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1 — Introduction
1.1 – Background

Natural systems and urbanization

Human beings and our societies are embedded within and depend upon the natural world in

which we live. The value of services provided by natural ecosystems has been estimated at

33!trillion US dollars (Costanza et al. 1997) – twice all the world's gross national products

combined. Beyond their economic worth, people value natural systems for aesthetic and

historical reasons.

And yet urban areas continue to expand. In the United States 19% of the land area is

urbanized, compared to 9% in 1960 (Stoel 1999). The effect of urbanization is to disturb and

degrade the environment, often eliminating the original natural system. However, there is a

full range of impact between an undegraded ecosystem and elimination.

Measuring the quality of ecological systems

Given the value people place upon the natural world, and the effects of human activities

upon it, there is a strong desire to reduce or avoid the negative consequences of urbanization

and other forms of human impact. Resources are finite, however. There are several reasons

that it would be useful to be able to measure the degree to which human activity has affected

an ecosystem.

Conservation projects could allocate finite resources to select relatively unscathed systems.

Programs attempting to improve or "restore" impacted systems could organize their efforts

to target the most damaged. Scientific investigation, in either the context of "restoration"

projects or a wider perspective could also benefit from a measure of the health of an

ecological system.

Biological diversity on taxonomic and genetic scales has been used as a measure of

ecosystem health, as a consistent, major effect of human activity is to reduce such diversity

in natural systems. Folke et al. (1996) argue that including functional processes and system

resilience make a more accurate measurement of ecosystem health, especially for activities on
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the human time scale. Angermeier and Karr (1994) suggest that biological integrity is a better

gauge of human impact on natural systems.

Following sections

The first chapter of this work continues with a discussion of biological integrity, followed by

a review of methods used to measure stream quality with counts of benthic

macroinvertebrates. Next are sections of definitions and mathematical techniques including

brief description of some multivariate statistical methods. Finally comes a description of the

B-IBI and the dataset used to compare multivariate techniques in this study.

Subsequent chapters will compare the results of mathematics-based multivariate techniques

with the B-IBI. Chapter 2 considers patterns within the collection of taxon counts by site,

and Chapter 3 uses additional measurements at sites to find pattern in the taxon counts.

Finally, Chapter 4 compares the component metrics of three multimetric indexes.

1.2 – Biological integrity

Biological integrity

Biological integrity is a holistic property of ecological systems. Frey (1977) defined it as “the

ability to support and maintain a balanced, integrated, adaptive community of organisms

having a composition, diversity, and functional organization comparable with that of the

natural habitats of the region.” Biological integrity encompasses many processes and

properties, from trophic interactions and evolution to diversity and abundance. These

biological properties are a result of the physical characteristics of the habitat, from chemical

conditions to energy inputs to habitat structure.

Biological condition

The biological condition of a system is the divergence from a state of biological integrity,

usually expressed by comparing the system to a similar site that has been minimally

influenced by human activity. As an integrative concept, a system's biological condition

cannot be measured simply but instead must be inferred through multiple measurements of

the presence and activity of its constituents.
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Identifiable natural concepts such as organisms, species, and specific habitat types all

interact through processes such as production, competition, and evolution to result in

holistic properties. These holistic properties include long-term system stability – maintaining

a state of biological integrity for long periods of time – and resilience – maintaining integrity

when subject to external disturbance (Holling 1973). All organisms and properties are

present in appropriate amounts in a site with a high biological condition, but the biological

condition of a site exists as a function of all these things. The biological condition is not a

measurable, physical property; instead it must be inferred from measurements of the biota

that compose it.

How, then, does one measure the biological condition of a site? Theoretically, it would be

possible to define a long list of species, physical states, and allowed changes over the course

of natural fluctuations. Such a list would need to account for dozens or hundreds of species

and observation over the range of time scales relevant to human activities – including

decadal oscillations at the least.

Fundamentally, the decision of which places have a high biological condition and which

places have a low biological condition comes down to an integrative evaluation by individual

human beings. The necessary assumption is that all people have an internal standard of

quality (Pirsig 1979). Given the above definition of biological integrity and a visit to the two

sites, any reasonable person would agree that an undisturbed stream in Olympic National

Park is very close to a state of biological integrity, and Thornton Creek in urban Seattle is

very far from it.

A measurement of the divergence of a site’s biological condition away from the state of

biological integrity is often referred to as disturbance. The most common sort of disturbance

in discussions of multimetric indexes is disturbance due to human influence.

Human influence

Human influence is another integrative concept that complements biological condition.

Human beings going about their everyday lives affect the environment in many ways and on

many different levels, almost always in a way that decreases the biological condition of
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natural systems. Like biological condition, human influence is a holistic property that exists

as a function of the physical effects of human activity on the environment. Similar to

biological condition, human influence is not a physical characteristic to be measured directly,

but instead it must be inferred through measurements of specific human activities.

While we have a better understanding of the factors and processes involved, the amount of

human influence at a site is also subject to an individual’s evaluation. The reasonable person

in the preceding paragraph would also agree that the Thornton Creek watershed had been

exposed to more human influence than the site in Olympic National Park.

Freshwater streams and benthic macroinvertebrates

Streams and larger watercourses are natural integrators of the landscape. Water runs across

and through the ground connecting streams to their terrestrial surroundings (Minshall et al.

1985). A sample from a stream or river, then, contains a signal of events throughout the

watershed (Karr and Chu 2000).

Using biological condition as the property to measure recommends direct examination of a

site's biota. The biological condition of a site is a function of the organisms present at a site

and their interactions with each other and their physical surroundings. Most forms of human

influence affect the organisms indirectly, by modifying the physical properties of their

environment to make them less habitable. The exact mechanisms linking a change in

physical parameters (water temperature, for example) and the subsequent alteration in the

biological community are often incompletely understood. This additional uncertainty

suggests measuring the organisms themselves, rather than physical parameters, as the most

direct reflection of a site's biological condition.

Measuring a site's biology integrates over time. Just as samples from a stream include a signal

from the entire watershed, the population of an organism integrates over the life span of that

organism (Karr 1991, Kerans and Karr 1994), as long as 3-4 years for some long-lived

aquatic macroinvertebrates (Merritt and Cummins 1996). Fish are often longer-lived, but

may not be as diverse. Streams in the central United States may support a community of 20-

30 taxa, while Pacific Northwest streams seldom have more than 5-6 taxa (Moyle 1993).
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Sampling benthic macroinvertebrates, mostly the aquatic, larval stages of insects, provides a

more diverse community from which to sample.

1.3 – Natural-history vs. mathematics-based methods

Natural history based methods

In 1909, Kolkowitz and Marsson (1909) devised the saprobial index, which used aquatic

invertebrates (mostly worms and wormlike larvae), chemical, and bacteriological

measurements to produce a score gauging the amount of organic matter decaying in the

environment. This index was the first use of invertebrates as a measure of environmental

quality – in this case bio-chemical oxygen demand.

Chutter (1972) devised a metric of quality for streams in South Africa. Chutter assigned a

weight or quality score for each taxon, and the average score for insects in a sample was used

as a measure of stream quality. Hilsenhoff (1977,  and 1982) developed a similar metric for

Wisconsin streams, weighting taxa on a scale of 1-10. Taxa prevalent in degraded streams

were assigned high weights and taxa found only in unimpaired streams received low weights.

The weighted average of the sample was the stream score. The higher a stream's score, the

more degraded it is.

The first multimetric index to measure biological integrity was based on fishes in the

American Midwest (Karr et al. 1986,  Ohio EPA 1987, Karr 1991)). Plafkin et al. (1989)

included a multimetric index based on aquatic macroinvertebrates as part of the US-EPA's

Rapid Bioassessment Protocols (RBP). Kerans and Karr (1994) developed a multimetric

benthic macroinvertebrate index for Tennessee Valley rivers (B-IBI). Both Plafkin et al. and

Kerans and Karr recommended that their proposed indexes be subjected to further testing

and refinement.

The RBP index has been modified and adapted for use in Oregon streams (Mulvey et al.

1992). The B-IBI has been adapted for streams in the American Northwest and Japan

(Kleindl 1995, Rossano 1995, Patterson 1996, Morley and Karr 2002). Doberstein et al.

(2000) and Sovell (1999) have examined the effects of fixed-count sub-sampling, used in the

RBP but not the B-IBI, and have found that the practice introduces a bias and reduces
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precision in metric scores. Fore et al. (1994) examined the statistical properties of the B-IBI,

and Fore et al. (1996) compared the discriminatory power of the RBP and B-IBI.

Multimetric indexes are not without critics. The metrics used in multimetric indexes are top-

down, meaning the link between metric score and site quality is inferred without

understanding the exact mechanism. Scrimgeour and Wicklum (1996) point out that top-

down metrics cannot be tested scientifically. They and Suter (1993) both question the utility

of biological integrity as a concept, and call for careful definitions. Others have made those

definitions, distinguishing between biological integrity and the related concept of ecosystem

health, and assert the concepts are needed to engage the public and provide a framework for

policy and management  (Meyer 1997, Fairweather 1999, Karr 1999).

Mathematics based methods

Mathematics based multivariate statistics are used for a number of purposes in ecology,

including the multimetric goals of ordination and classification (Gittins 1985, Digby and

Kempton 1987, Gower and Hand 1996). Specific methods applied to benthic

macroinvertebrate counts include multiple regression (Nelson 1999), multivariate ANOVA

(Faith et al. 1995), canonical correspondence analysis (Franquet et al. 1995), or combinations

of several techniques (Boulton and Lake 1992).

Reynoldson et al. (1997) describe a pair of mathematics-based multivariate techniques

designed to measure how closely a site approaches the reference condition. Two levels of

multivariate analyses are used; the first to determine an appropriate reference site for a

candidate site, the second to estimate the probability that the candidate site close enough to

the reference to be considered the same. If the probability is high, the candidate site is

judged as having a high biological condition, if the probability is low the site is considered

impaired.

Field et al. (1982) describe a method of ordination that combines features of a multimetric

index and a mathematics-based multivariate analysis. Mathematical multivariate techniques

are used to identify groups of indicator taxa for distinguishing sites, which are then used to

construct metrics.
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Care must be taken in the use and interpretation of mathematics based multivariate

statistics. In their review of multivariate analysis in ecology, James and McCulloch (1990)

warn that the judging of the metrics produced is often based on their interpretability, an

error they described as "dangerously close to circular reasoning". They also caution against

confusion in statistical and biological language. Correlation is not causation, and producing a

metric that "explains" 75% of variation in a system does not imply a cause-effect

relationship. Both Karr and Martin (1981) and Stauffer et al. (1985) point out that for smaller

datasets, multivariate analysis of completely random numbers may produce metrics that

account for as much variation as significant metrics derived from analysis of real data, and

therefore significant metrics may have no valid biological interpretation.

Similarities and differences

Both natural-history-based and mathematics-based multivariate methods attempt to

accomplish the same task: promote understanding of a complex system by reducing the large

number of variables (taxon counts) collected at a stream site to a smaller number of

variables. Ideally, the smaller number of variables extracts the information needed for a

specific goal. In the case of both the B-IBI and mathematics-based multivariate techniques

that goal is to use the set of taxon counts from a site to infer the biological condition of the

site. The differences arise in the criteria for combining variables in the reduction process.

Natural history based methods combine taxa based on the observed biology of the organism.

These combinations may be based on taxonomy, niche, behavior, or life history of the taxa

involved. Mathematics based methods define some function of the taxa counts – usually, but

not always – related to squared differences or variance, and combine variables to minimize

the value of this function.

1.4 – Definitions

Site

A site is a physical location of interest. In the data used for this study, sites were particular

riffles in Puget Sound lowland streams.
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Variable

A variable is a measure, or some transformation of a measure, of a property of a site. The

value of a variable at a site is determined by taking a sample at that site. For the datasets

discussed in this thesis the variables are the invertebrate taxa, and their values either are the

number of individuals – raw counts or somehow transformed – of each taxon found at the

site. In a multivariate context – whether natural-history-based like the B-IBI or mathematics-

based like principal components analysis – variables are the original axes of the multi-

dimensional measurement space.

Sample

Samples are measurements of one or more variables at a site. For the datasets discussed here

samples are standardized collections of invertebrates taken from stream riffles. It is

important to distinguish between statistical and biological samples. A statistical sample for

designing a system to measure biological condition (the usage in this document) is the entire

collection of invertebrates pertaining to a single site and time. These samples are usually

composed of three replicates taken from the same stream riffle. For purposes of making an

inference on a single stream (not the usage in this document), multiple collections from a

riffle can each be considered a sample.

Data matrix

With samples and variables, one can define a matrix representation of the data matrix. The

raw data matrix, D is a matrix with the number of rows equal to the number of variables

(taxa) represented in the dataset, and number of columns equal to the total number of

replicates. D itself is not used in any calculations. Instead the replicates from a site are

combined – in different ways – to produce different transformations. The process is data

formatting rather than a linear algebraic operation; Table 1-1 provides an example of the

transformations detailed in Equations 1.8-10. Section 1.5, later in this chapter, provides a

more detailed discussion of the transformations used.

The resulting transformations, W, Y, and Z or generically X (when the specific

transformation is not important), are r ¥ c matrices where r equals the number of variables
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(taxa) and c is the number of sites. Geometrically, X represents c points in an r-

dimensioned space. (If c is less than r, the dimension of the space is c - 1; regardless of how

many variables are measured at each point, three points can only define a plane.) An

individual element of X can be addressed as xi,j, where i is the row, and j is the column. In

this study the rows (i) represent taxa and the columns (j) represent sites.

      

† 

X =

x1,1 L x1,c

M O M

xr ,1 L xr ,c

Ê 

Ë 

Á 
Á 
Á 

ˆ 

¯ 

˜ 
˜ 
˜ 

(1.1)

Metric

A metric is a vector or line, or direction in the space represented by X. It can be visualized as

a ray pointing from the origin. A metric can be identified as m, a vector of coefficients for

each of the rows (variables) of X.

      

† 

m =

m1

m2

M

mr

Ê 

Ë 

Á 
Á 
Á 
Á 

ˆ 

¯ 

˜ 
˜ 
˜ 
˜ 

(1.2)

Each mi component of m can be treated as a weight or loading for its corresponding

variable.

Score

A score (sj) is the value for a metric at site j. The score for an individual site can be calculated

by multiplying the value of each variable the metric's coefficient for that variable and

summing

  

† 

sj = m i ⋅ xi ,j
i=1

r

Â (1.3)

or the vector of metric scores for all c sites, s, could be calculated, in matrix notation, as

  

† 

s = mT ⋅ X (1.4)

where the “T” superscript indicates taking the transpose of m. Geometrically a score is a

distance from the origin along a metric, and can be visualized as the projection of a site's

coordinates in r-dimensional space onto the single dimension of the metric (Figure 1-1).
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Index

An index is a collection of metrics. Selecting just a few metrics (< r) to focus on reduces the

number of variables to be considered and simplifies interpretation of a dataset. By choosing

metrics that discriminate across a gradient or gradients of interest, use of an index simplifies

the process of interpreting a large number of variables. Identifying the gradient of interest

and establishing criteria for good metrics allows the information relevant to a specific

question to be extracted by multivariate techniques and summarized in the metrics of an

index. It is possible for the individual scores of an index's metrics to be combined, adding

them all together is common, and doing so in effect turns an index into another metric.

Scores for multiple metrics can be calculated as a single matrix algebra operation. For n

metrics, M is an r ¥ n matrix whose n columns are the m vectors for the metrics.

      

† 

M =

m1,1 L m1,n

M O M

mr ,1 L mr ,n

Ê 

Ë 

Á 
Á 
Á 

ˆ 

¯ 

˜ 
˜ 
˜ 

(1.5)

S is an n ¥ c matrix of metric scores, calculated by multiplying M and X.

  

† 

S = MT ⋅ X (1.6)

Geometrically, if n is less than r, then S represents a subspace of X, and the vector of scores

for each site is the projection of the site into S.

1.5 – Transformations

The raw data matrix D is not used for any calculations; instead one of three transformations

is used, corresponding to the three mathematical groupings of B-IBI metrics (Table 1-1).

The transformations integrate information across the replicates for a site into a single

column. Dj is the matrix of observations from the single site j. The Dj matrix will have r

rows and cj columns, where cj is the number of replicates at the site. The transformation

reduces Dj into an r by 1 matrix, a vector, and these vectors make up the columns of the

transformed matrix.
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For example, the presence/absence transformation produces Z, a matrix with r rows and

c (the number of sites) columns. Each element of Z takes a value of 1 if the taxon was

observed at the site, 0 if it was not. Mathematically

      

† 

Dj =

d1,1 L d1,c j

M O M

dr ,1 L dr ,c j

Ê 

Ë 

Á 
Á 
Á 

ˆ 

¯ 

˜ 
˜ 
˜ 

(1.7)

and

    

† 

Zr,j =
1 if any of Dj  row r are >  0

0 otherwise

Ï 
Ì 
Ó 

(1.8)

In the B-IBI, the Z transformation is used for the long-lived and intolerant taxa richness

metrics, which count how many long-lived or intolerant taxa, are found at a site. The value

of the metric at each of the c sites is just the sum of the row values for long-lived or

intolerant taxa.

The mean presence transformation produces Y, also an r by c matrix. The elements of Y are

the fraction of replicates where the taxon was found.

    

† 

Yr,j =
number of elements of Dj row r >  0

cj

(1.9)

The Ephemeroptera, Plecoptera, and Trichoptera taxonomic groups are larger than the long-

lived and intolerant groups, so their richness metrics use the Y transformation to reduce

noise by averaging across the replicates. Each row of the matrix contains a taxon's "mean

presence", the fraction of a site's replicates that contained the taxon. The sum of the mayfly

rows of Y produces the B-IBI Ephemeroptera richness score. This procedure is equivalent

to counting the number of mayfly taxa in each of a site's replicates and taking the mean

number of taxa as a site's Ephemeroptera richness score.

The relative abundance transformation is slightly more complicated, but also produces an r

by c matrix. The elements of W are the relative abundances for a taxon across replicates; in
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each replicate, the fraction of the sample composed of the taxon is calculated, and the

final relative abundance score is the mean fraction across the site’s replicates.

    

† 

Wr,j =
1
cj

dr ,i

dk,i
k=1

r

Âi=1

c j

Â (1.10)

Once the W matrix has been calculated, the percent tolerant and percent predator metrics

are simply the sum of the predator or tolerant rows of the matrix.

1.6 – Multivariate techniques

Geometric interpretation

Multivariate statistical methods attempt to facilitate the understanding of complex systems

by reducing the number of variables that need to be considered. More specifically, they allow

the information relevant to a specific question to be isolated and extracted from a large set

of variables into just a few combinations of those variables, or metrics.

A geometric interpretation of the process assigns a dimension to each variable in the system.

A simple two-variable system can be represented as a plane, and each possible state of the

system is a point on that plane. A three-variable system is analogous to points in space. At

four or more variables there is no physical analogue, but it is possible to describe a multi-

variable system as analogous to a multidimensional space.

Choosing a metric (a line in a space) breaks an n-dimensional space into a one-dimensional

space (the line) and an (n-1)-dimensional space. For example, imagine a three-variable system

where individual observations are represented as points in space. Choosing a line in that

space also defines a plane through the origin at right angles to that line. The original

information represented by the positions of the points in space is divided into two parts: the

projection of those points onto the line, and their projection onto the plane (Figure 1-1).

Choosing a second metric (line) in the remaining plane also specifies a third line through the

origin at right angles to it. Looking at it another way, the two chosen metrics (the first two

lines) define a plane, with a single line left over.
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The plane produced by choosing two orthogonal metrics from the original three-

dimensional system is often referred to as a sub-space (a sub-plane in this example). If the

interesting behavior of the original system can be described in the sub-space, then the

remaining dimension can be ignored, and the problem of understanding a system with 3

variables has been reduced to understanding a system with 2 variables.

If there is no unique best metric to be chosen from the original n-dimensional space, it

might not make sense to choose successive metrics from the remaining (n-1)-dimensional

space, but instead continue to identify metrics in the full n dimensions. There is no guarantee

that these metrics will be orthogonal. The metrics might even not be linearly independent,

though when choosing a small number of metrics from a large n-dimensional space that is

less likely.

The decision of how to choose metrics from the original, multi-dimensional space in order

to isolate the interesting behavior of the system in a reduced number of variables is what

distinguishes different multivariate techniques. The datasets used in this study were collected

from streams in a similar geographic and geologic setting to reduce variation from those

sources. Streams were selected along a gradient of human influence driven mainly by

urbanization, with the % impervious area in the watershed as a quantitative measure of

human influence. The nature of the datasets suggest that correspondence analysis, which

isolates the major gradients in a dataset, and canonical correlation, which uses an outside

measurement to help identify metrics, would be useful in finding metrics to provide a signal

of biological condition.

Correspondence analysis

Correspondence analysis chooses metrics by first performing a Chi-squared transformation

of the original observations. This transformation non-linearly scales the value of each

variable by how much it differs from the average value across all observations, corrected for

the overall total of the variables at that observation. For any given metric in a

multidimensional space, each observation can be projected onto that metric, producing a

score for the observation in that metric. The variance of those scores (or, more correctly, the
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sum of squared deviations from the mean) is the variation accounted for or "extracted by"

that metric. Correspondence analysis chooses the metric that accounts for the most

variation, removes that line, and then repeats the process for the remaining dimensions.

If correspondence analysis is performed upon taxon counts at sites, the results are metrics

that best discriminate among sites by relative composition. A site with counts of 5, 5, and 10

would be mapped onto the same point as one with counts of 10, 10, and 20, and site whose

composition was greatly different from the overall norm would be mapped to a point far

from the origin.

Canonical correlation

Canonical correlation is a multivariate technique used when there are two sets of variables

(and therefore two multi-dimensional spaces) for each observation. The data are not

transformed. Canonical correlation chooses metrics by identifying a pair of metrics, one in

each space. It then projects the observations onto the metrics to produce scores for each

metric, and then chooses the pair of metrics that maximizes the correlation of scores. It

removes the lines, and then repeats the process for the remaining dimensions.

1.7 – B-IBI

The Benthic Index of Biological Integrity also seeks to facilitate the understanding of

complex systems by reducing the number of variables, so by the above definition it is also a

multivariate technique. Specifically it measures macroinvertebrate taxon abundances

(variables) at a number of sites (observation) and reduces the variables to a suite of 8-12

metrics.

The technique can be described, in the geometric terminology above, as first transforming

the count data as per section 1.5 and then identifying candidate metrics (called attributes in

IBI literature) based on knowledge of the biology of the organisms involved. Sites are

projected onto candidate metrics to produce scores, and candidate metrics are evaluated by

their ability to demonstrate a dose-response relationship with human influence. Other

criteria, such as rank correlation with human influence, are also often used.
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When an IBI metric is chosen, the original, n-dimensional space is not reduced to a line

and an (n-1)-dimensional space; all metrics are chosen from the original n-dimensional space.

A second criterion for metrics was providing a useful signal across a range of studies, in the

case of the B-IBI studies in Washington, Oregon, Wyoming, and Japan. Finally, metrics were

included in the final index because a contrast between two metrics might be useful in

diagnosing a specific form or magnitude of human influence. Using the B-IBI multivariate

technique a problem with a large number of variables – where large is however many taxa

were found in the system studied – is reduced to a problem with only ten variables. The

method of deriving B-IBI metrics makes sure those ten variables contain information

relevant to the question at hand: providing a signal of a site’s biological condition.

Candidate metrics / Invertebrate terminology

B-IBI candidate metrics are sub-spaces of all taxa defined by biological affinity. Biological

criteria for grouping taxa include:

Taxonomic: candidate Orders of invertebrates include Diptera, Ephemeroptera, Hemiptera,

Odonata, Plecoptera, and Trichoptera. Larger Families used as candidates include the Tipulidae

(Diptera) and Heptageneiidae (Ephemeroptera).

Feeding guild: most benthic macroinvertebrates can be classified by their manner of feeding

and what they feed on. These guilds include Predators, which eat other animals. Shredders tear

apart larger pieces of plant debris. Collectors can either gather benthic debris or filter it from

the water column, and Scrapers survive by scraping periphyton from the stream substrate.

Invertebrate taxa are also classified as being generally tolerant, neutral, or intolerant of degraded

stream conditions, focusing mostly on degradation caused by organic enrichment. They are

also classified as being tolerant, neutral, or intolerant of sediment.

Clinger taxa are identified as organisms that spend much of their time clinging to cobble on

the stream bottom.
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1.8 – Dataset

The data used in this analysis are counts of benthic macroinvertebrates collected from Puget

Sound lowland streams and then identified to genus by Bill Kleindl in 1994, Jeannie Udd in

1995 (Kleindl 1995), and Sarah Morley in 1997 (Morley and Karr 2002). The datasets were

collected for studies focusing on the effects of urbanization on the biological condition of

streams, and so avoided sites where the primary source of human disturbance took other

forms, such as agriculture or logging.
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1.9 – Tables

Table 1-1. Example: Transforming data to B-IBI style matrices
To produce the raw data, three distinct collections of invertebrates (replicates) are
taken from a riffle in each of two streams, and three taxa (A, B, and C) are counted
for each replicate. The Presence/Absence transformation records a 1 if a taxon is
found in any of the site's sample, a 0 otherwise. The Relative Abundance
transformation is the mean relative abundance across a site's replicates. The Mean
Presence transformation is the fraction of a site's samples containing a taxon.

If taxa A and B are long-lived taxa, then the sum of rows A and B of the
presence/absence transformation is the long-lived taxa richness score for each site. If
taxa B and C are Ephemeroptera taxa, then the sums of rows B and C of the mean
presence transformation are the Ephemeroptera taxa richness scores. If taxa A and C
are classified as tolerant taxa, then summing rows A and C produces the fraction of
tolerant taxa found at the sites. This procedure is equivalent to first calculating the
relative fraction of taxa A and C in each replicate, then finding the mean across
replicates.

Raw data
Site 1 Site 2

1 2 3 1 2 3
A 0 1 0 12 10 7
B 0 0 0 4 6 8
C 1 0 2 2 1 1

Transformed data

Presence/Absence
Relative

Abundance Mean Presence
Site 1 Site 2 Site 1 Site 2 Site 1 Site 2

A 1 1 0.33 0.56 0.33 1
B 0 1 0 0.36 0 1
C 1 1 0.67 0.08 0.67 1

Site 2 Site 2
1 2 3 1 2 3 mean

A 12 10 7 0.667 0.588 0.438 0.564
B 4 6 8 Æ 0.222 0.353 0.500 0.358
C 2 1 1 0.111 0.059 0.063 0.077

14/18 11/17 8/16 mean
0.778 0.647 0.500 Æ 0.642 0.642
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1.10 – Figures

Variable 1MetricVariable 2Variable 3Site 1Site 2Site 3Site 4Site 5

Figure 1-1. Projection of sites onto metrics to produce scores
Three variables are measured at five sites. The information in variables 1 and 2 is condensed into a
single value by projecting each site onto a new dimension or metric that is a linear combination of
variables 1 and 2. The score of a site in the metric is the distance of the projection from the origin.
The distance between the true site coordinates and the projection onto the metric represents the loss
of information in summarizing two variables in a single number. The site can then be projected onto a
plane through the origin at 90° to the first metric.

Variable 3

Combination of
variables 1 and 2

orthogonal to
first metric



19

2 — Gradients within the data
2.1 – Introduction

The B-IBI selects metrics that respond to human influence and so provide a signal of site

biological condition. To identify these metrics, data are collected at sites along a gradient of

human influence, and metric scores that follow a dose-response relationship to human

influence (among other criteria) are kept as useful.

Correspondence analysis also identifies metrics that correlate with gradients in the dataset.

The question investigated in this chapter is: Do the metrics identified by correspondence

analysis match up with the metrics used by the B-IBI?

The metrics of the B-IBI can be represented in matrix algebra notation as vectors of taxa

weights to be multiplied by a vector of taxon abundances or some transformation of taxon

abundance (see section 1.5 – Transformations). Correspondence analysis and most other

mathematics-based multivariate techniques produce metrics in the same form: a vector of

weights for each taxon.

In this chapter I compare the vector representation of the B-IBI metrics with the metrics

produced by correspondence analysis. I determine whether the metrics produced by the two

different techniques are alike or not alike.

2.2 – Correspondence analysis

Description and history

Correspondence analysis (CA) is a multivariate technique designed to distinguish among sites

based upon the relative values of a set of variables measured at those sites. Each variable

should be a count of individuals by taxon to accord with the original derivation of the

technique (Benzecri 1992, Chapter 1), but CA is sometimes used as an ordination technique

on continuous variables, especially stabilizing transformations of the count data (Greenacre

1984).

Correspondence analysis is sometimes called “reciprocal averaging” in reference to the

computational technique first used to perform it. Arbitrary coefficients are chosen for each
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of the variables. Scores are computed for each site by finding the sum of the weighted

variables. These site scores are used as site coefficients to calculate new scores for each

variable, and the process is repeated until the relative proportions of the scores converge.

Mathematical formulation

Mathematically, reciprocal averaging has the effect of applying a chi-squared transformation

to the original data matrix followed by singular value decomposition (Pielou 1984, Chapter

4.5). If Y is an intermediate placeholder, and X is a matrix of data (possibly the generic X,

for one of the transformations defined in section 1.5), and defining R as a diagonal matrix of

site totals and C as a matrix of variable totals, and     

† 

R
-

1
2  as a matrix whose elements are the

square root of the corresponding element of R then

    

† 

Y = R
-

1
2 ⋅ X ⋅ C (2.1)

is the matrix of   

† 

c2transformed count data. The matrix     

† 

YT ⋅ Y  can then be decomposed into

the product of three matrices:     

† 

ULVT  (singular value decomposition Leon 1986, Chapter 7).

U is a matrix of site scores, V is a matrix of variable scores, and L is a diagonal matrix of

singular values. A vector of site scores can be obtained from     

† 

C
-

1
2 VL  and variable scores

from     

† 

R
-

1
2UL . Which scores are used depends on whether one is interested in interpreting

site similarity based on the variable measurements, or on variable similarities based on their

values at the sites. These equations are for balanced scores, in which sites and variables are

given equal footing; scores can also be computed with an arbitrary relative weighting of sites

vs. variables.

Uses

Correspondence analysis, and extensions of it, are often used in botany to identify patterns

in plant species composition along a natural gradient (Whittaker 1967), using plant species

abundance for variables at sites. Identifying trends in the biological condition of watersheds

based on collections of benthic macroinvertebrates along an artificial gradient of human

influence is a conceptually similar problem.
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The B-IBI is designed with the opposite approach. Sites are selected to represent a

gradient of human influence, and combinations of variables that produce a dose-response

relationship to human influence are selected as metrics. Metrics derived from the two

approaches can be compared. The comparison is complicated because CA identifies multiple

orthogonal gradients within the data. In a dataset of sites selected to represent a gradient of

human influence, at least some of the gradients identified by CA should be related to human

influence. Correlation between B-IBI metrics and correspondence analysis derived metrics,

especially if that correlation is consistent across time, would indicate that the CA-identified

gradients are related to the human influence gradient targeted by the B-IBI.

2.3 – Questions

Do correspondence analysis and the Index of Biological Integrity produce metrics,
which are alike?

The Benthic Index of Biological Integrity (B-IBI) uses knowledge of an ecosystem and the

life history of specific taxa to define metrics. In the B-IBI based on studies in the

northwestern United States and Japan, caddisflies, stoneflies, and mayflies are included

separately because those three taxa respond differently to different types or levels of human

disturbance. Long-lived taxa are grouped together and chosen as a metric because those

organisms will respond to disturbance that occurs only every two or three years.

The exact rules for calculating B-IBI metric values from the raw taxa counts from a site can

be expressed in the same matrix notation used in discussing correspondence analysis. For

example: the Ephemeroptera taxa richness metric can be represented as vector of weights

for each taxon in a sample. Each Ephemeroptera taxon would receive a weight of one, and

all non-mayfly taxa would be weighted as zero. Multiplying this vector by a

presence/absence (1/0) matrix of taxa by sites will produce the Ephemeroptera taxa richness

scores, the number of mayfly taxa found at each site.

If a CA-identified gradient corresponds to a human influence gradient targeted by a B-IBI

metric, then the metrics should be morphologically alike and the weights assigned to any

particular taxon by the two methods would be correlated. This correlation would imply that

the two methods have identified the same link between biota and biological condition. In the
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absence of correlation I would conclude that the methods have not identified the same

connection between biota and biological condition, or at least that the connection is not

readily understood as a linear function of taxon abundances.

Does adding biological information to correspondence analysis produce metrics that
are even more like those of the B-IBI?

Biological information

The B-IBI incorporates additional information that is not included in correspondence

analysis of taxon counts. Life history attributes of the particular taxa and biological

knowledge of the ecological processes occurring in the system are considered when

candidate metrics are chosen for evaluation. By selectively combining taxa based on their

phylogenetic proximity or similar life histories, the B-IBI incorporates a filter to reduce noise

in and increase the signal of a site's biological condition.

Progressive addition of biological information

Some of this biological information can be progressively added to a correspondence analysis.

Phylogenetic information can be added by combining taxa at the family or order level to

create a new matrix for analysis. Feeding guild information can be added to the analysis by

aggregating all the taxa belonging to the same guild before applying correspondence analysis.

Combining taxa based upon taxonomic affiliation or feeding guild applies a filter to the

original matrix of taxon counts, ideally reducing noise similar to the B-IBI.

Filtering the data in this fashion should make it more likely that the taxon weights produced

by CA will be correlated with those representing B-IBI metrics. If there is an increase in

correlation when biological information is added in this way to the correspondence analysis,

then that increase will be a measure of the information added by considering the biology of

the organisms. If there were no effect of biological information on the correlation between

CA and B-IBI metrics, then, as above, I would conclude that the methods have not

identified the same connection between biota and biological condition.

2.4 – Methods

The data sets (matrices of invertebrate counts by taxon and site) were transformed into the

three mathematical groupings of the B-IBI metrics. In Table 2-1 two sites with three taxa are
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transformed as an example. A Presence/Absence transformation (1!if a particular taxon

was present at the site, 0 if it was not) is appropriate for Intolerant taxa, and Long-lived taxa.

The sum of presence/absence values for all Long-lived taxa, therefore, produces the total

number of long-lived taxa present at a site.

The Ephemeroptera, Plecoptera, and Trichoptera richness metrics go a step past simple

presence/absence and look at the fraction of site's replicates containing the taxon. A Mean

Presence transformation records that fraction for each site and taxon. The sum of those

values for all Mayfly taxa therefore produces the B-IBI Ephemeroptera richness score.

A Relative abundance transformation (the across-replicate average the fraction of individuals

belonging to a taxon) is appropriate for the percent tolerant and percent predator metrics,

which measure the fraction of sample individuals belonging to their category. The B-IBI

dominance metric is non-linear. It can be represented in matrix form but there is no gain in

generality, as it requires a distinct ordering of taxa for each site; individual columns would

have their rows in different orders.

Application of correspondence analysis to raw taxon counts

Correspondence analysis was performed on these three transformations to produce metrics

(in the form of vectors of taxa loadings) which best discriminated among the sites. These

metrics were compared with a matrix representation of the B-IBI metrics through inspection

for morphological similarity and by calculating the column-by-column rank correlation.

Correlations were not calculated for the dominance metric or the total taxa richness metric.

The Dominance metric cannot be represented in the same matrix form as the other metrics.

The total taxa richness metric includes all taxa, so their coefficients are all the same (1) and

correlation with a vector of identical values is undefined.

2.4.1 Comparison of ungrouped metrics to B-IBI metrics

Column by column correlation

The best possible matchings, defined as a one-to-one correspondence between each B-IBI

metric and one of the CA metrics with the highest probabilities of being significant, were
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identified for each set of metrics, and Bonferroni corrected post hoc p-values were

calculated.

Hypotheses of no rank correlation

These p-values are for the null hypothesis of no rank correlation between the coefficients of

two or four (depending upon the transformation) B-IBI metrics and the coefficients of the

most significant two or four CA metrics from correspondence analysis of the appropriate

transformation of the same dataset. These are not true hypothesis tests because the decision

of which CA metric to correlate with which B-IBI metric was made after computing the rank

correlation for each pair, and choosing the combination which produced the smallest

p-value. The p-values are for the best possible match between CA and B-IBI metrics,

according to the data.

Significant correlations between the B-IBI metrics and the correspondence analysis metrics

would imply that the two techniques had identified the same metric, corresponding to a

single link between the biota at the site and the site’s biological condition. In the absence of

correlation I would conclude the techniques identify different metrics and different

connections between the taxon counts and site biological condition.

2.4.2 Comparison of grouped metrics to B-IBI metrics

Aggregation by biology

To investigate the effect of including biological information in a correspondence analysis,

taxon counts were aggregated based on biological similarity. Counts were grouped

taxonomically by family and order, and by life history traits based on their functional feeding

guild classification. Correspondence analysis was performed on presence/absence, mean

presence, and mean individuals transformations of these simplified matrices, and the

coefficients produced were compared to the B-IBI metric coefficients. The three

correspondence analyses of each year were compared with the B-IBI metrics by inspection

for morphological similarity, and column-by-column rank correlation of B-IBI and CA-

derived taxon loadings.
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2.5 – Results

2.5.1 Comparison of ungrouped metrics to B-IBI metrics

The metrics produced by correspondence analysis of the ungrouped taxon counts were not

similar to the B-IBI metrics. Comparison of the coefficients of the ungrouped

correspondence analysis and B-IBI metrics (Table 2-3, Table 2-4 and Figure 2-1) revealed no

obvious similarities.

The B-IBI coefficients are all either 0 or 1. Within the data matrix the taxa were

(approximately) grouped by order, family, and genus, so closely related taxa were placed next

to each other. This ordering results in a series of runs of zeros and ones in the matrix

representation of the B-IBI metrics. No such pattern is evident in the correspondence

analysis metrics. The general pattern in CA metrics was for most taxa to receive coefficients

between –1 and 1, with occasional (< 10%) coefficients of ±2-5.

One significant correlation across all three years

Only one correlation, between the first CA metric from the Presence-Absence data matrix

and Intolerant taxa richness, was significant across all three years (post hoc Bonferroni

corrected p = 0.09). In general the Spearman’s rank correlations for 72 comparisons of CA

metrics to B-IBI metrics ranged from –0.31 to 0.35. Of the 72 p-values, 28% were less than

0.10 (Table 2-3). Aside from intolerant taxa richness there were no significant correlations

across years. Even the post hoc best possible matchings between CA and B-IBI metrics for

each year and transformation were not statistically significant.

2.5.2 Comparison of grouped metrics to B-IBI metrics

The metrics produced by correspondence analysis of the grouped taxa were closer to the

B-IBI metrics than the CA metrics from ungrouped taxa, but were still not similar enough to

be described as “like” the B-IBI metrics. The correlations of metric coefficients were larger,

and there was greater morphological similarity (Table 2-5).

Grouping taxa by order, family, and feeding guild did produce some morphological similarity

with certain B-IBI metrics. When grouping by family, all Ephemeroptera taxa received the

same correspondence analysis coefficient; the B-IBI metric for Ephemeroptera taxa richness
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has all ones for Ephemeroptera and zeros for other taxa, so there was some obvious visual

similarity. Rank correlation provides a more detailed examination by including the relative

magnitudes of the group coefficients.

As an example, Table 2-5 compares some metrics produced by correspondence analysis of

the mean presence transformation of the 1994 data after aggregating by order. All of the

Ephemeroptera taxa have the same coefficient, as for the B-IBI Ephemeroptera richness

metric. However, the coefficients CA assigned to non-Ephemeroptera taxa are not all zeros.

They are not even the same, but a variety of values both larger and smaller than the weight

assigned to the Ephemeroptera taxa. Family aggregated results were comparable for

Plecoptera taxa richness and Trichoptera taxa richness in the mean presence transformation,

and grouping by feeding guild produced a CA metric that looked like the % Predator B-IBI

metric.

Results of grouping taxa

In general, grouping taxa based on biological information before performing

correspondence analysis increased the fraction of significant individual correlations.

Grouping by order increased the fraction from 28% to 31%, and by family up to 57%.

Grouping by feeding guild produced 43% of individual correlations significant at 0.10

(Table!2-6).

Two correlations, between Plecoptera taxa richness and Ephemeroptera taxa richness and

the third and fourth correspondence analysis metrics of taxa grouped by Family were

significant (post hoc Bonferroni correct p-values of 0.02 and 0.03 respectively). Otherwise

there were no correlations significant across years. Only two of the best possible post hoc

matchings between CA and B-IBI metrics were significant. In the 1995 and 1997 data sets

the best possible p-values for correlating family aggregated, mean presence transformed CA

metrics with the mean presence B-IBI metrics were 0.02 and 0.00. The corresponding best

value in 1994 was 0.11.
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2.6 – Discussion

Visual inspection

Visual inspection of vectors of numbers, even in organized as in Table 2-4 and Table 2-5, is

a chancy way to decide whether the vectors are alike. Patterns of 1’s and 0’s in the vector

representation of an IBI metric are easy to identify. If the pattern of coefficients in a CA

vector follow a similar pattern, or a pattern of 0 and non-zero values, it might be easy to

detect. A pattern of values ranging from 0.1 to 0.4 versus values from 0.3 to 0.5 (for

example) would be much likelier results of correspondence analysis, and much more difficult

for a human observer to notice. Coefficients should be examined and compared, perhaps

with the aid of a graph (Figure 2-1), but straightforward inspection will miss subtler

relationships. Interpreting a list of coefficients as a vector is not easy, and consequent

difficulty of interpretation is a weakness of correspondence analysis and similar

mathematics-based multivariate techniques.

Morphological similarity

The morphological similarities evident when comparing CA metrics produced from

biologically grouped data and B-IBI metrics is not surprising. By definition B-IBI metrics

focus on a group of organisms that are alike, so like taxa receive the same weighting in the

metric. In the Ephemeroptera taxa richness metric, for example, all the Ephemeroptera taxa

are given a weighting of 1.

Aggregating all similar organisms replaces multiple rows of taxa with a single, summed row.

Aggregating by order, for instance, replaces a matrix of taxon counts, with a row for each

taxon, with a matrix of order counts, with a row for each order. Correspondence analysis on

such an aggregated matrix assigns a coefficient to each group. Assigning the group’s

coefficient to each member of that group will result in biological group members having the

same coefficient, just as in the B-IBI. For instance, in the order example above, all

Ephemeroptera taxa would be given the coefficient the correspondence analysis assigned to

the Ephemeroptera row of the aggregated matrix.
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CA coefficients assigned for each group were different, so even if, within a metric, a single

group’s taxa shared a value – just like the B-IBI metric – the other groups had widely varying

coefficients, not at all like the B-IBI metric.

If there were no connection at all between the CA derived metrics and the B-IBI metrics one

would expect only 10% of the correlations to be statistically significant at the 0.10 level (Zar

1996 p. 81). 28% of correlations tested produced p-values less than 0.10. While not a formal

statistical test, this overabundance of significant correlations implies that there is some

likeness between the two sets of metrics. However, with the possible exception of the first

CA presence-absence component and intolerant taxa richness, the calculated correlations

were not useful in divining the nature of that likeness.

Once the potential link between of the first CA presence-absence component and Intolerant

taxa richness was identified, a more detailed perusal of the CA coefficients did not reveal any

biological similarity to the B-IBI. In the B-IBI intolerant taxa richness metric, intolerant taxa

have a coefficient of 1, and all other taxa have a coefficient of 0. In the CA-derived metric

intolerant taxa did not receive unusually high or low loadings. There were 11 taxa classified

as intolerant and only one of the 11 most extreme correspondence analysis metric

coefficients was for an intolerant taxon.

Post-hoc p-values

The best p-values reported in Table 2-3 and Table!2-6 are all post hoc, meaning the

hypotheses they pertain to were formulated after the analysis had been run. They are not true

p-values, as their hypotheses were selected as being most likely to be rejected. Even so, none

of the best p-values were significant at the 0.10 level, implying that the data are not

consistent with such a simple, straightforward relationship between the B-IBI metrics and

correspondence analysis metrics.

Grouping by family

Grouping taxa based on biological information before applying correspondence analysis

increases the number of significant correlations with B-IBI metrics, up to 57% when

grouping by family. This increase should not be interpreted as necessarily meaningful. Three
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of the eight B-IBI metrics that were compared with CA are based on a taxon’s family, so

performing a CA on just family membership should be expected to increase the correlation

between the two metrics. Still, the fractions of p-values less than 0.10 were still greater than

the expected 10%.

Grouping by order

Grouping by Order produced two correlations that were significant in all three years. The

B-IBI metrics involved in those correlations, Ephemeroptera and Plecoptera taxa richness,

are based on order. As described above, grouping by family would be expected to increase

correlation with such B-IBI metrics, so the increased significance with taxonomic grouping

is not necessarily important. A meaningful correlation between the B-IBI metrics and CA

metrics would be consistent across the three years of data. A more careful inspection for

visual similarity (Table 2-3) did not show an interpretable pattern to the correlation between

CA and B-IBI metrics or even between CA metrics across years.

The best p-values reported in Table!2-6 are also post hoc, so are not true p-values, merely a

measure of strength of the best possible matching between CA and B-IBI metrics. Grouping

by family produced two such significant p-values for the mean presence transformation.

That transformation applies to the three family based B-IBI metrics (Ephemeroptera,

Plecoptera, and Trichoptera richness) so, as above, increased significance is not surprising.

2.7 – Conclusions

Correspondence analysis strives to find metrics that best distinguish among a set of sites.

The B-IBI metrics are deliberately constructed to distinguish among sites along a specific

gradient of human influence. These similar goals may have resulted in similarities between

the metrics, which in turn may be responsible for the excess of p-values reported in the

correlation analysis.

Even in the presence of consistent correlation between CA and B-IBI metrics (which was

not found in this study) the underlying biological interpretation must be the same before

they can be identified as alike. Correspondence analysis seeks to distinguish among sites

across all sources of variability, and in this study those sources did not align with obvious
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biological properties of the variables. There would only be an exact correlation with the

B-IBI in cases where the biological signal dominated total variation or perhaps in an

extremely large sample size where the noise of the non-biological signals would average out.

In contrast, the B-IBI metrics are designed to focus on a specific source of variation, and are

chosen to correspond to biological similarities of the variables.
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2.8 – Tables

Table 2-1. Example: Transforming data to B-IBI style matrices
To produce the raw data, three distinct collections of invertebrates (replicates) are
taken from a riffle in each of two streams, and three taxa (A, B, and C) are counted
for each replicate. The Presence/Absence transformation records a 1 if a taxon is
found in any of the site's sample, a 0 otherwise. The Relative abundance
transformation is the mean relative abundance across a site's replicates. The Mean
Presence transformation is the fraction of a site's samples containing a taxon.

If taxa A and B are long-lived taxa, then the sum of rows A and B of the
presence/absence transformation is the long-lived taxa richness score for each site. If
taxa B and C are Ephemeroptera taxa, then the sums of rows B and C of the mean
presence transformation are the Ephemeroptera taxa richness scores. If taxa A and C
are classified as tolerant taxa, then summing rows A and C produces the fraction of
tolerant taxa found at the sites. This procedure is equivalent to first calculating the
relative fraction of taxa A and C in each replicate, then finding the mean across
replicates.

Raw data
Site 1 Site 2

1 2 3 1 2 3
A 0 1 0 12 10 7
B 0 0 0 4 6 8
C 1 0 2 2 1 1

Transformed data

Presence/Absence
Relative

Abundance Mean Presence
Site 1 Site 2 Site 1 Site 2 Site 1 Site 2

A 1 1 0.33 0.56 0.33 1
B 0 1 0 0.36 0 1
C 1 1 0.67 0.08 0.67 1

Site 2 Site 2
1 2 3 1 2 3 mean

A 12 10 7 0.667 0.588 0.438 0.564
B 4 6 8 Æ 0.222 0.353 0.500 0.358
C 2 1 1 0.111 0.059 0.063 0.077

14/18 11/17 8/16 mean
0.778 0.647 0.500 Æ 0.642 0.642
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Table 2-2. Metrics used in the B-IBI for Puget Sound Lowland Streams
Some metrics are expected to increase in value as human influence rises and
biological condition drops, other metrics follow the opposite pattern. A selection of
metrics, taken together, constitutes an index.

Metric
Response to increasing

human influence
Total taxa decrease

Ephemeroptera taxa richness decrease

Plecoptera taxa richness decrease

Trichoptera taxa richness decrease

Dominance (top 3 taxa) increase

Long-lived taxa richness decrease

Intolerant taxa richness decrease

Percent tolerant individuals increase

Clinger taxa richness decrease

Percent predator individuals decrease
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Table 2-3. Results of rank-correlation comparison of CA and B-IBI metrics
Of the 72 column-by-column rank correlations, 28% had p-values less than 0.10,
implying that there is some connection between CA and B-IBI metrics. However,
Bonferroni corrected multiple-comparisons – even post-hoc best possible matchings
between CA and IBI metrics were not significant.

Transformation % p-values < 0.1 Best p-value
Presence/Absence 0.25 0.61

Mean Presence 0.25 0.751994
Mean Individuals 0.25 0.17

Presence/Absence 0.25 0.66
Mean Presence 0.31 0.661995

Mean Individuals 0.50 0.23
Presence/Absence 0.50 0.25

Mean Presence 0.19 0.481997
Mean Individuals 0.25 0.63

Overall 0.28
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Table 2-4. Metric coefficients for B-IBI and correspondence analysis
Correspondence analysis was performed on the mean individuals transformation of
the 1995 dataset. Coefficients for a selection of the taxa present in the dataset are
shown below, along with the corresponding coefficients for the Percent Predator
and Percent Tolerant B-IBI metrics. This table does not list coefficients for all taxa,
it is intended as a sample of the results used to calculate the correlations reported in
Table!2-6.

B-IBI metrics
Correspondence analysis of 1995 mean

individuals transformation

Taxon
Percent
Predator

Percent
Tolerant

CA
Axis 1

CA
Axis 2

CA
Axis 3

CA
Axis 4

CA
Axis 5

CA
Axis 6

Pelecypoda 0 0 0.56 0.01 -0.51 -0.31 -0.76 0.79
Colembolla 0 0 0.45 0.18 -0.15 -0.32 -0.15 0.77
Gastropoda 0 0 0.21 0.01 0.46 -3.62 -1.96 -1.06

Nematoda 0 0 -0.12 0.07 0.08 0.42 0.02 -0.18
Amphipoda 0 1 0.11 0.32 -0.07 -0.73 -0.76 0.14

Isopoda 0 1 -0.95 0.02 0.08 0.76 -1.57 -0.24
Turbellaria 0 0 -1.72 -0.24 -2.33 -0.20 0.61 -0.08
Hirudinea 1 1 -3.98 -0.61 -4.96 -1.35 2.32 0.18

Oligochaeta 0 0 -0.43 0.59 0.54 0.31 0.08 0.28
Ampumixis 0 0 0.40 0.36 -0.08 -0.05 0.11 0.05

Cleptemis 0 1 0.19 -0.17 0.35 -1.56 -0.29 -0.16
Heterlimnius 0 0 0.48 0.33 -0.08 0.07 0.21 0.03

Narpus 0 0 -0.26 -0.33 0.28 0.70 -0.27 0.02
Optioservus 0 1 0.63 0.55 -0.41 0.35 0.17 -0.40

Zaitzevia 0 1 0.61 0.23 -0.17 -0.22 0.30 -0.13
Bezzia.Palpomyia 1 0 0.04 -0.81 0.17 0.38 0.09 0.07

Chironomidae 0 0 0.19 -0.70 -0.24 0.32 -0.28 -0.04
Dixa 0 0 1.12 0.64 -1.02 -0.61 -0.80 2.64

Dixella 0 0 -0.05 -0.44 0.48 -0.19 0.46 -0.41
Chelifera 1 0 0.24 0.25 -0.28 0.21 -0.34 -0.26

Hemerodromia 1 1 0.29 0.33 -0.02 -0.56 -0.37 -0.52
Glutops 1 0 -0.31 -1.12 0.38 0.44 -0.01 -0.42

Pericoma 0 0 -0.07 -1.33 0.56 0.34 0.51 -0.20
Simulium 0 0 -0.96 -0.57 -0.17 0.60 -1.29 -0.42
Antocha 0 0 0.64 0.58 -0.55 0.19 0.03 -0.10

Dicronata 1 0 0.48 0.06 -0.23 0.50 0.09 -0.38
Hexatoma 1 0 0.41 -0.83 -0.01 0.66 0.23 0.31
Prionocera 0 0 0.58 0.94 0.05 0.72 0.78 -0.27

Sialis 1 0 0.68 -0.30 -0.71 -0.24 -0.99 0.64
Baetis 0 1 -0.81 0.20 0.22 -0.05 -0.07 0.04

Acentrella 0 1 0.03 -0.35 0.41 -0.62 0.50 0.29
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Table 2-5. Metric coefficients for B-IBI and order-aggregated CA
The mean presence transformation of the 1994 data was aggregated by order –
counts of all taxa belonging to the same order were summed before performing
correspondence analysis to produce coefficients for each order. Each taxon was
assigned its appropriate order coefficient for comparison with the B-IBI metric
coefficients in the table below. Taxa in the same order have the same coefficients for
both the B-IBI and CA metrics, but beyond that likeness there is little similarity
between the two. This table does not list coefficients for all taxa, it is intended as a
sample of the results used to calculate the correlations reported in Table!2-6.

B-IBI Metrics

Correspondence analysis
of 1994 mean presence

transformation

Taxon
Ephem.
Richness

Plecoptera
Richness

Trichoptera
Richness

Clinger
Richness

CA
Axis 1

CA
Axis 2

CA
Axis 3

CA
Axis 4

Baetis 1 0 0 0 -0.15 -0.10 -0.03 0.06
Acentrella 1 0 0 0 -0.15 -0.10 -0.03 0.06

Drunella 1 0 0 1 -0.15 -0.10 -0.03 0.06
Serratella 1 0 0 1 -0.15 -0.10 -0.03 0.06

Cinygmula 1 0 0 1 -0.15 -0.10 -0.03 0.06
Ironodes 1 0 0 1 -0.15 -0.10 -0.03 0.06
Epeorus 1 0 0 1 -0.15 -0.10 -0.03 0.06

Paraleptophlebia 1 0 0 0 -0.15 -0.10 -0.03 0.06
Kathroperla 0 1 0 1 0.30 0.29 -0.17 -0.07

Suwallia 0 1 0 0 0.30 0.29 -0.17 -0.07
Sweltsa 0 1 0 1 0.30 0.29 -0.17 -0.07

Haploperla 0 1 0 0 0.30 0.29 -0.17 -0.07
Neaviperla 0 1 0 0 0.30 0.29 -0.17 -0.07

Paraperla 0 1 0 0 0.30 0.29 -0.17 -0.07
Diploperla 0 1 0 0 0.30 0.29 -0.17 -0.07

Isoperla 0 1 0 1 0.30 0.29 -0.17 -0.07
Skwala 0 1 0 1 0.30 0.29 -0.17 -0.07

Paracapnia 0 1 0 0 0.30 0.29 -0.17 -0.07
Brachycentrus 0 0 1 1 -0.03 0.05 0.01 0.01

Micrasema 0 0 1 1 -0.03 0.05 0.01 0.01
B.Lepidostoma 0 0 1 0 -0.03 0.05 0.01 0.01
Oligoplectrum 0 0 1 0 -0.03 0.05 0.01 0.01

Glossosoma 0 0 1 1 -0.03 0.05 0.01 0.01
Arctopsyche 0 0 1 0 -0.03 0.05 0.01 0.01

Cyrnellus 0 0 1 0 -0.03 0.05 0.01 0.01
Neureclipsis 0 0 1 0 -0.03 0.05 0.01 0.01

Polycentropus 0 0 1 1 -0.03 0.05 0.01 0.01
Rhyacophila 0 0 1 1 -0.03 0.05 0.01 0.01
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Table!2-6. Correlation after aggregating based on biological information before CA
Grouping taxa based on biological similarity before performing correspondence
analysis produces metrics that correlate better with B-IBI metrics. There is an
increase in the number of significant individual comparisons progressing from no
aggregation to grouping by order and family. Grouping by feeding guild produced a
number of significant comparisons in between order and family.

Aggregated by
Order Family Feeding Guild

Year Transform % p < 0.1 Best p % p < 0.1 Best p % p < 0.1 Best p
Presence/
Absence 0.25 0.23 0.25 0.22 0.25 0.50

Mean
Presence 0.38 0.29 0.50 0.11 0.63 0.231994

Mean
Individuals 0.00 0.26 0.25 0.31 0.25 0.11

Presence/
Absence 0.00 0.69 0.50 0.49 0.00 0.70

Mean
Presence

0.38 0.87 0.63 0.02 0.44 0.101995

Mean
Individuals 0.50 0.42 0.50 0.81 0.50 0.60

Presence/
Absence 0.25 0.53 0.50 0.48 0.00 0.97

Mean
Presence 0.38 0.27 0.88 0.00 0.50 0.111997

Mean
Individuals 0.00 0.57 0.25 0.71 0.50 0.14

Presence/
Absence 0.17 0.48 0.42 0.40 0.08 0.72

Mean
Presence 0.38 0.48 0.67 0.04 0.52 0.15mean

Mean
Individuals 0.17 0.42 0.33 0.61 0.42 0.28

Overall 0.31 0.57 0.43
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2.9 – Figures
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Figure 2-1 Plot of CA coefficients vs. B-IBI Long-lived and Intolerant coefficients
For the 1994 data set, the first correspondence analysis metric from the
presence/absence transformation of the data produced coefficients for each taxon in
the data set, here plotted against the corresponding coefficients for the B-IBI.
Intolerant richness and Long-lived richness metrics. The B-IBI coefficients have
been perturbed slightly from their true values of 0 or 1 to illuminate overlapping
points. There is no visually obvious correlation between the two axes.
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Figure 2-2. Top CA metric coefficients for order-aggregated mean presence data
Correspondence analysis applied to the order-aggregated mean presence
transformation of the data produced different coefficients for each year in the data
set. The two most significant metrics' coefficients had a significant rank correlation
with the B-IBI Ephemeroptera and Plecoptera taxa richness metrics, but the
different values, and orders of these coefficients across years prevents a biological
interpretation.
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3 — Concordance with other datasets
3.1 – Introduction

The method employed in devising the B-IBI selects metrics that respond to human influence

and so provide a signal of site biological condition. It uses an external measurement of

biological condition or human influence to identify those metrics. Metric scores that follow a

dose-response relationship with the external measurement (among other criteria) are kept as

useful.

Multiple regression finds the metric in a dataset that best correlates with another, response

measurement. Canonical correlation finds the metrics in a dataset that best correlate with

multiple external measurements simultaneously. How do the metrics produced by these two

mathematics-based multivariate techniques compare with the metrics of the B-IBI?

Both multiple regression and canonical correlation produce metrics that maximize

correlation with the external measurements. A metric must have other properties, however,

to be useful as an indicator of biological condition. Both multiple regression and canonical

correlation produce scores that correlate well with % impervious area (and by extension

biological condition) in a set of sites. If those same metrics produce scores with little or no

correlation to % impervious area at those same sites in another year, or with a different set

of sites in the same year, they are not useful as indicators of biological condition.

The metrics of the B-IBI are, by definition, constant for all sites and years for the geographic

region for which the index is calibrated.

In this chapter, I compare the correlation of metric scores produced by the B-IBI, multiple

regression, and canonical correlation across three years of observations. I will also compare,

across years, the metrics produced by multiple regression and canonical correlation, to see if

they are alike enough to be useful as indicators of biological condition.
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3.2 – Multiple regresssion

Description of multiple regression

While it is not usually considered such, multiple regression with a single response variable

and many predictors is also a mathematically based multivariate technique. The response

variable is modeled as an additive function of the predictor variables, or a transformation of

the predictor variables.

Multiple regression assigns a coefficient to each of the predictor variables so that a weighted

total, or "score" can be calculated for each site. A set of coefficients corresponds to a single

line, or metric in the space of the predictor variables. The score for an site is the projection

of the site onto the metric. The best metric minimizes the squared differences between the

scores and the response variables.

Mathematical formulation of multiple regression

In multiple regression the best metric is traditionally called b, a vector of individual

coefficients (b's) for each of the predictor variables. b can be estimated using the regression

equation

  

† 

b = XT ⋅ X( )
-1

⋅ XT ⋅ Y (3.1)

where X is the matrix of predictor variables by observation, and Y is the vector of responses

(Neter et al. 1996).

3.3 – Canonical correlation

Description of canonical correlation

Canonical correlation can be considered an extension of multiple regression. It is used where

there are two sets of variables measured for each observation. In addition to having multiple

predictor variables, there are also multiple response variables.

Canonical correlation finds metrics in each set of variables. Scores are calculated in each set

of variables by projecting the observations onto the appropriate metric. The best pair of

metrics maximizes the correlation of scores. Once the best pair of metrics has been
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identified, they are removed from the variable sets by projecting the observations into the

remaining dimensions and the process is repeated.

In botany, both the abundances of plant taxa and a suite of physical environmental

measurements (pH, moisture, altitude) are collected at a series of sites. Canonical correlation

produces metrics, or combinations of plants that are closely associated with specific

combinations of environmental variables.

Mathematical formulation of canonical correlation

If X is a matrix of m variables and Y is a matrix of p variables, both observed at the same set

of sites, then we can imagine vectors of coefficients a and b so that

      

† 

X* = a T ⋅ x = a1x1 + a2x2 +L+ amxm (3.2)

and

      

† 

Y* = bT ⋅ y = b1y1 + b2y2 +L+ bmym (3.3)

where X* and Y* are vectors of site scores. The objective of canonical correlation is to find

the vectors a and b so the correlation of X* and Y* (r(X*, Y*)) is maximized.

After Dillon and Goldstein (1984) we can define the variance-covariance matrices as

    

† 

E X -mX( ) X -mX( )
T{ }XX

Â

E Y -mY( ) Y -mY( )
T{ }YY

Â

E X -mX( ) Y -mY( )
T{ }XY

Â

(3.4)

where mX and mY are vectors of the means of each variable in X and Y. Now the correlation

can be written as a function of a and b

    

† 

r a,b( ) =
a T ⋅ SXY ⋅ b

a T ⋅ SXX ⋅ a( ) bT ⋅ SYY ⋅ b( )
(3.5)

Because correlation is scale-invariant, we can normalize a and b so

    

† 

a T ⋅ SXX ⋅ a = bT ⋅ SYY ⋅ b = 1, and E{X*} and E{Y*} are zero (the scores are centered around

the origin). From there, minimizing the correlation is equivalent to solving
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† 

SXX
-1 SXYSYY

-1 SYX - lI( ) ⋅ a = 0

SYY
-1 SYXSXX

-1 SXY - lI( ) ⋅ b = 0
(3.6)

for a and b, where l is an eigenvalue for the variance-covariance product matrices.

    

† 

SXX
-1 SXYSYY

-1 SYX - lI = 0

SYY
-1 SYXSXX

-1 SXY - lI = 0
(3.7)

There are two sets of eigenvectors for each eigenvalue, so

    

† 

a =
SXX

-1 SXYb

l

b =
SYY

-1 SYXa

l

(3.8)

and all that is needed is to solve for one of the variance-covariance characteristic equations

(Equation 3.6) to obtain values for a and b.

Uses of canonical correlation

Canonical correlation and its extensions are used whenever it is desirable to establish a

connection between two sets of measurements. In botany, both the abundances of plant taxa

and a suite of physical environmental measurements (pH, moisture, altitude) are collected at

a series of sites. Canonical correlation produces metrics, or combinations of plants that are

closely associated with specific combinations of environmental variables. Identifying

combinations of benthic macroinvertebrate counts that are associated with a measurement

(or measurements) of site quality would be similar to the process to construct the B-IBI.

The B-IBI and canonical correlation both identify useful metrics as those whose scores

correspond to measurements from an external set of data. In the B-IBI candidate metrics are

proposed based on knowledge of the biology of the benthic macroinvertebrates. Generating

candidate metrics in this fashion introduces another source of information, the biology of

the organisms, to the B-IBI method that is not available to mathematics-based multivariate

techniques. Once they have been generated, candidate metrics are evaluated by their

response to a measure of human influence. Both multiple regression and canonical
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correlation produce metrics that maximize the correlation between the metric scores and a

measure, or combination of measures, of human influence. Neither multiple regression nor

canonical correlation considers the biology of the organisms, only their presence/absence or

abundance.

Question: Are metrics consistent across years?

The B-IBI defines metrics based on biological characteristics of the taxa involved. The

metrics included are therefore constant. The fact that these metrics produce similar scores at

sites with a similar biological condition across time and space is one of the properties that

qualify them for inclusion in the B-IBI.

Multiple regression and canonical correspondence can be used to compute metrics whose

scores are correlated with another measurement of human influence. If these metrics reflect

a connection between the biota being sampled and the human influence at the site, then they

should produce similar results (high correlation between score and human influence) for

other sites, or for repeated samples from the same sites.

The reverse case is also true. If the multiple regression or canonical correspondence

identifies a good metric (defined as maximizing correlation with the external measurements)

for the same sites in two different years, but those two metrics are not alike, then the metrics

have not identified a useful connection between the biology of the system and human

influence.

A metric that produces useful scores (with a strong signal of biological condition) on a set of

sites in one year, yet does not work for the same sites in another year, or other sites in the

same year, is inconsistent. An inconsistent metric is not useful as a yardstick of biological

condition; scores in the metric cannot be compared across time or space.

If multiple regression or correspondence analysis produces metrics that are consistent across

multiple years, that consistency implies the metrics identify a useful connection between the

biota and biological condition, suitable for use as an indicator of human influence and, by

proxy, biological condition. In the absence of any correlation across years, I would conclude
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that the technique has identified two different connections, perhaps a connection specific

to the dataset, which is not useful as an indicator of biological integrity.

3.4 – Methods

3.5.1 Correlation of B-IBI scores across years

The consistency of B-IBI metrics was examined by computing B-IBI scores for all sites in

three years of data, 1994, 1995, and 1997. To maintain uniformity with parallel examinations

of multiple regression and canonical correlation metrics (see following sections), only the 46

(out of 104 total) taxa that were present in the datasets for all three years were used. This

reduction in taxa would be expected to reduce the signal/noise ratio of B-IBI metric scores

to % impervious area, and reduce correlation of B-IBI scores across years.

Individual B-IBI metric scores were calculated, using the reduced set of taxa, for all sites in

all three years. Using the reduced set will also affect individual, un-scaled B-IBI scores

slightly. Restricting the analysis to those taxa found in all three years eliminates rare taxa,

which contain an important fraction of the sample information (Cao et al. 1998).

Cross-year correlations of scores were calculated for common sites. If the B-IBI metric

scores are correlated across years, then the B-IBI technique is useful in deriving a stable,

repeatable signal of biological condition. If the B-IBI metric scores are not correlated across

years, I would conclude that the technique is not suitable for producing an indicator of

biological condition.

Multiple regression of % impervious area and taxa richness vs. taxon counts

To evaluate multiple regression’s ability to indicate biological condition the technique was

used to regress both % impervious area and total taxa richness as linear functions of the 46

taxa common to all three years. Total taxa richness (in all 104 taxa) was used as a response

variable because it is a consistent indicator of biological condition, even though it is not

independent of the remaining taxa used as predictor variables.

When the original benthic macroinvertebrate data were collected, three replicates were taken

from each site. Normally the replicates are combined (see section 1.5 – Transformations) but

for multiple regression and canonical correlation the individual replicates were used to
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provide a large enough sample size to fit coefficients for 46 different taxa. Treating the

non-independent replicates as independent would be expected to bias estimated coefficients

towards zero (Neter et al. 1996).

3.5.2 Correlation of regression metric scores across years

The consistency of multiple regression metrics was examined by computing site scores for all

three years of data. The score for site j was calculated by averaging the taxon counts across

replicates, multiplying by the appropriate fit coefficient (bi), and summing across all t taxa.

  

† 

sj = bi ⋅ x i ,j
i=1

t

Â (3.9)

Cross-year score correlations were calculated for common sites. If the multiple regression

metric scores are correlated across years, then multiple regression is effective at producing a

signal of biological condition. If the multiple regression metric scores are not correlated

across years, I would conclude that the technique is not able to reliably identify links

between biota and biological condition.

3.5.3 Correlation of multiple regression metric coefficients across years

The multiple regression metrics generated for the 1994, 1995, and 1997 datasets were

compared. Each metric was represented as a vector of coefficients, one coefficient for each

of the 46 taxa used. The correlation coefficient was calculated for each pair of years. A high

correlation would indicate that the same taxa tend to be given the same importance in

determining the metric score across years; low correlation implies little or no similarity

between the treatment of particular taxa across years.

Correlation of metric coefficients between years further implies that the metrics have

identified the same connection between the biota and biological condition in each year. In

the absence of correlation I would conclude that the multiple regression metrics had

identified different connections in each year, or at least that the connection is too

complicated to be represented as a linear combination of the taxon counts.



46

Rank correlation accounts for metric scaling

Scaling a metric, by multiplying it with a constant, might affect the Pearson’s correlation

coefficient with another, unscaled metric. Because it is the relative magnitudes of the

coefficients that identify a metric (think of a vector in the X-Y plane: the line that goes from

the origin to the point (2, 1) is the same as the line that goes from the origin to (4, 2), it just

doesn’t go as far) the Spearman rank correlation was also calculated to compare metrics. For

the same reason, only the absolute value of the correlation coefficient should be considered

when comparing the correlation of multiple regression metric coefficients (the line that goes

from the origin to (-2, -1) is the same as the line from the origin to (2, 1), merely in the

opposite direction). For example: the vectors (1, 2, 3, 4) and (-3, -6, -9, -12) have a strong

relationship to each other, but would have a negative correlation coefficient.

3.5.4 Consistency of regression metrics across years

As a further check of the metrics’ utility across years, the 1994 metrics were used to calculate

scores for the sites in the 1995 and 1997 datasets. Like the correlation of B-IBI metric scores

above, if the multiple regression metrics from the 1994 data produce site scores that are

consistent across years, then the 1994 multiple regression metrics are a useful, repeatable

signal of biological condition. If the scores are not correlated across years, I would conclude

that the metrics are not a useful indicator of biological condition, as their efficacy at

predicting %!impervious area or total taxa richness is restricted to a single year.

Canonical correlation of taxon counts against % impervious area and total taxa

The ability of canonical correlation to indicate biological condition was examined by

computing scores for both taxon metrics in all three years of data. The matrix of taxon

counts was correlated with both % impervious area and total taxa richness simultaneously. %

impervious area is the quantitative measure of human influence for each site, and total taxa

richness at a site is another, well-used indicator of biological condition. Only the 46 taxa

common to all three years were used for the canonical correlation, so total taxa richness

contains some information on site biological condition not in the matrix of reduced taxa.
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3.5.5 Correlation of canonical scores

Two response variables were used, so canonical correlation produces two metrics whose

scores maximally correlate with combinations of the response variables, % impervious area

and total taxa richness. Scores were computed for all sites in both metrics according to

  

† 

sj = bi ⋅ x i ,j
i=1

t

Â (3.10)

where ci,k is the coefficient for taxon i in the kth canonical correlation metric.

Cross-year score correlations were calculated for common sites. If the canonical metric

scores are correlated across years, then canonical correlation is effective at producing a signal

of biological condition. If the canonical metric scores are not correlated across years, I would

conclude that the technique is not able to reliably identify links between biota and biological

condition.

Canonical correlation scores are computed to maximally correlate with a combination of the

response variables, rather than with an observed variable directly. Multiplying all of a

metric’s coefficients by a constant results in the same metric. Like comparisons of metric

coefficients, when calculating the correlations of canonical scores, only the magnitude of the

correlation coefficient should be considered. Two metrics, one of which assigns low scores

to disturbed sites and high scores to undisturbed sites, and the other of which does the

opposite, may be indicating the same information about biological condition, and would

have a correlation coefficient close to -1. For an example, see the correlations between the

second canonical metrics in 1995 and 1997 on Table 3-7.

3.5.6 Correlation of canonical metrics

The canonical correlation metrics generated for the 1994, 1995, and 1997 datasets were

compared. Each metric was represented as a vector of coefficients, one coefficient for each

of the 46 taxa used. The correlation coefficient was calculated for each pair of years. A high

correlation would indicate that the same taxa tend to be given the same importance in

determining the metric score across years; low correlation implies little or no similarity

between the treatment of particular taxa across years.
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If metric coefficients are correlated across years, that correlation implies that they have

identified the same connection between the biota and biological condition in each year. In

the absence of correlation, I would conclude that the canonical correlation metrics had

identified different connections in each year.

Like the multiple regression coefficients, it is the relative magnitudes of the coefficients that

specify the canonical correlation metrics. The Spearman rank correlation was also used to

compare the canonical metrics. Again, only the absolute value of the correlation coefficients

should be considered; high negative correlation coefficients are still strong correlation, albeit

negative.

3.5.7 Consistency of canonical metrics across years

As a further check of utility across years, the 1994 metrics were used to calculate scores for

the sites in the 1995 and 1996 datasets. If the canonical correlation metrics from the 1994

dataset produce site scores that are consistent across years, then the 1994 canonical

correlation metrics are a useful signal of biological condition. If the scores do not correlate

across years, I would conclude that the metrics are useful only within a single year, and are

therefore not desirable as indicators of biological condition.

3.5 – Results

3.6.1 Correlation of B-IBI scores across years

Some of the B-IBI scores were highly correlated across years. Ephemeroptera, Plecoptera

and Clinger richness had consistently high correlations (r > 0.80) indicating that they are

consistent across years. Other metrics, such as dominance and percent tolerant were not a

strongly correlated (0.50 < r < 0.75) and intolerant taxa richness was highly variable (r =

.046, -.042, 0.944), indicating that they might be less useful as consistent indicators of

biological condition (Table 3-1). The same pattern of more and less consistent metrics is

seen in the Spearman (rank) correlations (Table 3-2).

Of the three years, 12 sites were in common in the 1994 and 1995 datasets, 11 between 1994

and 1997, and 6 sites in common between 1994 and 1997.
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3.6.2 Correlation of regression metric scores across years

The multiple regression metric scores were an effective signal of biological condition. The

correlations of scores across pairs of years were all high (minimum r = 0.70, half > 0.90)

(Table 3-3 and Table 3-4). Multiple regression is effective at constructing metrics to

reproduce both % impervious area and total taxa richness, two indicators of biological

condition.

3.6.3 Correlation of regression metric coefficients across years

An examination of the actual multiple regression metrics derived for each year indicates that

they are not suitable for use as an indicator of biological condition. The metric coefficients

had little or no correlation (Pearson’s or Spearman’s) across years (Table 3-5 and Table 3-6).

The metrics derived by multiple regression were distinctly different from year to year,

implying the technique identified a different connection between the biota and the proxy for

biological condition (either % impervious area or total taxa richness) in each year.

3.6.4 Consistency of regression metrics across years

Applying the same metric to multiple years also shows that the multiple regression metrics

are not useful as indicators of biological condition. When the 1994 metrics were used to

predict % impervious area and total taxa richness in 1995 and 1997, there was negligible

correlation (3 of 4 < 0) between the scores in 1994 and the scores in the other two years

(Table 3-3 and Table 3-4). This lack of consistency in across-year metric performance

indicates that the multiple regression metrics are not useful indicators of biological

condition, as they do not provide a useful signal outside of the dataset used to derive them.

3.6.5 Correlation of canonical scores

Canonical correlation is also successful at deriving metrics that signal biological condition.

The correlations of scores across years were high (all |r| > 0.80, Table 3-7), indicating the

technique can consistently derive metrics to link the biota and the indicators of biological

condition.

Because there were two measures of site quality, two orthogonal metrics were computed for

each year. The correlations between taxon scores and quality measures were .98, .90 and .86
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for the first (strongest correlation) metric and .86, .81, and .82 for the second, in the '94,

'95 and '97 datasets respectively.

3.6.6 Correlation of canonical metrics

Comparing the coefficients of the canonical metrics reveals that taxa were weighted

differently in different years. These different weights indicate that the canonical correlation

technique identified a different connection between the biota and biological condition in

each year, and so the canonical metrics are not generally useful as indicators of biological

condition. There was little or no correlation (Pearson’s or Spearman’s) of coefficients

between years (Table 3-9 and Table 3-10).

3.6.7 Consistency of canonical metrics across years

When the canonical metrics derived for the 1994 dataset are used to compute scores for

1995 and 1997, there is little consistency in scores. This lack of consistency in scores shows

that the canonical correlation metrics are not useful across years, and are therefore not

desirable as indicators of biological condition.

3.6 – Discussion

Correlation of scores

The B-IBI, multiple regression, and canonical correlation are all effective techniques of

deriving an indicator of biological condition from a vector of taxon counts. Generally the

scores generated by all three techniques were similar at the same sites in different years,

resulting in high correlations across years (Tables 3-4, 3-7 and 3-8). Intolerant taxa richness

was a notable exception among the B-IBI scores, and is likely an artifact. Of the 113 taxa

represented in all three datasets, only the 46 taxa present in all three years were used. This

reduction has the effect of removing the rarest taxa, since uncommon taxa will be even less

likely to be represented in all three datasets. Many of the rarer taxa are classified as

intolerant, so removing them might have eliminated the signal of the Intolerant richness

metric.

The multiple regression and canonical correlation metrics were computed using the same

data used to calculate the scores. For multiple regression, the 1994 data was used to estimate
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taxon coefficients to predict % impervious area, the 1995 data was used to estimate

coefficients for % impervious area in 1995, and so on. Since the % impervious area for a site

did not change among the three years, a high correlation of scores is to be expected.

The correlations are much lower when the metrics derived from 1994 were used to calculate

scores in 1995 and 1997 (Tables 3-4, 3-7 and 3-8). The 1994 regression and canonical

metrics do not do a good job of predicting a site's % impervious area or total taxa richness in

1995 or 1997. Some of the correlations are even negative, implying that sites with a high

biological condition were assigned low scores, and vice versa. Clearly, the best metrics (as

defined by multiple regression and canonical correlation) were different from year to year.

Correlation of metric coefficients

The B-IBI metrics are, by definition, identical from year to year. Multiple regression and

canonical correlation metrics are defined by quantitative rules applied to specific datasets.

The correlation of scores shows that all three methods are effective at deriving metrics to

link taxon counts and the biological condition of a site.

The mere existence of a link, in a single set of sites or within a single year, does not imply

that a mathematics-derived metric is useful for determining a site’s biological condition. No

correlation was found between the canonical correlation metrics computed from the 1994,

1995 and 1997 datasets. The metrics identified as best in each year were different, with a

different importance attached to each taxon in each year.

The multiple regression metrics, whether trying to predict % impervious area or total taxa

richness, were not correlated, with only a single correlation larger than 0.8, and half of the

possible across-year correlations less than 0.5 (Table 3-5 and Table 3-6). Likewise the

canonical correlation metrics were not correlated across years (Table 3-9 and Table 3-10)

with all the correlation coefficients having an absolute value less than 0.5.

Conclusions

Both multiple regression and canonical correlation can, given a proxy measurement of a

site's biological condition, identify combinations of taxon abundances that reproduce that

proxy measurement. However, in this study the metrics they identified are specific to the
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dataset used to calculate them. For example, multiple regression metrics whose scores

closely followed % impervious area for the 1994 dataset (and therefore might be considered

for use as a measure of biological condition) produced scores that were poorly correlated

with %!impervious area in the 1995 and 1997 datasets. A metric that was highly useful in the

1994 dataset was not useful in the 1995 or 1997 datasets. This disparity implies that the

connections between taxon abundances and biological condition as identified in 1994 were

not useful and consistent connections between the biota and biological condition. Instead,

the 1994 connections were particular to the 1994 dataset.

In contrast, the B-IBI metric scores were not as highly correlated as the regression and

canonical scores (Tables 3-2 vs. Tables 3-4, 3-7, and 3-8). This lower correlation may be due

in part to the reduced set of taxa used to compute them, but can also be attributed to the

method of selecting the B-IBI metrics. The scores of B-IBI metrics are not designed to

maximize correlation with human influence, but instead produce a reliable and consistent

correlation across time and space. As a result, the link between B-IBI metric scores and

human influence is noisier, and the between-year correlations of scores lower than for the

mathematics-based metric scores.

The B-IBI scores were not as highly correlated as the multiple regression or canonical scores,

but they did produce generally high correlations, especially the Ephemeroptera, Plecoptera,

Trichoptera, and Clinger taxa richnesses. These few metrics, at least, do seem to produce a

reliable signal of biological condition across years. The same B-IBI metrics were used to

calculate scores in all three years. As the same metric scores are correlated with biological

condition across years, it is more likely that these B-IBI metrics correspond to or identify a

useful connection between the biota and biological condition.
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3.7 – Tables

Table 3-1. Pearson correlations of B-IBI metric scores
Across-year correlations of (unscaled) scores in the ten B-IBI metrics. There were 12
sites in common in the 1994 and 1995 datasets, 11 sites in common between 1994
and 1997, and 6 sites in common between 1995 and 1997.

94-95 (12) 94-97 (11) 95-97 (6)

Taxa richness 0.595 0.652 0.894
Ephemperoptera richness 0.973 0.802 0.904

Plecoptera richness 0.837 0.820 0.965
Trichoptera richness 0.768 0.579 0.612

Intolerant richness 0.046 -0.042 0.944
Long-lived richness 0.566 0.700 0.891

Percent tolerant 0.748 0.578 0.892
Clinger richness 0.924 0.868 0.989

Percent predator 0.515 0.008 0.447
Dominance 0.619 0.523 0.707

Table 3-2. Spearman correlations of B-IBI metric scores
Across-year rank correlations of (unscaled) scores in the ten B-IBI metrics. There
were 12 sites in common in the 1994 and 1995 datasets, 11 sites in common between
1994 and 1997, and 6 sites in common between 1995 and 1997.

94-95 (12) 94-97 (11) 95-97 (6)

Taxa richness 0.449 0.425 0.754
Ephemperoptera richness 0.988 0.561 0.600

Plecoptera richness 0.586 0.809 1.000
Trichoptera richness 0.549 0.487 -0.029

Intolerant richness 0.136 0.027 0.775
Long-lived richness 0.577 0.615 0.971

Percent tolerant 0.615 -0.109 0.543
Clinger richness 0.888 0.692 0.943

Percent predator 0.671 0.409 0.429
Dominance 0.657 0.455 0.429
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Table 3-3. Pearson correlations of regression metric scores
Linear regressions to predict % impervious area and total taxa richness as a function
of taxon counts for each year, and their scores (predicted values) were correlated.
The 1994 regressions were also used to calculate scores for the 1995 and 1997
datasets, and their correlations were much lower. There were 12 sites in common in
the 1994 and 1995 datasets, 11 sites in common between 1994 and 1997, and 6 sites
in common between 1995 and 1997.

Year specific metrics 1994 metrics
94-95 (12) 94-97 (11) 95-97 (6) 94-95 (12) 94-97 (11)

% impervious area 0.990 0.828 0.895 -0.821 -0.263
Total taxa richness 0.934 0.780 0.915 -0.754 0.309

Table 3-4. Spearman (rank) correlations of regression metric scores
Linear regressions to predict % impervious area and total taxa richness as a function
of taxon counts for each year, and their scores (predicted values) were correlated.
The 1994 regressions were also used to calculate scores for the 1995 and 1997
datasets, and their correlations were much lower. There were 12 sites in common in
the 1994 and 1995 datasets, 11 sites in common between 1994 and 1997, and 6 sites
in common between 1995 and 1997.

Year specific metrics 1994 metrics
94-95 (12) 94-97 (11) 95-97 (6) 94-95 (12) 94-97 (11)

% impervious area 0.965 0.755 0.943 -0.245 -0.482
Total taxa richness 0.874 0.700 0.943 -0.238 0.055

Table 3-5. Pearson correlations of regression metric coefficients
Linear regressions to predict % impervious area and total taxa richness as a function
of taxon counts for each year. Pearson’s correlation coefficients were calculated for
the metric coefficients estimated in each year.

94-95 94-97 95-97
% impervious area 0.587 0.429 0.811
Total taxa richness 0.013 0.087 0.641
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Table 3-6. Spearman correlations of regression metric coefficients
Linear regressions to predict % impervious area and total taxa richness as a function
of taxon counts for each year. Spearman’s (rank) correlation coefficients were
calculated for the metric coefficients estimated in each year.

94-95 94-97 95-97
% impervious area 0.398 0.056 0.082
Total taxa richness 0.333 0.266 0.153

Table 3-7. Pearson correlations of canonical metric scores
Canonical correlations to predict % impervious area and total taxa richness
simultaneously as a function of taxon counts for each year, and their taxon scores
were correlated. The 1994 canonical analysis was also used to calculate scores for the
1995 and 1997 datasets, and their correlations were much lower. There were 12 sites
in common in the 1994 and 1995 datasets, 11 sites in common between 1994 and
1997, and 6 sites in common between 1995 and 1997.

Year specific metrics 1994 metrics
94-95 (12) 94-97 (11) 95-97 (6) 94-95 (12) 94-97 (11)

First metric 0.945 0.803 0.862 0.176 0.213
Second metric -0.822 0.819 -0.908 0.483 0.562

Table 3-8. Spearman (rank) correlations of canonical metric scores
Canonical correlations to predict % impervious area and total taxa richness
simultaneously as a function of taxon counts for each year, and their taxon scores
were correlated. The 1994 canonical analysis was also used to calculate scores for the
1995 and 1997 datasets, and their correlations were much lower. There were 12 sites
in common in the 1994 and 1995 datasets, 11 sites in common between 1994 and
1997, and 6 sites in common between 1995 and 1997.

Year specific metrics 1994 metrics
94-95 (12) 94-97 (11) 95-97 (6) 94-95 (12) 94-97 (11)

First metric 0.895 0.755 0.657 0.273 -0.036
Second metric -0.812 0.418 -0.657 0.266 -0.036
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Table 3-9. Pearson correlations of canonical metric coefficients
Canonical correlations to predict % impervious area and total taxa richness
simultaneously as a function of taxon counts for each year, and their taxon scores
were correlated. Pearson’s correlation coefficients were calculated for the metric
coefficients estimated in each year.

94-95 94-97 95-97
% impervious area 0.225 0.039 0.050
Total taxa richness 0.045 0.092 -0.491

Table 3-10. Spearman correlations of canonical metric coefficients
Canonical correlations to predict % impervious area and total taxa richness
simultaneously as a function of taxon counts for each year, and their taxon scores
were correlated. Spearman’s (rank) correlation coefficients were calculated for the
metric coefficients estimated in each year.

94-95 94-97 95-97
% impervious area 0.356 -0.035 -0.041
Total taxa richness -0.382 0.118 0.059
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4 — Comparing multimetric indexes

4.1 – Introduction

The Benthic Index of Biological Integrity is not the only multimetric index in use. The Rapid

Bioassessment Protocol (Plafkin et al. 1989) (RBP) includes an eight metric multimetric index

for benthic macroinvertebrates. The original RBP was developed with data collected from

streams in North Carolina. Mulvey et al. (1992) adapted the original RBP for use in Oregon,

modifying some metrics, removing others, and adding new ones (Table 4-1, Table 4-2).

The metrics in the Benthic Index of Biological Integrity were selected by screening a pool of

38 candidate metrics for those displaying a response to the percent impervious area of a

watershed as a proxy for human influence. The results were based on studies done in

Washington (Kleindl 1995), Tennessee (Karr 1991), Oregon (Fore et al. 1996), Wyoming

(Patterson 1996) and Japan (Rossano 1995). Metrics that showed a consistent response

across these geographic regions were chosen for inclusion in the B-IBI (Karr and Chu 1998).

In contrast, the original RBP metrics were chosen from a pool of 13 metrics, winnowed to

seven through use of a cluster analysis of the metric scores, with % Shredder added

afterwards (Plafkin et al. 1989). On page 6-33 of (Plafkin et al. 1989 p. 6-33), Plafkin et al.

states that "The few data acquired by this one pilot study do not constitute a rigorous

analysis, nor are the results obtained by the cluster analysis intended to be a definitive

validation of the rapid bioassessment technique." and expresses hope for further refinement,

with larger datasets, in the future.

A useful metric provides information about the biological condition of the watershed from

which a sample is taken. It should at least distinguish between undisturbed and highly

degraded sites. Metrics which provide a signal across a range of site conditions are especially

useful, as distinguishing among or ranking the condition of marginally disturbed sites is more

difficult than recognizing the best and worst sites. The metrics used in multimetric indexes

are chosen with the thought that certain groups of taxa (chosen by taxonomic similarity,
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feeding strategy, or other common characteristics), provide a meaningful signal by virtue

of their specific biology.

This line of reasoning is intuitive, and has been used in multimetric indexes to produce

metrics whose scores bear a convincing relationship to site biological condition (Ohio EPA

1987, Plafkin et al. 1989, Kerans and Karr 1994). The benefit of using one group of taxa

rather than another can be measured by comparing those biology-defined metrics to metrics

generated without any reference to biology or site biological condition.

Metrics can be generated randomly by selecting taxa without consideration of their specific

properties. If a candidate metric provides a better signal of biological condition than a

random metric, it implies that the biological reasoning underlying the metric is sound.

Furthermore, a biologically chosen metric that provides a better signal than many, many

random metrics may be more useful than one that is better than merely “many” random

metrics. Comparing the relative strength of metrics – after adjusting for the effects of the

number of taxa included – might aid the designers of multimetric indexes in deciding which

metrics to include or omit from their indexes.

4.2 – Theoretical model

Bernoulli distribution

When a random trial has two possible outcomes (success/failure, present/absent 1/0) with

the process is said to follow a Bernoulli distribution with some probability, p, of one

outcome and 1-p for the other outcome. If the random variable Y is distributed Bernoulli(p),

then the probability that Y takes some value y is given by

  

† 

P Y = y( ) = py ⋅ 1- p( )
1-y

(4.1)

where y can take values of 0 or 1 and p ranges from 0 to 1. The expected value of Y is p, and

the variance of y is   

† 

p ⋅ 1- p( ).
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Presence/Absence as a function of disturbance

Consider the matrix X, an r ¥ c matrix with presence absence information for r taxa at c

different sites. The individual elements, xi,j have a value of 0 if the taxon is not present at a

site, and 1 if it is present. An individual x can be modeled as a Bernoulli random variable

x ~ Bernoulli(p) (4.2)

where p is the probability of finding the taxon at that site.

If p is constant for some taxon, then that taxon is equally likely to be found at all sites. It is

more useful to consider how p might change as a function of site condition

p = f(d, v) (4.3)

where d is the amount of human disturbance of a site away from a condition of biological

integrity, and v represents a vector of other physical and biological parameters for a site. An

obvious start would be to model p as a linear function of disturbance.

  

† 

p = a + b ⋅ d (4.4)

In this case a represents the probability of finding the taxon at a completely undisturbed

site, and b controls how quickly that probability decreases (or increases) with increasing

disturbance. Ephemeroptera richness is a biologically defined metric used in the B-IBI,

which shows a linear response to degradation (Figure 4-1).

Models that are more complex are possible. The probability might follow a bent linear form

  

† 

p =
a + b ⋅ d d <

a - g
d -b

g + d ⋅ d d ≥
a - g
d -b

Ï 

Ì 
Ô Ô 

Ó 
Ô 
Ô 

(4.5)

where a and b describe the probability for low disturbance and g and d describe the

probability of finding a taxon at higher disturbance. The B-IBI intolerant taxa richness

metric follows a bent-linear response (Figure 4-2).

The bent-linear model could be adapted slightly, by allowing a linear decline in probability up

to a certain level of disturbance (dcrit) with zero probability of finding the taxon beyond that

point.
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† 

p =
a + b ⋅ d d < dcrit

0 d ≥ dcrit

Ï 
Ì 
Ó 

(4.6)

Alternatively, the probability could be modeled as a simple step function with a constant

probability of finding the taxon at low levels of disturbance and zero probability at high

disturbance.

  

† 

p =
pconst d < dcrit

0 d ≥ dcrit

Ï 
Ì 
Ó 

(4.7)

Total taxa richness

Remembering that i represents taxa and j represents sites, then the total taxa richness at

some site j is the sum of the xi,j for all r taxa at that site.

  

† 

total taxa richnessj = xi ,j
i=1

r

Â (4.8)

The expected value of the total taxa richness (  

† 

E total taxa richness{ }) is the sum of the

expected values of the individual xi,j’s

  

† 

E total taxa richnessj{ } = pi,j
i=1

r

Â (4.9)

where each individual probability is a function of the site’s disturbance and other particular

parameters.

    

† 

pi,j = fi d j ,vj( ) (4.10)

If most individual taxon functions follow a decreasing trend with increasing disturbance then

sites with low disturbance are expected to have higher total taxa richness than highly

disturbed sites. There are groups for which the opposite holds – taxa that are more likely to

be found at degraded sites – but for most taxa this is the pattern observed in nature.

Assuming independence, the variance of the sum of random variables is simply the sum of

the variances of the individual variables
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† 

var A + B{ } = var A{ } + var B{ } (4.11)

so the variance of total taxa richness is the sum of the variances of the individual Bernoulli

distributed presence/absence values.

  

† 

var total taxa richnessj{ } = pi,j ⋅ 1- pi,j( )
i=1

r

Â (4.12)

The presences or absences of two taxa are unlikely to be completely independent for all taxa,

and the variance of the sum of two non-independent random variables is

  

† 

var A + B{ } = var A{ } + var B{ } - 2 ⋅ cov A,B{ } (4.13)

However, in the absence of specific information, independence is a reasonable first

approximation, and in a more informed model covariance terms could be treated in the same

fashion as the site-specific v parameters in the section Decreasing noise with a selection of taxa

below.

Richness metrics

Richness can also be calculated for a subset of taxa. Let m be a subset of o, the unknown

but real set of all taxa that might be found in sites in the geographic region being

investigated. If the set m has n members, then the richness score for that metric at site j (sj)

can be calculated as

  

† 

sj = xi ,j
i=1

n

Â (4.14)

An example of calculating the Ephemeroptera taxa richness metric is given in Table 4-3. The

expected value and variance of sj are given by

  

† 

E sj{ } = pi ,j
i=1

n

Â (4.15)

and

  

† 

var sj{ } = pi ,j ⋅ 1- pi ,j( )
i=1

n

Â (4.16)
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No response

If there is no response of taxa presence/absence to site conditions, and all taxa are equally

likely to be found at all sites, then all pi,j equal some constant p and

  

† 

E sj{ } = p = n ⋅ p
i=1

n

Â (4.17)

and

  

† 

var sj{ } = p ⋅ 1- p( )
i=1

n

Â = n ⋅ p ⋅ 1- p( ) (4.18)

If p is held constant then the expected value and variance of the metric score are

proportional to n, the number of taxa in the metric.

The coefficient of variation is the ratio of the standard deviation of a random variable to its

expected value

  

† 

c.v. sj{ } =
var sj{ }
E sj{ }

=
n ⋅ p ⋅ 1- p( )

n ⋅ p
(4.19)

Again, if p is held constant the expected score increases directly with n while the coefficient

of variation decreases as a function of 
  

† 

1

n
.

Linear response

It is more interesting to allow p to vary with site condition. If dj is the disturbance at site j

and all taxa follow the same linear response to site disturbance

  

† 

pi,j = a + b ⋅ dj (4.20)

then the expected value for sj is

  

† 

E sj{ } = a + b ⋅ dj
i=1

n

Â (4.21)

or

  

† 

E sj{ } = n ⋅ a + n ⋅b ⋅ dj (4.22)
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and it can be seen that the slope of expected metric scores as a function of disturbance

increases with n, the number of taxa in the metric.

If all taxa presence/absence probabilities have the same linear response to site disturbance

the variance of sj is given by

  

† 

var sj{ } = n ⋅ a + b ⋅ dj( ) ⋅ 1- a + b ⋅ dj( ) (4.23)

so again the coefficient of variation decreases as
  

† 

1

n
, the number of taxa in the metric

increases.

Signal and noise

Increasing signal with selection of taxa

If the probability of finding a taxon at a site is modeled as a linear function of disturbance, it

is unlikely that the function is identical for all taxa, rather

  

† 

pi,j = a i + bi ⋅ dj (4.24)

with different intercepts and slopes for each taxon.

If the presence probabilities are a linear function of disturbance, then total taxa richness

  

† 

E total taxa richnessj{ } = a i + bi ⋅ dj
i=1

r

Â (4.25)

will also be a linear function of disturbance, and total taxa richness at a site provides a signal

of disturbance at the site. The slope of the response to total taxa richness reflects the mean

of the individual taxon bi’s. If some taxa do not follow the linear model, they will have the

effect of adding noise to the overall linear response.

It would be desirable to identify a subset of total taxa so that the richness metric score for

the subset has a greater signal than that of total taxa richness. In a linear model of

presence/absence probability this would occur if the mean of the bi parameters in the subset

m (  

† 

b m ) is larger than 

† 

b , the mean of bi parameters for all taxa.
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† 

b  is not known exactly, but the mean of b parameters for a simple random sample of taxa

will, in expectation, approach the true 

† 

b . For a particular set of taxa, m, with n taxa in it, the

expected score at site j will be

  

† 

E sj{ } = a i + bi ⋅ dj
i=1

n

Â = a i
i=1

n

Â
Ê 

Ë 
Á 

ˆ 

¯ 
˜ + n ⋅ b m ⋅ dj (4.26)

If those n taxa are chosen as a random sample of taxa then   

† 

b m  will be an estimate of 

† 

b  and

  

† 

E sj{ } = a i
i=1

n

Â
Ê 

Ë 
Á 

ˆ 

¯ 
˜ + n ⋅ b ⋅ dj (4.27)

If n taxa are chosen to provide an improved signal over total taxa richness, the slope can be

compared to that obtained from a random sample of n taxa. If   

† 

n ⋅ b m  is greater than   

† 

n ⋅ b 

then the particular set m does provide a steeper slope and greater signal of disturbance, than

taxa in general. To overcome the uncertainty introduced by estimating 

† 

b  for all taxa with a

finite sample, repeated random samples can be drawn to produce a population of responses

of metrics with n taxa, and the proportion of those estimates smaller than   

† 

b m  observed.

If the n taxa in subset m have a stronger response to disturbance than taxa in general, this

represents a biological signal associated with those particular taxa. Choosing n taxa at

random produces a response to disturbance without the biological signal associated with a

particular group. If the two response strengths are not distinguishable, that sameness implies

the additional biological signal of set m to disturbance is not significant. If the response

strengths are different, that difference implies that the biological signal of the taxa in set m is

significant.

Decreasing noise with a selection of taxa

If it is possible to reduce the variance introduced by the range of site conditions represented

by v through the choice of taxa to include in the metric, then there is a set of taxa, or

perhaps more than one set of taxa, that minimizes this variance. With a large (> 10) number

of taxa, a random metric would be unlikely to happen upon the minimum variance
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combination. The expected variance of a random metric would be

† 

s , the overall mean

variance. A useful candidate metric should have a variance less than 

† 

s .

Equation 4.3 states that the probability of finding a taxon at a site is a function of many

parameters particular to a site outside of disturbance, collectively a vector, v, of specific site

properties. This vector incorporates a site’s geological setting, aspect, substrate, natural flow

regime, connectivity to the surrounding ecosystem, and many other properties that will affect

the probability of finding a taxon at that site.

The exact processes by which these parameters affect taxon presence/absence are, at best,

complex and incompletely understood. In can be modeled simply, by supposing that there

are K discrete classes of site (type 1, type 2, type 3, …), all with the same level of disturbance

(dj = d). The type of an individual site is not known, only that there are discrete types of site.

These site types all exist within the same broader category of sites meant to be compared.

Variation is greatly reduced by properly classifying the sites to be examined beforehand, by

the type of system sampled, geographic region, altitude and many others. Sites must be alike

enough to be reasonably compared, but the practical objective of find a metric that is useful

to compare many sites may mean there are distinct types within the set being studied.

Not all taxa are expected to be found at all types of site. If the response to disturbance is

linear, the probability of finding a taxon at a site becomes

  

† 

pi,j,k =
a i + bi ⋅ d site is of type k

0 otherwise

Ï 
Ì 
Ó 

(4.28)

The expected value for the score in subset m containing n taxa must not encompass the

fraction of sites that are of type k, and the number of taxa (out of n) that might be found at a

type k site.

For a population of sites with identical disturbance d but distributed among K different site

types, and making a simplifying assumption that all taxa have an identical response to

disturbance, the probability of finding a taxon at site j of unknown type is

  

† 

p = pd ⋅ papp (4.29)
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where pd is the probability of finding a taxon at the level of disturbance d and papp is the

probability that the taxon is appropriate for the site type. For a set of n taxa, papp can be

calculated as

  

† 

papp = ft ,k ⋅ fs,k (4.30)

where ft,k is the fraction of taxa that are appropriate for site type k and fs,k is the fraction of

streams that are of type k. Since the number of taxa in the metric, n, is known ft,k can be

calculated as 
  

† 

nk

n
, the number of taxa appropriate for site type k divided by the number of

taxa.

The expected value of the richness score for a metric can be calculated as the sum over the

distinct site types of the expected value at a site of that type times the probability that a site

is that type

  

† 

E sj{ } = fs,k ⋅ E sj |site j is of type k{ }
k=1

K

Â (4.31)

since

  

† 

E sj |site j is of type k{ } = pd = nk ⋅ pd
i=1

n k

Â (4.32)

then

  

† 

E sj{ } = fs,k ⋅ nk ⋅ pd = fs,k ⋅ ft ,k ⋅ n ⋅ pd = n ⋅ pd fs,k ⋅ ft ,k
k=1

K

Â
k=1

K

Â
k=1

K

Â (4.33)

The expected value of   

† 

sj
2 is given by

  

† 

E sj
2{ } = n2 ⋅ pd fs,k

2 ⋅ ft ,k
2

k=1

K

Â
Ê 

Ë 
Á 

ˆ 

¯ 
˜ (4.34)

so the variance is

  

† 

var sj{ } = n2 ⋅ pd
2 fs,k

2 ⋅ ft ,k
2 - fs,k ⋅ ft ,k

k=1

K

Â
Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

2

k=1

K

Â
Ê 

Ë 

Á 
Á 

ˆ 

¯ 

˜ 
˜ 

(4.35)
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Again, metric score is expected to increase with metric size while the c.v. decreases as

  

† 

1

n
. The variance is a function of the distribution of sites among the type categories, and

the distribution of type-appropriate taxa within the set. With two categories the variance is

minimized when fs,k = ft,k. With more than two categories there is no exact solution, because

a taxon might be appropriate for more than two site types. Minimizing the variance is further

complicated by recognizing that the assumption of identical response to disturbance by all

taxa is not reasonable. It is also likely that for some taxa the presence/absence probability

will vary with site type, rather than simply falling to zero at inappropriate sites.

Still, one can propose that for some distribution of site types it is possible to choose a set of

taxa so that the individual taxa responses to disturbance and their distribution of

appropriateness among site types reduces variation in the metric score. The choice of taxa to

include in this metric represents a reduction of noise through the properties of taxa included.

A random sample of n taxa would not be expected to have the individual responses to

disturbance and distribution among types that minimizes the variance of metric score. The

responses and distribution of a random sample would instead reflect the average response

and variance of all taxa. Again, repeated random samples could be used to characterize the

overall average variance of metric scores. If a particular set of taxa does not produce a lower

variance, that sameness implies that the noise reduction produced by that particular set is not

significant. If a particular set of taxa does produce a lower variance (reflected in a more

significant regression coefficient, for instance) that significance implies that the choice of

taxa is useful for extracting a signal of disturbance.

Considering the natural history of taxa should produce metrics with a stronger
relationship to % impervious area than that of random metrics.

Random metrics

If, as a thought experiment, we toss out the assumption that different taxa respond

differently to their environment and disturbance, then we are left with the null hypothesis

that all taxa are equivalent; no particular taxon is more or less useful than any other for

inclusion in a metric.
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Computer simulation under this null hypothesis is easily done. Taxa can be randomly

selected for inclusion in a metric, the data set transformed as appropriate (presence/absence,

for example) and added together to produce scores for each site. I will call such a randomly

generated metric a random metric. An example of a random metric is given in Table 4-4.

Biologically defined metrics

For a biologically defined metric, the individual mi elements of a metric m are defined by

their biology; for Ephemeroptera taxa richness the mi’s corresponding to Ephemeroptera

taxa are 1, for all others 0. In a random metric the mi’s are assigned 0 or 1 at random.

Metric strength

A statistic measuring the degree of relationship between the random metric score at a site

and the site’s biological condition (or a measure of disturbance at the site, percent

impervious area in the current case) can be calculated, and the process repeated a large

number of times to produce a population of random metric statistics.

If the null hypothesis is not true, and taxa have different responses to environmental

degradation, then a well-chosen metric will produce scores that have a clearer relationship to

biological condition than that of most random metrics. The strength of a metric can be

evaluated as the fraction of random metrics whose scores have a better relationship to

biological condition.

Test statistics (w’s) and metric strengths (p’s)

If w is a statistic measuring the degree of relationship between metric score and biological

condition, then a thousand randomly generated metrics produces a population of one

thousand w’s. If a candidate (biological) metric produces a w value larger than 920 of the

randomly produce w’s, then its strength is defined as p = 0.08. An alternative interpretation

would be that the metric is in the 92nd percentile. The strength, p, is not a p-value in the

inferential statistical sense, but it does have similar interpretations.

Types of relationship between score and biological condition

Measuring the degree of relationship between a metric score and biological condition is not

simple. IBI metrics, as mentioned previously, are selected after inspection of a graph of
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metric scores against a biological condition proxy (and often a rank correlation), but

graphical inspection is not amenable to computer simulation. In addition, useful metrics

exhibit many response patterns to a range of biological condition. Some metrics are primarily

useful for distinguishing between the best and worst sites, some display a linear or log-linear

response to biological condition. Another common pattern is of a bent line, with little or no

response below a certain point, and then sharp increase. The bent-line pattern is also an

appropriate model for a response that follows an exponential or logarithmic curve.

Simulation requires that a computer algorithm be able to assess the degree of relationship

between metric score and percent impervious area. Two-sample statistical tests can look for

differences between the scores of sites with high and low biological condition (Figure 4-3).

Linear regression can find straight line or log-linear fits (Figure 4-1), and non-linear

regression techniques can be used to fit other functional forms (Figure 4-2).

Broken line

Another possibly useful metric shape to be considered is that of a broken line (Figure 4-4).

The population of an individual taxon, or richness of a group of taxa, might follow an “s”

shaped curve similar to that in the figure. Murray (1996) describes how a population under

different levels of predation might have different equilibria. If “human influence” is

substituted for “predation”, the same pattern might appear in a plot of metric scores against

human influence. Some solutions are unstable, so the observed population response to

increasing human influence is a gradual decline from a high level, followed by a catastrophic

drop to low levels. As human influence decreases, the metric would rise, slowly, until

reaching another catastrophe point, at which it returns to the high level. In the middle

section, where the two lines overlap, there are two stable metric scores for a given level of

human influence. The upper level is accessible only from above, as human influence

increases, while the lower level is only accessible from below, to sites with decreasing human

influence.

None of the sites in the PSLS database have experienced a decrease in human influence, so

there would not be any overlap between the high and low equilibria. The resulting pattern
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would approximate a pair of lines representing the low and high states. Non-linear

regression could be used to fit such a pattern, and test statistics (w’s) collected for

comparison.

Uncertainty in biological condition

A metric’s score at a site responds to the biological condition at that site, and biological

condition cannot be measured exactly. The percent impervious area is an uncertain

measurement of the cumulative human influence, which is the proxy for biological

condition, and that uncertainty will affect quantitative tests of metric response. For linear

regression, uncertainty in the x-variables (% impervious area standing for human influence in

this case) results in a bias of the slope towards zero (Neter et al. 1996).

If the test statistics for random metrics and candidate (biological) metrics are calculated with

the same, uncertain measures of human influence, any biases will also be the same. The

calculated strength (p) of a metric is relative to the population of random metrics. If the

biases are the same for random and candidate metrics, then the metric strength is unaffected

by those biases.

Interpretation of metric strength

If the strength (p) of a biologically defined metric is very small, the metric’s scores have a

closer relationship with % impervious area (and by proxy with human influence and

biological condition) than the randomly defined metrics. The null hypothesis of equivalent

taxa would be rejected in favor of believing the consideration of biology makes for a more

useful metric.

Types of metric

There are three broad categories of metrics: metrics which look at the sum of the variables

for the selected taxa (richness metrics) and metrics which look at the sum of the selected

taxa variables relative to the total (percentage metrics) are used in all three indexes. Ratio

metrics, which look at the ratio of richness for two selected groups of taxa, were used in the

original RBP, but are not used in the Oregon modification or the B-IBI. Plafkin et al. (1989)

included ratio metrics as an additional measure of community balance. Taking the ratio
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random variables tends to inflate their variance (Casella and Berger 1990), and can

produce singularities when the denominator is zero. For the Oregon modification of the

RBP Mulvey et al. (1992) included the numerators and denominators of the original RBP

ratio metrics as separate metrics.

Richness metrics are calculated with either the Z or Y transformed matrices (see section

1.5!–!Transformations of this document for definitions of the transformations). For

example, Ephemeroptera Taxa Richness is a sum metric, the number of mayfly taxa found at

a site.

Percentage metrics are calculated with the W transformed matrix. For example, the

%!Predator Individuals taxa is a percentage metric, the fraction of a site's individuals

classified as predators.

Ratio metrics are calculated as the ratio of two other metrics. They can use any of the W, Y

or Z transformations. The RBP Scrapers/Collectors metric is a ratio metric, the number of

individuals classified as scrapers divided by the number classified as collectors.

There are other metrics which cannot be fit into the above three categories. Random metrics

as described above cannot be generated for the Shannon diversity and information theory

based loss indexes. These metrics use all of the taxa, so random metrics cannot be generated

by randomly drawing a sample of taxa.

Hilsenhoff metric

The Hilsenhoff metric relies upon assigning a weight ranging from 0 to 10 to each taxon.

These weights represent how bad an organism is, “bad” meaning the organism is

characteristic of degraded systems. An organism like Hirudinea worms receives a weight of

10, while Caudatella mayflies characteristic of undegraded sites are assigned a 1. Taxa found

in moderately degraded systems, or common across a wide range of site quality have

intermediate values (Hilsenhoff 1982).
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The Hilsenhoff metric score at site j is simply the number of individuals in each taxa,

multiplied by the appropriate weight, divided by the total number of individuals.

  

† 

sj =

hr ⋅ xr ,j
i=1

r

Â

xr ,j
i=1

r

Â
(4.36)

where hr is the Hilsenhoff weighting for taxon r. In matrix notation, the vector of site scores

is

  

† 

s = h ⋅ Xmp (4.37)

where h is the vector of Hilsenhoff weightings. The Hilsenhoff metric can be compared to a

random weight metric, in which the weights for each taxon are randomly chosen integers from 1

to 10.

Metric size

The size of a metric is the number of taxa included in the metric. All three multimetric

indexes include the total taxa richness metric (Table 4-1, Table 4-2), which incorporates all

taxa found in the samples. The size of the total taxa richness metric is the number of taxa

that might be found in the region for which the index is calibrated. For a finite dataset, the

size of (number of taxa in) the total taxa richness metric is the number of taxa in the dataset.

No metric can be larger than total taxa richness, because no metric can include species that

are not included in total taxa richness. For indexes that might include exotic vs. native as a

way of grouping taxa this is not true, but for the benthic macroinvertebrate taxa used in this

study there is no way of telling which taxa, if any, are exotic.

Equation 4.27 shows that if one assumes more taxa are likely to be found at sites with higher

rather than lower biological condition, then the expected value for a metric score will

increase with the size of the metric. Larger metrics will have larger responses to human

influence.

Since the size of a metric affects the degree of relationship to % impervious area, size must

be taken into account when assessing the strength of a candidate metric. To properly
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calculate the strength (p) of some statistic (w) it must be compared with a pool of w’s

computed from random metrics of the same size as the candidate metric.

4.3 – Methods

Data

Thirty-four sites were selected from three years of PSLS data (1994, 1995, and 1997). These

34 sites were randomly divided into two data sets, set A and set B (Table 4-6). Known

outliers were excluded, for instance lower Swamp creek has a riparian buffer zone and Coal

creek has an old mine in its headwaters.

Candidate metrics

Forty-one candidate metrics were identified as possible to compute given the biological data

available (Table 4-7). The size of each candidate was computed in each of the two datasets

and for both datasets together. For instance, for Ephemeroptera taxa richness there were 16

Ephemeroptera taxa in set 1, 20 in set 2, and 21 taxa in both sets. There were 31 unique sizes

ranging from 1 to 59.

Random metric scores

Seventy-six taxa were found at the sites in set 1, and 91 taxa at the sites in set 2, 102 taxa in

both sets together. For each size of candidate metric, 1000 random metrics were generated

from each set of taxa (see example in Table 4-4). For example, Ephemeroptera taxa richness

was size 16 in set 1, 20 in set 2, and 21 taking both sets together. One thousand random

metrics were generated by sampling 16 at a time from the taxa in set 1, 1000 by sampling 20

at a time from the taxa set 2, and 1000 by sampling 21 at a time from the union of both sets

of taxa. One thousand is the recommended minimum number of simulations to accurately

assign percentiles (Mathsoft 1999).

For a given random metric m of size n, scores were calculated by summing the appropriate

transformation matrix (W, Y, or Z), over the n rows (taxa) included in m to produce a

vector of scores for the sites (Figures 4-7 to 4-9).

Random metric scores were calculated as both sums and percentages, to provide populations

for comparison of both sorts of biological metrics. Random ratio metrics, with appropriate
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sized for metrics in the numerator and denominator, were generated separately for

comparison with the biology-based ratio metrics in the RBP.

Random Hilsenhoff-style metrics

Hilsenhoff weights were available for only 82 of the 113 taxa in the PSLS database, as it was

designed for invertebrate taxa found in Wisconsin streams. The 31 taxa without Hilsenhoff

weights were ignored. The 31 taxa without Hilsenhoff scores were relatively rare taxa in the

dataset; none were present at more than 15 sites in all three years of data, and no more than

five were seen in any replicate. Seventy percent of the times these taxa were seen, only a

single organism was found in the replicate. As the Hilsenhoff metric is a weighted by

abundance average, their absence has a minimal effect on the final score.

Random Hilsenhoff-style metrics were generated by assigning random integers from 1 to 10

as weights for the remaining 82 taxa. Scores were calculated, using these weights, as per

equation 4.36. One thousand sets of randomly weighted metrics were generated for

comparison with the true Hilsenhoff metric.

Fit statistics

Fit statistics to measure the degree of relationship between metric score and % impervious

area were calculated for each random metric in three basic shapes:

1) A non-parametric Wilcoxon test was used to decide if the metric could distinguish

between the four sites with the lowest % impervious area in the watershed, and the four sites

with highest % impervious area. The Wilcoxon test statistic, W (not the generic fit statistic,

w, mentioned above) and its associated p-value were recorded for each random metric to

create a pool for evaluation of the biology-based metrics (Figure 4-3).

2) A linear regression of score against % impervious area was run for each random metric.

The slope, it’s p-value, x and y-intercepts, and sum of squared errors were recorded for each.

3) A non-linear least-squares fit to a bent-line form was also run. To avoid singularities, the

meeting angle between lines was constrained to be less than 170°; if the angle grew larger

than 170° the result of the bent-line regression was replaced with a straight-line regression.
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The slopes of the lines, sum of squared residuals, and the meeting angle of the two lines

were recorded for each random metric.

Those few of the candidate biological metrics that scored highly to fit the broken-line

pattern scored even higher for the high-low fit (Wilcoxon test), so the random metrics were

not fit to a broken line.

4.3.1 Effect of sampling universe for random metrics

To assess the effect of the size of the sampling universe, random metrics generated for set A

were used to calculate scores for sites in set B, and vice-versa. In addition, random metrics

generated for the combination of sets A and B (sampling from taxa present at both sites)

were used to generate scores for sites in both sets. A decrease in metric performance when

comparing candidate metrics to random metrics generated from another set of sites would

imply that the taxa present at the original set of sites were not representative, and that a

larger pool should be used for comparison.

Populations of fit statistics for these random metric scores were computed for each of these

across-metric sets.

4.3.2 Candidate metric strengths

The candidate metrics were each fit to the same patterns with a Wilcoxon, linear, and non-

linear regression. Candidate metric strengths were calculated by finding the fraction of

random metric fit statistics more extreme (meaning the upper tail, lower tail, or both tails as

appropriate) than candidate metric fit statistics (Figure 4-9).

Both tails were used for the Wilcoxon test statistic, but the Wilcoxon p-value was calculated

for a two-tailed alternate hypothesis, so the lower tail (small p-values) was used as “extreme.”

For the linear regression fit statistic, the slope, x, and y-intercepts were treated as two-tailed

values and the F-test p-value was a extreme in the lower tail. In the bent-line regression the

lower tail was used for the left slope, meeting angle and squared residuals, and the upper tail

for the right slope.

Grades were calculated for each candidate metric. Of the ten fit statistics calculated for each

candidate metric, the number in the most extreme 10% of the population of fit statistics for
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randomly generated metrics were counted, and assigned as a grade, on a scale from 0 to

10, for each metric. The mean of the grades calculated for sets A and B, compared to the

random metrics generated by drawing from the taxa in both sets was used as an overall

grade.

4.3.3 Metric strengths by index

Grades were calculated for each of the multimetric indexes by calculating the mean grade of

the component metrics for each index.

4.4 – Results

4.4.1 Effect of sampling universe for random metrics

The pattern of extreme vs. ordinary metric strengths is consistent across the two sets of sites

and the three sets of random metrics (Table 4-10). Metrics that had extreme fit statistics in

set A when compared to random metrics drawn from the taxa in set A also had extreme

statistics when compared to the random metrics drawn from set B and from both sets.

These metrics exhibited the same pattern when calculated for the set B and comparing

against all three sets of random metrics.

4.4.2 Candidate metric strengths

Some candidate metrics had strengths that were consistently high, others had consistently

low strengths. The clinger taxa richness metric consistently scored higher than random

metrics with just as many taxa (Table 4-8 and Table 4-9). Other metrics, like Diptera richness

do not seem to be extraordinary when compared to randomly generated metrics. Long-lived

and intolerant taxa richness are two metrics that seem ordinary when comparing the

Wilcoxon and linear regression fit statistics, but do have more extreme values for the bent-

line regression. As a summary, the number of extreme fit statistics was counted to produce

an overall grade for each metric (Table 4-11).

It is notable that the ratio metrics and the Hilsenhoff metric did not have any extraordinary

fit statistics, in either set of sites, compared to any of the three sets of random taxa.
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4.4.3 Metric strengths by index

The three multimetric indexes can be compared by calculating the fraction of extreme fit

statistics of their component metrics (Table 4-12). When compared in this fashion both the

B-IBI and the Oregon RBP score higher than the original RBP. The average fraction of

extreme fit statistics for both RBP metrics is not as high as the mean of the candidate

metrics not included in any metric. There is no inferential statistical basis for proclaiming any

difference between indexes, they can only be ranked according to the mean grade of their

component metrics: B-IBI > unused metrics > OR-RBP > RBP (Figure 4-10).

When ratio metrics are compared as a group to richness and percentage metrics (Table 4-12)

they are seen to have a much smaller fraction of extreme fit statistics. Richness and

percentage metrics, taken as a group, seem to have approximately the same fractions of

extreme fit statistics, with a very slight edge going to richness metrics.

4.4.4 Metric size and strength

Finally, metric size seems to have an effect on the fraction of interesting fit statistics.

Biologically defined candidate metrics that encompass ten or more taxa in the combined set

of all taxa from both sets of sites have more extreme fit statistics than smaller metrics. This

distinction arises despite the fact that the metrics are compared to random metrics with the

same number of taxa.

4.5 – Discussion

Candidate metrics

If the null hypothesis of equivalent taxa were true, randomly generated metrics would be

expected to do as well as biologically defined metrics in generating scores that correlate with

the biological condition of a site. The fit statistics (w’s) calculated for biology-based metrics

would be randomly scattered in the population of w’s generated from random metrics, and

their strengths (p’s) uniformly distributed between 0 and 1.

Overall, 31.2% of the calculated strengths were less than 0.10. In a hypothesis testing

context, the null hypothesis of equivalence between randomly generated and biologically

defined metrics would be rejected at an a of 0.10 or 0.05. It appears that, in general,
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considering biological information when choosing a metric produces metrics with a

stronger response to site biological condition.

Particular metrics

Certain metrics did especially well. Clinger taxa richness had strong fit strengths to all three

of the patterns tested. Long-lived and intolerant taxa richness did well in distinguishing the

best and worst sites (high-low) and the bent-line regression. EPT and Tolerant taxa richness

distinguished themselves in the linear fit.

Other candidate metrics were not distinguishable from random metrics. The Hilsenhoff

metric's poor performance may be because the particular weights used were calibrated for

use in Wisconsin streams. The ratio metrics were also indistinguishable from random

metrics. Other candidate biological metrics, such as Coleoptera richness and percent filterers,

were also no better than random metrics at providing a signal of biological condition.

The fraction of significant metric strengths given in Table 4-12 indicate that all three

multimetric indexes, taken as a whole, do better than a collection of randomly chosen

metrics. The original RBP metrics, while better than random metrics, do not do as well as

the rejected, biologically defined candidate metrics. The poor performance of the original

RBP may be due to its inclusion of ratio metrics and Hilsenhoff metric, which did not

distinguish themselves from random metrics.

Sampling universe for random metrics

Metric performance was consistent across the sets of sites and the three sets of random

metrics. This consistency indicates that the taxa present in each set of sites were

representative of the taxa in the dataset as a whole.

More than 30% of the candidate metric fit statistics evaluated were in the extreme 10% of

their population. Purely random metrics would be expected to have only 10% of fit statistics

in the most extreme 10%. This surplus of extreme fit statistics implies that biologically

defined groups, even those not included in multimetric indexes, do better than random

chance. It may be that any biologically defined group responds more similarly to some aspect

of human influence. Using equation 4.25 as an example, a biologically defined group might
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be more likely to have similar b's and so produce a less-noisy linear response to

degradation than a randomly selected group.

The candidate metrics are also not orthogonal, there is redundancy of information among

them, so it is possible that some of the surplus in extreme values is the result of including the

same information several times. EPT taxa richness, for example, includes the signal present

in the Ephemeroptera, Plecoptera, and Trichoptera taxa richness. The clinger and predators

categories overlap with the both the taxonomic categories and each other.

Metric size and strength

Another, surprising pattern was the tendency for larger metrics (those including more taxa)

to have more extreme fit statistics, even when "extreme" is defined by comparison to

random metrics of the same size. Equation 4.25 predicts that larger metrics will be better in

general but Figure 4-11 shows that larger metrics tend to have more extreme fit statistics.

Conclusions

Considering the natural history of taxa does produce metrics with a stronger relationship to

% impervious area than that of random metrics. Moreover, it appears that most (60%) of the

biologically defined metrics do better than random metrics.

Treated as groups, the metrics included in the B-IBI and both versions of the RBP do better

at providing a signal than random metrics. However, the metrics in the both versions of the

RBP do not do as well as the biologically defined candidate metrics not included in any

multimetric index, nor even as well the candidate metrics overall. The B-IBI did best as a

group, with 36.5% of its metrics' fit statistics being in the extreme 10%. The Oregon RBP

scored at 27.4%, just below than the overall 31.2%. The original RBP scored at 16.7%.

The strengths calculated in this study should not be taken as an absolute measure of a

biology-based metric’s worth. One should not reject a metric simply because it’s calculated

p's are all larger than 0.05. Rather, these strengths should be considered when choosing

metrics for an index, and if two candidate metrics seem equally useful, their performance

compared to random metrics should be an additional, supplementary criterion for making a

choice.
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Recommendations

If total taxa richness provides a signal of biological condition, then, in general, a metric that

includes many taxa will provide a stronger signal than a metric with few taxa. Therefore, the

number of taxa included in a candidate metric should be another thing to consider when

comparing it with other candidates for use as an indicator. Defining statistics to measure the

degree of response, and then comparing these statistics to those of random metrics can

provide a method of evaluating the relative worth of two differently sized metrics. There are

certainly other considerations, such as those detailed in (Karr and Chu 1998), but index

formulators should also be aware of how many taxa are included in each metric.

Larger metrics provide a better signal of biological condition. A candidate metric should

include enough taxa that members are expected to be found at most undisturbed sites in the

region in question. Coleoptera richness, with 8 taxa in the dataset used, did not provide a

clear signal of biological condition relative to random metrics with 8 taxa. EPT richness,

with 59 taxa provided a much stronger signal, even in comparison to random metrics with

59 taxa.
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4.6 – Tables

Table 4-1. Metrics used in the original Rapid Bioassessment Protocol (RBP III)
Some metrics are expected to increase in value as human influence rises and
biological condition drops; other metrics follow the opposite pattern. A selection of
metrics, taken together, constitutes an index.

Metric
Response to increasing

human influence
Taxa richness 113
EPT 65
Dominance (1) !
% Shredder 13
Scrapers/Collectors 11/8
EPT/Chironomids 65/1
Loss Index !
Hilsenhoff !

Table 4-2. Metrics used in the Oregon DEQ RBP multimetric index
Some metrics are expected to increase in value as human influence rises and
biological condition drops, other metrics follow the opposite pattern. A selection of
metrics, taken together, constitutes an index.

Metric
Response to increasing

human influence
Total taxa decrease
EPT taxa decrease
% Dominance (1 taxon) increase
% Shredder increase
% Scraper decrease
% Filterer increase
% EPT taxa decrease
% Chironomidae increase
Shannon diversity index decrease
Hilsenhoff biotic index increase
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Table 4-3. Example of calculating the Ephemeroptera richness metric
An example of nine taxa sampled at five sites. The table elements are 1 if the taxon
was found at the site, 0 if it was not. The first three taxa in bold are Ephemeroptera
taxa. Summing the values in those rows produces the Ephemeroptera taxa richness
score for each site; the number of Ephemeroptera taxa found at that site.

Site 1 Site 2 Site 3 Site 4 Site 5
Ephemerella 1 0 1 0 0

Epeorus 1 1 0 0 0
Paraleptophlebia 0 1 0 0 0

Kathroperla 1 0 1 0 1
Suwallia 1 0 1 1 0
Sweltsa 1 0 0 0 0

Clostoeca 1 1 1 0 0
Ecclisomyia 1 1 1 0 0

Onocosmoeus 0 0 1 1 0
Total 2 2 1 0 0

Table 4-4. Example of calculating a random richness metric
An example of nine taxa sampled at five sites. The table elements are 1 if the taxon
was found at the site, 0 if it was not. Three of those nine taxa are chosen at random
(in bold). Summing the values in those rows produces the richness score for that
random metric at each site; the number of that random subset of taxa found at that
site.

Site 1 Site 2 Site 3 Site 4 Site 5
Ephemerella 1 0 1 0 0

Epeorus 1 1 0 0 0
Paraleptophlebia 0 1 0 0 0

Kathroperla 1 0 1 0 1
Suwallia 1 0 1 1 0
Sweltsa 1 0 0 0 0

Clostoeca 1 1 1 0 0
Ecclisomyia 1 1 1 0 0

Onocosmoeus 0 0 1 1 0
Total 2 1 3 1 1
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Table 4-5. Number of taxa involved in individual multimetric metrics
All three multimetric indexes include Taxa Richness, involving all 113 taxa. Only the
Plafkin RBP index uses ratio metrics. Dominance selects taxa based upon abundance
rather than inherent properties. The Diversity, Community Loss, and Hilsenhoff
metrics involve all taxa and are not computed in the fashion of other metrics. Eph. =
Ephemeroptera, Plec. = Plecoptera, Trich. = Trichoptera, Intol. = Intolerant

PSLS B-IBI
metrics

Number
of Taxa RBP III metrics

Number
of Taxa

Oregon DEQ
RBP metrics

Number
of Taxa

Taxa Richness 113 Taxa richness 113 Taxa richness 113
Eph. Richness 15 EPT 65 EPT 65
Plec. Richness 22 Dominance (1) ! Dominance (1)
Trich. Richness 28 % Shredder 13 % Shredder 13
Intol. Richness 16 Scrapers/Collectors 11/8 % Scraper 11
LL Richness 11 % Filter 8
% Tolerant 16 EPT/Chironomids 65/1 % EPT 65

Cling. Richness 43 ! % Chironomid 1
% Predator 36 Loss Index ! Diversity

Dominance (3) ! Hilsenhoff ! Hilsenhoff
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Table 4-6. Two sets of sites used to compare candidate metrics to random metrics
Thirty-Four sites from three years of data collection were randomly divided into two
sets of seventeen. Both sets covered the range of % impervious area in the watershed
above the sampling site.

Set A Set B

Site Year
% impv.

Area
Taxa

richness Site Year
% impv.

Area
Taxa

richness
Carey 1994 1.0 35 Carey 1995 1.0 34

Big Anderson 1994 1.2 32 Big Beef 1994 3.1 29
Big Anderson 1995 1.2 32 Rock 1995 3.1 39

Rock 1997 3.1 42 Rock 1994 3.2 38
Covington 1994 3.9 37 Covington 1995 3.9 34
Little Bear 1995 4.3 38 Little Bear 1997 4.3 51

Little Bear X 1995 4.4 27 Big Bear 1994 6.6 36
Big Bear 1995 6.6 27 Big Bear 1997 6.6 42

Little Bear B 1995 7.3 30 Jenkins 1997 13.1 33
Jenkins 1995 13.1 26 Swamp B 1995 24.9 28
North B 1995 26.2 23 North X 1995 25.7 30
North C 1995 26.3 27 Swamp C 1995 32.6 28
Swamp 2 1997 26.3 32 Juanita 1994 44.4 19
Swamp D 1995 31.5 26 Kelsey 1994 47.3 12

Juanita 1995 44.4 18 DM 1995 49.1 6
Kelsey 1995 47.3 8 Thornton 1995 52.5 12

Thornton 1994 52.5 9 Thornton 1A 1997 52.5 10
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Table 4-7. List of candidate metrics tested
Forty-one candidate metrics were compared against randomly generated metrics of
the same size in two sets of streams. Random metrics were generated from the taxa
present in each set of streams, and the combination of both streams.

Number of taxa
Candidate metric Set A Set B Both Sets Indexes
Ephemperoptera richness 16 20 21 IBI

Plecoptera richness 13 12 13 IBI
Trichoptera richness 14 24 25 IBI

Intolerant richness 7 11 11 IBI
Long-lived richness 12 14 15 IBI

Percent tolerant 10 12 13 IBI
Clinger richness 36 38 40 IBI

Percent Predators 23 32 33 IBI
EPT richness 43 56 59 RBP, OR-RBP

Coleoptera richness 7 8 8 !
Diptera richness 13 17 19 !

Tipulidae richness 4 7 8 !
Non-insect richness 10 12 12 !

Heptageniidae richness 4 4 4 !
Tolerant richness 10 12 13 !

Sediment tolerant richness 5 6 6 !
Sediment intolerant richness 3 5 5 !

Predator richness 23 32 33 !
Scraper richness 6 12 12 !

Gatherer richness 22 22 23 !
Filterer richness 5 7 7 !

Omnivore richness 6 5 7 !
Percent Trichoptera 14 12 25 !

Percent Ephemeroptera 16 20 21 !
Percent Plecoptera 13 12 13 !

Percent clinger 36 38 40 !
Percent tolerant 10 12 13 !

Percent sediment tolerant 5 6 6 !
Percent predator 23 32 33 !
Percent shredder 6 12 12 RBP, OR-RBP

Percent scraper 8 12 12 OR-RBP
Percent gatherer 22 22 23 !

Percent filterer 5 7 7 OR-RBP
Percent non-insect 10 12 12 !

Percent Heptageniidae 4 4 4 !
Percent omnivore 6 5 7 !

Percent EPT 43 56 59 OR-RBP
Scraper/Filter abundance 8/5 12/7 12/7 RBP

EPT/Chironomid abundance 43/1 56/1 59/1 RBP
Percent Chironomidae 1 1 1 OR-RBP

Hilsenhoff score - - - RBP, OR-RBP
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Table 4-8. Sample of Wilcoxon and linear fit statistics
The candidate metrics in Table 4-7 were fit to a high-low response, measured with a
Wilcoxon test, and a linear response, measured with a linear regression. The W
statistic, it’s p-value, slope, F-test p-value, and Y and X intercepts were recorded for
each. These statistics were compared to a population of statistics generated from
1000 random metrics of the same size. For each metric, the upper row contains the
actual fit statistics observed, and the lower, shaded row contains the fraction of
statistics from random metrics that were larger than the observed statistic. The
metric size is the number of taxa included in the metric.

Metric strength
Candidate

Metric Size W
W

p-value Slope
Slope

p-value
Y

intercept
X

intercept
16 2.19 0.03 -0.09 0.00 6.23 67.95Ephemeroptera

richness 0.36 0.90 0.89 0.98 0.26 0.83
13 1.89 0.06 -0.08 0.00 4.91 58.48Plecoptera

richness 0.64 0.38 0.94 0.91 0.32 0.93
14 2.19 0.03 -0.07 0.00 4.66 64.09Trichoptera

richness 0.30 0.89 0.80 0.77 0.51 0.86
7 2.10 0.04 -0.03 0.02 1.05 40.39Intolerant

richness 0.32 0.70 0.51 0.50 0.93 0.95
12 25.00 0.06 -0.06 0.00 3.93 64.08Long-lived

richness 0.10 0.48 0.78 0.70 0.53 0.85
10 13.00 0.20 0.00 0.01 0.16 -49.34Percent tolerant 0.75 0.71 0.07 0.87 0.34 0.68
36 2.19 0.03 -0.23 0.00 15.41 67.55Clinger richness 0.71 0.98 1.00 0.95 0.02 0.97
23 26.00 0.03 0.00 0.00 0.08 45.77Percent

predators 0.00 0.95 0.75 0.96 0.99 0.52
43 2.18 0.03 -0.25 0.00 15.81 63.62EPT richness 0.79 0.17 1.00 1.00 0.21 1.00
7 0.44 0.66 -0.03 0.03 2.75 85.30Coleoptera

richness 0.90 0.06 0.66 0.44 0.30 0.47
13 2.18 0.03 -0.04 0.06 4.22 104.75Diptera

richness 0.34 0.56 0.34 0.17 0.55 0.29
4 2.20 0.03 -0.01 0.21 0.95 86.64Tipulidae

richness 0.13 0.86 0.38 0.29 0.67 0.32
10 -1.74 0.08 0.03 0.01 2.56 -83.24Non-Insect

richness 1.00 0.39 0.00 0.42 0.75 0.97
4 2.23 0.03 -0.04 0.00 2.26 53.60Heptageniidae

richness 0.07 0.88 0.98 0.98 0.13 0.72
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Table 4-9. Sample of bent-line regression strengths
The candidate metrics in Table 4-7 were fit to a bent line response. The slopes, sum
of squared residuals, and meeting angle of the two line segments were recorded for
each metric. These statistics were compared to a population of statistics generated
from 1000 random metrics of the same size. For each metric, the strength, the
fraction of statistics from random metrics that were larger than the observed statistic
is reported. The metric size is the number of taxa included in the metric.

Metric strength

Candidate Metric Size
Left

Slope Right Slope SSR Angle
Ephemeroptera richness 16 0.02 0.03 0.53 0.63

Plecoptera richness 13 0.08 0.05 0.49 0.76
Trichoptera richness 14 0.14 0.43 0.59 0.53

Intolerant richness 7 0.99 0.06 0.24 0.01
Long-lived richness 12 0.92 0.14 0.69 0.06

Percent tolerant 10 0.42 0.03 0.28 0.50
Clinger richness 36 0.85 0.40 0.51 0.74

Percent predators 23 0.42 0.82 0.33 1.00
EPT richness 43 0.04 0.06 0.06 0.61

Coleoptera richness 7 0.13 0.46 0.93 0.15
Diptera richness 13 0.05 0.91 0.42 0.77

Tipulidae richness 4 0.22 0.99 0.69 0.90
Non-Insect richness 10 0.24 0.10 0.06 0.67

Heptageniidae richness 4 0.58 0.48 0.78 0.77
Tolerant richness 10 0.92 0.51 0.37 0.15

Sediment tolerant richness 5 0.74 0.83 0.41 0.15
Sediment intolerant richness 3 0.87 0.27 0.77 0.60

Predator richness 23 0.36 0.27 0.57 0.33
Scraper richness 6 0.38 0.63 0.93 0.77

Gatherer richness 22 0.89 0.34 0.77 0.06
Filterer richness 5 0.29 0.31 0.65 0.17

Omnivore richness 6 0.15 0.67 0.46 0.78
Percent Trichoptera 14 0.88 0.59 0.85 0.08

Percent Ephemeroptera 16 0.20 0.24 0.87 0.48
Percent Plecoptera 13 0.43 0.83 0.65 0.26

Percent clinger 36 0.38 0.33 0.54 0.17
Percent tolerant 10 0.82 0.82 0.65 0.17

Percent sediment tolerant 5 0.44 0.11 0.25 0.97
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Table 4-10. Number of metric fit statistics in the extreme 10%
The candidate metrics (Table 4-7) were fit to three different patterns of response,
with ten different fit statistics calculated for each. Each set was compared to three
different random metrics, set A was fit to random metrics drawing from the taxa
present in set A, then random metrics from set B, and then random metrics drawing
from both sets.
This table shows the number of fit statistics that were in the most extreme 10%
when compared to a population fit statistics generated from 1000 random metrics.
“Most extreme” means upper tail, lower tail, or two-tailed as appropriate. The
number of extreme fit statistics is consistent within the metrics regardless of site and
the sampling universe for the random metrics. This consistency indicates that the
taxa present in each set of sites were representative of the taxa in the dataset as a
whole.

Number of extreme fit statistics

A in A A in B
A in
both

B in
A B in B

B in
both

Ephemeroptera richness 2 4 3 2 1 2
Plecoptera richness 0 5 3 0 5 5

Trichoptera richness 0 1 2 0 0 2
Intolerant richness 0 2 5 0 4 5

Long-lived richness 0 0 3 0 0 1
Percent tolerant 0 2 0 0 3 5
Clinger richness 9 8 5 7 7 6

Percent predators 5 7 6 5 1 4
EPT richness 5 7 7 5 5 5

Coleoptera richness 0 0 0 0 0 1
Diptera richness 0 0 1 0 0 2

Tipulidae richness 0 0 1 0 5 5
Non-Insect richness 5 5 7 5 7 5

Heptageniidae richness 4 0 6 4 4 5
Tolerant richness 5 5 6 5 6 8

Sediment tolerant richness 0 0 3 0 0 1
Sediment intolerant richness 0 0 4 0 1 4

Predator richness 3 4 5 3 5 3
Scraper richness 5 4 4 5 0 2

Gatherer richness 0 2 3 0 2 4
Filterer richness 0 0 0 0 0 0

Omnivore richness 0 0 0 0 0 0
Percent Trichoptera 0 2 2 0 0 3



89

 Table 4-10. Number of metric fit statistics in the extreme 10% (continued)

Number of extreme fit statistics

A in A A in B
A in
both B in A B in B

B in
both

Percent Ephemeroptera 0 0 1 0 0 0
Percent Plecoptera 0 2 2 0 2 4

Percent clinger 5 5 5 5 3 5
Percent tolerant 0 2 0 0 4 5

Percent sediment tolerant 0 0 1 0 0 2
Percent sediment intolerant 0 0 0 0 4 2

Percent predators 5 7 6 5 2 4
Percent shredders 0 0 1 0 0 4

Percent scrapers 3 3 7 3 1 5
Percent gatherers 0 2 0 0 3 5

Percent filterers 1 0 0 1 0 1
Percent non-insect 0 0 0 0 0 2

Percent Heptageniidae 3 0 7 3 5 5
Percent Omnivore 2 0 1 2 0 2

Percent EPT 6 5 6 7 0 1
Scraper/Filter abundance 0 0 0 0 0 0

EPT/Chironomid abundance 0 0 0 0 0 0
Percent Chironomidae 0 0 0 0 0 0

Hilsenhoff score 0 0 0 0 0 0
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Table 4-11. Overall grades of candidate metrics
Each candidate metric was fit to three response shapes, and a total of ten fit statistics
were calculated for each. Each fit statistic was compared to 1000 fit statistics
calculated for random metrics, and the number (out of 10) of fit statistics in the
extreme 10% of the population of random fit statistics was recorded as the grade for
the candidate metric. This process was done twice (for sets A and B) and the mean
grade reported in the table below.

Candidate metric Grade Candidate metric Grade
Ephemeroptera richness 2.5 Omnivore richness 0

Plecoptera richness 4 Percent Trichoptera 2.5
Trichoptera richness 2 Percent Ephemeroptera 0.5

Intolerant richness 5 Percent Plecoptera 3
Long-lived richness 2 Percent clinger 5

Percent tolerant 2.5 Percent tolerant 2.5

Clinger richness 5.5 Percent sediment
tolerant 1.5

Percent predators 5 Percent sediment
intolerant 1

EPT richness 6 Percent predators 5
Coleoptera richness 0.5 Percent shredders 2.5

Diptera richness 1.5 Percent scrapers 6
Tipulidae richness 3 Percent gatherers 2.5

Non-Insect richness 6 Percent filterers 0.5
Heptageniidae richness 5.5 Percent non-insect 1

Tolerant richness 7 Percent Heptageniidae 6
Sediment tolerant richness 2 Percent Omnivore 1.5

Sediment intolerant richness 4 Percent EPT 3.5

Predator richness 4 Scraper/Filter
abundance 0

Scraper richness 3 EPT/Chironomid
abundance 0

Gatherer richness 3.5 Percent Chironomidae 0
Filterer richness 0 Hilsenhoff score 0
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Table 4-12. Fraction of metrics in the most extreme 10%
The candidate metrics in Table 4-7 were fit to three different patterns of response,
with ten different fit statistics calculated for each. This table shows the mean grade,
for groups of metrics. The grade is the number out of the 10 fit statistics for each
metric that were in the most extreme 10% of the population of random metric fit
statistics. “Most extreme” means upper tail, lower tail, or two-tailed as appropriate.

Mean grade
Set A in

both
Set B in

both
Overall
mean

B-IBI metrics 3.5 3.8 3.7
RBP metrics 1.7 1.7 1.7

OR-RBP metrics 3.1 2.4 2.7
other metrics 2.9 3.3 3.1

Richness metrics 3.1 3.3 3.2
Percentage metrics 3.5 2.9 3.2

Ratio metrics 2.7 0.0 1.3
size < 10 0.0 2.4 1.2
size ≥ 10 3.0 5.9 4.5
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4.7 – Figures
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Figure 4-1. Linear gradient against biological condition
The Ephemeroptera richness metric has close to a straight-line relationship with
%!impervious area as a proxy for a site’s biological condition.
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Intolerant richness
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Figure 4-2. Bent-line metric response to biological condition
The Intolerant richness metric features a bent-line response to %!impervious area (a
proxy for biological condition). There are few or no intolerant taxa in watersheds
with  more than 5% impervious area, and more at sites with very small %!impervious
area.
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Figure 4-3. Metrics should distinguish between best and worst sites
The dominance (3) metric distinguishes between the best (+) and worst (¥) sites.
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Dominance (3)
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Figure 4-4. Broken-line metric response to biological condition
Here, as an example, the Dominance (3) metric is modeled as a broken line, with
little or no trend for sites with low %!impervious areas (the proxy for biological
condition) which shifts to an increasing trend for more degraded sites.
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Total taxa and some random metrics
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Figure 4-5. As metric size increases correlation with % impervious area increases
As the size of a random metric increases, the scores approach those of Total taxa
richness. Random metrics including 20, 40, 60, and 80% of  taxa in the dataset
closely follow Total taxa richness, implying that the size of a metric must be
considered when evaluating a metric.
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Figure 4-6. Histogram of random metric scores for Thornton Creek
1000 random metrics of size 16 were generated by randomly choosing 16 of the taxa
represented in set 1 (Table 4-6). Taxa richness scores were computed for Thornton
Creek (in 1994) for all of these random metrics. There are 16 Ephemeroptera taxa in
set 1, so the observed Ephemeroptera taxa richness is included as a comparison.
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Figure 4-7. Histogram of random metric scores for North Creek (B)
1000 random metrics of size 16 were generated by randomly choosing 16 of the taxa
represented in set 1 (Table 4-6). Taxa richness scores were computed for North
Creek Site B (in 1995) for all of these random metrics. There are 16 Ephemeroptera
taxa in set 1, so the observed Ephemeroptera taxa richness is included as a
comparison.
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Figure 4-8. Histogram of random metric scores for Rock Creek
1000 random metrics of size 16 were generated by randomly choosing 16 of the taxa
represented in set 1 (Table 4-6). Taxa richness scores were computed for Rock Creek
(in 1997) for all of these random metrics. There are 16 Ephemeroptera taxa in set 1,
so the observed Ephemeroptera taxa richness is included as a comparison.
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Figure 4-9. Histogram of random metric y-intercepts for set 1
1000 random metrics of size 16 were generated by randomly choosing 16 of the taxa
represented in set 1 (Table 4-6). Linear regressions of taxa richness as a function of
%!impervious area were run for each random metric, and the y-intercepts were
recorded. A regression of ephemeroptera taxa richness vs. % impervious area yielded
a y-intercept of 6.23. 26% of the random metric y-intercepts were larger than 6.23, so
the Ephemeroptera taxa richness y-intercept fit statistic has a strength of 0.26.
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Figure 4-10. Mean grades of multimetric indexes
Grades were calculated for the three multimetric indexes by computing the mean
grades of their component metrics. The B-IBI had the highest grade, followed by the
mean grade of candidate metrics that were not included in any metric. The Oregon
modification of the RBP and the original RBP were next. All three multimetric
indexes received a higher grade than would be expected for random metrics.
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Figure 4-11. Larger metrics have more significant fit statistics
Candidate metrics were fit to three different shapes with ten different statistics. Large
metrics – metrics that encompass a larger number of taxa – have more extreme fit
statistics when compared to the fit statistics of random metrics of the same size. The
line indicates the linear regression fit (p < 0.001, F1,37).
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5 — Conclusions and recommendations
5.1 – Framework

Multivariate techniques attempt to simplify the interpretation of complex systems by

reducing the number of variables to be considered. They do this by identifying new,

synthetic variables, called metrics, which are linear combinations of the original variables.

These metrics simplify interpretation of the original system by isolating the specific behavior

of interest and reducing the variation (noise) that is not related to the behavior of interest.

The Index of Biological Integrity method of proposing candidate metrics based on

knowledge of the system’s biology and examining the metric response to a gradient of

interest (Karr and Chu 1998) has been used in studies in the Northwestern United States and

Japan to identify the metrics in the Benthic Index of Biological Integrity (B-IBI).

Mathematics-based multivariate techniques such as correspondence analysis, canonical

correlation, and multiple regression identify metrics whose response optimizes some

function of the variables in the original, complex system.

Metrics are used to produce scores. A metric score for a set of variables measured at a site is

computed as a sum of the products of each variable and its corresponding metric coefficient.

Geometrically the metric score is the projection of a site in the higher-dimensioned space

represented by the original variables onto the line corresponding to the metric.

I wish to distinguish between the metrics themselves and the scores they produce when

applied to a particular dataset. The metrics can be defined as a vector of coefficients, with

one coefficient for each variable in the original, complex system. The scores are calculated

for a specific set of observations of the variables, from a sample of a single site at a specific

time.

For the purpose of inferring the biological condition of a site from a sample of the site’s

biota, we want metrics whose scores provide a signal of site biological condition, and we
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identify such metrics by examining their response to a measured proxy for biological

condition.

5.2 – Performance of mathematics-based multivariate metrics

Conclusions

The metrics generated by correspondence analysis produce scores that are able to

discriminate among sites along a gradient of human influence in all three datasets (1994,

1995, and 1997). The B-IBI metric scores were also able to distinguish among those sites.

The B-IBI and correspondence analysis metrics themselves were not alike. The

correspondence analysis metrics derived in each dataset were also unlike each other; in each

year different metrics were generated to best accomplish the same goal of discriminating

sites along a gradient. The lack of consistency across time indicates that the connection

between the sampled biota and the major gradients were different for each dataset.

Adding biological information to the correspondence analysis procedure by first aggregating

taxa based on their biological properties did not increase their similarity to the B-IBI metrics.

The addition did not even increase the similarity of correspondence analysis metrics derived

for the datasets collected in different years.

Both multiple regression and canonical correlation produced metrics whose scores were

maximally correlated with measurements of human influence. The correlation of scores

calculated for sites across years was higher than the correlation of B-IBI metric scores across

years. The actual metrics derived by these techniques were quite different, with little or no

correlation of the coefficients across years. When the metrics derived from the 1994 dataset

– by definition of the technique designed to maximize correlation between scores and

human influence in 1994 – were used to produce scores for the variables measured in the

1995 and 1997 datasets, those scores were unrelated to human influence in 1995 and 1997.

Again, this lack of temporal consistency indicates that the connection identified by

mathematics-based multivariate techniques between the biota and human influence (and, by

proxy, biological condition) was different for each dataset.
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Recommendations

Before a biological interpretation is assigned to a metric generated by a mathematics-based

multivariate technique, that metric should be tested for consistency in behavior for datasets

collected across space and time. If the metric of interest is not consistent, that difference

implies that different biological processes are being identified in each dataset. If that is the

case, then any inferences made from one dataset cannot be generalized.

Consistency of behavior in datasets collected in different places and at different times –

subject to being similar enough that their underlying biological processes are the same – is a

prerequisite to assigning a biological interpretation to a metric. The absence of such

consistency implies that different processes are operating in each dataset, which would in

turn imply different governing biological properties.

5.3 – Random metrics as a baseline

Conclusions

Some biologically defined metrics provide a better signal of biological integrity than others

do. Random metrics – generated without consideration of biology – provide a baseline for

measuring the effect of the particular aspect of biology used to define a metric.

Multimetric indexes use different criteria for choosing which metrics to include. Using a

comparison to random metrics to determine the efficacy of their component metrics, an

average grade can be calculated for a multimetric index. The three indexes examined in this

study can be ranked, the Benthic Index of Biological Integrity > Oregon Rapid

Bioassessment Protocol > Rapid Bioassement Protocol (III).

The grades used to produce this ranking measure the relative value of the biological

information included in each index.

Recommendations

The number of taxa included in a biologically defined metric (the “size” of the metric)

should be considered when evaluating candidate metrics. If total taxa richness is accepted as

providing a signal of biological condition, then in general a biologically defined metric that
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includes many taxa will provide a clearer signal of biological condition than a metric with

few taxa.

Comparison of the performance of candidate metrics to that of randomly generated metrics

as described in this study provides another tool for evaluating metrics. In the absence of

other, overriding criteria a metric that performs much better than random metrics of the

same size is to be preferred to a metric that does not distinguish itself against random

metrics of the same size.

5.4 – Speculation

Some random metrics provided a clearer signal of biological condition than biologically

defined metrics within a single dataset.

Even confining consideration to the 113 taxa present in the datasets used in this study, the

universe of possible linear metrics is very, very large. Even confining oneself to simple linear

combinations, where the coefficients are all either 0 or 1 (as in the B-IBI metrics) the

number of possibilities is 2113.

Given the objective of finding metrics to provide a signal of biological condition it is

possible to define a search algorithm that would generate metrics, test them for the strength

of their signal of biological condition, reject the ones that did poorly and keep the ones that

did well for further consideration.

As mentioned above, a metric must also be consistent in providing a signal of biological

condition in datasets taken at different places and at different times. An evolutionary search

algorithm might generate metrics, select winners, and then test these winners further by

examining their performance in other datasets.

If this data exploration procedure found a metric that provided a clear signal of biological

condition (or some other ecological property of a site) across space and time, this metric

would provide insight into the nature of the biological processes governing the system.
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This technique would be almost the opposite of that used in formulating the B-IBI. That

method begins with insight into the biological processes, and uses that knowledge to guide

the search for metrics.
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