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Executive Summary
This report is a post-season analysis of the performance of the CRiSP portion of the Real-

Time/CRiSP complex. Observed 2000 data are compared to predictions made by CRiSP/Real-

Time during the 2000 outmigration for arrival timing, water temperature, total dissolved gas,

flow, and spill at various dams.

CRiSP model runs consistently demonstrate that basic mechanisms of migration can be

applied to Columbia River fish movements and their survival tracked downstream. As a part of

RealTime/CRiSP, CRiSP is absolutely dependent on the arrival distributions predicted by the

RealTime portion of the model and other river environment inputs such as flow and spill archive

files that were updated approximately monthly.

Current prediction methodology may have reached an accuracy limit and therefore CRiSP’s

predictive powers are maximized as well. Compared to last year, a comprehensive record of all

on-hand data was maintained in order to facilitate comparison of predictions before and after data

modification. Input data may be modified by primary sources for a variety of reasons and we

maintain records of the complete data sets as they are reported because in-season forecasts are

based on whatever is available at the time.



A

iii

Table of Contents
1:  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2:  Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1: Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3:  Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1: Flow and Spill Forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

3.2: Temperature Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

3.3: Total Dissolved Gas Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4: Passage Distribution Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4:  Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1: Accuracy of Predictions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

4.2: Utility of CRiSP/RealTime Predictions in Management . . . . . . . . . . . . . . . . . . . . . . . . . 24

5:  References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Appendix A:  Map of Columbia and Snake River Locations . . . . . . . . . . . . . . . . . .Appendix A - 1

Appendix B:  CRiSP Parameters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Appendix B - 2

Appendix C:  Arrival Time Distribution plots  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Appendix C - 1

Appendix D:  Seasonal Variation in Passage Predictions . . . . . . . . . . . . . . . . . . . . .Appendix D - 1

Appendix E:  Flow/Spill Forecast Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Appendix E - 1

Appendix F:  Spill Forecast History Plots  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Appendix F - 1

Appendix G:  Temperature Forecast Plots  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Appendix G - 1

Appendix H:  Seasonal Variation in Temperature Forecasts. . . . . . . . . . . . . . . . . . .Appendix H - 1

Appendix I:  Dissolved Gas Forecast Plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Appendix I - 1

Appendix J:  Seasonal Variation in TDG Forecasts . . . . . . . . . . . . . . . . . . . . . . . . . Appendix J - 1



A

ams

dividu-

e wild

 of

 popu-

ture

 River

stocks

nd

effects

using

ing

 to

bout

P/

he pro-

 for a

ran-

h

le

iver

the

e four

RiSP

ish
1 Introduction

Since 1988, wild salmon have been PIT-tagged through monitoring and research progr

conducted by the Columbia River fisheries agencies and Tribes. The detection of tagged in

als at Lower Granite Dam provides a measure of the temporal and spatial distribution of th

salmonids populations. Program RealTime was developed by researchers at the University

Washington to take advantage of this historical data to predict the proportion of a particular

lation that had arrived at the index site in real-time and to forecast elapsed time to some fu

percentile in a migration (Townsend et al. 1996, 1997; Burgess et al. 1999). The Columbia

Salmon Passage (CRiSP) model predicts downstream migration and survival of individual 

of wild and hatchery spawned juvenile fish from the tributaries and dams of the Columbia a

Snake rivers to the estuary. The model describes in detail fish movement, survival, and the 

of various river operations on these factors. Fish travel time in CRiSP has been calibrated 

the PIT tag data.

For the 1996 migration season, Columbia Basin Research launched a prototype run tim

system, CRiSP/RealTime, with results updated on the World Wide Web. This project was

launched in an effort to provide real-time inseason projections of juvenile salmon migration

managers of the Columbia-Snake River hydrosystem to assist the managers in decisions a

mitigation efforts such as flow augmentation, spill scheduling and fish transportation. CRiS

RealTime utilizes two separate programs to generate downstream passage distributions. T

gram RealTime uses an empirical pattern matching routine to predict the arrival distributions

wide variety of wild salmon stocks at the first detection point in the migratory route, Lower G

ite Dam. The CRiSP model takes the predictions from RealTime and uses hydrological, fis

behavioral and dam geometry information to simulate the movement and survival of juveni

salmonids through Little Goose, Lower Monumental, and Ice Harbor dams on the Snake R

and McNary Dam on the Columbia River. At the same time, CRiSP produces estimates of 

fraction of the run arriving at Lower Granite dam which was subsequently transported at th

transport projects (Lower Granite, Little Goose, Lower Monumental, and McNary dams).

This report is a postseason analysis of the accuracy of the 2000 predictions from the C

model as part of the CRiSP/RealTime complex. In the CRiSP model, water quality affects f
1
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migration and survival, temperature, and dissolved gas levels which are modeled from flow

spill forecasts, historical data, and year-to-date data. The effectiveness of these modeling e

are compared to observations of passage and river conditions at the end of the season. Th

ses and graphic presentations herein demonstrate changes in accuracy of the models thro

the season.
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Figure 1 Simplified schematic of RealTime and CRiSP complex. Prior to migration year
2000, model generated gas was not updated with observed values for the prod
tion of daily passage distribution forecasts. PIT Tag data courtesy of Pacific
States Marine Fisheries Commission. Water Quality Data courtesy U.S. Army
Corps of Engineers. Flow Forecast File provided by Bonneville Power Adminis
tration and U.S. Army Corps of Engineers.
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2 Methods

2.1 Data

2.1.1 Travel Time Data

The fish analyzed in this report are spring/summer chinook which originate from severa

utaries of the Snake River: Catherine Creek, Imnaha River, Minam River, and South Fork S

River abbreviated as CATHEC, IMNAHR, MINAMR, and SALRSF, respectively. Previous p

season analyses also included Lostine River (1997) and South Fork Wenaha River (1996, 

stocks. The fish were tagged in their natal streams with passive integrated transponder (PIT

PIT-tagging of wild salmon is part of on-going monitoring and research programs conducte

the Columbia River fisheries agencies and Tribes. Information from PIT tag studies and oth

monitoring programs is presented in reports by the Fish Passage Center, National Marine 

ies Service (Achord et al. 1992, 1994, 1995a, 1995b, 1996, 1997), Idaho Department of Fis

Game (Kiefer et al. 1993, 1994), Oregon Department of Fish and Game (Keefe et al. 1994

Walters et al. 1997) and the Nez Perce Tribe (Ashe et al. 1995). PIT tags provide instantan

passage times for individual fish at interrogation sites (Prentice et al. 1990). The four obser

sites addressed in this report are Lower Granite, Little Goose and Lower Monumental Dam

the Snake River and McNary Dam on the Columbia River.

In addition to the individual stocks, a “composite” stock was formed by combining all fou

stocks together, weighting each stock equally, following guidance from NMFS.

For the CRiSP downstream projections, we are limited to using historical data since 199

order to estimate fish travel time parameters and confidence intervals. Although fish were P

tagged previous to these years, there was no provision made to return detected PIT-tagged

the river. Consequently, the majority of fish observed at Lower Granite Dam were removed

the river by transport operations. Too few fish were subsequently observed at downstream 

gation sites to generate passage distributions and travel time estimates. In 1993, slide gate

installed which selectively diverted PIT-tagged fish back into the river, allowing for adequat

sample sizes at the downstream interrogation sites.
3
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2.1.2 Flow, Spill and Other System Operation Data

Any forecast of fish movement relies critically on accurate forecasts of flow, spill, transp

tion, and other key system operations. The U.S. Army Corps of Engineers generates flow, 

and reservoir surface elevation forecasts at all projects on the Columbia and Snake Rivers

there is fish passage. Water supply forecasts are based on a number of factors: the Nation

Weather Service’s Northwest River Forecast Center predictions, flood control requirements

the Army Corps, electrical power demand forecasts, and other criteria. The substantial unce

associated with springtime conditions often results in frequent and marked changes in thes

casts during April and May. Moreover, attempts to reduce the biological impacts of dissolve

generated from high spill levels also results in a shifting of spill between projects within as w

outside the basin. Although the forecasts covered as much as 90 days into the future, it mu

recognized that their principal use was in deciding operations for the next week. Forecast a

racy beyond even a few days was itself uncertain. Bonneville Power Administration process

Army Corps forecasts and made them available to CBR staff on approximately monthly inte

Subsequent fish arrival predictions were made based on the forecasted values for flow and

rather than the latest available observed data. As a result, predictions of fish arrival times a

river conditions vary between forecasts.

2.1.3 Temperature Data

The temperature time series used in the CRiSP analysis is a combination of year-to-da

perature data and forecasted temperatures. The forecasts were based on historical tempera

flow information and the 2000 flow forecasts. The historical data includes flow and tempera

profiles from Lower Granite (LWG), Priest Rapids (PRD), and The Dalles (TDA) reservoirs 

the years 1976 through 2000. Historic and observed year-to-date data was obtained from t

Columbia River DART database, which downloads water quality data from the Army Corps

the majority of monitoring sites in the Columbia Basin. Temperature predictions are made b

applying a three-day moving window to fit predicted temperature time series to historical av

patterns of temperature change. This method is described in detail in section 3.2.

2.1.4 Total Dissolved Gas Data
4
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Total dissolved gas (TDG) data are collected at Army Corps fixed monitoring sites below

Columbia and Snake River dams. TDG data are downloaded directly from the Army Corps

near-daily basis and quality assurance is not always guaranteed. Anomalies in observed TD

are indicators of suspicious data. These data are later corrected by the Army Corps. Corre

data is used whenever possible and may alter hindcasts. The current Army Corps water qu

data can be consulted for reference. Army Corps also posts a status report for each monito

including information on which monitors are not reporting data.

TDG forecasts in particular are sensitive to predicted flows and planned spill. For histori

dictions, the accuracy of the gas predictions will depend on the quality of the historic spill d

input. Data QA/QC is an ongoing process. With the correct spill data, TDG predictions are 

cally within 5% of the observed gas levels.

The modeled gas production predicts the gas observed at the Army Corps fixed monito

a map of the dissolved gas monitoring system, see the Water Management Division, U.S. A

Corps of Engineers web document, http://www.nwd-wc.usace.army.mil/report/pdf/gasmap.p

should also be noted that the nearest downstream monitors to Bonneville Dam are 6 miles

stream, so it is expected that the gas levels at these monitors (WRNO and SKAW) will be l

than those generated at the dam.

Table 1 U.S. Army Corps of Engineers total dissolved gas fixed monitoring
sites used by CRiSP for Total Dissolved Gas forecasts.

Fixed Monitoring Station Name Station
Code

Location
facing downstream

Chief Joseph Tailwater CHQW Right Bank

Wells Tailwater WELW

Rocky Reach Tailwater RRDW Mid Channel

Rock Island Tailwater RIGW Left Bank

Wanapum Tailwater WANW Mid Channel

Priest Rapids Tailwater PRXW Mid Channel

Dworshak Tailwater DWQI Left Bank
5
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2.1.5 Archives of Model Predictions

Each time the RealTime and CRiSP models are run, results are archived for future refe

Graphs and text reports based on these same archives are available through a variety of q

tools on the World Wide Web. The home page for this project and other Columbia Basin

Research products can be found at http://www.cbr.washington.edu. Runs are made severa

per week and the outcome recorded. Archives include daily passage distribution forecasts 

of the five dams for each stock of interest and water quality predictions for selected dams o

Columbia and Snake rivers.

2.2 Models

2.2.1 CRiSP

CRiSP is a mechanistic model that describes the movement and survival of juvenile salm

the Columbia and Snake Rivers. The theory and calibration of the model is described in de

Anderson et al. (2000). We include only a brief summary of the model here, but we note th

has been extremely successful in fitting all of the yearling chinook survival data collected in

Columbia Basin, from 1966 through the present day.

Modeled factors that affect survival of hatchery and wild juvenile stocks include daily flo

Lower Granite Tailwater LGNW Right Bank

Little Goose Tailwater LGSW Right Bank

Lower Monumental Tailwater LMNW Left Bank

Ice Harbor Tailwater IDSW Right Bank

McNary Tailwater MCPW Right Bank

John Day Tailwater JHAW Right Bank

The Dalles Tailwater TDDO Left Bank

Bonneville Tailwater WRNO
SKAW

Left Bank
Right Bank

Table 1 U.S. Army Corps of Engineers total dissolved gas fixed monitoring
sites used by CRiSP for Total Dissolved Gas forecasts.

Fixed Monitoring Station Name Station
Code

Location
facing downstream
6
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river temperature, predator activity and density, total dissolved gas (TDG) supersaturation,

river operations such as spill, fish transportation and bypass systems. For CRiSP model run

and spill were provided by BPA. Temperature and TDG forecasts were developed based o

flow and spill estimates and year-to-date observed data. All other relevant parameters wer

mined at CBR, based on a variety of different sources.

Dam passage changes with fish guidance efficiency, passage mortalities, and diel pass

behavior. These factors are modeled on a species and dam-specific basis. Relevant mode

eters for inseason modeling of yearling chinook stocks are given in Appendix B. These par

ters are generally drawn from the literature or are calibrated from related data (e.g. PIT tag

detection rates at various projects). Reservoir mortality depends on several factors: fish tra

time, predator density and activity, total dissolved gas supersaturation levels, and water tem

ture. Predator densities used in CRiSP were estimated from several published sources (Be

derfer and Rieman 1991; Vigg et al. 1991; Ward et al. 1995; Zimmerman and Parker 1995;

Zimmerman et al. 1997). Total dissolved gas production equations are based on research 

ducted by the Waterways Experiment Station (WES), U.S. Army Corps of Engineers on eig

Columbia Basin dams and fitted to other dams in the Columbia Basin system by CBR (U.S.

Corps of Engineers 1996, 1997; Anderson et al. 2000).

2.2.2 Travel Time Components

The main factors determining predicted arrival distributions of fish at the downstream da

are migration travel time and reach mortality. The river is divided into a series of reaches, an

move through the reaches sequentially. In each reach, the travel time distribution is determi

the migration rate (rt) and the rate of spreading (VVAR) (Zabel and Anderson 1997).

Migration rate varies by reach and by time step and is stock specific. The CRiSP migra

rate equation takes into account fish behavior related to river velocity, seasonal effects, an

experience in the river (Zabel et al. 1998). For the yearling chinook analyzed here, we did n

detect any seasonal behavior, so a reduced equation is used:

, (1)r t β0 β1
1

1 exp α2 t TRLS–( )–( )+
---------------------------------------------------------- βFLOW Vt⋅+ +=
7
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where:
 = the time-dependent migration rate;

t = the Julian Date;

 = the Julian Date of passage at Lower Granite;

 and  = flow-independent parameters;

α2 = a slope parameter for the flow-independent term;

 = parameter that determines the proportion of river velocity used for migratio

and

 = the average river velocity during the average migration period, determined for e

reach.

The flow-independent part of the equation starts fish at a minimal migration rate (βMIN) with fish

increasing their flow-independent migration rate to a maximal migration rate (βMAX). These rates

are determined as follows:

(2)

. (3)

The parameterα2 determines the rate of change fromβMIN to βMAX. For each stock, the rate of

spreading parameter (VVAR) is estimated, along with the three migration rate parameters from

above equations:βMIN, βMAX, andβFLOW. Parameters used during the 2000 migration season 

be found in Appendix B.

2.2.3 Parameter Estimation

Migration rate parameters and the spread parameter (VVAR) were estimated from the historica

data using an optimization routine that compares model predicted passage distributions to

observed ones. The first step is to use the passage distribution at Lower Granite as a relea

bution in the CRiSP model. Based on an initial set of parameters, arrival distributions are g

ated at the downstream observation sites. The model predictions are compared to the

observations, and then the optimization routine selects a new set of parameters to try. This

dure iterates until the parameters are selected that minimize the difference between the ob

r t

TRLS

β0 β1

βFLOW

Vt

βMIN β0 β1 2⁄+=

βMAX β0 β1+=
8
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The modeled mean travel times are a function of the migration submodel chosen and th

ticular parameter values selected. The migration rate parameters were estimated by a least

minimization (with respect to the parameters) of the following equation:

, (4)

where:
O = the total number of observation sites,

C = the total number of cohorts,

 = the modeled mean travel time to thei-th site by thek-th cohort, and

 = the observed mean travel time to the i-th site by thek-th cohort.

2.2.4 Assessment of Predictions

To assess the performance of the passage and other predictions, we apply the same m

used to assess RealTime predictions (Townsend et al. 1996). For each stock at each obse

site, we compute the Mean Absolute Deviation (MAD) for the day (j) on which the prediction was

made. This measure is based on the average deviation between predicted and observed cu

passage on prediction dates during the season. MAD is computed as:

(5)

where:
j = forecast day on which MAD is calculated;

t = index of prediction day (from 1 toN);

N = number of days on which a prediction and observation were made for the stock 
site during the season;

Day = vector of length N which identifies the Julian days from first observation of the
stock at the site until two weeks past last observation (this is fixed for each sit
each stock);

SS Ti k,
ˆ Ti k,–( )

2

k 1=

C

∑
i 1=

O

∑=

Ti k,
ˆ

Ti k,

MADj
1
N
---- FDayt

F̂Daytj
– 100×

t 1=

N

∑=
9
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 = observed cumulative passage onDayt; and

 = predicted cumulative passage onDayt.

For each stock/site combination, the season length is determined as the time from whe

first fish for the particular stock is observed at the site until two weeks after the last fish is

observed at the site. This arbitrary “tail” of the distribution accounts for the possibility that fi

may subsequently pass without being detected; the same two-week tail is used to generate

for RealTime.

The summation in Equation (5) is performed over each of the dates on which model pre

tions were implemented – approximately every day during the season. This provides a snap

how well the model performs as the season progresses based on the final, “true” data. Idea

there would be general decrease in MAD asj goes from 1 toN because the true distribution of the

run should be better known and the true state of the flow and spill profiles should be known

last MAD value (MADN) is used in Table 4 as the final analysis of model success.

2.2.5 Temperature Algorithm

A temperature forecasting algorithm was developed to predict the current year's water t

atures on the Snake and Columbia Rivers based on historical data, year-to-date data, and 

forecast file. The forecasted river temperatures in the near future are based on the current 

temperature; however, far into the future, the algorithm relies on mean temperature profiles

adjusts this mean according to the amount of flow. Mean temperature and flow profiles wer

computed for Lower Granite (LWG), Priest Rapids (PRD), and The Dalles (TDA) using data

from 1976 to the present. We queried the Columbia River DART (Data Access in Real Tim

database for current year-to-date temperature and flow data each time a prediction was ma

CRiSP used the temperature profiles as representative of the Snake, Mid-Columbia and Lo

Columbia temperatures, respectively, for the generation of total dissolved gas forecasts an

sage distribution forecasts.

The forecast algorithm begins by setting the daily temperature to the mean for that day 

then replacing the mean temperatures where year-to-date information is available. The last

of available temperatures are looked at to predict the next day's temperature. Averaging ov

FDayt

F̂Daytj
10
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last three days is an attempt to smooth out some of the day to day variation and to provide

guard against bad data giving the algorithm a faulty starting point. Given the averaged star

point, the next 4 weeks of temperatures are calculated by taking the previous day's temper

and adding to it the average daily temperature increment for that day.

Over time, the current trend of temperature becomes less and less useful and eventual

uncorrelated with future temperatures. Thus after four weeks, this predictor is phased out o

calculation. This is when the flow forecast information enters into the algorithm. The flow fo

cast together with the mean profiles of flow and temperature predict what temperatures a m

or more from reliable data will be. The relationship between flow and temperature is the fol

ing:

(6)

where:
T = temperature prediction value for dayi,

tempmean = mean temperature on dayi from mean temperature profile,

B0 andB1 = flow coefficients,

F = observed flow value, unless no value, then flow value from flow forecast file,

flowmean = mean flow on dayi from mean flow profile.

Temperature was measured in Celsius and flow in kcfs. Because there is reliable histor

temperature data typically only from April to September, these regressions and the flow ad

ments were only done within this time interval. For the remainder of the year, the unadjuste

mean temperature profiles are used.

2.2.6 Total Dissolved Gas Modeling

The calibrated gas production equations used in CRiSP are based on the work of the W

Table 2 Values used for flow coefficientsB0 and B1 during the 2000
migration season.

Lower Granite Priest Rapids The Dalles

B0 0.0128 -0.0135 0.0678

B1 -0.0212 -0.0117 -0.0058

Ti tempmeani B0 B1 Fi flowmeani–( )⋅+ +=
11
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ways Experiment Station (WES), U.S. Army Corps of Engineers (1996, 1997) and CBR (An

son et al. 2000). As a part of the Gas Abatement Study at the Army Corps, WES develope

production equations based on spill as an improvement over GASSPILL, which had previo

been the predominant model for gas production.

The gas production equations are an empirical fit of spill data and monitoring data colle

by the Army Corps. The percent of total dissolved gas (TDG) exiting the tailrace of a dam i

dicted as a function of the amount of discharge in kcfs. This level of TDG is not necessarily

highest level of gas reached, but rather the level of gas in the spill water after some of the 

turbulent processes have stabilized. The calibration for each dam was fit to the nearest dow

stream monitor, which is typically about a mile downstream of the dam.

For the eight lower Snake and lower Columbia dams that were studied by WES, the ga

duction equation may take one of three forms: linear function of total spill, a bounded expon

function of total spill, or a bounded exponential function of the spill on a per spillbay basis. T

equations were adopted for all dams in CRiSP.

Linear Saturation Equation

(7)

where:
%TDG = the % total dissolved gas saturation, where 100% is equilibrium,

Qs = the total amount of spill in kcfs, and

m, b = the empirically fit slope and intercept parameters.

Bounded Exponential Equations

(8)

OR

(9)

where:
%TDG = the % total dissolved gas saturation, where 100% is equilibrium,

Qs = the total amount of spill in kcfs,

%TDG m Qs⋅ b+=

%TDG = a + b expc Qs⋅( )⋅

%TDG = a + b expc qs⋅( )⋅
12
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qs = the amount of spill through an individual spillbay, and

a,b,c = the empirically fit model parameters.

CRiSP is currently configured so that a separate spill pattern, and thus a separate gas 

tion function, for night and for day can be set for each dam. (A spill pattern specifies which

bays are used to discharge flow both in number and position.) Once the number of spill ga n,

for a particular pattern is set, Equation (9) is then converted into Equation (8) by the relatioqs=

Qs/n. This conversion formula assumes that the amount of spill is uniformly distributed amo

the open spill gates. The model parameters for the day and night gas production thus can 

ferent for a given dam, reflecting a change in the position or number of gates and hence in

dynamics of gas production.

2.2.7 Assessment of Temperature and TDG Predictions

Similar to the passage prediction assessment, for each observation site we computed M

between predicted temperature or TDG values and the observed values. Hindcasts may ch

throughout the prediction period as observations were corrected and updated information w

used.

3 Results

The joint effort of RealTime and CRiSP produced many inseason forecasts products, in

ing:

• Daily Fish Passage (joint product)

• Passage and Transport Summary (joint product)

• Smolt Passage Predictions w/Historical Timing Plots (RealTime only product)

• Total Dissolved Gas (TDG) Forecasts (CRiSP only product)

• Temperature Forecasts (CRiSP only product).

These products are presented graphically via the World Wide Web. To locate them, navigat

web browser to “Inseason Forecasts” from http://www.cbr.washington.edu/. In this report,

selected CRiSP/Realtime predictions are analyzed and graphic presentation of these result

in the various appendices.
13
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3.1 Flow and Spill Forecasts

Forecasts of flow and spill were made available approximately every month during the s

son. Forecasted flows and spills for April 3, May 22, and July 16 at LWG, PRD, TDA, and B

are shown in Appendix E.

Early forecasts of daily-averaged flow over the entire season at LWG were moderately 

rate. The mid-season spike in the flows was anticipated but was not as large as anticipated

reflects the uncertainty associated with weather conditions, snow melt, and runoff from the 

River basin. Flows in 2000 were much less than in 1999 when peaks exceeded 150,000 cf

several days.

The highest flows occurred earlier this year than in 1999 (end of April instead of May). T

flow forecasts can not anticipate spikes in flow (Figure E-1) and the corresponding spill tha

erally has to occur.

Spill forecasts at PRD considerably underestimated the actual spill for most of the summ

This is exactly what happened last year as well. The trend for the last three years is in Appe

Flow and spill forecasts affect fish passage, total dissolved gas, and temperature. Errors in

forecasts have to be propagated through the model and affect model results.

Flow and Spill forecasts were updated approximately every month during the season an

affected the accuracy of passage predictions. The timing of the updated flow and spill forec

files corresponds with sudden changes in the passage predictions and hence MAD values.

past, these files have been made available more frequently.

3.2 Temperature Prediction

The temperature prediction algorithm begins by setting the daily temperature to the hist

mean value for that day and then replacing the mean temperatures where year-to-date info

is available. Given an averaged starting point from the previous few days of current data, th

four weeks of temperatures are calculated by taking the previous day's temperature and ad

it the historically averaged daily temperature increment for that day. Over the forecast perio

current trend of temperature becomes less and less useful and eventually uncorrelated with

temperatures. Thus for the long term forecaster (over four weeks), this predictor is phased
14
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the calculation. At this point, a simple linear regression against predicted flow is used to pr

temperatures a month or more away from reliable data.

A general trend of negative correlation between flow and water temperature can be see

data from the Snake and Columbia Rivers. By looking at yearly averages of water tempera

and flow, one can see that years with higher than average flows have lower than average w

temperatures, and similarly years with lower than average flow have higher than average w

temperatures. Using a flow forecast file for the current year, a prediction of temperature ca

made using the flow/temperature relationship (see 2.2.5 for details). It should be noted tha

temperature data are very noisy and are influenced by several variables: air temperature an

weather conditions, water volume and reservoir geometry, snowpack, upstream water rele

etc. Consequently, the flow/temperature relationship only explains a small amount of the va

tion of water temperature within a year and between years. As a result, averaged historical

plays a large part in the predictions made, with the flow/temperature relationship only pred

a small amount of variation about the mean.

The algorithm developed for temperature has many desirable features. It concurs with t

most up-to-date data, it is consistent with historical seasonal patterns in temperature, and i

predicted flows to make moderate adjustments. Temperature predictions were generated a

every month during the migration season, coinciding with the generation of a new flow fore

file.

Sample predictions versus the 2000 observed temperatures for each of three reservoirs

shown in Appendix G. For all three reservoirs, the predictions became more accurate as th

son went on and more observed data for 2000 became available. Initially, the forecasts loo

smooth, anticipating a change in temperature that roughly corresponded to the natural ann

cycles of flow and air temperatures. However, there was a great deal of variability in the obs

temperatures that the forecaster could not anticipate.

Appendix H shows, for each of the three dams, a time series of how accurate the predic

were on each day. In each of the plots, MAD is plotted for the forecast made on that day co

pared to the data (see '2.2.4 Assessment of Predictions'). For example, the prediction mad

Julian day 136 (May 16) at The Dalles was off by an average .63 degrees for the entire sea
15



A

7

prove-

pre-

 year-

t recent

 the

s not

se

edic-

RT

, and

njunc-

s for

 series

po-

int are

RiSP

 Pool,

rature

is-

duction

 avail-

 moni-

the

plots in
whereas the observation made one month later on Julian day 170 was off by an average .4

degrees for the entire season. The trend for the season at each of the dams is a steady im

ment in the forecast compared to the data.

In general, short-term predictions (i.e. for the next week) were no better than long-term 

dictions (for the next several weeks); this is a consequence of lack of quality assurance for

to-date temperature data. Since predicted temperatures take as their starting point the mos

“observed” temperatures, any inaccuracy in recent temperature records will be reflected in

short-term predictions of temperature. CRiSP, while sensitive to temperature variation, doe

produce strongly different results for differences of only one or two Celsius degrees, so the

inaccuracies are unlikely to have contributed significantly to any model error. Year 2000 pr

tions seem to be comparable to 1999 predictions for temperature.

3.3 Total Dissolved Gas Prediction

The Total Dissolved Gas (TDG) predictions begin with querying the Columbia River DA

database for dissolved gas percentage data for Chief Joseph (CHJ), Lower Granite (LWG)

Dworshak (DWR) dams, and observed spill data for DWR. This observed data is used in co

tion with historical TDG mean values at CHJ, LWG and DWR to produce output gas profile

each of these dams for the whole year. Missing or invalid data points at the beginning of the

are filled in using the first valid data point; holes between valid data points are linearly inter

lated between the two surrounding data points; and missing data after the last valid data po

filled in with historical mean values. The output gas profiles are used as direct input to the C

model of dissolved gas at several headwater locations: Columbia Headwater, Lower Granite

and North Fork Clearwater Headwater. The TDG forecasts rely on the results of the tempe

predictions for temperature data and the flow forecast files for the flow and spill. The total d

solved gas forecasts are produced for each dam by running CRiSP and generating gas pro

at all the dams in the basin.

Total Dissolved Gas forecasts were made each time a new flow forecast file was made

able to CBR. Sample predictions versus the 2000 observed total dissolved gas data for five

toring sites are shown in Appendix I. Generally, the predictions became more accurate as 

season went on and more observed data for 2000 became available. This is shown by the 
16
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Appendix J that are analogous to the prediction success plots shown for temperature. The 

casts used observed dissolved gas data, predicted spill at upstream dam(s), and temperat

file output from the temperature algorithm to anticipate dissolved gas concentrations. It fail

predict the spikes in dissolved gas as a result of unanticipated spill. There are some curious

for mid-Snake River monitoring sites, but the scale that the plots are made on is drawn to m

mize the differences within the plot. In fact, the LGSW gas predictions (Figure J-1) are quit

ble. Predictions for PRXW1 were not as good as last year. Others are comparable.

3.4 Passage Distribution Prediction

Plots of predicted passage distributions compared to the observations of PIT-tagged fis

provided in Appendix C. The entire passage distribution predictions are presented for three

sentative dates: May 11, June 1 and July 6 to span the early, middle and late portions of th

Previous to the date of prediction (vertical line) the model predictions are based on hindcas

sage for the best available river conditions. Ahead of the prediction date is the forecast pas

based on anticipated river conditions (discussed in other sections: see 3.1, 3.2, 3.3). The th

tical bar represents the uncertainty of the forecast for that day based on historical condition

Complete plots showing the current forecast with historic conditions are available on our we

at http://www.cbr.washington.edu/. Navigate to “Inseason Forecasts” to view passage plots

1. Observed data for Priest Rapids Dam forebay and tailrace are made available by Grant County PUD.
There were periods during the 2000 migration season when the observed data was not updated and mad
available on a daily basis.
17



A

e

 pre-

eport

 down-

t a site

sequent

g or

e pop-

 P.
In the plots in Appendix C, the predictions at Lower Granite Dam are based on RealTim

results, and the predictions at the downstream sites are CRiSP projections. Any error in the

diction at Lower Granite Dam is propagated to the downstream sites. Failure to detect, or r

all PIT-tagged fish passing the detectors at Lower Granite Dam means that their continued

stream movement cannot be modeled accurately. Obviously, some fish escape detection a

only to be observed downstream as is apparent from the low numbers at John Day and sub

observations at Bonneville. This is likely also happening even if the numbers are maintainin

decreasing due to mortality, and thus the apparent arrival time distributions do not match th

ulation’s true distribution.

a. The RealTime/CRiSP complex uses a subset of all available PIT-tagged fish for the stocks of interest.
For the 2000 migration season, we used: wild, spring/summer chinook released between 5/31/1999 and
11/01/1999 which were tagged by PIT-tag coordinators PMS (of ODFW) and SA (of NMFS). The selec-
tion criteria for the PIT-tagged fish used by RealTime/CRiSP changes each season and is determined by
Poe, Fish Biologist, Bonneville Power Administration.

Table 3 Number of PIT-tagged fisha used for RealTime and CRiSP modeling at
selected observation sites.

Stock

Number of wild spring and summer chinook used for observations with
PIT tags observed at:

Lower
Granite

Little
Goose

Lower
Monument

McNary
John
Day

Bonneville

Catherine Creek 30 25 10 13 13 13

Imnaha River 63 51 26 31 31 31

Minam River 74 84 43 54 54 54

S. Fork Salmon
River

39 34 20 21 3 22

Composite 206 194 99 119 n/a 120
18



A

rature

y

 fore-

 by the

rved

uality

arly

mics

emper-

ture

cies

ro-

y good

r (see

data),

or and

sti-

ong-

will
4 Discussion

4.1 Accuracy of Predictions

4.1.1 Temperature Prediction

The temperature forecasting algorithm was successful in creating an appropriate tempe

profile for each of the reservoirs. At Lower Granite, the prediction accuracy (as measured b

MAD) steadily improved.

By looking at the difference between the observed and predicted data points before the

casting line, one can see that some of the outlying temperatures were in fact later corrected

Army Corps and Grant County PUD. Any differences between the predictions and the obse

data before the forecasting line reflect the changes in the data after it was collected when q

control was applied to the data (e.g. Figure G-2 upper panel).

Because yearling chinook migrate in the spring and early summer, they are not particul

vulnerable to temperature extremes. In CRiSP, although predation and gas saturation dyna

are somewhat temperature-dependent, the difference in estimated survival resulting from t

ature variations of one or two degrees are minimal. The overwhelming majority of tempera

predictions fell well within the two-degree window, and thus we do not believe that inaccura

in temperature forecasts contributed significantly to errors in projections of fish passage.

4.1.2 Flow/Spill Predictions

Flow and spill forecasts provided by Army Corps improved in accuracy as the season p

gressed; however, the accuracy of late season predictions made in late March was not ver

due to the unanticipated spikes in flow and spill. Early season forecasts are notoriously poo

Appendix F for comparison of late-March predictions in 1998, 1999, and 2000 to observed 

although some are clearly more realistic than others (compare 1999 predictions at Ice Harb

Priest Rapids).

Estimates of the fraction of fish transported at Snake River projects will be sensitive to e

mated spill fractions: fish that are spilled are not collected for transportation. For accurate l

term projections of transport fractions, more accurate long-term projections of spill fraction 
19
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be required. Even when spill fraction is accurately measured, variability in spill efficiency an

FGE can produce errors in estimated transport fractions.

The apparent lack of any prediction of spill for Priest Rapids throughout the season is s

for other Columbia dams above the confluence with the Snake. Very low or no spill is repor

the flow archives for these dams this year.

4.1.3 Total Dissolved Gas Predictions

The MAD results for total dissolved gas (TDG) predictions are shown in Appendix J. Th

trend toward improvements in MAD are obvious as the season progresses. The larger valu

the beginning of the season are a result of the unanticipated spikes in the system-wide flow

corresponding spill especially in the Snake River system. Notice the very low levels after th

point (approximately Julian 150). The final MAD values are at or below two for each of the d

4.1.4 Passage Timing Predictions

The MAD results for RealTime and the downstream predictions are presented in Table

the end of the season. The RealTime MAD is calculated from RealTime output files at the e

the season. The reported 2000 “run” and “prediction” percentages are used according to th

method in Equation (5). The downstream MAD values are based on CRiSP output files for 

tagged fish.

Table 4 Mean absolute deviations (MAD) in smolt run timing predictions at the
four observation sites for the end of 2000. MAD at Lower Granite is from
archived RealTime data files and the other three are from archived CRiSP run
results.

Stock MAD at
LWG

Downstream MAD

LGS LMN MCN

Catherine Creek 0.41 8.6 11.0 5.74

Imnaha River 0.32 7.13  7.78 2.76

Minam River 0.20 10.16 8.48 5.13

S. Fork Salmon River 2.16 8.67 12.14 7.73

Composite 9.81 11.6 9.02 2.41
20
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In principle, the composite stock is easier to predict than individual stocks, as the comp

stock represents a substantially larger number of fish. There are differences between stock

how well CRiSP/RealTime performed. Some examples of these are shown in more detail in

graphs in Appendix C on a stock-by-stock basis.

Seasonal variation in MAD values are plotted for select sites and stocks in Appendix D.

readily apparent that upstream prediction errors are “propagated” downstream. Note how t

terns of MAD (though not necessarily the values) move in step through the season.

There are several fundamental issues that contribute to high MAD values.

1) CRiSP releases fish at Lower Granite Dam and the migration parameters for these fi

such that they do not begin to swim at their fastest speed until some time later in their migr

If the fish were released (in the model) in their natal streams they would likely be migrating

close to their top speed as they pass Lower Granite Dam and maintain this speed as they 

downstream from there. The fact that the fish move slowly at first is an artifact of the gener

ting procedure used to calibrate travel times between actual release points and downstream

tions. The actively migrating fish have migration parameters that were calibrated to their

historical travel time between LWG and downstream dams. These parameters give fish the

possible “running start” given that they have actually been migrating for days or weeks prio

arrival at Lower Granite. This partially explains the success of predicting passage at MCN 

pared to other dams upstream. The modeled fish are increasing in speed with their “experie

the river and the more rapid velocity reaches closer to the historic level of travel speed as t

son and their downstream migration proceeds. These migration parameters are updated a

2) RealTime does not provide absolutely accurate estimates of arrival timing at Lower G

Dam; to the extent that there are errors in RealTime predictions, those errors are propagat

downstream by CRiSP. RealTime does not necessarily use all of the PIT tag detections for 

but uses particular ones (tagged during a particular time period, by a particular group of res

ers). This makes their sample size smaller and therefore more sensitive to individual fish a

3) RealTime is a statistical procedure, and one should expect some degree of variation

the particular conditions observed in any given year. There is no reason to expect predictio
21
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made on any particular date to perfectly fit the arrival distribution preceding that date, becau

final arrival distribution is contingent on arrivals through the entire system: if the run is 50% 

plete but RealTime estimates only 40% completion, for example, that will necessarily produ

error both before the prediction date (underestimating) and after it (overestimating, to catch

4) RealTime uses a conversion factor to estimate the true passage of PIT-tagged fish. T

based on spill efficiency and FGE (Burgess et al. 1999). The conversion is supposed to giv

CRiSP the passage distribution at the dam and the CRiSP runs proceed from a hypothetic

release just above Lower Granite Dam so that CRiSP can calculate the mortality associate

the dam passage. The conversion is supposed to account for unobserved fish that go over 

way. It does not attempt to make a correction for fish passing the dam through the turbines

ignores any transported fish that may be inadvertently removed from the river.

5) The data used to make the predictions is different from the data that is finally compile

the end of the year and used in this report for comparison to the model predictions. The DA

database is updated regularly with additions and corrections for missing or corrected data.

Updates and corrections to PIT Tag records are received on a regular basis from the PTAG

database maintained by the Pacific States Marine Fisheries Commission. This is highly sig

cant given that the arrivals and detections at Lower Granite dam are the foundation for the in

the CRiSP model. This analysis queries the database for observation data and compares th

predictions made during the season. The final observation data is not the same data that w

to make the predictions and new predictions of the true distribution of fish at LWG is made

day even if new fish have not arrived simply because near the end of the season, the confi

that it is truly the end of the season is increased.

6) Some data is missing and is never updated because some data records are still miss

Most likely this is due to fish passing the dam without triggering a detector. The observed pa

at a downstream dam is then skewed because the fish that escape the detectors at an upstr

may not be random selections from the population of all fish in that stock that pass the dam

Changes in dam operations, hydrologic conditions and mortality can skew the counts by ei

increasing or decreasing the detections even under the best conditions because of biases i

ity coupled with low numbers of passing smolts. This can have an impact on the results of 
22
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analysis because all downstream modeling efforts are going to be dependent on the initial

“release” of fish above Lower Granite Dam and the data collected at downstream dams.

7) CRiSP travel time parameters are based on historical conditions. A strong deviation 

the migratory behavior of their predecessors means that these migrants will not be modele

accurately. Once the fish have entered the system, the model is mostly able to track their m

ments but the errors are propagated downstream.

8) Some errors are a fundamental result of using a model and relying on parameters to

describe basic relationships. The two main functions of CRiSP in this application are to mov

downstream and to keep track of survival and passage routes of fish. The primary model in

are forecasts of flow and spill fractions. Flow is an important input because it influences the

downstream migration rate of the fish. Behavior-dependent migration rate parameters are b

on data and the downstream passage distributions are based on modeled numbers of fish 

the PIT tag detectors. Diversion of migrating fish into sampling systems that detect PIT-tag

fish depends upon the efficiency of spillways and fish diversion screens. The accuracy of C

also depends upon our correctly estimating the values of these parameters. In recent years

have had to rely more and more on forecast data of flow and spill. In 2000, these files were

updated monthly which means that as much as 30 days out from a forecast, we are using p

tions instead of observed data. Some of the sudden jumps and changes in the MAD profiles

attributed to this problem. Table 5 shows the number of flow/spill archive files used during 

year since 1996.

Table 5 Counts of flow\spill archive files available for use
in predicting smolt passage from 1996 through 2000.

Year Number of flow/
spill archive files

1996 18

1997 19

1998 22

1999 14

2000 6
23
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Spill has several effects on model output. First, it affects the passage routes of the fish 

higher spills, fewer fish pass through the bypass system where PIT-tagged fish can be dete

Survival of migrating fish is also affected by spill: high levels of spill lead to high dissolved g

levels, causing potentially lethal gas bubble trauma, behavioral alteration, and vulnerability

predation. Distinct sigmoidal arrival distributions at dams below Lower Granite Dam may b

result of high levels of spill at those projects: fish that were detected at Lower Granite could

been swept over the spillways of lower dams, and would not have been detected. The sudd

tening of cumulative arrival distributions means that fish are not being detected and either d

were spilled. Cramer (1996) found an association between high levels of dissolved gas and

increased smolt mortality during the 1996 outmigration.

4.2 Utility of CRiSP/RealTime Predictions in Management

Flow augmentation for control of discharge; temperature; spill timing and fraction; transp

tion operations; etc. are some of the many examples of how managers can adjust the hydro

for the benefit of salmon. However, this requires accurate assessments of the status of salm

migration and planned responses to various contingencies. For example, one might elect t

port juvenile chinook at collection facilities, but separate fish when flows fall below some ta

value until the run has reached 80%. This policy requires an accurate assessment of when

80% level is reached. Similarly, a policy that seeks to transport a given fraction of the run, 

50%, can only be done if one has estimates of the state of the run and the fraction transpo

date.

The cumulative passage forecasts provide managers with estimates of the fraction of a

run that will be exposed to expected spill, flow, dissolved gas levels, and transportation dur

given period of interest - generally the next one to two weeks. This allows both quantitative

qualitative assessment of the exposure these fish will experience to the conditions. Within 

the managers can choose to modify operational conditions. If spill is to be targeted for part

stocks, the CRiSP/RealTime estimates of arrival distributions would allow managers to dire

spill at the projects where the bulk of the run is passing and reduce spill at projects where fe

are passing, in order to control dissolved gas levels.

With accurate reporting of PIT-tagged fish arrivals, inputs to the CRiSP model can be m
24
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more accurate; however, it cannot make up for other inaccuracies in its inputs.

This year, we kept track of the input data files used to make predictions for each model

and confirmed that only additions of new data were used to update files even though perio

updates have changed historical passage numbers in the past as data has been corrected

We are minimizing errors in the transfer of information between RealTime and CRiSP. S

the processes are automated but separately developed, small details that may have an imp

be investigated. For example, RealTime may only use a subset of PIT-tagged fish within a 

and they then output the subset counts to us for use as the dam passage observations eve

the total numbers of a stock may be greater.

Another example is the use of flow data. RealTime makes a daily query of DART for da

flows and spills at Lower Granite dam and this is used in the expansion factors. CRiSP use

flow forecast file provided by the Army Corps which was updated every month. The importa

difference between RealTime and CRiSP’s data needs is that CRiSP needs forecasts of flo

spill in order to move the fish downstream.

Receipt of flow forecasts on a more frequent schedule would be advantageous because

would use actual observations for the days available, and we would be able to predict flows

accurately because predictions for the near-term are inherently more accurate than those m

into the future. In the absence of more timely flow/spill files, we will at least consider updati

the observations from other sources. Even if the predictions then become unreasonable, w

still be better able to predict smolt passage.
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Appendix A  Map of Columbia and Snake River Locations
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 Figure A-1 Map of CRiSP locations

“●” are dam locations (not all are labelled by name). “✩” are approximate release locations

with a key letter as follows: S=SALRSF, M=MINAMR, C=CATHEC, and I=IMNAHR. The

darker river segments are explicitly modeled in CRiSP. Other segments are shown for refer-

ence only. Spill, elevation and flow predictions are made by BPA atall shown dams. Tem-

perature predictions are made at Lower Granite (LWG), Priest Rapids (PRD) and The Dalles

(TDA). Total dissolved gas is monitored at sites downstream of all dams shown and analyzed

for sites below Lower Granite-LWG (LGNW), Little Goose-LGS (LGSW), McNary-MCN

(MCPX), Priest Rapids-PRD (PRXW), and Bonneville-BON (SKAW). The stocks analyzed

in this report pass Lower Granite Dam (their arrivals predicted by RealTime) and results are

presented for their arrivals at Little Goose (LGS), Lower Monumental (LMN) and McNary

(MCN).
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Appendix B  CRiSP Parameters

For stock specific parameters used for CRiSP Yearling Chinook (Chinook 1) model run

the 2000 values in Table B-4.

Table B-1 Dam Specific Parameters used for CRiSP runs. Spill and bypass
mortalities are set at 0.02. Turbine mortality is set at 0.07.

Dam FGE Forebay
Pred. Density

Tailrace
Pred. Density

Bonneville 0.38 1741 13249

Bonneville II 0.44

The Dalles 0.46 1741 13249

John Day 0.64 1741 13249

McNary 0.95 1741 13249

Ice Harbor 0.71 547 14094

Lower Monumental 0.61 547 14094

Little Goose 0.82 547 14094

Lower Granite 0.78 547 14094

Table B-2 Species Specific Parameters used for CRiSP runs

Species Reach Pred.
Coef.

Forebay Pred.
Coef.

Tailrace Pred.
Coef.

Chinook 1 12.70 15.6 0.4844

Table B-3 Reservoir Specific Parameters used for CRiSP runs

Reservoir Predator Density

Estuary 1950

Jones Beach 1950

Columbia Gorge 1950

Bonneville Tailrace 1950
B-2
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Table B-4  Migration Parameters used by CRiSP

Bonneville Pool 1014

The Dalles Pool 1014

Deschutes Confluence 1014

John Day Pool 1014

McNary Pool 1014

Lower Snake River 809

Ice Harbor Pool 809

Lower Monumental Pool 809

Little Goose Pool 809

Lower Granite Pool 809

Y
ear Jackknifed

parameter estimates (std. error) σ2 resid.
ss

βMIN βMAX βFLOW a2 Tseas α2

Catherine Creek Spring Chinook

93 -7.8845 4.1743 1.7192 0.1268 45.9573 0.2686 43.16 1637

94 -7.5073 4.1700 1.5851 0.1269 45.9269 0.4016 44.84 1208

95  -7.2789 4.1887  1.5517 0.1275 45.7119 0.2923 43.77 1828

96 -7.5572 4.1554 1.7417 0.1268 45.9521 0.2674 46.61 1725

97 -7.3770 4.1514 1.6705 0.1268 45.9699 0.2686 46.14 1782

98 -6.9801 4.1764 1.5901 0.1269 45.9193 0.3579 43.17 1244

99 -7.2608 4.1517 1.5343 0.1269 45.9296 0.2922 42.01 1488

00 -7.6871 4.1615 1.6261 0.1268 45.9639 0.2974 45.68 1812

Imnaha Spring Chinook

93 -3.69381 11.23345 0.84772 0.32787 96.51307 0.47442 34.04 187

Table B-3 Reservoir Specific Parameters used for CRiSP runs

Reservoir Predator Density
B-3
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.938

.944

.732

.488

.788

.699

.666

.403

.110

.678

.678

.677

.715

.990

.161

.838

.434

.031

.437

.049

.001

.996

9.525
94 -3.6897 11.2433 0.8393 0.3385 96.2445 0.4720 29.99 1640

95 -3.6593 12.7899 2.2803 0.0039 116.1085 0.0513 32.42 2150

96 -3.6592 12.7899  2.2803 0.0039 116.1079 0.0513 31.76 2403

97 -3.5009 12.7845 0.7617 0.3215 99.4979 0.5472 31.01 2391

98  -3.2906 3.0318 1.2898 0.3994 67.5704 0.0580 33.44 1778

99 -5.5366 12.1223 0.8610 0.5234 82.8257 0.5137 33.95 2424

00 -4.8890 6.0181 1.0823 0.3328  68.7233 0.3707 32.34 2483

Minam River Spring Chinook

93 -5.0767 7.5084 1.0752 0.1570 60.0012 0.3739 44.15 1885

94 -5.3381 7.7544 1.1655 0.1999 47.0010 0.2650 38.81 1430

95 -6.1050 7.0384 1.2552 0.1899 80.5944 0.2766 41.68 1364

96 -4.8004 7.5577  1.0929 0.2001 66.0942 0.3319 43.58 1709

97 -4.6673 7.7670 1.1467 0.2056 70.1999 0.2259 42.39 1907

98 -3.3370 7.0241 1.0523 0.2000 59.9964 0.2435 40.28 1601

99 -4.0193 7.9045 0.9501 0.2000 70.0274 0.3644 41.99 1699

00 -4.7073 5.7499 1.0707 0.1204 69.6332 0.4389 41.90 1923

Salmon River South Fork Spring Chinook

93 0.3900 11.0333 0.6645 0.2465 104.3574 0.2037 60.27 7123

94 0.2061 18.2831 0.5729 0.2651 105.6191 0.2240 48.10 4129

95 -0.3669 12.7229 0.6767 0.2656 102.8795 0.2101 65.62 6848

96 0.2409 13.1313 0.6071 0.2538 103.8657 0.2066 62.08 7953

97 0.2147 10.3728 0.6913 0.2566 104.8487 0.2089 60.52 7626

98 0.2676 15.3387 0.5162 0.2411 96.7796 0.2176 65.70 6727

99 0.0028 7.3067 0.6736 0.2528 102.7425 0.2060 69.03 7438

00 -0.06387 11.84526 0.70418 0.17251 103.0559 0.22771 62.08 808

Y
ear Jackknifed

parameter estimates (std. error) σ2 resid.
ss

βMIN βMAX βFLOW a2 Tseas α2
B-4



A

uly 6.

 repre-

t dam

tion

ns at

ranite

 be

 page
Appendix C  Arrival Time Distribution plots

The following figures present the CRiSP/RealTime predictions on May 11, June 1 and J

The dates represent pre-migration, mid migration and late migration times. The dashed line

sent the model predictions and the solid line is the observed distribution of PIT tag arrivals a

(either Lower Granite, Little Goose, Lower Monumental and McNary). The predicted distribu

at Lower Granite Dam is generated by the RealTime program, and the predicted distributio

Little Goose, Lower Monumental and McNary are CRiSP projections based on the Lower G

prediction. The vertical line in each plot is the date of the prediction. The historical runs can

displayed on world wide web pages devoted to presentation of arrival time data. The home

for the project is found at http://www.cbr.washington.edu.
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Composite Stock - Lower Granite Dam (LWG)
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 Figure C-1 RealTime predictions for cumulative distribution of arrivals of the
Composite stock at Lower Granite Dam. Y-axis shows percent of total passage
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Composite Stock - Little Goose Dam (LGS)
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 Figure C-2 CRiSP predictions for cumulative distribution of arrivals of the
Composite stock at Little Goose Dam. Y-axis shows percent of total passage.
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Composite Stock - Lower Monumental Dam (LMN)
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 Figure C-3 CRiSP predictions for cumulative distribution of arrivals of the Composite
stock at Lower Monumental Dam.Y-axis shows percent of total passage.
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Composite Stock - McNary Dam (MCN)
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 Figure C-4 CRiSP predictions for cumulative distribution of arrivals of the Composite
stock at McNary Dam. Y-axis shows percent of total passage.
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Composite Stock - Bonneville Dam (BON)
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 Figure C-5 CRiSP predictions for cumulative distribution of arrivals of the Composite
stock at Bonneville Dam. Y-axis shows percent of total passage.
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Catherine Creek – Lower Granite Dam (LWG)
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 Figure C-6 RealTime predictions for the cumulative distribution of arrivals of the Cathe-
rine Creek stock at Lower Granite Dam. Y-axis shows percent of total passage
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Catherine Creek – Little Goose (LGS)
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 Figure C-7 CRiSP predictions for the cumulative distribution of arrivals of the Catherine
Creek stock at Little Goose Dam. Y-axis shows percent of total passage.
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Catherine Creek – Lower Monumental (LMN)

Julian Day
100 120 140 160 180 200

0

20

40

60

80

100 Data
Prediction

LMN: May. 11 Prediction vs. 2000 Data

Julian Day
100 120 140 160 180 200

0

20

40

60

80

100 Data
Prediction

LMN: Jun. 1 Prediction vs. 2000 Data

Julian Day
100 120 140 160 180 200

0

20

40

60

80

100 Data
Prediction

LMN: Jul. 6 Prediction vs. 2000 Data

 Figure C-8 CRiSP predictions for the cumulative distribution of arrivals of the Catherine
Creek stock at Lower Monumental Dam. Y-axis shows percent of total passage
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Catherine Creek – McNary Dam (MCN)
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 Figure C-9 CRiSP predictions for the cumulative distribution of arrivals of the Catherine
Creek stock at McNary Dam. Y-axis shows percent of total passage.
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Imnaha River – Lower Granite Dam (LWG)
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 Figure C-10 RealTime predictions for the cumulative distribution of arrivals of the Imnaha
River stock at Lower Granite Dam. Y-axis shows percent of total passage.
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Imnaha River – Little Goose Dam (LGS)
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 Figure C-11 CRiSP predictions for the cumulative distribution of arrivals of the Imnaha
River stock at Little Goose Dam. Y-axis shows percent of total passage.
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Imnaha River – Lower Monumental Dam (LMN)
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 Figure C-12 CRiSP predictions for the cumulative distribution of arrivals of the Imnaha
River stock at Lower Monumental Dam. Y-axis shows percent of total passage
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Imnaha River – McNary Dam (MCN)
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 Figure C-13 CRiSP predictions for the cumulative distribution of arrivals of the
Imnaha River stock at McNary Dam. Y-axis shows percent of total passage.
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Minam River – Lower Granite Dam (LWG)
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 Figure C-14 Realtime predictions for the cumulative distribution of arrivals of the
Minam River stock at Lower Granite Dam. Y-axis shows percent of total pas-
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Minam River – Little Goose Dam (LGS)
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 Figure C-15 CRiSP predictions for the cumulative distribution of arrivals of the
Minam River stock at Little Goose Dam. Y-axis shows percent of total passage
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Minam River – Lower Monumental Dam (LMN)
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 Figure C-16 CRiSP predictions for the cumulative distribution of arrivals of the Minam
River stock at Lower Monumental Dam. Y-axis shows percent of total passage
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Minam River – McNary Dam (MCN)
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 Figure C-17 CRiSP predictions for the cumulative distribution of arrivals of the Minam
River stock at McNary Dam. Y-axis shows percent of total passage.
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South Fork Salmon River –Lower Granite Dam (LWG)
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 Figure C-18 RealTime predictions for the cumulative distribution of arrivals of the S. Fork
Salmon stock at Lower Granite Dam. Y-axis shows percent of total passage.
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South Fork Salmon River – Little Goose Dam (LGS)
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 Figure C-19 CRiSP predictions for the cumulative distribution of arrivals of the S. Fork
Salmon River stock at Little Goose Dam. Y-axis shows percent of total passag
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South Fork Salmon River – Lower Monumental Dam (LMN)
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 Figure C-20 CRiSP predictions for the cumulative distribution of arrivals of the S. Fork
Salmon stock at Lower Monumental. Y-axis shows percent of total passage.
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South Fork Salmon River – McNary Dam (MCN)
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 Figure C-21 CRiSP predictions for the cumulative distribution of arrivals of the S. Fork
Salmon River stock at McNary Dam. Y-axis shows percent of total passage.
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Appendix D  Seasonal Variation in Passage Predictions

Passage predictions during the season vary as function of changes in river conditions f

past predicted values. RealTime predictions of arrivals at Lower Granite Dam are used as i

CRiSP1 which then predicts the arrival of fish at downstream locations. In the figures that fo

MAD computations for each modeled day of arrivals at Lower Granite Dam, Lower Monum

Dam and McNary Dam are displayed. Patterns of prediction success at an upstream locati

propagated downstream.
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 Figure D-1 Seasonal variation in passage prediction success for the Composite stock at L
Goose, Lower Monumental and McNary Dams Y axis is theMAD value.
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 Figure D-2 Seasonal variation in passage prediction success for Catherine Creek stocks a
Goose, Lower Monumental and McNary Dams. Y axis is theMAD value.
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 Figure D-3 Seasonal variation in passage prediction success for Imnaha River stocks at L
Goose, Lower Monumental and McNary Dams. Y axis is theMAD value.
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 Figure D-4 Seasonal variation in passage prediction success for Minam River stocks at Li
Goose, Lower Monumental and McNary Dams. Y axis is theMAD value.
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 Figure D-5 Seasonal variation in passage prediction success for South Fork Salmon River 
at Little Goose, Lower Monumental and McNary Dams. Y axis is theMAD value.
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Appendix E  Flow/Spill Forecast Plots

Flow and Spill plots for four dams: Lower Granite (LWG), Priest Rapids (PRD), The Dal

(TDA), and Bonneville (BON). The Y axis on the graphs is cubic feet per second (CFS). Th

tical line in the plot marks the date of the prediction.
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 Figure E-1 Flow predictions and observations for Lower Granite Dam. Y axis shows CFS
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 Figure E-2 Spill predictions and observations for Lower Granite Dam. Y axis shows CFS
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 Figure E-3 Flow predictions and observations for Priest Rapids Dam.Y axis shows CFS.
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 Figure E-4 Spill predictions and observations for Priest Rapids Dam. Y axis shows CFS.
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 Figure E-5 Flow predictions and observations for The Dalles Dam. Y axis shows CFS.
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 Figure E-6 Spill predictions and observations for The Dalles Dam.Y axis shows CFS.
E-7



A

Julian Day
50 100 150 200 250

100000

150000

200000

250000

300000

350000

400000 Data
Prediction

BON: Apr. 3 Prediction vs. 2000 Data

Julian Day
50 100 150 200 250

100000

150000

200000

250000

300000

350000

400000 Data
Prediction

BON: May. 22 Prediction vs. 2000 Data

Julian Day
50 100 150 200 250

100000

150000

200000

250000

300000

350000

400000 Data
Prediction

BON: Jul. 16 Prediction vs. 2000 Data

 Figure E-7 Flow predictions and observations for Bonneville Dam.Y axis shows CFS.
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 Figure E-8 Spill predictions and observations for Bonneville Dam.Y axis shows CFS.
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Appendix F  Spill Forecast History Plots

Spill predictions during the early season are difficult to make. Shown here are late Marc

dictions compared to data for Priest Rapids and Ice Harbor. For the last three years, there h

at least one spike in the spill volumes (mostly due to large flows in the system).
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 Figure F-1 Early season spill predictions for the last three years compared to data at Pri
Rapids Dam.
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 Figure F-2 Early season spill predictions for the last three years compared to data at Ice 
bor dam.
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Appendix G  Temperature Forecast Plots
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 Figure G-1 Temperature predictions and observations for Lower Granite Dam. Y axis is 
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 Figure G-2 Temperature predictions and observations for Priest Rapids Dam. Y axis is ˚
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 Figure G-3 Temperature predictions and observations for The Dalles Dam. Y axis is ˚C.
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Appendix H  Seasonal Variation in Temperature Forecasts

For each day that a prediction was made, the Mean Absolute Deviation was calculated 

each day in the season for which there was both an observation and a prediction. (See tex

“Assessment of Predictions” on page 9).

These MAD values are plotted as a time series to see how the predictions changed thro

season. If the predicted values exactly matched the observations, the MAD for that day wo

zero. In the plots that follow, the MAD value is on the Y-axis and the Julian day is on the X
H-1
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 Figure H-1 Seasonal variation in temperature prediction success at three locations as me
by MAD (Y-axis).
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Appendix I  Dissolved Gas Forecast Plots

Total dissolved gas predictions and observations are shown in the following plots for fiv

monitoring sites downstream from dams. The X-axis is the Julian day and the Y-axis is the

centage super-saturation.
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 Figure I-1 Total Dissolved Gas predictions and observations for Lower Granite Dam as
measured at LGNW. Y axis is the percent saturation.
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LGSW: Apr. 24 Prediction vs. 2000 Data
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 Figure I-2 Total Dissolved Gas predictions and observations for Little Goose Dam as me
sured at LGSW. Y axis is the percent saturation.
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MCPW: Apr. 24 Prediction vs. 2000 Data
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 Figure I-3 Total Dissolved Gas predictions and observations for McNary Dam as measu
at MCPW. Y axis is the percent saturation.
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PRXW: Apr. 24 Prediction vs. 2000 Data

Julian Day
100 150 200 250

100

105

110

115

120

125

130

....
......

.......
.
.

...
...
...........................

........
......

........
.
.
..
.......

......................................................................................

Data
Prediction

PRXW: Jun. 19 Prediction vs. 2000 Data
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 Figure I-4 Total Dissolved Gas predictions and observations for Priest Rapids Dam as m
sured at PRXW. Y axis is the percent saturation.
I-5



A

-

Julian Day
100 150 200 250

100

105

110

115

120

125

.......
....

...
.
...
.
...
..
...
............................

..................
.....

..
...............

.
.
.
.................

........................................................

Data
Prediction

SKAW: Apr. 24 Prediction vs. 2000 Data
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SKAW: Jun. 19 Prediction vs. 2000 Data
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 Figure I-5 Total Dissolved Gas predictions and observations for Bonneville Dam as mea
sured at the SKAW site. Y axis is the percent saturation.
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Appendix J  Seasonal Variation in TDG Forecasts

Prediction success for Total Dissolved Gas throughout the season is show for five moni

sites below dams. The X-axis is the Julian day and the Y-axis is the average daily error in p

age (points) for the prediction made on that day compared to the data for the entire season
J-1



A

low
 Figure J-1 Season variation in Total Dissolved Gas prediction at three monitoring sites be
Lower Granite Dam, Little Goose Dam and McNary (top to bottom respectively).
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 Figure J-2 Season variation in Total Dissolved Gas prediction at two monitoring sites belo
Priest Rapids Dam and Bonneville Dam (top to bottom respectively).
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