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Executive Summary
This report is a post-season analysis of the performance of the CRiSP portion of the Real-
Time/CRiSP complex. Observed 2002 data are compared to predictions made by CRiSP/Real -
Time during the 2002 outmigration for arrival timing, water temperature, and total dissolved gas.

Also, flow and spill predictions made during the season at various dams are compared to data.

CRiSP model runs consistently demonstrate that basic mechanisms of migration can be
applied to Columbia River fish movements and their survival tracked downstream. As a part of
Rea Time/CRiSP, CRiSP is absolutely dependent on the arrival distributions predicted by the

Real Time portion of the model and other river environment inputs such as flow and spill data.



1 Introduction

Since 1988, wild salmon have been PI T-tagged through monitoring and research programs
conducted by the Columbia River fisheries agencies and Tribes. The detection of tagged individu-
als at Lower Granite Dam provides a measure of the temporal and spatial distribution of the wild
salmonids popul ations. Program Real Time was developed by researchers at the University of
Washington to take advantage of this historical datato predict the proportion of a particular popu-
lation that had arrived at the index site in real-time and to forecast el apsed time to some future
percentilein amigration (Townsend et al. 1996, 1997; Burgess et al. 1999, 2000). The Columbia
River Salmon Passage (CRiSP) model predicts downstream migration and survival of individual
stocks of wild and hatchery spawned juvenile fish from the tributaries and dams of the Columbia
and Snake riversto the estuary. The model describesin detail fish movement, survival, and the
effects of various river operations on these factors. Fish travel time in CRiSP has been calibrated

using the PIT tag data.

During the 1996 migration season, Columbia Basin Research launched a prototype run timing
system, CRiSP/Real Time, with results updated on the World Wide Web. This project was
launched in an effort to provide real-time inseason projections of juvenile salmon migration to
managers of the Columbia-Snake River hydrosystem to assist the managers in decisions about
mitigation efforts such as flow augmentation, spill scheduling and fish transportation. CRiSP/
Real Time utilizes two separate programs to generate downstream passage distributions. The pro-
gram Real Time uses an empirical pattern matching routine to predict the arrival distributionsfor a
wide variety of wild salmon stocks at the first detection point in the migratory route, Lower Gran-
ite Dam. The CRiSP model takes the predictions from Real Time and uses hydrological, fish
behavioral and dam geometry information to ssimulate the movement and survival of juvenile
salmonids through Little Goose, Lower Monumental, and |ce Harbor dams on the Snake River
and McNary Dam on the Columbia River. At the same time, CRiSP produces estimates of the
fraction of the run arriving at Lower Granite dam which was subsequently transported at the four

transport projects (Lower Granite, Little Goose, Lower Monumental, and McNary dams).

Thisreport is apostseason analysis of the accuracy of the 2002 predictions from the CRiSP
model as part of the CRiSP/Rea Time complex. In the CRiSP model, water quality affects fish



migration and survival, temperature, and dissolved gas levels which are modeled from flow and
spill forecasts, historical data, and year-to-date data. The effectiveness of these modeling efforts
are compared to observations of passage and river conditions at the end of the season. The analy-
ses and graphic presentations herein demonstrate changes in accuracy of the models throughout
the season.
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Figurel Simplified schematic of Rea Time and CRISP complex. Prior to migration year
2000, model generated gas was not updated with observed values for the produc-
tion of daily passage distribution forecasts. PIT Tag data courtesy of Pacific
States Marine Fisheries Commission. Water Quality Data courtesy U.S. Army
Corps of Engineers. Flow Forecast File provided by Bonneville Power Adminis-
tration and U.S. Army Corps of Engineers.



2 M ethods
2.1 Data

2.1.1 Travel TimeData

The fish analyzed in this report are spring/summer chinook which originate from several trib-
utaries of the Snake River: Catherine Creek, Imnaha River, Minam River, and South Fork Salmon
River abbreviated as CATHEC, IMNAHR, MINAMR, and SALRSF, respectively. Previous post-
season analyses also included Lostine River (1997) and South Fork Wenaha River (1996, 1997)
stocks. The fish weretagged in their natal streams with passive integrated transponder (PIT) tags.
PIT-tagging of wild salmon is part of on-going monitoring and research programs conducted by
the ColumbiaRiver fisheries agencies and Tribes. Information from PIT tag studies and other fish
monitoring programs is presented in reports by the Fish Passage Center, National Marine Fisher-
ies Service (Achord et a. 1992, 1994, 19953, 1995b, 1996, 1997), Idaho Department of Fish and
Game (Kiefer et al. 1993, 1994), Oregon Department of Fish and Game (Keefe et al. 1994;
Walters et al. 1997) and the Nez Perce Tribe (Ashe et a. 1995). PIT tags provide instantaneous
passage times for individual fish at interrogation sites (Prentice et al. 1990). The four observation
sites addressed in this report are Lower Granite, Little Goose and Lower Monumental Dams on

the Snake River and McNary Dam on the Columbia River.

In addition to the individual stocks, a“composite” stock was formed by combining all four

stocks together, weighting each stock equally, asin previous analyses.

For the CRIiSP downstream projections, we are limited to using historical data since 1993 in
order to estimate fish travel time parameters and confidence intervals. Although fish were PIT-
tagged previous to these years, there was no provision made to return detected PI T-tagged fish to
the river. Consequently, the majority of fish observed at Lower Granite Dam were removed from
theriver by transport operations. Too few fish were subsequently observed at downstream interro-
gation sites to generate passage distributions and travel time estimates. In 1993, slide gates were
installed which selectively diverted PIT-tagged fish back into theriver, alowing for adequate

sample sizes at the downstream interrogation sites.



2.1.2 Flow, Spill and Other System Operation Data

Any forecast of fish movement relies critically on accurate forecasts of flow, spill, transporta-
tion, and other key system operations. The U.S. Army Corps of Engineers generates flow, spill,
and reservoir surface elevation forecasts at al projects on the Columbia and Snake Rivers where
there isfish passage. Water supply forecasts are based on a number of factors: the National
Weather Service' s Northwest River Forecast Center predictions, flood control requirements from
the Army Corps, electrical power demand forecasts, and other criteria. The substantial uncertainty
associated with springtime conditions often results in frequent and marked changesin these fore-
casts during April and May. Moreover, attempts to reduce the biological impacts of dissolved gas
generated from high spill levelsalso resultsin a shifting of spill between projectswithin aswell as
outside the basin. Although the forecasts covered as much as 90 days into the future, it must be
recognized that their principal use wasin deciding operations for the next week. Forecast accu-
racy beyond even afew dayswasitself uncertain. Bonneville Power Administration processes the
Army Corps forecasts and makes them available to CBR staff throughout the migration season.

Forecasts for flow, spill, and elevation were replaced with observations on adaily basiswith a
guery to the Columbia River DART database, which downloads water quality datafrom the Army
Corpsfor the mgjority of monitoring sitesin the Columbia Basin. This method was begun in 2001
and was a significant improvement over the 2000 in-season forecasts that relied on the forecasts
alone. Subsequent fish arrival predictions were therefore based on the forecasted values for flow
and spill and the | atest available observed data.

2.1.3 Temperature Data

The temperature time series used in the CRISP analysis is a combination of year-to-date tem-
perature data and forecasted temperatures. The forecasts are based on observed year-to-date tem-
perature and flow data, historical average temperature and flow profilesfor 15 locationsin the
Snake and Columbiarivers, and the flow forecasts. Historic and observed year-to-date data was
obtained from the DART database. Temperature predictions are made by applying athree-day
moving window to fit predicted temperature time seriesto historical average patterns of tempera-
ture change; this method is described in detail in section 3.2.



Tablel U.S Army Corps of Engineers fixed monitoring sites and USGS gaging
stations used by CRIiSP for Temperature forecasts.

Monitoring L ocations

CRIiSP Model Input Locations

Chief Joseph Forebay Columbia Headwater
WEells Forebay Methow Headwater
Rock Idand Forebay Wenatchee Headwater
The Dalles Forebay Deschutes Headwater
Anatone, WA USGS Snake Headwater

Peck, ID USGS Clearwater Headwater

Peck, ID USGS North Fork Clearwater Headwater
Peck, ID USGS Middle Fork Clearwater Headwater
Anatone, WA USGS Salmon Headwater

WEells Forebay Wells Pool

Rocky Reach Forebay Rocky Reach Pool

Rock Idand Forebay Rock Island Pool
Wanapum Forebay Wanapum Pool

Priest Rapids Forebay Priest Rapids Pool

Lower Granite Forebay Lower Granite Pool

Little Goose Forebay

Little Goose Pool

Lower Monumental Forebay

Lower Monumental Pool

|ce Harbor Forebay |ce Harbor Pool
McNary Forebay McNary Pool

John Day Forebay John Day Pooal
The Dalles Forebay The Dalles Pool

Bonneville Forebay

Bonneville Pool




2.1.4 Total Dissolved Gas Data

Total dissolved gas (TDG) data are collected at Army Corps fixed monitoring sites below the
Columbia and Snake River dams. The observed year-to-date TDG data for Chief Joseph, Lower
Granite, and Dworshak is obtained daily by a query to the Columbia River DART database. The
data is downloaded daily from the primary source, the Army Corps, and quality assurance is not
aways guaranteed. Anomalies in observed TDG data are indicators of suspicious data.

The modeled gas production predicts the gas observed at the Army Corps fixed monitors. For
amap of the dissolved gas monitoring system, see the Water Management Division, U.S. Army
Corps of Engineersweb document, http://www.nwd-wc.usace.army.mil/report/pdf/gasmap.pdf. It
should be noted that the nearest downstream monitor to Bonneville Dam is 6 miles downstream,

S0 it isexpected that the gas levels at this monitor (WRNO) will be lower than those generated at

the dam.
Table2 U.S. Army Corps of Engineers total dissolved gas fixed monitoring
sites used by CRiSP for Total Dissolved Gas forecasts.
Fixed Monitoring Station Name Station Location
Code facing downstream

Chief Joseph Tailwater CHQW Right Bank
Wells Tailwater WELW Left Bank
Rocky Reach Tailwater RRDW Mid Channel
Rock Idand Tailwater RIGW Left Bank
Wanapum Tailwater WANW Mid Channel
Priest Rapids Tailwater PRXW Mid Channel
Dworshak Tailwater DWQI Left Bank
Lower Granite Tailwater LGNW Right Bank
Little Goose Tailwater LGSW Right Bank
Lower Monumental Tailwater LMNW Left Bank
|ce Harbor Tailwater IDSW Right Bank
McNary Tailwater MCPW Right Bank




Table2 U.S. Army Corps of Engineers total dissolved gas fixed monitoring
sites used by CRiSP for Total Dissolved Gas forecasts.

Fixed Monitoring Station Name Sation Location
Code facing downstream
John Day Tailwater JHAW Right Bank
The Dalles Tailwater TDDO Left Bank
Bonneville Tailwater WRNO Left Bank

2.1.5 Archives of Model Predictions

The results of the Real Time and CRiSP model runs are stored on the ColumbiaBasin
Research web site. Graphs and text reports based on the results are available through a variety of
web-based query tools at http://www.cbr.washington.edu/crisprt/ . Runs are made severa times
per week. Archivesinclude daily passage distribution forecasts at Lower Granite, Little Goose,
Lower Monumental, Ice Harbor, and McNary dams for each stock of interest and water quality

predictions for selected dams on the Columbia and Snake Rivers.

2.2 Models

2.2.1CRIiSP

CRIiSP isamechanistic model that describes the movement and survival of juvenile salmonin
the Columbia and Snake Rivers. The theory and calibration of the model is described in detail in
Anderson et a. (2000). We include only abrief summary of the model here, but we notethat it has
been extremely successful in fitting al of the yearling chinook survival data collected in the

Columbia Basin, from 1966 through the present day.

Modeled factors that affect survival of hatchery and wild juvenile stocks include daily flow,
river temperature, predator activity and density, total dissolved gas (TDG) supersaturation, and
river operations such as spill, fish transportation and bypass systems. For CRiSP model runs, flow
and spill were provided by BPA. Temperature and TDG forecasts were devel oped based on those
flow and spill estimates and year-to-date observed data. All other relevant parameters were deter-
mined at CBR, based on avariety of different sources.

Dam passage changes with fish guidance efficiency, passage mortalities, and diel passage



behavior. These factors are modeled on a species and dam-specific basis. Relevant model param-
eters for inseason modeling of yearling chinook stocks are given in Appendix B. These parame-
ters are generally drawn from the literature or are calibrated from related data (e.g. PIT tag
detection rates at various projects). Reservoir mortality depends on several factors: fish travel
time, predator density and activity, total dissolved gas supersaturation levels, and water tempera-
ture. Predator densities used in CRiSP were estimated from several published sources (Beames-
derfer and Rieman 1991; Vigg et a. 1991; Ward et al. 1995; Zimmerman and Parker 1995;
Zimmerman et a. 1997). Total dissolved gas production equations are based on research con-
ducted by the Waterways Experiment Station (WES), U.S. Army Corps of Engineers on eight
Columbia Basin dams and fitted to other damsin the ColumbiaBasin system by CBR (U.S. Army
Corps of Engineers 1996, 1997; Anderson et al. 2000).

2.2.2 Travel Time Components

The main factors determining predicted arrival distributions of fish at the downstream dams
aremigration travel time and reach mortality. Theriver isdivided into a series of reaches, and fish
move through the reaches sequentially. In each reach, the travel time distribution is determined by
the migration rate (r) and the rate of spreading (V\/ar) (Zabel and Anderson 1997).

Migration rate varies by reach and by time step and is stock specific. The CRiSP migration
rate equation takes into account fish behavior related to river velocity, seasonal effects, and fish
experience in theriver (Zabel et al. 1998). For the yearling chinook analyzed here, we use afull

migration model:

Vi

1

e =PBot Bl[ ] +BeLow: { (1)

where:
r, =migration rate

t = Julian date

TrLs = Julian Date of passage at L ower Granite

Teeason = inflection point of flow-dependent term that has the effect of shifting the flow
effect through the season



B, and B, = flow-independent parameters
o = aslope parameter that determines the rate of change of the experience effect

o, = aslope parameter that determines how quickly the flow effects shift from early-
Season to |ate-season behaviors

BrLow = parameter that determines the proportion of river velocity used for migration

Vi =the average river velocity during the average migration period, for each reach.
The flow-independent part of the equation startsfish at a minimal migration rate (By,n a t=Tr. g

with fish increasing their flow-independent migration rate to a maximal migration rate

(Bmax 8t >> Tgr| o). Theserates are determined as follows:
Pumin = Bo*+B1/2 2

Buax = Bo+By- 3

The parameter o.; determines the rate of change from By, n to Byax. For each stock, the rate of
spreading parameter (VyaR) IS estimated, along with the three migration rate parameters from the
above equations: Byin: Bmax: ad B ow Parameters used during the 2002 migration season can

be found in Appendix B.

2.2.3 Parameter Estimation

Migration rate parameters and the spread parameter (Vyar) were estimated from the historical
data using an optimization routine that compares model predicted passage distributions to
observed ones. Thefirst step isto use the passage distribution at Lower Granite as arelease distri-
bution in the CRISP model. Based on an initial set of parameters, arrival distributions are gener-
ated at the downstream observation sites. The model predictions are compared to the
observations, and then the optimization routine selects a new set of parameters to try. This proce-
dure iterates until the parameters are selected that minimize the difference between the observa-

tions and the predictions.

The modeled mean travel times are a function of the migration submodel chosen and the par-

ticular parameter values selected. The migration rate parameterswere estimated by aleast-squares



minimization (with respect to the parameters) of the following equation:

SS = z z (Ti - Ti (4)

where:
O = the total number of observation sites,

C = the total number of cohorts,

T, = themodeled mean travel time to the i-th site by the k-th cohort, and

T; « = the observed mean travel time to the i-th site by the k-th cohort.

2.2.4 Assessment of Predictions

To assess the performance of the passage and other predictions, we apply the same measure
used to assess Real Time predictions (Townsend et al. 1996). For each stock at each observation
site, we compute the Mean Absolute Deviation (MAD) for theday (j) on which the prediction was
made. Thismeasureis based on the average deviation between predicted and observed cumulative

passage on prediction dates during the season. MAD is computed as:

N
_ 1 -
MAD; = =3 |Foay-Foay,
t=1

x 100 ®)

where:
| = forecast day on which MAD is calculated;

t = index of prediction day (from 1to N);

N = number of days on which a prediction and observation were made for the stock at the
site during the season;

Day = vector of length N which identifies the Julian days from first observation of the
stock at the site until two weeks past last observation (thisis fixed for each site and
each stock);

Fpay, = Observed cumulative passage on Day;; and

Fpay, = predicted cumulative passage on Day;.

For each stock/site combination, the season length is determined as the time from when the

10



first fish for the particular stock is observed at the site until two weeks after the last fishis
observed at the site. This arbitrary “tail” of the distribution accounts for the possibility that fish
may subsequently pass without being detected; the same two-week tail is used to generate MADs
for Real Time.

The summation in Equation (5) is performed over each of the dates on which model predic-
tions were implemented — approximately every day during the season. This provides a snapshot of
how well the model performs as the season progresses based on the final, “true” data. Ideally,
there would be general decreasein MAD asj goesfrom 1 to N because the true distribution of the
run should be better known and the true state of the flow and spill profiles should be known. The
last MAD value (MADy) isused in Table 7 as the final analysis of model success.

2.2.5 Temperature Algorithm

A temperature forecasting algorithm was devel oped to predict the current year's water temper-
atures on the Snake and Columbia Rivers based on historical data, year-to-date data, and the flow
forecast file. The forecasted river temperatures in the near future are based on the current trend in
temperature; however, far into the future, the algorithm relies on mean temperature profiles and
adjusts this mean according to the amount of flow. Mean temperature and flow profiles were com-
puted for all locations found in Table 3 using data from 1976 to the present. We queried the
ColumbiaRiver DART database for current year-to-date temperature and flow dataeach time a
prediction was made. CRiSP used the temperature forecasts at the locations listed in Table 1 for
the generation of total dissolved gas forecasts and passage distribution forecasts. Temperature
forecasts at Lower Granite (LWG), Priest Rapids (PRD), and The Dalles (TDA) are published on
the web site as representative of the Snake, Mid-Columbiaand L ower Columbia temperatures,

respectively.

The forecast algorithm begins by setting the daily temperature to the mean for that day and
then replacing the mean temperatures where year-to-date information is available. Thelast 3 days
of available temperatures are looked at to predict the next day's temperature. Averaging over the
last three daysis an attempt to smooth out some of the day to day variation and to provide a safe-
guard against bad data giving the algorithm a faulty starting point. Given the averaged starting

point, the next 4 weeks of temperatures are calculated by taking the previous day's temperature
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and adding to it the average daily temperature increment for that day.

Over time, the current trend of temperature becomes less and less useful and eventually uncor-
related with future temperatures. Thus after four weeks, this predictor is phased out of the calcula
tion. Thisis when the flow forecast information enters into the algorithm. The flow forecast
together with the mean profiles of flow and temperature predict what temperatures a month or

more from reliable data will be. The relationship between flow and temperature is the following:
Ti = tempmean; + B0 + Bl . (Fi-flowmeani) (6)
where:
T; = temperature prediction value for day i,
tempmean; = mean temperature on day | from mean temperature profile,
By and B, = flow coefficients,
F; = flow forecast value for day i,
flowmean; = mean flow on day i from mean flow profile.

Temperature was measured in Celsius and flow in kcfs. A separate analysis for the flow coef-

ficients was conducted early in 2002 and the results are presented in Table 3.

Table3 Vaues used for the flow coefficient B, during the 2002
migration season. The flow coefficient By was set to 0 at al

locations.

Location B,
Bonneville -0.0043770060
The Dalles -0.0015191452
John Day -0.0055892750
McNary -0.0076976137
|ce Harbor -0.0145351785
Lower Monumental -0.0099626503
Little Goose -0.0160505825
Lower Granite -0.0152362973
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Table3 Values used for the flow coefficient B, during the 2002
migration season. The flow coefficient By was set to 0 at al

locations.

Location B1
Priest Rapids -0.0085965643
Wanapum -0.0025145659
Rocky Reach -0.0102809333
Rock Isand -0.0079651068
Wells -0.0009238544
Chief Joseph 0.00187884532
Anatone, WA (13334300) -0.00001908619
Peck, ID (13341050) -0.00007100836

2.2.6 Total Dissolved Gas Modeling

The calibrated gas production equations used in CRiSP are based on the work of the Water-
ways Experiment Station (WES), U.S. Army Corps of Engineers (1996, 1997) and Columbia
Basin Research (Anderson et al. 2000) as a part of the Dissolved Gas Abatement Study for the
U.S. Army Corps of Engineers. The gas production equations are an empirical fit of spill data col-
lected by the Army Corps. The percent of total dissolved gas (TDG) exiting the tailrace of adam
ispredicted as afunction of the amount of discharge in kcfs. Thislevel of TDG is not necessarily
the highest level of gasreached, but rather the level of gasin the spill water after some of the more
turbulent processes have stabilized. The calibration for each dam wasfit to the nearest down-

stream monitor, which is typically about a mile downstream of the dam.

For the eight lower Snake and lower Columbia dams that were studied by WES, the gas pro-
duction equation may take one of three forms: linear function of total spill, abounded exponential
function of total spill, or abounded exponential function of the spill on a per spillbay basis. These
eguations were adopted for al damsin CRIiSP.

Linear Saturation Equation

%TDG = m-Q.+b ©)
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where:
%TDG = the % total dissolved gas saturation, where 100% is equilibrium,

Qs = the total amount of spill in kcfs, and
m, b = the empirically fit dope and intercept parameters.

Bounded Exponential Equations
%TDG=a+b-exp(c- Q) €]

OR
%TDG=a+b-exp(c-q) 9

where:
gs = the amount of spill through an individual spillbay, and

a,b,c = the empirically fit model parameters.

For Lower Granite Dam (LWG) and The Dalles Dam (TDA), the WES (1997) reference gave
the production curvesin the terms of g, discharge per spillbay. For implementation into CRiSP,
Equation (9) is converted into the form of Equation (8) by the relation g5 = Q4/n (assuming the
total discharge Qg was uniformly distributed between the n number of spillbays) and absorbing n

into anew valuefor c.

Table4 Gas production curves used by CRiISP during 2002.

Project %TDG = Reference
BON 0.12- Q,+ 105.61 WES 1996
TDA 124.3 -9 - exp(-0.023 - Q) Night WES 19972

124.3 - 9- exp(-0.012 - Q,) Day WES 19972
JDA 121.1-17.7 - exp(-0.016 - Q) Night Anderson et al. 2000
128.4 - 24.4 - exp(-0.024 - Q,) Day Anderson et a. 2000

MCN 0.0487 - Q, + 114.9 WES 1997
IHR 120.9 - 20.5 - exp(-0.023 - Q,) Anderson et a. 2000
LMN 132.7 - 24.56 - exp(-0.0225 - Q,) Night Anderson et al. 2000

131.2 - 36.1 - exp(-0.0592 - Q,) Day Anderson et a. 2000
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Table4 Gas production curves used by CRiISP during 2002.

Project %TDG = Reference

LGS | 1313-32.0-exp(-0.01985-Q,)  Night WES 1997

0.53- Q,+100.5 Day WES 1996

LWG 138.0 - 35.8 - exp(-0.013 - Q,) WES 19972
PRD | 130.9-25.15- exp(-0.01045 - Q,) Anderson et al. 2000
WAN | 139.45 - 26.87 - exp(-0.00915 - Q,) Anderson et a. 2000
RIS | 141.1-26.9- exp(-0.00874 - Q,) Anderson et al. 2000
RRH | 137.6 - 21.4 - exp(-0.00733 - Q) Anderson et a. 2000
WEL | 015 Q + 107.2 Night Anderson et al. 2000
0.47- Q. +107.9 Day Anderson et al. 2000
CHJ | 140.1 - 34.8 - exp(-0.0241 - Q) Anderson et al. 2000
DWR | 135.95- 71.1- exp(-0.4787 - Q,) Anderson et al. 2000

a. The origina WES equation was a bounded exponential function of spill on a per spillbay
basis (g It has been converted into a bounded exponential function of total spill.

Different day and night spill patterns for adult and juvenile fish passage at the dams require
different production equations. In the case where there is no discernible difference between night
and day gas production, the day and night equations are set to be the same. In practice during
future years, the day and night patterns will be identical under most circumstances since virtually

al used spill gates on the system have structures to deflect spilled water.
2.2.7 Assessment of Temperatureand TDG Predictions

Similar to the passage prediction assessment, for each observation site we computed MAD
between predicted temperature or TDG values and the observed values. Hindcasts may change
throughout the prediction period as observations were corrected and updated information was
used.
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3 Results

The joint effort of Real Time and CRiSP produced many inseason forecasts products, includ-
ing:

* Daily Fish Passage (joint product)

» Passage and Transport Summary (joint product)

» Smolt Passage Predictions w/Historical Timing Plots (Real Time only product)

* Total Dissolved Gas (TDG) Forecasts (CRiSP only product)

* Temperature Forecasts (CRiSP only product).
These products are presented graphically via the World Wide Web at
http://www.cbr.washington.edu/crisprt/. In this report, selected CRiSP/Realtime predictions are

analyzed and graphic presentation of these results follow in the various appendices.

3.1 Flow and Spill Forecasts

Forecasts of flow and spill were made available approximately every three weeks during the
season and affected the accuracy of passage predictions. The timing of the updated flow and spill
forecast files corresponds with sudden changesin the passage predictions and hence MAD values.
In the pagt, these files have been made available more frequently. Forecasted flows and spills for
April 4, May 23 and July 17 at LWG, PRD, TDA, and BON are shown in Appendix E.

Early forecasts of daily-averaged flow over the entire season at LWG were moderately accu-
rate. The mid-season spike in the flows was anticipated but was not as large as anticipated. This
reflects the uncertainty associated with weather conditions, snow melt, and runoff from the Snake

River basin.

Since migration year 2001, the flow forecast files no longer contain spill forecasts at the
Upper Columbia dams operated by the PUDs. For the 2002 season, we used atarget spill percent
value of 61% at PRD (Table 6 contains the target spill values for these Upper Columbia dams).
The trend for the last three yearsisin Appendix F. Flow and spill forecasts affect fish passage,
total dissolved gas, and temperature. Errors in these forecasts have to be propagated through the

model and do affect model results.
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3.2 Temperature Prediction

The temperature prediction algorithm begins by setting the daily temperature to the historical
mean value for that day and then replacing the mean temperatures where year-to-date information
isavailable. Given an averaged starting point from the previous few days of current data, the next
four weeks of temperatures are calculated by taking the previous day's temperature and adding to
it the historically averaged daily temperature increment for that day. Over the forecast period, the
current trend of temperature becomes less and less useful and eventually uncorrelated with future
temperatures. Thus for the long term forecaster (over four weeks), this predictor is phased out of
the calculation. At this point, asimple linear regression against predicted flow is used to predict

temperatures a month or more away from reliable data.

A general trend of negative correlation between flow and water temperature can be seenin
data from the Snake and Columbia Rivers. Y ears with higher than average flows have lower than
average water temperatures, and years with lower than average flow have higher than average
water temperatures. Using aflow forecast file for the current year, a prediction of temperature can
be made using the flow/temperature relationship (see 2.2.5 for details). It should be noted that
water temperature dataare very noisy and are influenced by severa variables: air temperature and
other weather conditions, water volume and reservoir geometry, snowpack, upstream water
releases, etc. Consequently, the flow/temperature relationship only explainsasmall amount of the
variation of water temperature within ayear and between years. As aresult, averaged historical
data plays alarge part in the predictions made, with the flow/temperature relationship only pre-

dicting a small amount of variation about the mean.

The algorithm developed for temperature has many desirable features. It concurs with the
most up-to-date data, it is consistent with historical seasonal patternsin temperature, and it uses
predicted flows to make moderate adjustments. Temperature predictions were generated about
every three weeks during the migration season, coinciding with the generation of anew flow fore-
cast file.

Sample predictions versus the 2002 observed temperatures for three reservoirs are shown in
Appendix G. For all three reservoirs, the predictions became more accurate as the season went on

and more observed data for 2002 became available. Initially, the forecasts looked smooth, antici-
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pating a change in temperature that roughly corresponded to the natural annual cycles of flow and
air temperatures. However, there was a great deal of variability in the observed temperatures that

the forecaster could not anticipate.

Appendix H shows, for each of the three dams, a time series of how accurate the predictions
were on each day. In each of the plots, MAD is plotted for the forecast made on that day com-
pared to the data (see '2.2.4 Assessment of Predictions). For example, the prediction made on

Julian Day 110 in the early season at Lower Granite was off by 0.7 °C.

In general, short-term predictions (i.e. for the next week) are no better than long-term predic-
tions (for the next several weeks); thisisa consequence of lack of quality assurance for year-to-
date temperature data. Since predicted temperatures take as their starting point the most recent
“observed” temperatures, any inaccuracy in recent temperature records will be reflected in the
short-term predictions of temperature. CRiSP, while sensitive to temperature variation, does not
produce strongly different results for differences of afew °C, and these inaccuracies are unlikely

to have contributed significantly to any model error.

3.3 Total Dissolved Gas Prediction

The Total Dissolved Gas (TDG) predictions begin with querying the Columbia River DART
database for dissolved gas percentage data for Chief Joseph (CHJ), Lower Granite (LWG), and
Dworshak (DWR) dams, and observed spill datafor DWR. This observed datais used in conjunc-
tion with historical monthly TDG mean values at CHJ, LWG and DWR to produce output gas
profilesfor each of these damsfor the whole year. Missing or invalid data points at the beginning
of the series arefilled in using the first valid data point; holes between valid data points are lin-
early interpolated between the two surrounding data points; and missing data after the last valid
data point arefilled in with historical mean values. The output gas profiles are used as direct input
to the CRIiSP model of dissolved gas at several headwater locations. Columbia Headwater, L ower
Granite Pool, and North Fork Clearwater Headwater. The TDG forecasts rely on the results of the
temperature predictions for temperature data and the flow forecast files for the flow and spill. The
TDG forecastsin particular are sensitive to predicted flows and planned spill. The TDG forecasts
are produced for each dam by running CRiSP and generating gas production at all the damsin the

basin.

18



TDG forecasts were made each time a new flow forecast file was made available to CBR.
Sample predictions versus the 2002 observed total dissolved gas data for five monitoring sites are
shown in Appendix I. Generally, the predictions became more accurate as the season went on and
more observed data for 2002 became available. Thisis shown by the plotsin Appendix Jthat are
analogous to the prediction success plots shown for temperature. The forecasts used observed dis-
solved gas data, predicted spill at upstream dam(s), and temperature profile output from the tem-

perature algorithm to anticipate dissolved gas concentrations.

3.4 Passage Distribution Prediction

Plots of predicted passage distributions compared to the observations of PIT-tagged fish are
provided in Appendix C. The entire passage distribution predictions are presented for four repre-
sentative dates: April 25, May 22, and June 20 to span the early, middle and late portions of the
run. Previous to the date of prediction (vertical line) the model predictions are based on hindcast
passage for the best available river conditions. Ahead of the prediction date isthe forecast passage
based on anticipated river conditions (discussed in other sections: see 3.1, 3.2, 3.3). Complete
plots showing the current forecast with historic conditions are available on our web site at http://

www.cbr.washington.edu/crisprt/.

Table5 Number of PIT-tagged fish® used for ReadTime and CRiSP modeling at
selected observation sites.

Number of wild spring and summer chinook used for observations with
PIT tags observed at:
Stock
Lower Little Lower McNar John Bonneville
Granite Goose Monument y Day
Catherine Creek 36 46 38 37 15 8
Imnaha River 15 32 41 34 21 16
Minam River 65 73 77 73 34 33
S. Fork Salmon 29 42 45 26 21 19
River
Composite 145 193 201 170 91 76
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a. The Real Time/CRi SP complex uses a subset of all available PIT-tagged fish for the stocks of interest.
For the 2002 migration season, we used stocks determined by P. Poe, Fish Biologist, Bonneville Power
Administration.

In the plotsin Appendix C, the predictions at Lower Granite Dam are based on Real Time
results, and the predictions at the downstream sites are CRiSP projections. Any error in the pre-
diction at Lower Granite Dam is propagated to the downstream sites. Failure to detect, or report
al PIT-tagged fish passing the detectors at Lower Granite Dam means that their continued down-
stream movement cannot be modeled accurately. Obviously, some fish escape detection at a site
only to be observed downstream asisillustrated with the increase in the number of Imnaha River
fish at Little Goose Dam compared to Lower Granite Dam. Thisislikely also happening even if
the numbers are maintaining or decreasing due to mortality, and thus the apparent arrival time dis-
tributions do not match the population’s true distribution. The simple fact that more fish are
observed at LGS than at LGR distorts the ability of CRiSP to predict downstream travel.
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4 Discussion

4.1 Accuracy of Predictions

4.1.1 Temperature Prediction

The temperature forecasting algorithm was successful in creating an appropriate temperature
profile for each of the reservoirs. The MAD values decreased throughout the season as shown in

thefiguresin Appendix H.

Because yearling chinook migrate in the spring and early summer, they are not particularly
vulnerable to temperature extremes. In CRIiSP, although predation and gas saturation dynamics
are somewhat temperature-dependent, the difference in estimated survival resulting from temper-
ature variations of one or two °C are minimal. The overwhelming majority of temperature predic-
tionsfell well within the two-degree window, and thus we do not believe that inaccuraciesin

temperature forecasts contributed significantly to errorsin projections of fish passage.
4.1.2 Flow/Spill Predictions

Flow and spill forecasts provided by Army Corps improved in accuracy as the season pro-
gressed; however, the accuracy of early predictions is always problematic. Early season forecasts
are potentially very poor (see Appendix F for comparison of early-season predictions in 2000,
2001 and 2002 to observed data).

Estimates of the fraction of fish transported at Snake River projects will be sensitive to esti-
mated spill fractions: fish that are “ spilled” are not collected for transportation. For accurate long-
term projections of transport fractions, more accurate long-term projections of spill fraction will
be required. Even when spill fraction is accurately measured, variability in spill efficiency and

FGE can produce errorsin estimated transport fractions.

Flow and spill forecasts provided by the Army Corps did not include forecasted spill values
for the Upper Columbia projects (Wanapum, Priest Rapids, Rocky Reach, Rock Island, and
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Wells). Fixed target spill percents were substituted as forecast values for these dams.

Table6 Targeted spill percents for Upper Columbia dam spill forecasts from mid-
April through mid-June.

dam PRD WAN RIS RRH WEL
spill percent 61 40 15 30 20

4.1.3 Total Dissolved Gas Predictions

The MAD results for total dissolved gas (TDG) predictions are shown in Appendix J. The
trend toward improvementsin MAD are obvious as the season progresses. There are small differ-
ences between the data and the predictions in hind-casts. The final MAD values are all below 3.6
percentage points for each dam and arecalibration of the gas model is now using the latest TDG
generation equations as provided by the ACOE. There are many sources and sinks of TDG that

are unmodeled including major tributaries between modeled confluences.
4.1.4 Passage Timing Predictions

The MAD results for Real Time and the downstream predictions are presented in Table 7 for
the end of the season. The Real Time MAD is calculated from Real Time output files at the end of
the season. The reported 2002 “run” and “prediction” percentages are used according to the
method in Equation (5). The downstream MAD values are based on CRiSP output filesfor PIT-
tagged fish.

Table7 Mean absolute deviations (MAD) in smolt run timing predictions at the
four observation sites for the end of 2002. MAD at Lower Graniteis from archived
Real Time run results and the other three are from archived CRiSP run results.

Downstream MAD
Stock MAD at

LWG LGS LMN MCN

Catherine Creek 1.8 4.4 49 4.2
Imnaha River 25 9.6 10.3 16.9
Minam River 1.6 8.1 6.8 10.5

S. Fork Salmon River 24 10.1 13.4 8.3

Composite 2.2 7.2 5.0 4.6
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The “Composite” stock is processed differently than theindividual stocks. Program Real Time
produces run predictions for the Composite stock asif it were an individual stock. Thereisno cor-
responding CRIiSP run for the Composite stock. The values for the downstream dams are derived
by a post-processing script that averages the run results for the four individual stocks into one
stock. In principle, the composite stock is easier to predict than individual stocks, as the compos-
ite stock represents a substantially larger number of fish; however, their distribution isleast likely
to be statistically normal. There are differences between stocks in how well CRiSP/Rea Time per-
formed. Some examples of these are shown in more detail in graphsin Appendix C on a stock-by-
stock basis.

Seasonal variationin MAD values are plotted for select sites and stocksin Appendix D. Itis
readily apparent that upstream prediction errors are “ propagated” downstream. Note how the pat-
terns of MAD (though not necessarily the values) movein step through the season.

Table8 Differences in predicted passage times for designated
percentages of four individual stocks at five different dams.

Run Observed day - Predicted day
10% [WG| LGS |[LMN]| MCN | BON
CATHEC 0 11 12 11 15
IMNAHR 0 6 11 6 9
MINAMR 0 6 14 8 8
SALRSF -1 14 15 8 11
50% LWG | LGS | LMN | MCN | BON
CATHEC 0 2 0 1 -1
IMNAHR 0 -8 -5 -7 -4
MINAMR -6 -2 2 1 3
SALRSF 0 13 14 6 5
90% LWG | LGS | LMN| MCN | BON
CATHEC 0 0 12 2 11
IMNAHR 0 -8 -9 -13 -8
MINAMR 0 -1 0 -9 8
SALRSF 0 4 3 3 5

Another measure of successin predicting stock travel timeisto examine the differencesin the
number of days between the observed passage of a certain proportion of the run (10%, 50% or
90%) and the predicted passage of that same proportion of the run. Table 8 shows those differ-
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encesfor four stocks at five dams. Perfect correspondence would result in 0 in all cells. Consistent
errors in modeling would result in a bias either advancing or retarding all predictions, but that
does not seem to be the case for this year. Observed cumulative passage is potentially biased late

(especialy for low numbers) because fish passage is a discrete process.

More interesting is the differences in travel times between the stocks in a given reach of the
river. Sudden shifts in the numbers as the population moves downstream suggest an intervening
cause for their delay or acceleration between two dams. Differences of passage for the stocks at
various dams can be seen in Figure 2 which shows some of the anomalies that give rise to predic-
tion problems. For example, SALRSF stock passage at Lower Granite dam (LWG) isshown asa
black line. Little Goose dam (LGS), the next downstream dam is adotted line. Thereissignificant
delay for some SALRSF fish which is depicted by the wide gap between the two curves early in
their passage. Based on the median arrival (50%) day at the upstream dam (LWG), the run is pre-
dicted to arrive at LGS dam 13 days earlier than the true observation.

There are severa fundamental issues that contribute to high MAD values.

1) Actively migrating fish have migration parameters that are calibrated to their historical
travel time between LWG and downstream dams. These parameters give fish the best possible
“running start” given that they have been migrating for days or weeks prior to arrival at Lower
Granite. The modeled fish are increasing in speed with their “experience” in the river and the
more rapid velocity reaches closer to the historic level of travel speed as the season and their
downstream migration proceeds. These migration parameters are updated annually. It is not feas-
ble to have separate parameters for each reach even though there are significant between-reach

differencesin velocity.

2) Real Time does not provide absolutely accurate estimates of arrival timing at Lower Granite
Dam; to the extent that there are errors in Real Time predictions, those errors are propagated
downstream by CRiSP.
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Figure 2 Cumulative passage patterns for four stocks and the composite stock as they move

downstream and cross six dams.
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3) RealTimeis astatistical procedure, and there is some degree of variation from the particu-
lar conditions observed in any given year. There is no reason to expect predictions made on any
particular date to perfectly fit the arrival distribution preceding that date, because the final arrival
distribution is contingent on arrivals through the entire system. If the run is 50% complete but
Real Time estimates only 40% completion, for example, that will necessarily produce error both

before the prediction date (underestimating) and after it (overestimating, to catch up).

4) Real Time uses a conversion factor to estimate the true passage of PIT-tagged fish. Thisis
based on spill efficiency and FGE (Burgess et a. 1999). The conversion is supposed to give
CRIiSP the passage distribution at the dam and the CRiSP runs proceed from a hypothetical
release just above Lower Granite Dam so that CRiSP can cal cul ate the mortality associated with
the dam passage. The conversion is supposed to account for unobserved fish that go over the spill-
way. It does not attempt to make a correction for fish passing the dam through the turbines and
ignores any transported fish that may be inadvertently removed from the river. This may be the
cause of anomaliesin the LWG passage prediction.

5) Some datais missing and is never updated because data records are missing. Most likely
thisis due to fish passing the dam without triggering a detector. The observed passage at a down-
stream dam is then skewed because the fish that escape the detectors at an upstream dam may not
be random selections from the population of all fish in that stock that pass the dam. Changesin
dam operations, hydrologic conditions and mortality can skew the counts by either increasing or
decreasing the detections even under the best conditions because of biases in mortality coupled
with low numbers of passing smolts. This can have an impact on the results of the analysis
because all downstream modeling efforts are going to be dependent on theinitial “release” of fish

above Lower Granite Dam and the data collected at downstream dams.

6) CRISP travel time parameters are based on historical conditions. A strong deviation from
the migratory behavior of their predecessors means that these migrants will not be modeled as
accurately. Once the fish have entered the system, the model is mostly able to track their move-
ments but the errors are propagated downstream. Based on the differential mortality and passage

times, there seemed to have been significant inter-dam differencesin travel time and survival.

7) Some errors are afundamental result of using a model and relying on parameters to
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describe basic relationships. The two main functions of CRiSP in this application are to move fish
downstream and to keep track of survival and passage routes of fish. The primary model inputs
are forecasts of flow and spill fractions. Flow is an important input because it influences the
downstream migration rate of the fish. Behavior-dependent migration rate parameters are based
on data and the downstream passage distributions are based on modeled numbers of fish passing
the PIT tag detectors. Diversion of migrating fish into sampling systems that detect PIT-tagged
fish depends upon the efficiency of spillways and fish diversion screens. The accuracy of CRiSP
also depends upon our correctly estimating the values of these parameters. In recent years, we
have had to rely more and more on forecast data of flow and spill. In 2002, these files were
updated every few weeks and included historical datafrom DART when it was available. Some of
the sudden jumps and changes in the MAD profiles can be attributed to this problem. Table 9

shows the number of flow/spill archive files used during each year since 1996.

Table9 Countsof flow/spill archive files available for use
in predicting smolt passage from 1996 through 2002.

Year Number of flow/
spill archivefiles

1996 18

1997 19

1998 22

1999 14

2000 6

2001 8

2002 8

Spill has several effects on model output. First, it affects the passage routes of the fish —with
higher spills, fewer fish pass through the bypass system where PI T-tagged fish can be detected.
Survival of migrating fish is also affected by spill: high levels of spill lead to high dissolved gas
levels, causing potentially lethal gas bubble trauma, behavioral ateration, and vulnerability to
predation.

8) There are some unmodeled effects that influence the passage of the fish through the system.

At the end of 2001, we performed several comparisons of different predictions under the assump-
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tions of various in-season knowledge (Beer et a. 2002). We concluded:

“Overdl thereislittle to be gained from such efforts except to demonstrate
that even with perfect knowledge of the travel-time parameters and envi-
ronmental conditions, the model can not account for the variability in travel
time from un-modeled causes... it means that the overall evaluation of
model performance should allow for at least this much error (2.-13.3 % in
thisevauation). In practice, acalibration of travel-time parameters within
aseason is difficult and speculative. Prediction of environmental variables
is best accomplished by having up-to-date observations whenever possible

and using CRiSP s internal modeling mechanisms for future dates.”

4.2 Utility of CRiSP/Real Time Predictionsin M anagement

Flow augmentation for control of discharge; temperature; spill timing and fraction; transporta-
tion operations; etc. are some of the many examples of how managers can adjust the hydrosystem
for the benefit of salmon. However, this requires accurate assessments of the status of salmon out-
migration and planned responses to various contingencies. For example, one might elect to trans-
port juvenile chinook at collection facilities, but separate fish when flows fall below some target
value until the run has reached 80%. This policy requires an accurate assessment of when that
80% level isreached. Similarly, apolicy that seeksto transport agiven fraction of the run, say
50%, can only be done if one has estimates of the state of the run and the fraction transported to
date.

The cumulative passage forecasts provide managers with estimates of the fraction of a given
run that will be exposed to expected spill, flow, dissolved gas levels, and transportation during a
given period of interest - generally the next one to two weeks. This allows both quantitative and
gualitative assessment of the exposure these fish will experience to the conditions. Within limits,
the managers can choose to modify operational conditions. If spill isto be targeted for particular
stocks, the CRiSP/Rea Time estimates of arrival distributions would allow managers to direct

spill at the projects where the bulk of the run is passing and reduce spill at projects where few fish
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are passing, in order to control dissolved gas levels.

Receipt of flow forecasts on a more frequent schedule would be advantageous because we
would use actual observations for the days available, and we would be able to predict flows more
accurately because predictions for the near-term are inherently more accurate than those made far
into the future. The use of historical datawas very beneficia for accurately portraying the river

over historical periods.

Since in-season calibrations would be difficult and not necessarily helpful (Beer et a. 2002)
we are continuing to seek improvementsin model predictions by focusing our efforts on improv-
ing environmental data. For 2002, on each day that a CRiSP-Real Time run was made, a database
query updated CRiSP sinput files to include the latest available environmental information.

Further improvements will require updates to CRiSP’ s survival and travel-time algorithms to
accommodate other processes. A newer version of the model (CRiSP1.7) is being developed and

isintended to expand un-modeled processes.
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Appendix A Map of Columbia and Snake River Locations
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Figure A-1 Map of CRiSP locations

“@” are dam locations (not all are labelled by name). “5%” are approximate rel ease locations
with akey letter asfollows: SSSALRSF, M=MINAMR, C=CATHEC, and I=IMNAHR. The
darker river segments are explicitly modeled in CRiSP. Other segments are shown for refer-
enceonly. Spill, elevation and flow predictions are made by BPA at all shown dams. Tem-
perature predictions are made at Lower Granite (LWG), Priest Rapids (PRD) and The Dalles
(TDA). Total dissolved gasis monitored at sites downstream of all dams shown and analyzed
for sites below Lower Granite-LWG (LGNW), Little Goose-LGS (LGSW), McNary-MCN
(MCPX), Priest Rapids-PRD (PRXW), and Bonneville-BON (SKAW). The stocks analyzed
in this report pass Lower Granite Dam (their arrivals predicted by Real Time) and results are
presented for their arrivals at Little Goose (LGS), Lower Monumental (LMN) and McNary

(MCN).
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Appendix B CRISP Parameters

Table B-1 Dam Specific Parameters used for CRIiSP runs. Spill and bypass
mortalities are set at 0.02. Turbine mortality is set at 0.07.

Dam FGE Forebay Tailrace Spill
Pred. Density | Pred. Density Efficiency
Bonneville 0.38 1741 13249 1.0
Bonnevillell 0.44

The Dalles 0.46 1741 13249 2.0
John Day 0.64 1741 13249 1.0
McNary 0.95 1741 13249 1.0

| ce Harbor 0.71 547 14094 1.0
Lower Monumental 0.61 547 14094 1.2
Little Goose 0.82 547 14094 1.0
Lower Granite 1.0* 0** 14094 1.0

* CRIiSP uses Real Time output which in effect has already accounted for FGE.
** CRIiSP does not apply predation to Real Time output.

Table B-2 Species Specific Parameters used for CRISP runs

Species Reach Pred. Forebay Pred. Tailrace Pred.
Cosf. Coef. Coef.
Chinook 1 12.70 15.6 0.4844

For stock specific parameters used for CRiSP Y earling Chinook (Chinook 1) model runs, see
the 2002 valuesin Table B-4.

Table B-3 Reservoir Specific Parameters used for CRISP runs

Reservoir Predator Density
Estuary 1950
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Table B-3 Reservoir Specific Parameters used for CRISP runs

Reservoir Predator Density
Jones Beach 1950
Columbia Gorge 1950
Bonneville Tailrace 1950
Bonneville Pool 1014
The Dalles Pool 1014
Deschutes Confluence 1014
John Day Pooal 1014
McNary Pool 1014
Lower Snake River 809
|ce Harbor Pool 809
Lower Monumental Pool 809
Little Goose Pool 809
Lower Granite Pool 809

TableB-4 Migration Parameters used by CRiSP

parameter estimates

Bmin Bmax BrLow olp Tsens olp

Catherine Creek Spring Chinook
-6.91 4.75 1.79 0.38 0.08 0.50
Imnaha Spring Chinook
-8.43 5.05 1.26 0.29 96.17 1.06
Minam River Spring Chinook
-8.15 4.65 144 0.38 92.76 0.5

Salmon River South Fork Spring Chinook

-2.91 7.82 0.92 0.38 0.02 0.88
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Appendix C Arrival Time Distribution plots

Thefollowing figures present the CRiSP/Real Time predictions on April 25, May 22, and June
20. The dates represent pre-migration, mid migration and late migration times. The dashed line
represent the model predictions and the solid line isthe observed distribution of PIT tag arrivals at
dam (either Lower Granite, Little Goose, Lower Monumental, McNary and Bonneville). The pre-
dicted distribution at Lower Granite Dam is generated by the Real Time program, and the pre-
dicted distributions at Little Goose, Lower Monumental, McNary and Bonneville are CRiSP
projections based on the Lower Granite prediction. The vertical linein each plot is the date of the
prediction. The historical runs can be displayed on world wide web pages devoted to presentation
of arrival time data. The home page for the project is found at http://www.cbr.washington.edu/
crisprt/.
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Composite Stock - Lower Granite Dam (LWG)
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Figure C-1 ReaTime predictions for cumulative distribution of arrivals of the
Composite stock at Lower Granite Dam. Y -axis shows percent of total passage.
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Composite Stock - Little Goose Dam (LGS)
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Figure C-2 CRIiSP predictions for cumulative distribution of arrivals of the
Composite stock at Little Goose Dam. Y -axis shows percent of total passage.
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Composite Stock - Lower Monumental Dam (LMN)
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Figure C-3 CRIiSP predictions for cumulative distribution of arrivals of the Composite
stock at Lower Monumental Dam.Y -axis shows percent of total passage.
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Composite Stock - McNary Dam (MCN)

MCN: Apr. 25 Prediction vs. 2002 Data

1 — Data
80 1 ---- Prediction
40 :
0 te—memeee 4
100 120 140 160 180 200
Julian Day
MCN: May. 22 Prediction vs. 2002 Data
— Dbata | == ——=
80 * " Prediction /‘/"
40 :
0 Lomemimem —
100 120 140 160 180 200
Julian Day
MCN: Jun. 20 Prediction vs. 2002 Data
1 — Data
80 1 - - Prediction
40 :
0 Lomemico. —
100 120 140 160 180 200

Julian Day

Figure C-4 CRIiSP predictions for cumulative distribution of arrivals of the Composite
stock at McNary Dam. Y -axis shows percent of total passage.
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Composite Stock - Bonneville Dam (BON)
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Figure C-5 CRISP predictions for cumulative distribution of arrivals of the Composite
stock at Bonneville Dam. Y -axis shows percent of total passage.
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Catherine Creek — Lower Granite Dam (LWG)
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Figure C-6 ReaTime predictions for the cumulative distribution of arrivals of the Cathe-
rine Creek stock at Lower Granite Dam. Y -axis shows percent of total passage.
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Catherine Creek — Little Goose (LGS)

LGS: Apr. 25 Prediction vs. 2002 Data
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Figure C-7 CRIiSP predictions for the cumulative distribution of arrivals of the Catherine
Creek stock at Little Goose Dam. Y -axis shows percent of total passage.
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Catherine Creek — Lower Monumental (LMN)
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Figure C-8 CRISP predictions for the cumulative distribution of arrivals of the Catherine
Creek stock at Lower Monumental Dam. Y -axis shows percent of total passage.
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Catherine Creek — McNary Dam (MCN)
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Figure C-9 CRIiSP predictions for the cumulative distribution of arrivals of the Catherine
Creek stock at McNary Dam. Y -axis shows percent of total passage.
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Imnaha River — Lower Granite Dam (LWG)
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Figure C-10 Real Time predictionsfor the cumulative distribution of arrivals of the mnaha
River stock at Lower Granite Dam. Y -axis shows percent of total passage.
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Imnaha River — Little Goose Dam (LGS)
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Figure C-11 CRISP predictions for the cumulative distribution of arrivals of the Imnaha
River stock at Little Goose Dam. Y -axis shows percent of total passage.
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Imnaha River — Lower Monumental Dam (LMN)
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Figure C-12 CRIiSP predictions for the cumulative distribution of arrivals of the Imnaha
River stock at Lower Monumental Dam. Y -axis shows percent of total passage.
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Imnaha River — McNary Dam (MCN)
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Figure C-13 CRIiSP predictions for the cumulative distribution of arrivals of the
Imnaha River stock at McNary Dam. Y -axis shows percent of total passage.
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Minam River — Lower Granite Dam (LWG)
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Figure C-14 Realtime predictions for the cumulative distribution of arrivals of the
Minam River stock at Lower Granite Dam. Y -axis shows percent of total pas-

sage.
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Minam River — Little Goose Dam (LGS)
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Figure C-15 CRIiSP predictions for the cumulative distribution of arrivals of the
Minam River stock at Little Goose Dam. Y -axis shows percent of total passage.
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Minam River — Lower Monumental Dam (LMN)
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Figure C-16 CRIiSP predictions for the cumulative distribution of arrivals of the Minam
River stock at Lower Monumental Dam. Y -axis shows percent of total passage.
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Minam River — McNary Dam (MCN)
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Figure C-17 CRIiSP predictions for the cumulative distribution of arrivals of the Minam
River stock at McNary Dam. Y -axis shows percent of total passage.
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South Fork Salmon River —Lower Granite Dam (LWG)
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Figure C-18 Rea Time predictionsfor the cumulative distribution of arrivals of the S. Fork
Salmon stock at Lower Granite Dam. Y -axis shows percent of total passage.
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South Fork Salmon River — Little Goose Dam (LGS)
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Figure C-19 CRISP predictionsfor the cumulative distribution of arrivals of the S. Fork
Salmon River stock at Little Goose Dam. Y -axis shows percent of total passage.
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South Fork Salmon River — Lower Monumental Dam (LMN)
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Figure C-20 CRISP predictionsfor the cumulative distribution of arrivals of the S. Fork
Salmon stock at Lower Monumental. Y -axis shows percent of total passage.
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South Fork Salmon River — McNary Dam (MCN)
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Figure C-21 CRIiSP predictions for the cumulative distribution of arrivals of the S. Fork
Salmon River stock at McNary Dam. Y -axis shows percent of total passage.
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Appendix D Seasonal Variation in Passage Predictions

Passage predictions during the season vary as function of changesin river conditions from
past predicted values. Real Time predictions of arrivals at Lower Granite Dam are used as input to
CRiSP1 which then predictsthe arrival of fish at downstream locations. In the figuresthat follow,
MAD computations for each modeled day of arrivals at Lower Granite Dam, Lower Monumental
Dam and McNary Dam are displayed. Patterns of prediction success at an upstream location are
propagated downstream.

D-1



LGS COMPOSITE Passage Prediction Success

-
6
|
n
120 140 160 180 200 220 240
Julian Day
LMN COMPOSITE Passage Prediction Success
N
-
6
.
.
120 140 160 180 200 220 240
Julian Day
MCN COMPOSITE Passage Prediction Success
-
6
.
n
3
120 140 160 180 200 220 240
Julian Day

Figure D-1 Seasonal variation in passage prediction success for the Composite stock at Little
Goose, Lower Monumental and McNary Dams. Y axisisthe MAD value.
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Figure D-2 Seasonal variation in passage prediction success for Catherine Creek stocks at Little
Goose, Lower Monumental and McNary Dams. Y axisisthe MAD value.
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Figure D-3 Seasonal variation in passage prediction success for Imnaha River stocks at Little
Goose, Lower Monumental and McNary Dams. Y axisisthe MAD value.
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Figure D-4 Seasonal variation in passage prediction success for Minam River stocks at Little
Goose, Lower Monumental and McNary Dams. Y axisisthe MAD value.
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Figure D-5 Seasonal variation in passage prediction success for South Fork Salmon River stocks
at Little Goose, Lower Monumental and McNary Dams. Y axisisthe MAD value.



Appendix E Flow/Spill Forecast Plots

Flow and Spill plots for four dams. Lower Granite (LWG), Priest Rapids (PRD), The Dalles
(TDA), and Bonneville (BON). The Y axis on the graphsis cubic feet per second (CFS). The ver-
tical linein the plot marks the date of the prediction.

The PRD spill forecast values are those forecast by ACOE, however the PUDs that operate the
mid-Columbia dams attempted to spill afixed percentage of the flow during the season. See Table
5 for the target percent values used by CRiSP as forecasted values for the Mid-Columbia dams.
These values are different than what appears in the plots (Figure E-4).
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Figure E-1 Flow predictions and observationsfor Lower Granite Dam. Y axis shows CFS.
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Figure E-2 Spill predictions and observations for Lower Granite Dam. Y axis shows CFS.
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Figure E-3 Flow predictions and observationsfor Priest Rapids Dam.Y axis shows CFS.
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Figure E-4 Spill predictions based on forcasts and observations for PRD, however, mid-

Columbia PUDs used fixed spill percentage targets during the season. Y axis
shows CFS.
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Figure E-5 Flow predictions and observationsfor The Dales Dam. Y axis shows CFS.
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Figure E-6 Spill predictions and observations for The Dalles Dam. Y axis shows CFS.
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Figure E-7 Flow predictions and observationsfor Bonneville Dam.Y axis shows CFS.
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Figure E-8 Spill predictions and observations for Bonneville Dam.Y axis shows CFS.
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Appendix F Spill Forecast History Plots

Spill predictions during the early season are difficult to make. Shown here are late March/
early April predictions compared to data for Priest Rapids and |ce Harbor. For the last three
years, there has been at least one spike in the spill volumes (mostly due to large flowsin the sys-

tem).
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Figure F-1 Early season spill predictions for the last three years compared to data at Priest
Rapids Dam.
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Figure F-2 Early season spill predictionsfor the last three years compared to data at |ce Har-
bor dam.
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Appendix G Temperature Forecast Plots
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Figure G-2 Temperature predictions and observations for Priest Rapids Dam. Y axisis °C.
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LWG: Apr. 8 Prediction vs. 2002 Data
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FigureG-1 Temperature predictions and observations for Lower Granite Dam. Y axisis °C.
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TDA: Apr. 8 Prediction vs. 2002 Data
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Figure G-3 Temperature predictions and observations for The Dalles Dam. Y axisis °C.
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Appendix H Seasonal Variation in Temperature Forecasts

For each day that a prediction was made, the Mean Absolute Deviation was calculated for
each day in the season for which there was both an observation and a prediction. (See text:

“ Assessment of Predictions’ on page 10.)

These MAD values are plotted as atime series to see how the predictions changed through the
season. If the predicted values exactly matched the observations, the MAD for that day would be

zero. In the plots that follow, the MAD vaueis on the Y -axis and the Julian day is on the X-axis.
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FigureH-1 Seasonal variation in temperature prediction success at three locations as measured
by MAD (Y-axis).



Appendix | Dissolved Gas Forecast Plots

Total dissolved gas predictions and observations are shown in the following plotsfor five
monitoring sites downstream from dams. The X-axisis the Julian day and the Y -axisis the per-

centage super-saturation.
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Figurel-1 Total Dissolved Gas predictions and observations for Lower Granite Dam as
measured at LGNW. Y axisisthe percent saturation.



_LGSW: Apr. 8 Prediction vs. 2002 Data
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Figurel-2 Total Dissolved Gas predictions and observations for Little Goose Dam as mea-
sured at LGSW. Y axisisthe percent saturation.



150 _MCPW: Apr. 8 Prediction vs. 2002 Data
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Figurel-3 Total Dissolved Gas predictions and observations for McNary Dam as measured
a MCPW. Y axisisthe percent saturation.



_PRXW: Apr. 8 Prediction vs. 2002 Data
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PRXW: Jun. 10 Prediction vs. 2002 Data
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Figurel-4 Total Dissolved Gas predictions and observations for Priest Rapids Dam as mea-
sured at PRXW. Y axisisthe percent saturation.



_WRNO: Apr. 8 Prediction vs. 2002 Data
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Figurel-5 Total Dissolved Gas predictions and observations for Bonneville Dam as mea-
sured at the WRNO site. Y axisisthe percent saturation.



Appendix J Seasonal Variation in TDG Forecasts

Prediction success for Total Dissolved Gas throughout the season is shown for five monitor-
ing sites below dams. The X-axisis the Julian day and the Y -axis is the average daily error in per-

centage (points) for the prediction made on that day compared to the data for the entire season.
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FigureJ-1 Season variation in Total Dissolved Gas prediction at two monitoring sites below
Lower Granite Dam and Little Goose Dam (top to bottom respectively).
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Figure J-2 Season variation in Total Dissolved Gas prediction at three monitoring sites below
McNary, Priest Rapids Dam and Bonneville Dam (top to bottom respectively).
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Appendix K Example Graphics from WWW Pages
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Marine Fisheries Commission. Hydrosystemn data is courtesy of Bonneville Power Adrministration and LS. Army Corps of
Engineers, NWWD. For further details, see the Stock Map & Information page.
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FigureK-1 Screen shot from WWW page, showing the five thumbnail graphs of cumulative
percent arrival, with confidence intervals where available, at each of the Snake
projects and McNary Dam, for the composite yearling chinook stock. This esti-
mate was made on the 12th of May. Clicking on athumbnail produces a large ver-
sion of the graph for that dam alone (Figure K-2)).
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<} snake River Daily Passage - McNary Dam - Microsoft Internet Explorer
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Figure K-2 Screen shot from WWW page, showing the graph for a single dam. This graph

shows cumulative arrival at McNary Dam, estimated on May 12. The vertical line
shows the day of the prediction; the “forecast” isto the right of that line, and “cur-
rent” totheleft of it. Available years of data are overlaid on the plot. The same plot
can be generated for avariety of individual stocks, with or without historical data,
and can aso be smoothed.



	Evaluation of the 2002 Predictions of the Run-Timing of Wild Migrant Yearling Chinook and Water Q...
	1 Introduction
	2 Methods
	2.1 Data
	2.2 Models

	3 Results
	3.1 Flow and Spill Forecasts
	3.2 Temperature Prediction
	3.3 Total Dissolved Gas Prediction
	3.4 Passage Distribution Prediction

	4 Discussion
	4.1 Accuracy of Predictions
	4.2 Utility of CRiSP/RealTime Predictions in Management

	5 References
	Appendix A Map of Columbia and Snake River Locations
	Appendix B CRiSP Parameters
	Appendix C Arrival Time Distribution plots
	Appendix D Seasonal Variation in Passage Predictions
	Appendix E Flow/Spill Forecast Plots
	Appendix F Spill Forecast History Plots
	Appendix G Temperature Forecast Plots
	Appendix H Seasonal Variation in Temperature Forecasts
	Appendix I Dissolved Gas Forecast Plots
	Appendix J Seasonal Variation in TDG Forecasts
	Appendix K Example Graphics from WWW Pages

