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Executive Summary
This report is a post-season analysis of the performance of the CRiSP portion of the Real-

Time/CRiSP complex. Observed 2003 data are compared to predictions made by CRiSP/Real-

Time during the 2003 outmigration for arrival timing, water temperature, total dissolved gas, flow 

and spill.

CRiSP model runs consistently demonstrate that basic mechanisms of migration can be 

applied to Columbia River fish movements and their survival tracked downstream. As a part of 

RealTime/CRiSP, CRiSP is absolutely dependent on the arrival distributions predicted by the 

RealTime portion of the model and other river environment inputs such as flow and spill data.

New this year, additional stocks are tracked in addition to the yearling chinook of previous 

years. Snake River fish are tracked from Lower Granite Dam downstream. Some Snake and 

Columbia river ESU stocks are tracked from McNary Dam downstream.



A

1 Introduction

Since 1988, wild salmon have been PIT-tagged through monitoring and research programs 

conducted by the Columbia River fisheries agencies and Tribes. The detection of tagged individu-

als at Lower Granite Dam provides a measure of the temporal and spatial distribution of the wild 

salmonids populations. Program RealTime was developed by researchers at the University of 

Washington to take advantage of this historical data to predict the proportion of a particular popu-

lation that had arrived at the index site in real-time and to forecast the elapsed time to some future 

percentile in a migration at the site (Townsend et al. 1996, 1997; Burgess et al. 1999, 2000). The 

Columbia River Salmon Passage (CRiSP) model predicts downstream migration and survival of 

individual stocks of wild and hatchery spawned juvenile fish from the tributaries and dams of the 

Columbia and Snake rivers to the estuary. The model describes in detail fish movement, survival, 

and the effects of various river operations on these factors. Fish travel time in CRiSP has been cal-

ibrated using the PIT tag data.

During the 1996 migration season, Columbia Basin Research launched a prototype run timing 

system, CRiSP/RealTime, with results updated on the World Wide Web. This project was 

launched in an effort to provide real-time inseason projections of juvenile salmon migration to 

managers of the Columbia-Snake River hydrosystem to assist the managers in decisions about 

mitigation efforts such as flow augmentation, spill scheduling and fish transportation. CRiSP/

RealTime utilizes two separate programs to generate downstream passage distributions. The pro-

gram RealTime uses an empirical pattern matching routine to predict the arrival distributions for a 

wide variety of wild salmon stocks at the first detection point in the migratory route, Lower Gran-

ite Dam. The CRiSP model takes the predictions from RealTime and uses hydrological, fish 

behavioral and dam geometry information to simulate the movement and survival of juvenile 

salmonids through Little Goose, Lower Monumental, and Ice Harbor dams on the Snake River 

and McNary Dam on the Columbia River. At the same time, CRiSP produces estimates of the 

fraction of the run arriving at Lower Granite dam which was subsequently transported at the four 

transport projects: Lower Granite, Little Goose, Lower Monumental, and McNary dams.

This report is a postseason analysis of the accuracy of the 2003 predictions from the CRiSP 

model as part of the CRiSP/RealTime complex. In the CRiSP model, water quality affects fish 
3
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migration and survival, temperature, and dissolved gas levels which are modeled from flow and 

spill forecasts, historical data, and year-to-date data. The effectiveness of these modeling efforts 

are compared to observations of passage and river conditions at the end of the season. The analy-

ses and graphic presentations herein demonstrate changes in accuracy of the models throughout 

the season.

Flow Forecast File

Temperature
Submodel

Total Dissolved Gas
Submodel

Survival and 

F
lo

w
 F

or
ec

as
ts S

pill Forecasts

Observed and Historical Observed and Historical
Dissolved Gas Data at

Data at 16 locations in Snake
Temperature and Flow

PIT Tag Detections

Figure 1  Simplified schematic of RealTime and CRiSP complex. Prior to migration year 
2000, model generated gas was not updated with observed values for the produc-
tion of daily passage distribution forecasts. PIT Tag data courtesy of Pacific 
States Marine Fisheries Commission. Water Quality Data courtesy U.S. Army 
Corps of Engineers. Flow Forecast File provided by Bonneville Power Adminis-
tration and U.S. Army Corps of Engineers.
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2 Methods

2.1 Data

2.1.1 Travel Time Data

The fish analyzed in this report are individual yearling chinook stocks from tributaries of the 

Snake River and specific populations of yearling chinook, subyearling chinook and steelhead 

from the Snake and the Upper Columbia rivers. Forecasts for 2003 are based on two program 

RealTime index sites: Lower Granite and McNary dams. Table 1 describes these stocks and 

shows the abbreviations we use throughout this analysis.

Previous postseason analyses generally included only the COMPOSITE stock and its compo-

nent stocks. The fish were tagged in their natal streams with passive integrated transponder (PIT) 

Table 1  Abbreviations used for stocks, their origin and description

Stock Code Stock Description / Origin Species Index Site

COMPOSITE Next 4 stocks taken together Yearling Chinook Lower Granitea

a. For the stocks with the Lower Granite Index Site, program RealTime forecasts passage distribution of the 
stock at Lower Granite and this forecast is used as input to the CRiSP model to project the run-timing of the 
stock at Little Goose, Lower Monumental, Ice Harbor, and McNary dams.

CATHEC Catherine Creek Yearling Chinook Lower Granite

IMNAHR Imnaha River Yearling Chinook Lower Granite

SALRSF South Fork Salmon River Yearling Chinook Lower Granite

MINAMR Minam River Yearling Chinook Lower Granite

SNAKER Snake River Subyearling Chinook Lower Granite

lgrStlhd Snake River Steelhead Lower Granite

mcnChin1S Snake R Spring/Summer Chinook ESU Yearling Chinook McNaryb

b. For the stocks with the McNary Index Site, program RealTime forecasts passage distribution of the stock 
at McNary and this forecast is used as input to the CRiSP model to project the run-timing of the stock at John 
Day, The Dalles, and Bonneville dams.

mcnChin0S Snake R Fall Chinook ESU Subyearling Chinook McNary

mcnChin0C Upper Columbia R Fall Chinook ESU Subyearling Chinook McNary

mcnStlhdS Snake R Steelhead ESU Steelhead McNary

mcnStlhdC Upper Columbia R Steelhead ESU Steelhead McNary
5
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tags. PIT-tagging of wild salmon is part of on-going monitoring and research programs conducted 

by the Columbia River fisheries agencies and Tribes. Information from PIT tag studies and other 

fish monitoring programs is presented in reports by the Fish Passage Center, National Marine 

Fisheries Service (Achord et al. 1992, 1994, 1995a, 1995b, 1996, 1997), Idaho Department of 

Fish and Game (Kiefer et al. 1993, 1994), Oregon Department of Fish and Game (Keefe et al. 

1994; Walters et al. 1997) and the Nez Perce Tribe (Ashe et al. 1995). PIT tags provide instanta-

neous passage times for individual fish at interrogation sites (Prentice et al. 1990). This year, we 

are focusing on the passage at McNary Dam for the Lower Granite Index Site stocks and John 

Day Dam for McNary Index Site stocks.

For the CRiSP downstream projections, we are limited to using historical data since 1993 in 

order to estimate fish travel time parameters and confidence intervals. Although fish were PIT-

tagged previous to these years, there was no provision made to return detected PIT-tagged fish to 

the river. Consequently, the majority of fish observed at Lower Granite Dam were removed from 

the river by transport operations. Too few fish were subsequently observed at downstream interro-

gation sites to generate passage distributions and travel time estimates. In 1993, slide gates were 

installed which selectively diverted PIT-tagged fish back into the river, allowing for adequate 

sample sizes at the downstream interrogation sites.

2.1.2 Flow, Spill and Other System Operation Data

Any forecast of fish movement relies critically on accurate forecasts of flow, spill, transporta-

tion, and other key system operations. The U.S. Army Corps of Engineers generates flow, spill, 

and reservoir surface elevation forecasts at all projects on the Columbia and Snake Rivers where 

there is fish passage. Water supply forecasts are based on a number of factors: the National 

Weather Service’s Northwest River Forecast Center predictions, flood control requirements from 

the Army Corps, electrical power demand forecasts, and other criteria. The substantial uncertainty 

associated with springtime conditions often results in frequent and marked changes in these fore-

casts during April and May. Moreover, attempts to reduce the biological impacts of dissolved gas 

generated from high spill levels also results in a shifting of spill between projects within as well as 

outside the basin. Although the forecasts covered as much as 90 days into the future, it must be 
6
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recognized that their principal use was in deciding operations for the next week. Forecast accu-

racy beyond even a few days was itself uncertain. Bonneville Power Administration processes the 

Army Corps forecasts and makes them available to CBR staff throughout the migration season. 

Forecasts for flow, spill, and elevation were replaced with observations on a daily basis with a 

query to the Columbia River DART database, which downloads water quality data from the Army 

Corps for the majority of monitoring sites in the Columbia Basin. This method was begun in 2001 

and was a significant improvement over the 2000 in-season forecasts that relied on the forecasts 

alone. Subsequent fish arrival predictions were therefore based on the forecasted values for flow 

and spill and the latest available observed data.

Flow and spill forecasts provided by the Army Corps did not include forecasted spill values 

for the Upper Columbia projects (Wanapum, Priest Rapids, Rocky Reach, Rock Island, and 

Wells). Fixed target spill percents were substituted as forecast values for these dams.

2.1.3 Temperature Data

The temperature time series used in the CRiSP analysis is a combination of year-to-date tem-

perature data and forecasted temperatures. The forecasts are based on observed year-to-date tem-

perature and flow data, historical average temperature and flow profiles for 15 locations in the 

Snake and Columbia rivers, and the flow forecasts. Historic and observed year-to-date data was 

obtained from the DART database. Temperature predictions are made by applying a three-day 

moving window to fit predicted temperature time series to historical average patterns of tempera-

ture change; this method is described in detail in section 3.2.

Table 2  Targeted spill percents used for Upper Columbia dam spill forecasts
from mid-May through mid-June. 

dam PRD WAN RIS RRH WEL

spill percent 61 35 20 24 7

Table 3  U.S. Army Corps of Engineers fixed monitoring sites and USGS
gaging stations used by CRiSP for Temperature forecasts.

Monitoring Locations CRiSP Model Input Locations

Chief Joseph Forebay Columbia Headwater
7
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2.1.4 Total Dissolved Gas Data

Total dissolved gas (TDG) data are collected at Army Corps fixed monitoring sites below the 

Wells Forebay Methow Headwater

Rock Island Forebay Wenatchee Headwater

The Dalles Forebay Deschutes Headwater

Anatone, WA USGS Snake Headwater

Peck, ID USGS Clearwater Headwater

Peck, ID USGS North Fork Clearwater Headwater

Peck, ID USGS Middle Fork Clearwater Headwater

Anatone, WA USGS Salmon Headwater

Wells Forebay Wells Pool

Rocky Reach Forebay Rocky Reach Pool

Rock Island Forebay Rock Island Pool

Wanapum Forebay Wanapum Pool

Priest Rapids Forebay Priest Rapids Pool

Lower Granite Forebay Lower Granite Pool

Little Goose Forebay Little Goose Pool

Lower Monumental Forebay Lower Monumental Pool

Ice Harbor Forebay Ice Harbor Pool

McNary Forebay McNary Pool

John Day Forebay John Day Pool

The Dalles Forebay The Dalles Pool

Bonneville Forebay Bonneville Pool

Table 3  U.S. Army Corps of Engineers fixed monitoring sites and USGS
gaging stations used by CRiSP for Temperature forecasts.

Monitoring Locations CRiSP Model Input Locations
8
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Columbia and Snake River dams. The observed year-to-date TDG data for Chief Joseph, Lower 

Granite, and Dworshak is obtained daily by a query to the Columbia River DART database. The 

data is downloaded daily from the primary source, the Army Corps, and quality assurance is not 

always guaranteed. Anomalies in observed TDG data are indicators of suspicious data. 

The modeled gas production predicts the gas observed at the Army Corps fixed monitors. For 

a map of the dissolved gas monitoring system, see the Water Management Division, U.S. Army 

Corps of Engineers web document, http://www.nwd-wc.usace.army.mil/report/pdf/gasmap.pdf. It 

should be noted that the nearest downstream monitor to Bonneville Dam is 6 miles downstream, 

so it is expected that the gas levels at this monitor (WRNO) will be lower than those generated at 

the dam.

Table 4  U.S. Army Corps of Engineers total dissolved gas fixed monitoring
sites used by CRiSP for Total Dissolved Gas forecasts.

Fixed Monitoring Station Name Station 
Code

Location
facing downstream

Chief Joseph Tailwater CHQW Right Bank

Wells Tailwater WELW Left Bank

Rocky Reach Tailwater RRDW Mid Channel

Rock Island Tailwater RIGW Left Bank

Wanapum Tailwater WANW Mid Channel

Priest Rapids Tailwater PRXW Mid Channel

Dworshak Tailwater DWQI Left Bank

Lower Granite Tailwater LGNW Right Bank

Little Goose Tailwater LGSW Right Bank

Lower Monumental Tailwater LMNW Left Bank

Ice Harbor Tailwater IDSW Right Bank

McNary Tailwater MCPW Right Bank

John Day Tailwater JHAW Right Bank

The Dalles Tailwater TDDO Left Bank
9
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2.1.5 Archives of Model Predictions

The results of the RealTime and CRiSP model runs are stored on the Columbia Basin 

Research web site. Graphs and text reports based on the results are available through a variety of 

web-based query tools at http://www.cbr.washington.edu/crisprt/ . Runs are made several times 

per week. Archives include daily passage distribution forecasts at Lower Granite, Little Goose, 

Lower Monumental, Ice Harbor, and McNary dams for each stock of interest and water quality 

predictions for selected dams on the Columbia and Snake Rivers.

2.2 Models

2.2.1 CRiSP

CRiSP is a mechanistic model that describes the movement and survival of juvenile salmon in 

the Columbia and Snake Rivers. The theory and calibration of the model is described in detail in 

Anderson et al. (2000). We include only a brief summary of the model here, but we note that it has 

been extremely successful in fitting all of the yearling chinook survival data collected in the 

Columbia Basin, from 1966 through the present day.

Modeled factors that affect survival of hatchery and wild juvenile stocks include daily flow, 

river temperature, predator activity and density, total dissolved gas (TDG) supersaturation, and 

river operations such as spill, fish transportation and bypass systems. For CRiSP model runs, flow 

and spill were provided by BPA. Temperature and TDG forecasts were developed based on those 

flow and spill estimates and year-to-date observed data. All other relevant parameters were deter-

mined at CBR, based on a variety of different sources.

Dam passage changes with fish guidance efficiency, passage mortalities, and diel passage 

behavior. These factors are modeled on a species and dam-specific basis. Relevant model param-

eters for inseason modeling of all stocks are given in Appendix B. These parameters are generally 

Bonneville Tailwater WRNO Left Bank

Table 4  U.S. Army Corps of Engineers total dissolved gas fixed monitoring
sites used by CRiSP for Total Dissolved Gas forecasts.

Fixed Monitoring Station Name Station 
Code

Location
facing downstream
10
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drawn from the literature or are calibrated from related data (e.g. PIT tag detection rates at various 

projects). Reservoir mortality depends on several factors: fish travel time, predator density and 

activity, total dissolved gas supersaturation levels, and water temperature. Predator densities used 

in CRiSP were estimated from several published sources (Beamesderfer and Rieman 1991; Vigg 

et al. 1991; Ward et al. 1995; Zimmerman and Parker 1995; Zimmerman et al. 1997). Total dis-

solved gas production equations are based on research conducted by the Waterways Experiment 

Station (WES), U.S. Army Corps of Engineers on eight Columbia Basin dams and fitted to other 

dams in the Columbia Basin system by CBR (U.S. Army Corps of Engineers 1996, 1997; Ander-

son et al. 2000).

2.2.2 Travel Time Components

The main factors determining predicted arrival distributions of fish at the downstream dams 

are migration travel time and reach mortality. The river is divided into a series of reaches, and fish 

move through the reaches sequentially. In each reach, the travel time distribution is determined by 

the migration rate (rt) and the rate of spreading (VVAR) (Zabel and Anderson 1997). These vary 

between the two reach classes defined for 2003, a new feature in CRiSP1.7. The "Lower" class 

includes the John Day pool on downstream. The "Upper" class includes McNary pool and 

upstream pools on both the Snake and the Columbia.

Migration rate varies by reach and by time step and is stock and reach class specific. The 

CRiSP migration rate equation takes into account fish behavior related to river velocity, seasonal 

effects, and fish experience in the river (Zabel et al. 1998). The full migration model is:

(1)

where:
 = migration rate

t = Julian date

 = Julian Date of passage at index site: Lower Granite or McNary

 = inflection point of flow-dependent term that has the effect of shifting the flow 

effect through the season

rt β0 β1
1

1 exp -α1 t-TRLS( )( )+
----------------------------------------------------- βFLOW

Vt

1 -α2 t-TSEASON( )( )exp+
---------------------------------------------------------------⋅+ +=

rt

TRLS

TSEASON
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 and  = flow-independent parameters

α1 = a slope parameter that determines the rate of change of the experience effect

α2 = a slope parameter that determines how quickly the flow effects shift from early-
season to late-season behaviors

 = parameter that determines the proportion of river velocity used for migration

 = the average river velocity during the average migration period, for each reach. 

The flow-independent part of the equation starts fish at a minimal migration rate (βMIN at t=TRLS) 

with fish increasing their flow-independent migration rate to a maximal migration rate 

(βMAX as t >> TRLS). These rates are determined as follows:

(2)

. (3)

The parameter α1 determines the rate of change from βMIN to βMAX. For each stock, the rate of 

spreading parameter (VVAR) is estimated, along with the three migration rate parameters: βMIN, 

βMAX, and βFLOW. 

A reduced model eliminates the transition from βMIN to βMAX by setting  = 0, which is more 

appropriate for fish without flow-independent terms:

. (4)

Similarly, a two parameter model suffices for some stocks where the velocity is the determining 

factor alone:

. (5)

2.2.3 Parameter Estimation

The spread parameter (VVAR) was estimated for each stock from historical observations 

Migration rate parameters were estimated from the historical data using an optimization routine 

β0 β1

βFLOW

Vt

βMIN β0 β1 2⁄+=

βMAX β0 β1+=

β1

rt βMin βFLOW
Vt

1 -α2 t-TSEASON( )( )exp+
---------------------------------------------------------------⋅+=

rt βMin βFLOW Vt⋅+=
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that compares model predicted passage distributions to observed ones. The first step is to use the 

passage distribution at Lower Granite as a release distribution in the CRiSP model. Based on an 

initial set of parameters, arrival distributions are generated at the downstream observation sites 

through McNary Dam. The model predictions are compared to the observations, and then the 

optimization routine selects a new set of parameters to try. This procedure iterates until the 

parameters are selected that minimize the difference between the observations and the predic-

tions. Once the upper river reaches are calibrated, The lower reaches are assigned a different 

reach class and the migration parameters are optimized for them. 

The modeled mean travel times are a function of the migration submodel chosen and the par-

ticular parameter values selected. The migration rate parameters were estimated by a least-squares 

minimization (with respect to the parameters) of the following equation:

, (6)

where:
O = the total number of observation sites,

C = the total number of cohorts,

 = the modeled mean travel time to the i-th site by the k-th cohort, and 

 = the observed mean travel time to the i-th site by the k-th cohort.

Parameters used during the 2003 migration season can be found in Appendix B.

2.2.4 Assessment of Predictions

To assess the performance of the passage and other predictions, we apply the same measure 

used to assess RealTime predictions (Townsend et al. 1996). For each stock at each observation 

site, we compute the Mean Absolute Deviation (MAD) for the day (j) on which the prediction was 

made. This measure is based on the average deviation between predicted and observed cumulative 

passage on prediction dates during the season. MAD is computed as:

SS Ti k,
ˆ

 -  Ti k,( )
2

k 1=

C

∑
i 1=

O

∑=

Ti k,
ˆ

Ti k,
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(7)

where:
j = forecast day on which MAD is calculated;

t = index of prediction day (from 1 to N);

N = number of days on which a prediction and observation were made for the stock at the 
site during the season;

Day = vector of length N which identifies the Julian days from first observation of the 
stock at the site until two weeks past last observation (this is fixed for each site and 
each stock);

 = observed cumulative passage on Dayt; and

 = predicted cumulative passage on Dayt.

For each stock/site combination, the season length is determined as the time from when the 

first fish for the particular stock is observed at the site until two weeks after the last fish is 

observed at the site. This arbitrary "tail" of the distribution accounts for the possibility that fish 

may subsequently pass without being detected; the same two-week tail is used to generate MADs 

for RealTime.

The summation in Equation (7) is performed over each of the dates on which model predic-

tions were implemented – approximately every day during the season. This provides a snapshot of 

how well the model performs as the season progresses based on the final, "true" data. Ideally, 

there would be general decrease in MAD as j goes from 1 to N because the true distribution of the 

run should be better known and the true state of the flow and spill profiles should be known.

2.2.5 Temperature Algorithm

A temperature forecasting algorithm was developed to predict the current year's water temper-

atures on the Snake and Columbia Rivers based on historical data, year-to-date data, and the flow 

forecast file. The forecasted river temperatures in the near future are based on the current trend in 

temperature; however, far into the future, the algorithm relies on mean temperature profiles and 

adjusts this mean according to the amount of flow. Mean temperature and flow profiles were com-

puted for all locations found in Table 5 using data from 1976 to the present. We queried the 

MADj
1
N
---- FDayt

-F
ˆ

Daytj 100×
t 1=

N

∑=

FDayt

F
ˆ

Daytj
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Columbia River DART database for current year-to-date temperature and flow data each time a 

prediction was made. CRiSP used the temperature forecasts at the locations listed in Table 3 for 

the generation of total dissolved gas forecasts and passage distribution forecasts. Temperature 

forecasts at Lower Granite (LWG), Priest Rapids (PRD), and The Dalles (TDA) are published on 

the web site as representative of the Snake, Mid-Columbia and Lower Columbia temperatures, 

respectively.

The forecast algorithm begins by setting the daily temperature to the mean for that day and 

then replacing the mean temperatures where year-to-date information is available. The last 3 days 

of available temperatures are looked at to predict the next day's temperature. Averaging over the 

last three days is an attempt to smooth out some of the day to day variation and to provide a safe-

guard against bad data giving the algorithm a faulty starting point. Given the averaged starting 

point, the next 4 weeks of temperatures are calculated by taking the previous day's temperature 

and adding to it the average daily temperature increment for that day. 

Over time, the current trend of temperature becomes less and less useful and eventually uncor-

related with future temperatures. Thus after four weeks, this predictor is phased out of the calcula-

tion. This is when the flow forecast information enters into the algorithm. The flow forecast 

together with the mean profiles of flow and temperature predict what temperatures a month or 

more from reliable data will be. The relationship between flow and temperature is the following:

(8)

where:
Ti = temperature prediction value for day i,

tempmeani = mean temperature on day i from mean temperature profile,

B0 and B1 = flow coefficients,

Fi = flow forecast value for day i,

flowmeani = mean flow on day i from mean flow profile.

Temperature was measured in Celsius and flow in kcfs. A separate analysis for the flow coef-

ficients was conducted early in 2002 and the results are presented in Table 5.

Ti tempmeani B0 B1 Fi-flowmeani( )⋅+ +=
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2.2.6 Total Dissolved Gas Modeling

The gas production equations are an empirical fit of spill data collected by the Army Corps 

(ACOE). These equations were modified as necessary to accommodate CRiSP function formats 

and the curves generated by CRiSP compatible functions were adjusted to minimize the differ-

ence with the ACOE’s curves. The percent of total dissolved gas (TDG) exiting the tailrace of a 

dam is predicted as a function of the amount of discharge in kcfs. This level of TDG is not neces-

sarily the highest level of gas reached, but rather the level of gas in the spill water after some of 

the more turbulent processes have stabilized. The calibration for each dam was fit to the nearest 

Table 5  Values used for the flow coefficient B1 during the 2003
migration season were the same for 2002. The flow coefficient B0
was set to 0 at all locations.

Location B1

Bonneville -0.0043770060 

The Dalles -0.0015191452 

John Day -0.0055892750 

McNary -0.0076976137 

Ice Harbor -0.0145351785 

Lower Monumental -0.0099626503 

Little Goose -0.0160505825 

Lower Granite -0.0152362973 

Priest Rapids -0.0085965643 

Wanapum -0.0025145659 

Rocky Reach -0.0102809333 

Rock Island -0.0079651068 

Wells -0.0009238544

Chief Joseph 0.00187884532 

Anatone, WA (13334300) -0.00001908619

Peck, ID (13341050) -0.00007100836
16



A

downstream monitor. These are typically about a mile downstream of the dam.

In the past CRiSP has been formulated to accommodate any one of several TDG production 

models. Currently, all dams are modeled with a bounded exponential model requiring three 

parameters. 

(9)

The TDG production parameters are shown in Table 6. The MAD value refers to the mean 

absolute deviation of all the available data to the prediction of the the equation. The parameter set 

that minimized MAD is the equation we utilize.

2.2.7 Assessment of Temperature and TDG Predictions

Similar to the passage prediction assessment, we computed MAD between predicted tempera-

Table 6  Calibrated spill production parameters for 14 sites based on
2000, 2001, and 2002 observed TDG. Columns "low" and "high"
are the bounds of applicable spills.

sites MAD a b c low high

BON 3.060 17.2 -30.9 -0.03070 0 400

TDA 1.140 19.9 -19.1 -0.01850 0 400

JDA 1.390 24.1 -21.4 -0.01350 0 400

MCN 1.230 23.8 -17.8 -0.00987 0 400

IHR 1.000 36.3 -36.3 -0.00837 0 200

LMN 1.270 57.0 -48.6 -0.00589 0 200

LGS 0.931 33.1 -26.2 -0.01260 0 200

LWG 1.270 38.8 -37.2 -0.01220 0 200

PRD 1.610 22.3 -20.4 -0.01960 0 200

RIS 3.100 19.4 -19.4 -0.07750 0 200

RRH 3.520 20.2 -20.2 -0.03780 0 200

WAN 1.380 26.6 -21.8 -0.01140 0 200

WEL 1.820 47.6 -40.0 -0.00642 0 200

CHJ 4.420 21.4 -21.4 -0.09130 0 100

DWR 2.330 51.5 -51.5 -0.04110 0 100

%TDG = a + b exp c Qs⋅( )⋅
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ture or TDG values and the observed values for each observation site. Hindcasts may change 

throughout the prediction period as observations were corrected and updated information was 

used.

3 Results

The joint effort of RealTime and CRiSP produced many inseason forecasts products, includ-

ing:

• Daily Fish Passage (joint product)
• Passage and Transport Summary (joint product)
• Smolt Passage Predictions w/Historical Timing Plots (RealTime only product)
• Total Dissolved Gas (TDG) Forecasts (CRiSP only product)
• Temperature Forecasts (CRiSP only product).
These products are presented graphically via the World Wide Web at 

http://www.cbr.washington.edu/crisprt/. In this report, selected CRiSP/Realtime predictions are 

analyzed and graphic presentation of these results follow in the various appendices.

3.1 Flow and Spill Forecasts

Forecasts of flow and spill were made available approximately every two weeks during the 

season and affected the accuracy of passage predictions. The timing of the updated flow and spill 

forecast files sometimes corresponds with sudden changes in the passage predictions and hence 

MAD values. In the past, these files have been made available more frequently. Forecasted flows 

and spills for April 7, June 9 and Aug 6 at LWG, PRD, TDA, and BON are shown in Appendix C.

Early forecasts of daily-averaged flow over the entire season at LWG were moderately accu-

rate. Since migration year 2001, the flow forecast files no longer contain spill forecasts at the 

Upper Columbia dams operated by the PUDs. For the 2003 season as in years past, we used a tar-

get spill percent value of 61% at PRD (Table 2 contains the target spill values for these Upper 

Columbia dams). The trend for the last three years is in Appendix D. Flow and spill forecasts 

affect fish passage, total dissolved gas, and temperature. Errors in these forecasts have to be prop-

agated through the model and do affect model results.

3.2 Temperature Prediction
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The temperature prediction algorithm begins by setting the daily temperature to the historical 

mean value for that day and then replacing the mean temperatures where year-to-date information 

is available. Given an averaged starting point from the previous few days of current data, the next 

four weeks of temperatures are calculated by taking the previous day's temperature and adding to 

it the historically averaged daily temperature increment for that day. Over the forecast period, the 

current trend of temperature becomes less and less useful and eventually uncorrelated with future 

temperatures. Thus for the long term forecaster (over four weeks), this predictor is phased out of 

the calculation. At this point, a simple linear regression against predicted flow is used to predict 

temperatures a month or more away from reliable data.

A general trend of negative correlation between flow and water temperature can be seen in 

data from the Snake and Columbia Rivers. Years with higher (lower) than average flows have 

lower (higher) than average water temperatures. Using a flow forecast file for the current year, a 

prediction of temperature can be made using the flow/temperature relationship (see 2.2.5 for 

details). It should be noted that water temperature data are very noisy and are influenced by sev-

eral variables: air temperature and other weather conditions, water volume and reservoir geome-

try, snowpack, upstream water releases, etc. Consequently, the flow/temperature relationship only 

explains a small amount of the variation of water temperature within a year and between years. As 

a result, averaged historical data plays a large part in the predictions made, with the flow/temper-

ature relationship only predicting a small amount of variation about the mean.

The algorithm developed for temperature has many desirable features. It concurs with the 

most up-to-date data, it is consistent with historical seasonal patterns in temperature, and it uses 

predicted flows to make moderate adjustments. Temperature predictions were generated about 

every three weeks during the migration season, coinciding with the generation of a new flow fore-

cast file.

Sample predictions versus the 2003 observed temperatures for three reservoirs are shown in 

Appendix E. For all three reservoirs, the predictions became more accurate as the season went on 

and more observed data for 2003 became available. Initially, the forecasts looked smooth, antici-

pating a change in temperature that roughly corresponded to the natural annual cycles of flow and 

air temperatures. However, there was a great deal of variability in the observed temperatures that 
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the forecaster could not anticipate.

Appendix F shows, for each of the three dams, a time series of how accurate the predictions 

were on each day. In each of the plots, MAD is plotted for the forecast made on that day com-

pared to the data (see '2.2.4 Assessment of Predictions'). 

In general, short-term predictions (i.e. for the next week) are no better than long-term predic-

tions (for the next several weeks); this is a consequence of lack of quality assurance for year-to-

date temperature data. Since predicted temperatures take as their starting point the most recent 

"observed" temperatures, any inaccuracy in recent temperature records will be reflected in the 

short-term predictions of temperature. CRiSP, while sensitive to temperature variation, does not 

produce strongly different results for differences of a few °C, and these inaccuracies are unlikely 

to have contributed significantly to any model error.

3.3 Total Dissolved Gas Prediction

The Total Dissolved Gas (TDG) predictions used observed dissolved gas data, predicted spill 

at upstream dam(s), and temperature profile output from the temperature algorithm to anticipate 

dissolved gas concentrations. Predictions begin with querying the Columbia River DART data-

base for dissolved gas percentage data for Chief Joseph (CHJ), Lower Granite (LWG), and Dwor-

shak (DWR) dams, and observed spill data for DWR. This observed data is used in conjunction 

with historical monthly TDG mean values at CHJ, LWG and DWR to produce output gas profiles 

for each of these dams for the whole year. Missing or invalid data points at the beginning of the 

series are filled in using the first valid data point; holes between valid data points are linearly 

interpolated between the two surrounding data points; and missing data after the last valid data 

point are filled in with historical mean values. The output gas profiles are used as direct input to 

the CRiSP model of dissolved gas at several headwater locations: Columbia Headwater, Lower 

Granite Pool, and North Fork Clearwater Headwater. The TDG forecasts rely on the results of the 

temperature predictions for temperature data and the flow forecast files for the flow and spill. The 

TDG forecasts in particular are sensitive to predicted flows and planned spill. The TDG forecasts 

are produced for each dam by running CRiSP and generating gas production at all the dams in the 

basin.
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TDG forecasts were made each time a new flow forecast file was made available to CBR. 

Sample predictions versus the 2003 observed total dissolved gas data for five monitoring sites are 

shown in Appendix G. The gas levels in the Columbia are higher than in the Snake River. Below 

the confluence with the Snake mixing serves to help equilibrate these dynamics.

Generally, the predictions became more accurate as the season progressed and more observed 

data became available. The five sites shown are typical with predictions generally all with less 

than 3% TDG error. This is shown by the plots in Appendix H that are analogous to the prediction 

success plots shown for temperature. 

3.4 Passage Distribution Prediction

Plots of predicted passage distributions compared to the observations of PIT-tagged fish are 

provided in Appendix I. The entire passage distribution predictions are presented for three repre-

sentative dates: April 27, May 15, and June 17 to span the early, middle and late portions of the 

run. Previous to the date of prediction (vertical line) the model predictions are based on hindcast 

passage for the best available river conditions. Ahead of the prediction date is the forecast passage 

based on anticipated river conditions (discussed in other sections: see 3.1, 3.2, 3.3). Complete 

plots showing the current forecast with historic conditions are available on our web site at http://

www.cbr.washington.edu/crisprt/.
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In the plots in Appendix I, the predictions at McNary and John Day are based on CRiSP pro-

jected passage of program RealTime forecasted arrival distributions at Lower Granite and 

McNary Dam, respectively. Any error in the prediction at the index site is propagated to the 

downstream sites. Failure to detect, or report all PIT-tagged fish passing the detectors at Lower 

Granite Dam meant that their continued downstream movement could not be modeled accurately. 

Obviously, some fish escaped detection at one site only to be observed at another site downstream 

as is illustrated with the cumulative returns of some stocks at some dams as shown by the plots in 

Appendix J and by the counts shown in Table 7. Thus the apparent arrival time distributions do 

Table 7  Number of PIT-tagged fisha used for RealTime and CRiSP modeling at
selected observation sites.

a. The RealTime/CRiSP complex uses a subset of all available PIT-tagged fish for the stocks of interest. 

Stock

Number of fish with PIT tags observed at:

Lower 
Granite

Little Goose 
Lower 

Monument
McNary John Day Bonneville

COMPOSITE 232 182 96 142 85 82

CATHEC 99 80 46 49 34 36

IMNAHR 43 35 27 38 23 14

SALRSF 12 12 4 10 8 3

MINAMR 78 55 19 45 20 29

SNAKER 316 340 159 205 48 33

lgrStlhd 5717 20995b

b. From April 10 to June 7, 31538 PIT-tagged wild summer steelhead were released at LGRRRR, which is 
defined as release below the PIT-Tag Diversion System Gate at Lower Granite with subsequent return to 
the river. These fish are not included in the detections at Lower Granite nor the program RealTime arrival 
distribution forecast.

9264 3980 2183 3602

mcnChin1S NA NA NA 16123 7987 6660

mcnChin0S NA NA NA 625 153 88

mcnChin0C NA NA NA 1311 291 183

mcnStlhdS NA NA NA 4035 2200 3634

mcnStlhdC NA NA NA 18835 22724 15590
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not match the population’s observed distribution simply because they are counting overlapping 

but different groups of fish. The simple fact that more fish are observed downstream distorts the 

ability of CRiSP to predict downstream travel.

The MAD results for RealTime and the downstream predictions are presented in Table 8 for 

the end of the season. For example, the model predicted 50% passage of CATHEC fish at MCN 

on day 148 but the observed day of 50% passage was day 143, so the error is -5 days. 

Table 8  Difference of observed passage - predicted passage times for 
designated percentages of stocks at six different dams at the end of the 
season. Negative numbers mean that the prediction is late. Positive 
numbers mean the prediction is early.

5 % Passage LWG LGS LMN MCN JDA BON
CATHEC -1 -2 2 -6 4 -3
IMNAHR 0 1 1 -5 -4 -7
MINAMR 0 2 -3 5 3 2
SALRSF 0 -1 32 2 24 33

COMPOSITE -6 -1 1 0 0 0
SNAKER 3 -2 -6 -6 -17 -20

mcnChin0S NA NA NA 3 1 4
mcnChin0C NA NA NA 0 -2 -8
mcnStlhdS NA NA NA 1 6 5
mcnStlhdC NA NA NA 5 7 5
mcnChin1S NA NA NA 0 7 9

lgrStlhd 1 4 5 3 8 7
50% LWG LGS LMN MCN JDA BON

CATHEC -1 2 2 -5 8 9
IMNAHR 0 5 11 -4 6 2
MINAMR 0 -2 26 1 -2 -2
SALRSF 0 -2 0 1 14 27

COMPOSITE -1 5 14 0 14 6
SNAKER 3 -4 -1 -10 -4 -25

mcnChin0S NA NA NA 7 17 3
mcnChin0C NA NA NA 0 5 -18
mcnStlhdS NA NA NA 0 2 2
mcnStlhdC NA NA NA 9 10 9
mcnChin1S NA NA NA 0 15 11

lgrStlhd 2 11 11 9 12 13
95%LWG LGS LMN MCN JDA BON
CATHEC -1 -1 4 4 -5 -1
IMNAHR -2 1 2 0 -3 -1
MINAMR -2 0 5 0 -3 6
SALRSF -9 -17 -16 -4 -8 2

COMPOSITE -2 -2 0 4 -5 3
SNAKER 0 -7 2 -3 -9 -31

mcnChin0S NA NA NA -2 1 -19
mcnChin0C NA NA NA -2 -10 -13
mcnStlhdS NA NA NA 3 0 5
mcnStlhdC NA NA NA 3 0 3
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4 Discussion

4.1 Accuracy of Predictions

4.1.1 Flow/Spill Predictions

Flow and spill forecasts provided by Army Corps improved in accuracy as the season pro-

gressed; however, the accuracy of early predictions is always problematic. Early season forecasts 

are potentially very poor (see Appendix D for comparison of early-season predictions in 2001, 

2002 and 2003 to observed data). The more anomalous the season, the more difficult it is to create 

accurate predictions the more difficult is the task of predicting the movements of the fish.

Estimates of the fraction of fish transported at Snake River projects will be sensitive to esti-

mated spill fractions: fish that are "spilled" are not collected for transportation. For accurate long-

term projections of transport fractions, more accurate long-term projections of spill fraction will 

be required. Even when spill fraction is accurately measured, variability in spill efficiency and 

FGE can produce errors in estimated transport fractions.

4.1.2 Temperature Prediction

The temperature forecasting algorithm was successful in creating an appropriate temperature 

profile for each of the reservoirs. The MAD values decreased throughout the season as shown in 

the figures in Appendix F.

Because yearling chinook migrate in the spring and early summer, they are not particularly 

vulnerable to temperature extremes. Subyearling fish are the most vulnerable to temperature 

effects since in-river temperatures can exceed their preferences and often fall within the optimal 

mcnChin1S NA NA NA 1 -5 0
lgrStlhd 2 8 9 6 3 8

Table 8  Difference of observed passage - predicted passage times for 
designated percentages of stocks at six different dams at the end of the 
season. Negative numbers mean that the prediction is late. Positive 
numbers mean the prediction is early.

5 % Passage LWG LGS LMN MCN JDA BON
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temperatures for predators such as Northern pikeminnow. At 18°C chinook feeding efficiency 

drops precipitously from its optimal temperature range near 12-16°C while the pikeminnow’s 

consumption rates (of smolts) reaches within 10% of its maximum.

In CRiSP, although predation and gas saturation dynamics are somewhat temperature-depen-

dent, the difference in estimated survival resulting from temperature variations of one or two °C 

are minimal. The overwhelming majority of temperature predictions fell well within the two-

degree window, and thus we do not believe that inaccuracies in temperature forecasts contributed 

significantly to errors in projections of fish passage.

4.1.3 Total Dissolved Gas Predictions

The MAD results for total dissolved gas (TDG) predictions are shown in Appendix H. The 

trend toward improvements in MAD are obvious as the season progresses. There are small differ-

ences between the data and the predictions in hind-casts. Most MAD values are below 3.0 per-

centage points with a few exceptions of early season predictions especially at LGS. There are 

many sources and sinks of TDG that are unmodeled including major tributaries between modeled 

confluences.

4.1.4 Passage Timing Predictions

The RealTime MAD is calculated from RealTime output files at the end of the season. The 

reported 2003 "run" and "prediction" percentages are used according to the method in Equation 

(7). The downstream MAD values are based on CRiSP output files for PIT-tagged fish.

The "Composite" stock is processed differently than the individual stocks. Program RealTime 

produces run predictions for the Composite stock as if it were an individual stock. There is no cor-

responding CRiSP run for the Composite stock. The values for the downstream dams are derived 

by a post-processing script that averages the run results for the four individual stocks into one 

stock. In principle, the composite stock is easier to predict than individual stocks, as the compos-

ite stock represents a substantially larger number of fish; however, their distribution is least likely 

to be statistically normal. There are differences between stocks in how well CRiSP/RealTime per-

formed. Some examples of these are shown in more detail in graphs in Appendix I on a stock-by-

stock basis.
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Seasonal variation in MAD values are plotted for select sites and stocks in Appendix K. It is 

readily apparent that upstream prediction errors are "propagated" downstream. Note how the pat-

terns of MAD (though not necessarily the values) move in step through the season.

Another measure of success in predicting stock travel time is to examine the differences in the 

number of days between the observed passage of a certain proportion of the run (10%, 50% or 

90%) and the predicted passage of that same proportion of the run. Table 8 shows those differ-

ences for the stocks at six dams. Perfect correspondence would result in 0 in all cells. Consistent 

errors in modeling would result in a bias either advancing or retarding all predictions, but that 

does not seem to be the case for this year. Observed cumulative passage is potentially biased late 

(especially for low numbers) because fish passage is a discrete process. 

More interesting is the differences in travel times between the stocks in a given reach of the 

river. Sudden shifts in the numbers as the population moves downstream suggest an intervening 

cause for their delay or acceleration between two dams. Differences of passage for the stocks at 

various dams can be seen in Appendix J which shows some of the anomalies that give rise to pre-

diction problems. For example, cumulative passage of IMNAHR fish at MCN begins almost 

simultaneously with LMN observations and both precedes and exceeds it all season. When there 

are only 40 fish total, the timing of observations of even a few of them can dramatically alter the 

perceived distribution of the population.

Here is a summary of the causes of errors between the observations and predictions.

1) Actively migrating fish have migration parameters that are calibrated to their historical 

travel time between LWG and downstream dams. These parameters give fish the best possible 

"running start" given that they have been migrating for days or weeks prior to arrival at Lower 

Granite. Fish are increasing in speed with their "experience" in the river as the season proceeds. 

These migration parameters are updated annually. It is not feasible to have separate parameters 

for each reach even though there are significant between-reach differences in velocity.

2) RealTime does not provide absolutely accurate estimates of arrival timing at Lower Granite 

Dam or McNary Dam; to the extent that there are errors in RealTime predictions, those errors are 

propagated downstream by CRiSP.
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3) RealTime is a statistical procedure, and there is some degree of variation from the particu-

lar conditions observed in any given year. There is no reason to expect predictions made on any 

particular date to perfectly fit the arrival distribution preceding that date, because the final arrival 

distribution is contingent on arrivals through the entire system. If the run is 50% complete but 

RealTime estimates only 40% completion, for example, that will necessarily produce error both 

before the prediction date (underestimating) and after it (overestimating, to catch up).

4) RealTime uses a conversion factor to estimate the true passage of PIT-tagged fish. This is 

based on spill efficiency and FGE (Burgess et al. 1999). The conversion is supposed to account 

for unobserved fish that pass the PIT-tag detectors. It does not attempt to make a correction for 

fish passing the dam through the turbines and ignores any transported fish that may be inadvert-

ently removed from the river. This may be the cause of anomalies in the release dam predictions.

5) Some data is missing and is never updated because data records are missing. Most likely 

this is due to fish passing the dam without triggering a detector. The observed passage at a down-

stream dam is then skewed because the fish that escape the detectors at an upstream dam may not 

be random selections from the population of all fish in that stock that pass the dam. Changes in 

dam operations, hydrologic conditions and mortality can skew the counts by either increasing or 

decreasing the detections even under the best conditions because of biases in mortality coupled 

with low numbers of passing smolts. This can have an impact on the results of the analysis 

because all downstream modeling efforts are going to be dependent on the initial "release" of fish 

at the first dam and the data collected at downstream dams. 

Ideally, we would limit the analysis of downstream passage ONLY to fish that were observed 

at the uppermost dam and would then have a better estiamte of the travel time and survival 

between dams. This has been a particular problem in the past with LGS observed passage exceed-

ing LWG passage. This year, it is acute for several locations and stocks. Appendix J illustrates the 

problem with upstream cumulative numbers much lower than downstream passage for certain 

stocks and locations. 

6) CRiSP travel time parameters are based on historical conditions. A strong deviation from 

the migratory behavior of their predecessors means that these migrants will not be modeled as 

accurately. Once the fish have entered the system, the model is mostly able to track their move-
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ments but the errors are propagated downstream. Based on the differential mortality and passage 

times, there may be significant inter-dam differences in travel time and survival.

7) Some errors are a fundamental result of using a model and relying on parameters to 

describe basic relationships. The two main functions of CRiSP in this application are to move fish 

downstream and to keep track of survival and passage routes of fish. The primary model inputs 

are forecasts of flow and spill fractions. Flow is an important input because it influences the 

downstream migration rate of the fish. Behavior-dependent migration rate parameters are based 

on data and the downstream passage distributions are based on modeled numbers of fish passing 

the PIT tag detectors. Diversion of migrating fish into sampling systems that detect PIT-tagged 

fish depends upon the efficiency of spillways and fish diversion screens. The accuracy of CRiSP 

also depends upon our correctly estimating the values of these parameters. In recent years, we had 

to rely more and more on forecast data of flow and spill, but in 2003, this information was 

updated as often as weekly and included historical data from DART when it was available. Some 

of the sudden jumps and changes in the MAD profiles can be attributed to changes in the fore-

casts; however, this is a considerable improvement over recent years. Table 9 shows the number 

of flow/spill archive files used during each year since 1996.

Spill has several effects on model output. First, it affects the passage routes of the fish – with 

higher spills, fewer fish pass through the bypass system where PIT-tagged fish can be detected. 

Survival of migrating fish is also affected by spill: high levels of spill lead to high dissolved gas 

Table 9  Counts of flow/spill archive files available for
use in predicting smolt passage from 1996 through 2003.

Year Number of flow/spill 
archive files

1996 18

1997 19

1998 22

1999 14

2000 6

2001 8

2002 8

2003 18
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levels, causing potentially lethal gas bubble trauma, behavioral alteration, and vulnerability to 

predation. This problem has been addressed to a certain extent with structural changes to the dams 

over the last 10 years that limit the entrainment of air in the tailrace during spill operations. Gas 

levels over 120% are fairly rare. Snake and Columbia River TDG levels were more typically near 

115% at Priest Rapids Dam (PRXW) during the higher-spill season, and somewhat less below Ice 

Harbor Dam (IDSW).

8) There are some unmodeled effects that influence the passage of the fish through the system. 

At the end of 2001, we performed several comparisons of different predictions under the assump-

tions of various in-season knowledge (Beer et al. 2002). We concluded:

"Overall there is little to be gained from such efforts except to demonstrate 

that even with perfect knowledge of the travel-time parameters and envi-

ronmental conditions, the model can not account for the variability in travel 

time from un-modeled causes... it means that the overall evaluation of 

model performance should allow for at least this much error (2.-13.3 % in 

this evaluation). In practice, a calibration of travel-time parameters within 

a season is difficult and speculative. Prediction of environmental variables 

is best accomplished by having up-to-date observations whenever possible 

and using CRiSP’s internal modeling mechanisms for future dates."

4.2 Utility of CRiSP/RealTime Predictions in Management

CRiSP has been continuously evolving to accommodate new data, and meet river managers 

needs by including sub-models of previously un-modeled processes. CRiSP1.7 was used in 2003 

which allows for "reach classes" in which parameters distinguished between certain reach envi-

ronments. For example, the variation in travel velocity is distinct for yearling chinook above and 

below McNary Dam which separates the lower river class from the upper river class. On-going 

developments such as tracking the exposure of fish to environmental conditions will allow the 

user to assess the exposure of fish populations to various environmental conditions such as tem-

perature, turbidity, total dissolved gas, etc. Currently, the CBR web site allows certain types of 
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queries to the data. The inclusion of data queries and fish exposure tracking processes into the 

downstream passage model will allow an user to generate detailed output of the processes as a 

result of any scenario they design.

Flow augmentation for control of discharge, temperature, spill timing and fraction, transporta-

tion operations, etc. are some of the many examples of how managers can adjust the hydrosystem 

for the benefit of salmon. However, this requires accurate assessments of the status of salmon out-

migration and planned responses to various contingencies. For example, one might elect to trans-

port juvenile chinook at collection facilities, but separate fish when flows fall below some target 

value until the run has reached 80%. This policy requires an accurate assessment of when that 

80% level is reached. Similarly, a policy that seeks to transport a given fraction of the run, say 

50%, can only be done if one has estimates of the state of the run and the fraction transported to 

date.

The cumulative passage forecasts provide managers with estimates of the fraction of a given 

run that will be exposed to expected spill, flow, dissolved gas levels, and transportation during a 

given period of interest - generally the next one to two weeks. This allows both quantitative and 

qualitative assessment of the exposure these fish will experience to the conditions. Within limits, 

the managers can choose to modify operational conditions. If spill is to be targeted for particular 

stocks, the CRiSP/RealTime estimates of arrival distributions would allow managers to direct 

spill at the projects where the bulk of the run is passing and reduce spill at projects where few fish 

are passing, in order to control dissolved gas levels.

Since in-season calibrations would be difficult and not necessarily helpful (Beer et al. 2002), 

we are continuing to seek improvements in model predictions by focusing our efforts on improv-

ing environmental data and clarifying the role of various river environments in characterizing the 

survival and movements of the fish.
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Appendix A  Map of Columbia and Snake River Locations
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 Figure A-1  Map of CRiSP locations

The stars are dam locations, and some are labeled with their three character code.  Spill, ele-

vation and flow predictions are made by BPA at all shown dams. Temperature predictions are 

made at Lower Granite (LWG), Priest Rapids (PRD) and The Dalles (TDA). Total dissolved 

gas is monitored at sites downstream of all dams shown and analyzed for sites below Lower 

Granite-LWG (LGNW), Little Goose-LGS (LGSW), McNary-MCN (MCPW), Ice Harbor-

IHR (IDSW), and John Day-JDA (JHAW). The stocks analyzed in this report pass Lower 

Granite Dam or McNary Dam (their arrivals predicted by RealTime) and CRiSP results are 

presented for their arrivals at downstream locations.
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Appendix B  CRiSP Parameters

This is a selection of parameters used for passage and travel time modeling. The full charac-

terization of the model could result in tens of thousands of lines of input.

 

.

Table B-1  Dam Specific Parameters used for CRiSP runs.

Dam FGE FGE FGE

Chinook 0 Chinook 1 Steelhead

Bonneville 0.09 0.39 0.41

Bonneville II 0.28 0.48 0.48

The Dalles 0.10 0.12 0.03

John Day 0.32 0.73 0.85

McNary 0.62 0.83 0.89

Ice Harbor 0.54 0.54 0.93

Lower Monumental 0.49 0.49 0.82

Little Goose 0.53 0.78 0.81

Lower Granitea

a. CRiSP uses output from the RealTime program for passage 
at Lower Granite Dam, which in effect has already accounted 
for FGE.

1.0 1.0 1.0

Table B-2  Species Specific Parameters used for CRiSP runs

Species
Reach 

Predation 
Coefficient

Forebay 
Predation 

Coefficient

Tailrace 
Predation 

Coefficient

All 12.70 15.60 0.00
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Table B-3  Dam and Species Specific Parameters used for CRiSP runs: Spill 
Mortality, Bypass Mortality, and Turbine Mortality as determined by the 2000 
NMFS BiOp.

Dam Species
Spill 

Mortality
Bypass 

Mortality
Turbine 

Mortality

Bonneville Chinook 0
Chinook 1
Steelhead

0.02
0.02
0.02

0.18
0.10
0.10

0.10
0.10
0.10

Bonneville II Chinook 0
Chinook 1
Steelhead

0.00
0.00
0.00

0.02
0.02
0.02

0.06
0.10
0.10

The Dalles Chinook 0
Chinook 1
Steelhead

0.06
0.05
0.05

0.07
0.04
0.05

0.16
0.19
0.19

John Day Chinook 0
Chinook 1
Steelhead

0.02
0.02
0.02

0.02
0.02
0.02

0.10
0.10
0.10

McNary Chinook 0
Chinook 1
Steelhead

0.02
0.02
0.02

0.03
0.02
0.02

0.10
0.10
0.10

Ice Harbor Chinook 0
Chinook 1
Steelhead

0.05
0.02
0.02

0.02
0.02
0.02

0.10
0.10
0.10

Lower Monumental Chinook 0
Chinook 1
Steelhead

0.02
0.03
0.03

0.02
0.05
0.07

0.10
0.08
0.07

Little Goose Chinook 0
Chinook 1
Steelhead

0.02
0.00
0.00

0.02
0.01
0.05

0.10
0.08
0.08

Lower Granite Chinook 0
Chinook 1
Steelhead

0.02
0.02
0.02

0.02
0.02
0.02

0.10
0.07
0.07
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Table B-4  Reservoir and Species Specific Parameters used for CRiSP runs.

Reservoir Predator Density
Chinook 0

Predator Density
Chinook 1

Predator Density
Steelhead

Estuary 3079 1950 1950

Jones Beach 2966 1950 1950

Columbia Gorge 2815 1950 1950

Bonneville Tailrace 7367 1950 1950

Bonneville Pool 3254 1014 1014

The Dalles Pool 2074 1014 1014

Deschutes Confluence 2074 1014 1014

John Day Pool 611 1014 1014

McNary Pool 899 1014 1014

Lower Snake River 1344 809 809

Ice Harbor Pool 877 809 809

Lower Monumental Pool 1455 809 809

Little Goose Pool 1137 809 809

Lower Granite Pool 2590 809 809
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Table B-5  Stock Specific Migration Parameters used for CRiSP runs

Stock Reach Eqn (#) Parameters

Full (1)
Reduced (4)

Flow (5)

βMIN
βMIN
βMIN

βMAX
--
--

βFLOW
βFLOW
βFLOW

α1 
−−
−−

Tseas
Tseas

--

α2
α2
--

CATHEC Both Reduced -3.5351 -- 1.756 -- 104.70 0.1992

IMNAHR Both Reduced 1.9479 -- 1.1874 -- 106.43 0.1573

SALRSF Both Full 0.1991 2.9322 1.0176 0.1992 90.00 0.1969

MINAMR Both Reduced -2.696 -- 1.442 -- 87.26 0.1118

SNAKER Both Full 0.1218 0.2032 1.9345 0.0861 182.1 0.618

lgrStlhd
Uppera

Lowerb

a. The “Upper” reach class is assigned to all CRiSP defined reaches above McNary Dam, including 
McNary Pool.
b. The “Lower” reach class is assigned to all CRiSP defined reaches below McNary Dam.

Reduced

Flow

-8.262

0.1601

--

--

2.8579

3.5729

--

--

72.544

--

0.234

--

mcnChin0S Lower Flow -5.0161 -- 3.931 -- -- --

mcnChin0C Lower Reduced 0.0993 -- 2.2192 -- 173.2 0.0669

mcnStlhdS Lower Flow 0.1601 -- 3.5729 -- -- --

mcnStlhdC Lower Full 0.031 23.146 3.262 0.4531 120.92 0.7838

mcnChin1S Lower Reduced 0.6891 -- 1.5871 -- 99.11 0.1645
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Table B-6  Stock Specific Rate of Spread Parameter (VVAR) used for 
CRiSP runs.

Stock
VVAR

Upper Reach Class
VVAR

Lower Reach Class

CATHEC 86.66 179.16

IMNAHR 53.27 179.16

SALRSF 100.31 179.16

MINAMR 75.45 179.16

SNAKER 216.56 216.56

lgrStlhd 174.25 226.55

mcnChin0S -- 243.98

mcnChin0C -- 242.06

mcnStlhdS -- 226.55

mcnStlhdC -- 225.53

mcnChin1S -- 179.16
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Appendix C  Flow/Spill Forecast Plots

Flow and Spill plots for four dams: Lower Granite (LWG), Priest Rapids (PRD), The Dalles 

(TDA), and Bonneville (BON). The Y axis on the graphs is cubic feet per second (CFS). The ver-

tical line in the plot marks the date of the prediction.

The PRD flow forecast values are those forecast by ACOE; however, the PUDs that operate 

the Mid-Columbia dams attempted to spill a fixed percentage of the flow during the season. See 

Table 2 for the target percent values used by CRiSP as forecasted values for the Mid-Columbia 

dams. The values in the plots are spill volume not percent (Figure C-4).
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 Figure C-1  Flow predictions and observations for Lower Granite Dam. Y axis shows CFS.
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 Figure C-2  Spill predictions and observations for Lower Granite Dam. Y axis shows CFS.
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 Figure C-3  Flow predictions and observations for Priest Rapids Dam.Y axis shows CFS.
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 Figure C-4  Spill predictions based on forecasts and observations for PRD. Mid-Columbia 
PUDs used fixed spill percentage targets during the season. Y axis shows CFS.
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 Figure C-5  Flow predictions and observations for The Dalles Dam. Y axis shows CFS.
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 Figure C-6  Spill predictions and observations for The Dalles Dam. Y axis shows CFS.
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 Figure C-7  Flow predictions and observations for Bonneville Dam.Y axis shows CFS.
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 Figure C-8  Spill predictions and observations for Bonneville Dam.Y axis shows CFS.
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Appendix D  Spill Forecast History Plots

Spill predictions during the early season are difficult to make. Shown here are the early April 

predictions of spill compared to data for Priest Rapids and Ice Harbor over the last three years.
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 Figure D-1  Early season spill predictions for three previous years compared to data at Priest 
Rapids Dam.
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 Figure D-2  Early season spill predictions for three previous years compared to data at Ice 
Harbor dam.
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Appendix E       Temperature Forecast Plots   
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 Figure E-1   Temperature predictions and observations for Priest Rapids Dam. Y axis is °C.
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 Figure E-2   Temperature predictions and observations for Lower Granite Dam. Y axis is °C.
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 Figure E-3   Temperature predictions and observations for The Dalles Dam. Y axis is °C.
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Appendix F  Seasonal Variation in Temperature Forecasts

For each day that a prediction was made, the Mean Absolute Deviation was calculated for 

each day in the season for which there was both an observation and a prediction. (See text: 

“Assessment of Predictions” on page 13.)

These MAD values are plotted as a time series to see how the predictions changed through the 

season. If the predicted values exactly matched the observations, the MAD for that day would be 

zero. In the plots that follow, the MAD value is on the Y-axis and the Julian day is on the X-axis.
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 Figure F-1  Seasonal variation in temperature prediction success at three locations as measured 
by MAD (Y-axis).
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Appendix G  Dissolved Gas Forecast Plots 

Total dissolved gas predictions and observations are shown in the following plots for five 

monitoring sites downstream from dams. The X-axis is the Julian day and the Y-axis is the per-

centage super-saturation.          
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 Figure G-1  Total Dissolved Gas predictions and observations for Lower Granite Dam 
(LGNW) and Little Goose Dam (LGSW). Y axis is the percent saturation.
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 Figure G-2  Total Dissolved Gas predictions and observations for Ice Harbor (IDSW), 
McNary (MCPW), and John Day (JHAW) dams. Y axis is the percent saturation.
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 Figure G-3  Total Dissolved Gas predictions and observations for Lower Granite Dam 
(LGNW) and Little Goose Dam (LGSW). Y axis is the percent saturation.
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 Figure G-4  Total Dissolved Gas predictions and observations for Ice Harbor (IDSW), 
McNary (MCPW), and John Day (JHAW) dams. Y axis is the percent saturation.
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Appendix H  Seasonal Variation in TDG Forecasts

Prediction success for Total Dissolved Gas throughout the season is shown for five monitor-

ing sites below dams. The X-axis is the Julian day and the Y-axis is the average daily error in per-

centage (points) for the prediction made on that day compared to the data for the entire season.

 Figure H-1  Season variation in Total Dissolved Gas prediction at two monitoring sites below 
Lower Granite Dam and Little Goose Dam (top to bottom respectively).
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 Figure H-2  Season variation in Total Dissolved Gas prediction at three monitoring sites below 
Ice Harbor, McNary, and John Day dams (top to bottom respectively).
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Appendix I  Arrival Time Distribution plots

The following figures present the CRiSP/RealTime predictions and observations of multiple 

stocks at multiple locations. The predicted distribution at the Index Site is generated by the Real-

Time program. For stocks with the Lower Granite Index Site, the predicted distributions at Little 

Goose, Lower Monumental, and McNary are CRiSP projections based on the arrival time predic-

tions at Lower Granite Dam. For stocks with the McNary Index Site, the predicted distributions at 

John Day and Bonneville are CRiSP projections based on the arrival time predictions at McNary 

Dam. The vertical line in each plot is the date of the prediction. The historical runs can be 

accessed from the web site at http://www.cbr.washington.edu/crisprt/archive/.

The stocks are referenced by their codes:

Stock Code Origin Species Index Site Pass. Site

COMPOSITE Next 4 stocks taken together Yearling Chinook LWG MCN

CATHEC Catherine Creek Yearling Chinook LWG MCN

IMNAHR Imnaha River Yearling Chinook LWG MCN

SALRSF South Fork Salmon River Yearling Chinook LWG MCN

MINAMR Minam River Yearling Chinook LWG MCN

SNAKER Snake River Subyearling Chinook LWG MCN

lgrStlhd Snake River Steelhead LWG MCN

mcnChin1S ESU Snake R Spring/SummerYearling Chinook MCN JDA

mcnChin0S ESU Snake R Fall Subyearling Chinook MCN JDA

mcnChin0C ESU Upper Columbia R Fall Subyearling Chinook MCN JDA

mcnStlhdS ESU Snake R Steelhead MCN JDA

mcnStlhdC ESU Upper Columbia R Steelhead MCN JDA
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Yearling Chinook Composite stock at McNary 
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 Figure I-1  Percent passage predictions and observations for Yearling Chinook Composite 
stock at McNary Dam. Y axis is percent passage.
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Yearling Chinook CATHEC stock at McNary 
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 Figure I-2  Percent passage predictions and observations for Yearling Chinook CATHEC 
stock at McNary Dam. Y axis is percent passage.
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Yearling Chinook IMNAHR stock at McNary 
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 Figure I-3  Percent passage predictions and observations for Yearling Chinook IMNAHR 
stock at McNary Dam. Y axis is percent passage.
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Yearling Chinook SALRSF stock at McNary 
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 Figure I-4  Percent passage predictions and observations for Yearling Chinook SALRSF 
stock at McNary Dam. Y axis is percent passage.
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Yearling Chinook MINAMR stock at McNary 
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 Figure I-5  Percent passage predictions and observations for Yearling Chinook MINAMR 
stock at McNary Dam. Y axis is percent passage.
I-71



A

Subyearling Chinook SNAKER stock at McNary 
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 Figure I-6  Percent passage predictions and observations for Subyearling Chinook 
SNAKER stock at McNary Dam. Y axis is percent passage.
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Steelhead lgrStlhd stock at McNary
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 Figure I-7  Percent passage predictions and observations for Steelhead lgrStlhd stock at 
McNary Dam. Y axis is percent passage.
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Snake River Spring/Summer Chinook ESU mcnChin1S at John Day
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 Figure I-8  Percent passage predictions and observations for Snake River Spring/Summer 
Chinook ESU mcnChin1S at John Day Dam. Y axis is percent passage.
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Snake R Fall Chinook ESU mcnChin0S at John Day

Julian Day

140 160 180 200 220 240

0

40

80
Data
Prediction

JDA: Jun. 22 Prediction vs. 2003 Data

Julian Day

140 160 180 200 220 240

0

40

80
Data
Prediction

JDA: Jul. 20 Prediction vs. 2003 Data

Julian Day

140 160 180 200 220 240

0

40

80
Data
Prediction

JDA: Aug. 17 Prediction vs. 2003 Data

 Figure I-9  Percent passage predictions and observations for Snake River Fall Chinook 
ESU mcnChin0S stock at John Day Dam. Y axis is percent passage.
I-75



A

Upper Columbia R Fall Chinook ESU mcnChin0C at John Day
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 Figure I-10  Percent passage predictions and observations for Upper Columbia River Fall 
Chinook ESU mcnChin0C stock at John Day Dam. Y axis is percent passage.
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Snake R Steelhead ESU mcnStlhdS at John Day
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 Figure I-11  Percent passage predictions and observations for Snake River Steelhead ESU 
mcnStlhdS at John Day Dam. Y axis is percent passage.
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Upper Columbia R Steelhead ESU mcnStlhdC at John Day
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 Figure I-12  Percent passage predictions and observations for Upper Columbia River Steel-
head ESU at John Day Dam. Y axis is percent passage.
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Appendix J  Cumulative Observation plots

The following figures present the CRiSP/RealTime observations of each tracked stock at mul-

tiple locations. Note that the counts at any given dam may in fact be greater than at upstream loca-

tions1. The sequence of passage is LWG, LGS, LMN, MCN, JDA, and BON. This is likely due to 

different passage routes through the dams, and the efficiency of PIT-tag detectors in identifying 

fish as they pass. Passage predictions made by CRiSP assume that missing fish have died and are 

not counted. The observations can vary due to mortality and counting efficiency. Biases in pas-

sage routes that vary during the period of fish passage result in biases in counts and passage tim-

ing. 

The total numbers vary across several orders of magnitude between the stocks.

The stocks are referenced by their codes as they are in Appendix I:

Stock Code Origin Species Index Site Pass. Site

COMPOSITE Next 4 stocks taken together Yearling Chinook LWG MCN

CATHEC Catherine Creek Yearling Chinook LWG MCN

IMNAHR Imnaha River Yearling Chinook LWG MCN

SALRSF South Fork Salmon River Yearling Chinook LWG MCN

MINAMR Minam River Yearling Chinook LWG MCN

SNAKER Snake River Subyearling Chinook LWG MCN

lgrStlhd Snake River Steelhead LWG MCN

mcnChin1S ESU Snake R Spring/SummerYearling Chinook MCN JDA

mcnChin0S ESU Snake R Fall Subyearling Chinook MCN JDA

mcnChin0C ESU Upper Columbia R Fall Subyearling Chinook MCN JDA

mcnStlhdS ESU Snake R Steelhead MCN JDA

mcnStlhdC ESU Upper Columbia R Steelhead MCN JDA

1. From April 10 to June 7, 2003, 31538 PIT-Tagged wild summer steelhead were released at LGRRRR: 
release below PIT-Tag Diversion System at Lower Granite Dam. The first point of detection for these fish is 
Little Goose Dam not Lower Granite.
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 Figure J-1  COMPOSITE and CATHEC cumulative observations at six sites. The sequence 
of passage is LWG, LGS, LMN, MCN, JDA, and BON.
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 Figure J-2  IMNAHR and SALRSF cumulative observations at six sites. The sequence of 
passage is LWG, LGS, LMN, MCN, JDA, and BON.
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 Figure J-3  MINAMR and SNAKER cumulative observations at six sites. The sequence of 
passage is LWG, LGS, LMN, MCN, JDA, and BON.
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 Figure J-4  lgrStlhd cumulative observations at 6 sites; mcnChin1S cumulative observations 
at 3 sites. The sequence of passage is LWG, LGS, LMN, MCN, JDA, and BON.
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 Figure J-5  mcnChin0S and mcnChin0C cumulative observations at three sites. The 
sequence of passage is MCN, JDA, and BON.
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 Figure J-6  mcnStlhdS and mcnStlhdC cumulative observations at six sites. The sequence 
of passage is MCN, JDA, and BON.
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Appendix K  Seasonal Variation in Passage Predictions

Passage predictions during the season vary as function of changes in river conditions from 

past predicted values. RealTime predictions of arrivals at the index sites—Lower Granite Dam 

and McNary Dam—are used as input to CRiSP which then predicts the arrival of fish at down-

stream locations. In the figures that follow, MAD computations for each modeled day of arrivals  

are displayed. Patterns of prediction success at an upstream location are propagated downstream.

The stocks are referenced by their codes:

Stock Code Origin Species Index Site Pass. Site

COMPOSITE Next 4 stocks taken together Yearling Chinook LWG MCN

CATHEC Catherine Creek Yearling Chinook LWG MCN

IMNAHR Imnaha River Yearling Chinook LWG MCN

SALRSF South Fork Salmon River Yearling Chinook LWG MCN

MINAMR Minam River Yearling Chinook LWG MCN

SNAKER Snake River Subyearling Chinook LWG MCN

lgrStlhd Snake River Steelhead LWG MCN

mcnChin1S ESU Snake R Spring/SummerYearling Chinook MCN JDA

mcnChin0S ESU Snake R Fall Subyearling Chinook MCN JDA

mcnChin0C ESU Upper Columbia R Fall Subyearling Chinook MCN JDA

mcnStlhdS ESU Snake R Steelhead MCN JDA

mcnStlhdC ESU Upper Columbia R Steelhead MCN JDA
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 Figure K-1  Seasonal variation in passage prediction success for Catherine Creek stocks at Little 
Goose, Lower Monumental and McNary Dams. Y axis is the MAD value.
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 Figure K-2  Seasonal variation in passage prediction success for Catherine Creek stocks at Little 
Goose, Lower Monumental and McNary Dams. Y axis is the MAD value.
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 Figure K-3  Seasonal variation in passage prediction success for Catherine Creek stocks at Little 
Goose, Lower Monumental and McNary Dams. Y axis is the MAD value.
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 Figure K-4  Seasonal variation in passage prediction success for Catherine Creek stocks at Little 
Goose, Lower Monumental and McNary Dams. Y axis is the MAD value.
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