturation
	2.6 Spawning
	2.7 Migration

	3 Input Language
	3.1 Introduction
	3.2 Token Types
	3.3 Generic Arrays
	3.4 Top Level Tokens
	3.5 Configuration Tokens
	3.6 Stock Configuration Tokens
	3.7 Harvest Rate Tokens
	3.8 Ceiling Tokens
	3.9 CNRData Tokens
	3.10 Cohorts
	3.11 FPData Tokens
	3.12 FisherySchedule Tokens
	3.13 MaturationData Tokens
	3.14 NatMortRateData Tokens
	3.15 PnvData Tokens
	3.16 ProductionFunctions Tokens
	3.17 ShakerData Tokens
	3.18 TransitionMatrix Tokens

	4 Output Language
	4.1 Overview
	4.2 CohortID
	4.3 Output Sentences Supported by Coast Model
	4.4 Proposed Output Sentences For Future Use
	4.5 Generating the Output Data File

	5 Code Description
	5.1 Introduction
	5.2 Naming Conventions
	5.3 Class Overview
	5.4 Process Overview
	5.5 Class and Object Detail
	5.6 Process Detail

	Appendix A: Glossary
	Appendix B: Examples
	B.1 Introduction
	B.2 Prototypes With No Harvest
	B.3 Prototypes With Harvest

	Appendix C: Discussion Papers
	C.1 Overview
	C.2 Ageing Process
	C.3 Mortality Processes
	C.4 Maturation Process
	C.5 Production Processes
	C.6 Migration Process

