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Chapter 1

PREDATOR SUSCEPTIBILITY MODEL OF JUVENILE SALMON
SURVIVAL

Abstract

In relating juvenile salmonid size to adult survival, past observational studies have shown

mixed results, while modeling has been limited to regression methods lacking in ecological

mechanism. This paper develops a simple 4-parameter model relating the survival of juvenile

Chinook salmon (Oncorhynchus tshawytscha) to their size based on susceptibility to predation.

The model is parameterized to test the hypothesis that there is a critical size for smolts

beyond which they experience significantly lower mortality due to a reduction in gape-limited

predatory pressure. The model is validated on spring-run Chinook salmon tagged in the

Columbia River Basin, tracking either in-river survival during out-migration from hatcheries

to Lower Granite Dam or adult returns for fish tagged at Lower Granite Dam and at the

mouth of the Grande Ronde River returning to Bonneville Dam. The predator susceptibility

model outperforms a generalized linear model for adult return data and for in-river survival

when mortality is high, while providing interpretable parameters and a mechanistic structure.

These results show strong support for the critical-size critical-period hypothesis of Beamish

& Mahnken (2001) while giving a plausible functional form for the response. There is also

evidence that larger fish realize greater survival increases from barging than smaller fish.

This provides a framework through which interannual variations in size-dependent survival

can be separated from overall survival, which could help guide management targets in both

hatchery and dam management as well as wild habitat restoration.

1.1 Introduction

It is generally accepted that the survival of juvenile fish depends on their size, and that

bigger is better, however many studies contradict each other about the importance of this
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relationship and the form it takes, while others find equivocal or negative results (Parker,

1971; Sogard, 1997). Previous work on the length-survival relationship in Pacific salmon

(Oncorhynchus spp.) focused on the presence or absence of a length effect on recruitment,

but only recently have attempts been made to give it a mathematical form other than a

linear model (Satterthwaite et al., 2009; Hunsicker et al., 2011; Ohata et al., 2011). Koenings

et al. (1993) used non-parametric Loess smoothing to find common patterns in survival with

respect to length, but no general theory was developed, only the recognition of at least two

“non-linear, functionally distinct zones.” Even the presence of a length effect can be difficult

to detect. Though usually present in data (Saloniemi et al., 2004; Jokikokko et al., 2006;

Henderson & Cass, 1991; Holtby et al., 1990), some studies observed no effect of size on

survival (Rechisky, 2010) or even a negative effect (Ewing & Ewing, 2002). Many of the

equivocal results had limiting factors in the data, for example acoustic tags have a larger

size requirement than passive integrated transponder (PIT) tags, thus studies dependent

on acoustic tag data necessarily truncate the smaller fish, which can affect the results by

preventing comparisons with smaller individuals. Rechisky (2010) examined Dworshak

Hatchery Chinook salmon smolts tagged with acoustic tags, and binned the data into 5 mm

length classes starting at 130 mm. In an AIC-based regression analysis of her 2008 data, fork

length was a significant factor in the best-rated model for adult returns to Lower Granite

Dam—until the largest length class (150–154 mm) was removed, at which point a model

without fork length provided the best fit, though the new model included travel time as

a parameter, which was correlated with fork length. The minimum recommended size for

PIT-tagging is 65 mm (MPM, 1999), which enables consideration of wild fish and smaller

hatchery fish that are unavailable for acoustic tagging. In the case of Ewing & Ewing (2002),

the authors found a negative correlation between length and survival, but suggested that

unusually warm ocean conditions coupled with high testosterone levels in the larger juveniles

to created the anomalous effect. In fact, Duffy & Beauchamp (2008) conducted an analysis

of the same stocks as the Ewing paper for more recent years and found a strong length effect,

attributed primarily to predation in the early marine period.

Migrating from one ecosystem to another, juvenile Chinook salmon face different sets of

predators. In-river, there is heavy predation due to smallmouth bass (Micropterus dolomite),
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northern pikeminnow (Ptychocheilus oregonensis), channel catfish (Ictalurus punctatus),

and walleyes (Stizostedion vitreum) (Vigg et al., 1991; Tabor et al., 1993; Ward et al., 1995;

Shively et al., 1996a; Petersen & Ward, 1999; Fritts & Pearsons, 2004). After entering the

ocean, potential predators include cutthroat trout (Oncorhynchus clarkii clarki) and adult

salmon; avian predators are present throughout (Parker, 1971; Holtby et al., 1990; Duffy &

Beauchamp, 2008). The critical-size, critical-period hypothesis of Beamish & Mahnken (2001)

(see also Farley et al., 2007) does not address freshwater predation and mortality, but makes

a strong case that marine survival is determined in two stages, both of which depend on size

and growth. In the first stage, which starts upon ocean entry (usually early to mid-summer

for spring Chinook salmon), size-selective predation is the primary cause of mortality. It is

well established that gape-limitation results in linear relationship between predator size and

maximum prey size, with slope and intercept dependent on the species involved (Poe et al.,

1991), and that these relationships in large part determine size-selectivity in predation. The

second stage begins at the end of the first marine summer, where it is theorized that survival

depends on accumulating enough energy reserves to survive the first marine winter, which is

signified by maintaining a high enough growth rate to achieve a critical size. The critical

size varies depending on ocean condition and resource availability, but those falling short are

most susceptible to predation. Farley et al. (2007) observed that resource availability should

be taken into account in managed stocks as in a year of low ocean productivity producing

more juveniles could decrease survival overall if competition is too intense. Ocean conditions

can affect survival in both size-dependent and size-independent ways.

Past studies on a length or size effect on survival have focused at one of two scales. Many

are at a stock or location scale, using mean lengths and survival rates for different sites or

for the same site in different years. Requiring less data, these studies were especially popular

historically. The question they sought to answer was if increasing the overall size within

a population results in higher survival. Many of them used only a handful of data points

and fit simple linear models (e.g. Beckman et al., 1999; Henderson & Cass, 1991), but as

Henderson & Cass pointed out, means tend not to vary widely which makes effects difficult

to detect. Reisenbichler et al. (1982) plotted 18 years of data from three Sacramento River

Chinook salmon hatcheries and found a strong, non-linear length effect, and Koenings et al.
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(1993) found both a similar length effect in a study of sockeye salmon from 12 sites in Alaska

over a long time interval.

Studies conducted within a cohort look at how the length distribution of survivors

relates to the overall length distribution. This can be done prospectively by measuring

and PIT-tagging (Zabel & Williams, 2002) or retrospectively, using a method such as scale

radius analysis, where the size at ocean entry is inferred by examining a scale taken from the

adult fish, and the distribution of survivors’ sizes is then compared to a previously sampled

distribution of all out-migrating fish (Claiborne et al., 2011). These studies generally found

increased survival in larger fish (see also Moss et al., 2005; Cross et al., 2008), but as Saloniemi

et al. (2004) began to do for Atlantic salmon, I would like to know how the size effects

vary with year. Zabel & Achord (2004) used both within- and across-cohort approaches on

Chinook salmon and found that length was an excellent predictor of survival within a cohort,

but that mean length was a poor predictor of cohort survival. Their analysis was based

solely on Generalized Linear Models (GLM), where a single parameter was responsible for

the entire length effect. A similar analysis, also based on GLMs was conducted by Jokikokko

et al. (2006) for Atlantic salmon, where length and type (hatchery or wild) were observed to

have significant effects on survival. Good et al. (2001), also working with Atlantic salmon,

found that the strength of size-selective effects depended on ocean conditions.

Both Reisenbichler et al. (1982) and Koenings et al. (1993) noted diminishing returns

in the benefits of size which can help explain some of the inconsistency of size effects, but

this also raises the issue of functional form: is a GLM an appropriate model to fit the

observed survival patterns? Diminishing returns would suggest a sigmoidal function with

more flexibility than a GLM, which always approaches 1 asymptotically. Furthermore, a

functional response with additional parameters allows for analysis off how the length-survival

relationship changes with other factors. In this paper, I develop a mechanistic model that

fits the observed patterns in survival better than a GLM while still remaining tractable and

parsimonious. With parameters that correspond to different response characteristics, the

model aims to decompose the size effect into independent functional components.
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1.2 Theory

Dividing prey mortality into size-dependent and size-independent causes, a differential

equation can express the mortality experienced by salmon of a certain size l. Beginning at a

certain point on the juvenile salmon migration,

dNl

dt
= −c1Nl − c2NlPl, (1.1)

where Nl is the number of prey of size l, Pl is the proportion of size-limited predators able to

consume prey of length l, and c1 and c2 are constants controlling the rates of size-independent

and size-dependent mortality, respectively. Solving Equation 1.1 with the initial condition

that at t = 0, Nl = Nl(0) yields

Nl(t) = Nl(0) · exp(−c1t) · exp(−c2Plt). (1.2)

Survival rates, Nl(t)/Nl(0), are usually considered rather than amounts. The available

data is not continuous with time. Rather, it records survival from one location to another.

Evaluating at a certain time t = T (and suitably adjusting the constants as c3 = exp(−c1T )

and c4 = −c2T ) survival rate as a function of size becomes

S(l) =
Nl(T )

Nl(0)
= c3 exp(−c4Pl). (1.3)

This assumes that travel speed—and therefore time—is independent of length, though in

actuality larger fish tend to migrate more quickly which also serves to reduce the time spent

in high-risk areas and can therefore be wrapped into the constants. In this form, the survival

curve has an upper asymptote at c3 (which is related to c1, the size-independent mortality

coefficient) and a lower asymptote at c3 exp(−c4), however other interesting characteristics

such as the location of the inflection point are intractable. A first-order Taylor approximation

about the point Pl = p0 yields a functional form with more readily interpreted parameters.

S(l) ≈ c3 exp(−c4p0)− c3c4p0 exp(−c4p0) · (Pl − p0) (1.4)

= c3(1 + c4p0) exp(−c4p0)− c3c4p0 exp(−c4p0) · Pl. (1.5)
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Making the following substitutions in the constants,

k1 = c3c4p0 exp(−c4p0) (1.6)

k0 = c3 exp(−c4p0)
[
1 + c4p0 − c4

]
, (1.7)

Equation 1.5 simplifies to

S(l) ≈ k0 + k1(1− Pl). (1.8)

In this form the lower and upper asymptotes are k0 and k0 + k1 and the curve connecting

them will share properties, such as symmetry and the inflection point, with Pl, the proportion

of predators capable of consuming a smolt of size l. An intuitive explanation for this form of

the model follows.
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Figure 1.1: Panel (a) shows an intuitive starting assumption, with the extreme sizes taking
on extreme survival rates. Panel (b) shows how the number of predators decreases with
prey size, assuming a normally distributed predator population and a linear relationship
between prey size and minimum predator size. Panel (c) combines the information in the
other panels as in Equation 1.8 to produce a sigmoidal survival curve.

Assume that the smallest smolt, equally available to all predators, has a probability of

survival k0. Similarly, assume that a very large smolt, essentially free from size-selective

predation, has a probability of survival that is greater by k1. This gives survival probabilities

k0 and k0+k1 at two points on opposite ends of the length spectrum. The remaining question

is how to connect them. Within this modeling framework, the only difference between the

limiting points of the length curve is the number of potential predators, so this is the basis

for the path connecting the dots. There is some distribution of predators by the maximum
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size of the prey they can consume, and the shape of this distribution will determine the

shape of the survival curve. This assumes that predation is only limited by the maximum

prey size, i.e. a predator capable of hunting a certain-sized prey is equally able and likely to

consume any smaller prey. (This assumption is addressed further in the discussion.) Under

this assumption, the cumulative distribution function (CDF) of the predator-density in terms

of maximum prey size determines the risk of predation, thus the parameters that must be

estimated for model fitting are k0 and k1 for the position of the asymptotes and whatever

parameters are necessary to describe the predator-density distribution. Figure 1.1 builds

this model graphically assuming a normal distribution of predators, while Figure 1.2 shows a

hypothetical system where two overlapping normally distributed predator populations with

different prey-size restrictions produce a survival curve with two distinct ramps.

For a certain species, Poe et al. (1991) showed that, due to gape limitation, there is a

strong linear relationship between the length of the largest possible prey and the length of a

predator. Using the initial assumption that predator sizes are normally distributed by length,

this means that the number of predators just big enough to successfully hunt prey of a given

length is normally distributed by prey length through a linear transform of the predator

length distribution. While this holds easily for a single predator population, extending it as

an assumption of the net distribution for all size-limited predators is reasonable and requires

estimating just 2 additional parameters. The mean of this distribution, lc, equal to the

length of the largest prey available to the mean predator, is a critical or threshold length

because it marks the inflection point of the cumulative distribution function. This results in

survival probability for a fish of length l of

S(l) = k0 + k1Φ

(
l − lc
σ

)
(1.9)

where k0 is the low survival asymptote, k1 is the difference between the low and the high

asymptotes, lc is the threshold length (the maximum prey length of the mean predator),

and σc is the standard deviation of the maximum prey length distribution which affects the

steepness of the ramp between the asymptotes, and Φ is the standard Gaussian CDF.

Due to changing ocean and river conditions, I hypothesize that k0 and k1 both are

heavily susceptible to a year effect, whereas lc and σc should be relatively constant as long
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Figure 1.2: The modeling principles can be easily generalized to different distributions of
pressure due to predation. In the example above, a bi-modal predator distribution (more
accurately a bi-modal distribution in the maximum size of prey that predators are capable
of hunting) results in a survival curve with two “steps”. The predator susceptibility model
can be as flexible as the maximum prey size distribution.

as predator populations and size distributions are relatively constant. All parameters should

depend heavily on distance traveled in-river and prey characteristics and behavior, thus are

location- and stock-specific.

1.2.1 Using a GLM

A standard GLM with a logit transform is used as a comparison. At its simplest, this follows

the equation

log

(
p

1− p

)
= β0 + β1 · l (1.10)
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where p is the probability of survival, l is length and the β’s are the model parameters.

Fixed effects for changes by year are added to both the intercept and length terms, and the

best model is chosen by comparing Akaike Information Criterion (AIC) scores on data with

normalized predictors. The GLM is valid over the entire real line of possible length values,

with asymptotes at 0 and 1 survival probability as lengths approach positive and negative

infinity. The best fitting GLM provides a base case from which to assess the performance of

the predator susceptibility model. The GLM has the advantage of having fewer parameters,

however its asymptotes are fixed at 0 and 1, and the parameters are difficult to interpret

ecologically, for example β1 is the change in the log odds ratio due to unit change in length.

The predator susceptibility model, on the other hand, introduces 2 additional parameters,

but has flexible asymptotes and all four parameters are easily interpreted. Taken by itself,

the only assumption the GLM tests is whether or not there is a length effect. If the GLM

results in a non-significant or negative coefficient for length, it indicates that there is no

evidence of a length effect, and thus the assumptions of the predator susceptibility model do

not hold.

When both GLM and predator susceptibility models are fit to the same data they

are compared using the AIC, which assigns a score to how well a model fits a particular

data set including a penalty for extra parameters. Using standard rules of thumb, if the

difference in AIC scores is less than 2 the models fit equally well, from 2 to 7 indicates a

moderately significant improvement in fit by the lower scoring model, and difference greater

than 10 indicates highly significant improvement (Burnham & Anderson, 1998). The GLM

by itself can test for the presence of a length effect, then comparison with the predator

susceptibility model will show if the length effect takes the sigmoidal shape I hypothesize

with asymptotes between 0 and 1. The shape of the predator susceptibility model can

approximate a logistic GLM under certain parameter values (large σc, k0 ≈ 0, k1 ≈ 1),

so when the GLM outperforms the predator susceptibility model it is due mostly to the

difference in the number of parameters. However, when the AIC of the predator susceptibility

model is more than 10 lower than that of the GLM, the predator-susceptibility model’s

flexibility has significantly improved the fit, and these fits are classified as “very significant”.

The predator susceptibility model is fit to individual binary survival data using the mle2
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function from the bbmle package in R (Bolker & R Development Core Team, 2011). Though

they will not be individually presented, model fits are validated by likelihood profiling, and

these are used to generate confidence intervals on the parameters. An example likelihood

profile plot is show in Figure 1.3. Graphs of the model fits presented with binned data never

indicate that binned data were used to compute parameter estimates, the bins are merely a

convenience to visually assess the model fits.

Figure 1.3: A sample likelihood profile plot. This corresponds to the fit to the Sawtooth
Hatchery data. The steep “V” shape indicates definite minima in the negative log-likelihood
surface, showing that the model has converged on a stable solution. The z-scores on the
vertical axis are used to estimate confidence intervals for each of the four model parameters
in the horizontal axes.

1.3 Data

Three distinct data sets are used to test the predator-susceptibility model. All three data

sets follow out-migrating spring Chinook salmon from the Columbia River basin fitted with

Passive Integrated Transponder (PIT) tags and recorded in the Columbia Basin PIT Tag

Information System (ptagis). Nonexistent and extremely high length values, temporal

outliers, as well as length values less than 65 mm were omitted. (It is not recommended

that fish smaller than 65 mm be PIT-tagged (MPM, 1999).) As travel time plays a strong
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role in mortality rates of Chinook salmon and is strongly correlated with fish size (Smith

et al., 2002; Anderson et al., 2005) in addition to distance, it must be considered in the

analysis as it could confound the effect of length on survival. The most practical way of

dealing with distance effects is to select fish based on PIT-tagging location. For in-river

survival, I selected fish PIT-tagged pre-release at the Sawtooth Fish Hatchery on the Salmon

River, with survival defined by the existence of any positive detections at Lower Granite

Dam or farther downstream. Adult survival, defined as any positive detection event as an

adult—usually at Bonneville Dam—was tracked for fish PIT-tagged at the mouth of the

Grande Ronde River and at Lower Granite Dam (treated separately). These sites are shown

on the map in Figure 1.4.

1.3.1 In-River Survival: Sawtooth and Rapid River Fish Hatcheries

The least complicated data set is of spring Chinook salmon PIT-tagged and released at

two hatcheries upriver from Lower Granite Dam with survival tracked to the dam. These

two data sources are fish reared at the Sawtooth Fish Hatchery on the Salmon River,

1,442 km from the mouth of the Columbia (747 km above Lower Granite Dam), and Rapid

River Hatchery, 978 km from the mouth (283 km above Lower Granite Dam). For these

smolts survival was measured to Lower Granite Dam. Individual PIT-tagged fish were

marked as survivors if their tag was detected at Lower Granite or any site downstream,

making these conservative survival estimates depending on detection probabilities. Zabel

et al. (2005) showed that smaller fish have greater detection probabilities, though this

depends on both year and site. This could lead to underestimating the survival rates of

large subjects. The Sawtooth data consists of 15,765 fish released in 10 years, although

the vast majority of the taggings were in 1989 and 1991, summarized in Table 1.1. The

lengths and survival rates of the Sawtooth population changed significantly from the early

90’s to the late 90’s and early 2000’s. The 1989 and 1991 fish exhibited low survival rates

compared to the later years. The length distributions changed as well. With different data

characteristics on either side of a 6-year gap in the Sawtooth data, and the majority of

observations coming before the break, the early and later Sawtooth data is treated separately.
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The Rapid River data set, summarized in Table 1.2, is more uniform than the Sawtooth

data. There are no gaps in the years covered, and the lengths and survivals fluctuate normally.

The Rapid River survival rates are higher than the Sawtooth rates as the fish have less than

half as far to travel to Lower Granite Dam. A potential issue with fish tagged in the hatchery

is that the smolts are not necessarily tagged and measured near the release date. The records

include both the tagging and release dates, allowing us to precisely calculate the latency

time between tagging and release. This is of concern because fish in the hatchery system

are under no predation threat and, if they are growing rapidly, fish tagged and measured

30 days before release (high latency) would not be comparable with those tagged very close

to release (low latency). These particular hatcheries were chosen because a preliminary

examination of the latency distributions for all hatcheries with over 10,000 PIT-tagged fish

suggested that the Sawtooth and Rapid River data had good natural breaks in the latencies,

allowing for easy grouping. As it turned out, the fish experience such cold river conditions

in their final months in the hatchery—often the Sawtooth raceways are covered in ice—that

their growth during this period is negligible (Philip Coonts, Sawtooth Hatchery, personal

communication).

1.3.2 Adult Returns: Grande Ronde River Mouth

Wild and hatchery stocks are known to have different survival characteristics, and their

length distributions are different enough that they are treated separately in this analysis.

Preliminary analysis was conducted using 45,395 PIT-tagged spring Chinook salmon captured

and released within at the mouth of the Grande Ronde River, about 800 km from the ocean,

accessed from the PTAGIS database on 9 November 2010 and updated on 8 June 2011. The

division examined in this data set is wild versus hatchery with breakdowns by year. The

response variable for this data set is Smolt-to-Adult Return (SAR), which for this paper is

defined as an adult detection at Bonneville Dam or above.
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Year Tagged
Survival to

Lower Granite (%)
Mean length

(mm)

1989 7039 15.71 117.4

1991 7081 6.62 113.6

1998 287 50.87 138.7

2001 500 51.20 134.9

2002 248 39.92 131.8

2004 203 54.68 112.4

2005 100 20.00 118.1

2006 100 46.00 117.8

2007 207 46.38 112.0

Table 1.1: Summary of the fish tagged at the Sawtooth Fish Hatchery. No fish were tagged
at Sawtooth between 1991 and 1998, and after that relatively few fish were tagged in any
given year. Three years in the middle, 1998, 2001, and 2002 have exceptionally high lengths,
while the survival rates were much lower in 1989 and 1991 compared to the later years.
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Figure 1.4: Data sets consist of fish PIT-tagged at the mouth of the Grande Ronde River
(where it enters the Snake River), at Lower Granite Dam on the Snake River, and at Sawtooth
Hatchery on the Salmon River. Survival of the Sawtooth fish is in-river pre-hydrosystem,
from the hatchery to Lower Granite Dam, whereas smolt-to-adult returns (SAR) from the
tagging site to Bonneville Dam are measured in the Lower Granite and Grande Ronde data.
Some of the fish passing Lower Granite Dam were loaded onto barges and taken downriver
to be released below Bonneville Dam (BON, on the map), while the rest made the same trip
as run-of-river fish. (Map adapted from Haeseker et al. (2012).)
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Year Tagged
Survival to

Lower Granite (%)
Mean length

(mm)

1993 3285 54.82 114.3

1994 2910 35.12 119.2

1995 1961 61.45 120.8

1996 19072 43.73 124.4

1998 48339 59.62 117.5

1999 45409 61.65 120.8

2000 47577 54.69 119.6

2001 54915 67.11 119.0

2002 182913 60.26 122.7

2003 135717 47.43 120.1

2005 5277 70.21 123.9

2006 49871 61.63 122.0

2007 55584 55.33 115.2

2008 70711 65.61 122.8

Table 1.2: Summary of the fish tagged at Rapid River Hatchery. The variations in length
and survival are small compared to the variations in the Sawtooth data set. The survival
rates are higher than Sawtooth due to Rapid River’s proximity to Lower Granite Dam.
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Wild Hatchery

Year Tagged Returned
SAR
(%)

Mean
length
(mm)

Median
DOY Tagged Returned

SAR
(%)

Mean
length
(mm)

Median
DOY

1998 1567 4 0.14 113.5 93 846 3 0.35 130.3 99

1999 3237 38 2.11 109.2 110 1771 7 0.40 127.7 83

2000 589 9 1.81 118.6 130 257 3 1.17 141.4 130

2001 2043 2 0.30 120.7 110 1375 0 0.00 134.3 99

2002 2733 29 1.42 113.1 109 1397 10 0.72 135.7 107

2003 4062 14 0.30 109.7 96 1396 6 0.43 150.5 83

2004 4501 19 0.45 112.0 105 1401 5 0.36 126.6 83

2005 3375 10 0.46 113.4 121 1401 1 0.07 129.0 90

2006 5029 49 1.02 111.4 115 1400 12 0.86 124.4 94

2007 3964 51 1.44 115.0 102 1394 14 1.00 129.3 104

2008 3831 105 3.09 114.4 116 1407 30 2.13 129.7 108

2009 4856 67 1.36 111.8 119 1396 20 1.43 123.3 93

Table 1.3: Summary table for the fish tagged at the mouth of the Grande Ronde River. There is significant yearly variation
in the length distributions of hatchery fish (indicated by the variable means). The median day-of-year (DOY) of tagging is
also given. The absolute number of returns in any given year is often too low to accurately estimate a length distribution of
returners.
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1.3.3 Lower Granite Dam Adult Returns

The largest and most complex data set consists of Chinook salmon smolts PIT-tagged as

they passed Lower Granite Dam, 695 km from the estuary, for all years with substantial data

available and mostly completed returns by the time of writing: 1998-2009 (out-migration

year). Many of the smolts PIT-tagged at Lower Granite Dam are also selected for transport:

they are loaded onto barges and shipped downriver. After a 36-hour trip, they are offloaded

below Bonneville Dam. Run-of-river fish remaining in the hydrosystem for those 234 km

take 2-4 weeks to cover the distance. PIT-tagging and barging practices differ from year to

year at Lower Granite, with smolts of different types being tagged (or not) and assigned

to barge transport (or not) with different treatment plans. These data are summarized in

Table 1.4 with breakdowns by year, type, and transport. As in the Grande Ronde River

data, the response variable is SAR to Bonneville Dam. Table 1.4 shows that the SAR rates

fluctuate by an order of magnitude with year, however Figure 1.5 shows that the length

distributions for the wild- and hatchery-type are consistent, and the differences between the

types are clear.

To increase the sample size, along with those smolts positively identified as spring Chinook

salmon, smolts with the “15H” run-type code were included, the classification given when

the tagger is unable to determine if they are spring or summer Chinook salmon. Temporally,

the data were truncated after a tagging date of June 30, which is early enough that the

vast majority of the remaining fish can be expected to be spring-run (Beamesderfer et al.,

1996). This increased the sample size from about 16,000 (positively identified spring Chinook

salmon) to 1.2 million, substantial enough to justify the inclusion of some other runs as well.
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Wild Hatchery

Year Barge
Barge

SAR (%) River
River

SAR (%) Barge
Barge

SAR (%) River
River

SAR (%)

1998 5482 0.60 8683 0.61 38770 0.66 61523 0.38

1999 8119 2.35 11829 1.39 43169 2.16 61478 1.49

2000 0 58496 1.77 0 0

2001 17506 1.01 0 0 0

2002 4899 1.47 33935 1.03 0 0

2003 7101 0.42 43051 0.17 0 0

2004 11194 0.54 0 0 0

2005 12668 0.31 0 0 36094 0.09

2006 19505 0.91 10095 0.77 33935 0.81 148258 0.57

2007 16752 1.10 14513 0.68 23935 1.02 78111 0.24

2008 19022 3.25 9412 1.77 42452 2.36 98288 1.22

2009 13315 0.98 13815 0.43 0 91253 0.41

Table 1.4: Fish PIT-tagged at Lower Granite Dam. The PIT-tagging practices differ from
year to year; the fluctuations in barge rates and the relative numbers of a wild and hatchery
fish tagged are due to changing PIT-tagging policies. The SAR rates also vary widely by
year from 0.09% to 3.25%. Wild fish tend to exhibit higher overall survival. Only for barged
fish in 1998 and run-of-river fish in 1999 do hatchery reared fish have SAR rates exceeding
their wild counterparts.
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Figure 1.5: The differing distributions of fork length of wild and hatchery spring Chinook
salmon stocks tagged at Lower Granite Dam by year. A 3 mm bandwidth smoother was
applied to eliminate extraneous noise. The distributions are remarkably consistent from
year to year. Due to their different survival characteristics and length distributions, they are
always treated separately in modeling.
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1.4 Results

1.4.1 Juvenile In-River Survival: Hatchery Release to Lower Granite

The predator susceptibility model fit to the two early years of the Sawtooth Hatchery data

(1989 and 1991), which measures survival from the hatchery to Lower Granite Dam, displays

clear sigmoidal ramps. Figure 1.6 shows the Predator Susceptibility Model fit to these data

with year effects on k0 and k1 and shared values for lc and σc. The joint critical length is

lc = 127.2 mm (95% confidence interval 119.7 to 135.2 mm) with σc = 18.7 mm (95% CI

11.6 to 20.4 mm). A complete table of parameter estimates with confidence intervals is in

Appendix A. Survival increases from 11.2% to 25.5% in 1989 and from 5.1% to 11.1% in

1991. The σc term can be used as the half-width of the interval around the critical length in

which the increase in survival is highest, indicating that fish in the Sawtooth data begin

seeing gains in survival due to size at about 108.5 mm. The mean fish lengths (and standard

deviations) for these years are 117.4 mm (13.5 mm) and 113.6 mm (9.6 mm), respectively.

Thus the majority of smolts are large enough to see some reduced mortality due to their

size, but 89.33% of the fish fall below the critical length.

Sawtooth Hatchery is 747 km from Lower Granite Dam, while the Rapid River Hatchery

is only 283 km away, a difference in distance that is reflected in mortality rates. Survival

to Lower Granite was 57.8% overall for Rapid River Hatchery, but only 11.15% for the

early Sawtooth years. The Rapid River fish do not exhibit any critical size effect in their

survival to Lower Granite: the PSM fails to converge while a GLM with fixed effects by

year gives a significant positive coefficient for length overall, but the year effects of length

combine with it in any given year resulting in slopes that are often not significantly different

from 0. Figure 1.7 show the flat length-mortality relationships for the Rapid River fish by

year. As mentioned in Section 1.3.1, the later years of Sawtooth data have higher lengths

and survivals than 1989 and 1991 and resemble the Rapid River data in the length-survival

relationship and also are not fit well by the Predator Susceptibility Model.
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1.4.2 Adult SAR: Grande Ronde River

The Grand Ronde River data are a smaller and noisier data set. In most years, there were

between 3,000 and 5,000 smolts PIT-tagged, but there are only 5 instances where more than

20 adults returned for a given out-migration-year:rear-type combination, eliminating the

possibility of many individual year fits. These data reveal consistently positive correlations

between survival and length, with the critical size appearing in the aggregated data. Results

are summarized in Appendix A.2.

In some of the data, especially the Grande Ronde wild data but also in some Lower

Granite subsets, there is a drop in survival for the very largest smolts. This is similar

to a pattern observed by Koenings et al. (1993). In their work, observing the shapes of

Loess-smoothed survival curves plotted against mean length from many different stocks they

noted strongly diminishing returns in survival as length increased beyond a threshold, and

eventually a decline. I hypothesized that this decline could be due to timing, i.e. that the

biggest of fish might arrive later in the season, and temporal factors overwhelm the length

factors in determining survival. This is not the case, however, as temporal distribution of

smolt size is nearly identical for all but the smallest smolts—which were especially common

toward the end of the season—this does not seem to be the case in the data set (see

Figure 1.8).

1.4.3 Adult SAR: Passing Lower Granite

The largest and most complex data set addressed in this paper is of all the smolts that were

PIT-tagged at Lower Granite Dam from 1998–2009. For each of the four type:transport

subsets of the data the PSM fit best with temporally constant lc and σc and fixed effects by

year for k0 and k1. The parameter values with confidence intervals are shown in Table 1.5.

The optimization calls in the maximum likelihood estimation did not fully converge when

estimates for k0 and k1 were not significantly different from 0 (their lower bound), but

examining the likelihood profiles shows that this did not adversely affect the estimates of

the other parameters; only the confidence intervals for that particular term were affected.

Figure 1.9 shows the PSM fit to 2008 with data for comparison, and Figure 1.10 shows the
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model fits for each year.
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Figure 1.6: The two early Sawtooth years exhibit sigmoidal shape, with a ramp between
low and high horizontal asymptotes. Using AIC, the Predator Susceptibility Model fits the
data significantly better than a GLM with fixed year effects (∆AIC = −8.37). Data are
spring Chinook salmon smolts PIT-tagged at the Sawtooth Hatchery in 1989 and 1991, with
survival measured to Lower Granite Dam plotted against length at tagging. Each point on
the upper graph represents a bin, with the number of PIT-tagged fish in each bin indicated
in the histogram below. The model was fit to individual, not binned data. Binomial 95%
confidence intervals are shown as vertical bars.
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Figure 1.7: Survival to Lower Granite Dam versus length for the Rapid River data set.
While a GLM fits a significant positive coefficient for length, there is no evidence of a critical
length effect in these data.
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Figure 1.8: Wild fish PIT-tagged at the mouth of the Grande Ronde River (1998–2009), with
the tagging date (the date they entered the Snake River) plotted as a histogram for each of
the length bins. The mean tagging date for each length bin is marked with a triangle. The
timing distribution changes minimally among the higher length bins, and timing parameters
added to the GLM are not significant.
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lc σc

Type Transport
Mean length

(mm) l̂c
Lower

95% CI
Upper
95% CI σ̂c

Lower
95% CI

Upper
95% CI ∆AIC

Wild Barge 110.5 107.6 106.3 109.0 5.6 4.2 7.6 −30

Wild Run-of-river 109.1 103.1 101.0 105.2 8.2 5.9 11.5 −5

Hatchery Barge 136.2 145.5 141.0 150.2 15.7 12.6 19.6 −37

Hatchery Run-of-river 135.6 141.6 138.0 145.3 21.4 18.3 24.9 15

Table 1.5: Summary of PSM parameter estimates for the Lower Granite data. The mean lengths of the wild fish are slightly
larger than the mean critical length estimates, falling outside the 95% confidence interval. The mean lengths of the hatchery fish
fall below the lc confidence interval. The ∆AIC column indicates compares the PSM with the best fitting GLM, with negative
values indicating that the PSM is a better fit.
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Figure 1.9: The Predator Susceptibility Model fits to the 2008 Lower Granite data. Fits for
all years can be found in Figure 1.10. Here the model predictions are shown with data points
(binned by length in 3 mm intervals). With smaller sample sizes, more noise is present for
the wild fish, especially the wild run-of-river subset.
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Figure 1.10: SAR curves fit by the Predator Susceptibility Model for fish PIT-tagged at
Lower Granite Dam, by year, with colors indicating brood type and transport treatment.
Horizontally the curves extend from the 2.5th to 97.5th data percentiles. The model is fit
to each type:tranport interaction group with the asymptotic parameters k0 and k1 free to
vary by year, but lc and σc parameters fit constant within each group. Fit summaries are in
Table 1.5
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1.5 Discussion

The in-river survival data using fish from Sawtooth Fish Hatchery exhibits a clear sigmoidal

pattern in survival as it relates to fork length in the early years. Of the data sets examined,

this one has the fewest possible confounding factors: all the fish involved are from the same

stock and the same hatchery, and no significant mortality occurred before they were released.

Tracking survival to Lower Granite Dam avoids confounding factors of hydrosystem passage,

the complexities of transport systems and the variability of ocean conditions. Mortality

is due almost entirely to a single mechanism, predation, and there is strong evidence of a

threshold effect in a juvenile’s salmon susceptibility to predation. In the later Sawtooth

years both rearing techniques and river conditions changed to significantly increase the sizes

and survival rates of the Sawtooth fish. I hypothesize that in the later years of the Sawtooth

data and in the Rapid River data mortality is too low for length effects to be observable.

The “critical-size, critical-period” hypothesis of Beamish & Mahnken (2001) identifies

two stages where threshold effects on size and growth impact salmon marine mortality; the

PSM shows that there can be a significant threshold effect prior to ocean entry. Benton et al.

(2006) stated that “threshold effects abound in nonlinear systems and biological systems are

typically nonlinear,” thus it should come as no surprise that such effects are present in any

life stage with significant mortality. These results could be combined with the critical-size

critical-period hypothesis either by adding a stage for freshwater mortality prior to ocean

entry or by redefining the beginning of the first stage to include freshwater predation in

addition to marine predation. Regardless, the Sawtooth data demonstrate that critical size

effects are very present during the freshwater phase of out-migration.

Adult return data is noisier than in-river survival and, while the signal of a threshold effect

comes through, the response aggregates all-cause mortality across life stages. Restricting

analysis to specific PIT-tagging locations eliminates some confounding factors, but the fish

PIT-tagged at Lower Granite Dam or the mouth of the Grande Ronde River come from

different stocks, they spawned at different locations, and the populations have undoubtedly

experienced some mortality prior to tagging—mortality which the Sawtooth data suggests

would have preferentially afflicted the smaller fish, thus the length distribution has been
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altered. Despite these limitations, when enough data is present a sigmoidal SAR:length

relationship is evident.

This research was inspired in large part as an alternative to basic linear models applied

to survival data binned by length. Any statistical comparison between the model developed

here, which follows the form of a 4-parameter sigmoidal curve, and these linear models is

problematic: the linear models are not valid models when the data are not binned, as they

will predict a survival probability less than 0 for fish that do occasionally survive. However,

if the data are binned when a model is fit, then the result depends on how the data are

binned. For survival data, it is preferable to fit models in a framework assuming a binomial

error structure, such as the maximum likelihood approach used here. Many papers (e.g.

Koenings et al., 1993) seek to compare stocks, but this analysis shows that how the lengths

are distributed around the mean can impact survival estimates. The length distribution of

the smolts has long tails. These data have been artificially truncated at 65 mm on the low

end due to the size constraints of PIT-tags, but are otherwise intact and cover the length

distribution of both hatchery and wild fish shown in Figure 1.5.

Zabel & Achord (2004) noted that average length does not help predict the survival of a

population, but relative length is a valuable predictor of survival within a population. In

their analysis of in-river survival, they did find year and site effects, and found length a

better predictor of juvenile survival than a more complicated condition index, but they were

using just a GLM. With the predator-susceptibility model, the way in which the response

changes by year and site can be inferred from the parameter values. Especially dealing with

in-river survival, where the variability of ocean conditions is absent, the asymptotes may

be affected by a strong year effect, however I expect the threshold length to be relatively

stable between years because the size distribution of the predator populations are probably

stable, although it may vary by site. (Of course, if the predator length distributions are not

stable, that would manifest in self in unstable critical length values.) I suggest this as a

promising direction for future work using a model such as this one capable of dissecting a

length effect into components and finding relationships between these length parameters

and other factors affecting salmon survival.

Using the approach of Beckman et al. (1999), where SAR rates are regressed against mean
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lengths by year, there is no statistically significant length effect. Using just the hatchery fish

PIT-tagged at Lower Granite and omitting the years 2000–2004 when few fish were tagged,

a linear model fit to SAR vs. mean length has R2 = 0.42 and a marginally insignificant

length coefficient with a p-value of 0.067. This is remarkably similar to the Beckman et al.

results, which reported a correlation of 0.57 between SAR and length with a p-value of 0.06.

They were mainly looking for a measure of smolt quality which would allow comparisons

between hatcheries at different locations, however looking at the length distribution within a

single location and year to reveal a strong SAR-length relationship.

There are two cases in which critical lengths are consistently absent: survival greater

than 40% for in-river data (e.g. Rapid River Hatchery and the later years of Sawtooth

Hatchery) and SAR less than 0.4% in the adult return data. In these extremes it is no

surprise that a critical length effect is absent. When the mortality is low as in the Rapid

River data set, it’s possible that the critical length effect is emerging, but not strong enough

to be evident as the number of fish at the tails of the length distribution is small, though

their mortalities are essential for accurately observing a critical length. For adult returns,

some years have extremely low survival due to various environmental factors, many of which

are length-independent. When several length-independent effects coincide to create a year

with exceptionally low survival, any length-dependent mortality is masked by massive overall

mortality. Figure 1.12 shows an example of an extremely low survival year in the Lower

Granite data. In these data, run-of-river hatchery fish are the most prone to experience

extremely low survival, which encourages barging.

1.5.1 Effect of Barging on SAR

Even with the aid of barging, these results imply that length is a crucial factor in determining

survival of Chinook salmon. However, the modeled response to barging suggests that barging

is most effective on large smolts. The effects of barging on the model parameters are

consistent by brood type: for both wild and hatchery stocks barging increases lc by about

4 mm and increases σc by 2.6 mm for wild fish and 5.7 mm for hatchery fish. More interesting

than the small changes in lc and σc are the changes in k0 and k1. Barging increases SAR



32

for all lengths, thus both k0 and k1, but generally k1 increases more than k0 with barging,

indicating that bigger fish realize greater benefits from barging. Looking back at the wild

fish in Figure 1.10, 1998 and 2006 are exceptions, but in every other year with data (1999,

2002, 2003, 2007–2009) barging helps large wild fish to a greater extent than small wild fish.

Though there are fewer years of data in which to compare hatchery raised run-of-river and

barged fish, they may also experience the same effect.

There is a risk that timing has a confounding effect. Throughout the season the individual

out-migrating juveniles grow rapidly and the environmental conditions in the river and

estuary are changing. Growth does not appear to be a consistent confounding factor in

the Lower Granite data. Pearson correlation coefficients between length and the day of

year passing Lower Granite Dam are generally weak and sometimes negative, although

there are 3 instances (2002 wild barged and run-of-river, 2008 hatchery barged) where the

correlation exceeds 0.3. In comparing run-of-river to barged fish there is even less of an issue;

the correlation of correlations is 0.888 for wild and 0.697 for hatchery stocks, which shows

that the length:date correlations follow the same trends for the different transportation

treatments. The correlation coefficients are available in Tables A.8 and A.9 in the appendix.

Unfortunately, I do not have survival data from Lower Granite Dam to Bonneville Dam

for the run-of-river fish, so the differential delayed mortality coefficient, D (defined as the

survival ratio of barged fish to run-of-river fish post-Bonneville Dam), cannot be computed

(Anderson et al., 2011). Survival rates during barging are close to 100%, but Haeseker et al.

(2012) show that in-river survival depends strongly on the average percent spill rates, but is

generally between 40% and 70% for Chinook salmon. Applying these survival rates uniformly

across the length distribution I can make a very rough estimate that D would be about 1

for the hatchery fish and larger wild fish, but that D would tend to be less than 1 for wild

fish shorter than about 100 mm. The predator susceptibility model provides a foundation

on which to build future work examining the size-dependency of D.
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1.5.2 Translating into Overall Survival

The overall management goal is to maximize the number of smolts that return as adults,

which requires looking beyond parameter estimates. The mean lengths of the Lower Granite

data set are a little below the threshold lengths for hatchery fish and a little above the

critical lengths for wild fish, but within σc of the critical length in both cases—not stuck

in the asymptotes. For the Sawtooth data set (hatchery fish), the mean length is again

falls about σc below lc. This indicates that hatchery fish are just reaching the sizes where

survival is most sensitive to length. Figure 1.13 shows hypothetical overall SAR rates

for the 2008 wild barged smolts tagged at Lower Granite if their length distribution was

shifted. Extreme predictions are probably very unreliable—and 20 mm increases in length

are probably unattainable—but the model is believable in the neighborhood of the actual

state. For these wild fish, the status quo is above the inflection point, but substantial gains

still could be attained through size increases, while a similar graph for hatchery fish would

have the status quo below the inflection point with even more potential for increased survival.

1.5.3 Conclusion

The fundamental result of this study is that there is a strong nonlinear connection between

length and survival. Care should be taken when drawing conclusions about the presence

or absence of a length effect; examining only means, small samples, samples not covering

the length distribution, or comparing fish measured at different locations can obscure the

length-survival relationship. The data are very noisy, and a critical size effect is not detectable

in every subset of the data, but it is observed often enough that it cannot be discounted. Its

identifiability is sensitive to mortality levels, sample size, and length range.

Also important is the result that a critical length effect can influence in-river survival

of out-migrating spring Chinook salmon, in addition to the ocean-entry and first-winter

critical lengths identified in other studies. In the early Sawtooth Hatchery data there

is a clear sigmoidal relationship between length and survival. However, if the data were

truncated the pattern would be lost. In the Rapid River data mortality is low, and no strong

length-dependency is evident. At the other extreme, some of the Lower Granite subsets have
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mortality so high that not enough survivors remain to make inferences, even with tens of

thousands of fish tagged. However, a sigmoidal size effect is evident in the Lower Granite

data as well. That mean lengths of hatchery fish are below critical lengths suggests that, to

maximize survival, hatchery managers should continue to focus on maximizing size. With

the majority of hatchery-reared smolts close to the low survival asymptote there is potential

for relatively large gains in survival.

Further analyses treating in-river and marine survival separately, but using a model such

as the predator susceptibility model that can isolate how survival patterns change under

variable conditions, would bring a greater understanding of how the length effect changes

based on stock, distance traveled in-river, river temperature, etc., which could then lead

to specific management targets for the length of hatchery fish based on current conditions,

habitat restoration for wild fish, and even length-selective barging.
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Figure 1.12: A length effect is absent for the run-of-river hatchery smolts PIT-tagged at
Lower Granite in 1998. Of 38,802 fish tagged, there were 233 adult returns (0.38%), but
a GLM (dotted line) fits a non-significant negative trend in survival by length. In this
particular year mortality was exceptionally high; non-size-selective effects dominated the
survival patterns. The histogram bars correspond to the points on the upper plot.
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Figure 1.13: Using the Lower Granite fit of the PSM and the 2008 length data, this plot
shows the predicted overall SAR for the wild barged smolts PIT-tagged at Lower Granite
Dam in 2008 given hypothetical shifts in the length distribution. A 5 mm increase from the
current length would, under the model, increase the overall survival from 3.25% to 3.45%.
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Chapter 2

A VORONOI TESSELLATION-BASED APPROACH FOR
GENERATING HYPOTHETICAL FOREST LANDSCAPES

Abstract

Optimization models used for forest management are highly complex and the demand for

data to test them far exceeds the supply of real data sets, thus hypothetical test forest

landscapes are often used. However, current hypothetical landscape generators are limited

in their ability to match the characteristics of real forests and offer little or no control

over important landscape metrics such as average vertex degree. This paper identifies

four characteristic landscape statistics that could affect the efficiency of spatially explicit

optimization algorithms and can be compared between simulated and real forest landscapes.

Using these as guidelines, we describe a method for generating hypothetical landscapes

capable of generating landscapes of specified characterization. A generated landscape is

based on a Voronoi tessellation, created from points chosen by a mixture of random point

processes, which is then edited to include gaps and non-convex polygons, overcoming the

shortcomings of Voronoi tessellations in this application. Through a series of multiple

regressions the algorithm determines appropriate control parameters so that the output

landscape will have high probability of matching targeted characteristic statistics within

a tolerance. The method produces landscapes with a wide range statistics, covering the

characteristics of real forests and extending into extreme cases unlikely to be encountered in

real data, while providing greater flexibility and control over the generated landscapes than

previous methods for generating hypothetical forests.

2.1 Introduction

Forest managers often consult with spatially explicit optimization models to decide on a

management strategy. Historically, timber production was the top priority, but Tóth &
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McDill (2009) show that many objectives for forest use, including recreational value, carbon

sequestration, wildlife habitat management and watershed protection can be considered

jointly with timber production under budgetary and regulatory constraints to develop

management schemes that balance all of these considerations and use the forest resources as

efficiently as possible. Forests are typically divided into harvest management units to give

forest managers small, well-defined regions on which different management actions can be

carried out (Petroski, 2006); such actions could include diverse treatments such as thinning,

cutting, doing nothing, or developing recreational facilities. Finding optimal management

schemes requires the use of optimization models which develop management schedules for

each management unit extending for a fixed management horizon, often close to a century.

Researchers classify models depending on the spatial constraints of the problems they

are used to solve. The most common spatial constraint is one of maximum area for a given

treatment in a time period, often used to address harvest scheduling in the presence of

regulations limiting the maximum contiguous clear-cut area. These problems are divided into

two main types. Unit Restriction Models (URM) are for problems where no two adjacent

management units can be harvested in the same period because the total area of any two

adjacent management units would exceed the maximum clear-cut. Area Restriction Models

(ARM) form a generalization of URMs but include the general case when management units

are small enough that it is possible for adjacent management units to be harvested in the

same period. Thus, in an ARM the area of each management unit must be taken into

account in determining whether a specific prescription is feasible (Murray, 1999). ARMs are

more difficult to formulate efficiently and to solve. Other types of spatial restrictions are

used for other types of problems. For example, the minimum patch size problem is applied

to preserve wildlife habitat that must contain contiguous patches of a certain area (Rebain

& McDill, 2003), and the connectivity problem (Önal & Briers, 2006; Conrad & Smith, 2012)

sites selected for a wildlife reserve must also be connected by a network of protected land.

All of these models rely on complex systems of linear constraints to ensure that the

spatial restrictions are met. The models are tested by running them on existing forests,

sometimes with hypothetical data about the age structure of the forest, but appropriate

data sources are often proprietary and are too few to provide adequate analysis. Ideally,
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the models would be tested on data sets covering a wide variety of potential topologies and

geometries to see under what conditions they perform well and, more importantly, to identify

the circumstances that negatively affect the computational time for optimal solutions, which

could be of great use for model selection and development. To make up for the lack of real

data sets, researchers frequently test models on hypothetical forests (e.g. McDill & Braze,

2000; McDill et al., 2002; Rebain & McDill, 2003; Constantino et al., 2008; McNaughton

& Ryan, 2008). Unfortunately, the tools used to produce these hypothetical forests do not

provide explicit control over most of the output characteristics, thus they are limiting factors

in the analysis of the optimization models.

For the purposes of these forest planning models, a forest landscape is defined as a set of

polygons, representing the management units in a forest. In a review of existing generators, Li

et al. (2010) divided the existing algorithms by method. The two most promising candidates

were based on random graphs and Voronoi diagrams, but in their current states none of the

existing methods meet the goals outlined above. Specifically, the ability to vary the output

characteristics in a controlled manner is absent. An overview of the relative merits of these

methods and one other method follows.

Optimization models “see” a landscape as a table of adjacencies and a list of areas

and other pertinent information corresponding to each management unit, thus it is natural

to think of a landscape as a graph where management units correspond to nodes and

adjacencies are indicated by edges, with a vector of areas mapped in correspondence with

the nodes. Associating other characteristics with nodes (such as age class or distance to a

road) is a trivial addition. Under this system, every possible landscape corresponds to a

planar graph with an area mapping. The generation of random graphs has been a topic of

significant mathematical research. Erdős & Rényi (1960) analyzed the properties of random

graphs created by generating specifying a degree (number of nodes) and then selecting a

certain number of edges uniformly from the set of all possible edges. Unfortunately for this

application, their results show that it is unlikely for purely random graphs that have more

than half as many edges as nodes to be planar. This low upper bound on the number of

adjacencies for planarity would be a challenge for following a random graph based approach

for generating hypothetical forests.
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Constantino et al. (2008) generated hypothetical forests in a deterministic way by using

as building blocks two specific graphs, a 4-node cycle denoted as an “F-instance” and a

more complicated 10-node graph called a “G-instance”. Grids of F- and G-instances are

connected to each other, with each node assigned unit area. This method gives good control

over the number of management units, but is in no way random. Topologically there is little

to differentiate hypothetical landscapes of equal sizes constructed by this method. Many

implementations of the ARM and URM problems improve efficiency or solution quality by

supplementing the model formulation with information on specific subgraphs, like cycles or

cliques of certain sizes (e.g. Goycoolea et al., 2005). In a case like this, it is theoretically

possible that a model implementation could work unusually efficiently or inefficiently on a

certain local topology, so when hypothetical test forests are composed entirely of repeating

subgraphs, evaluation of the implementation could be biased. To control for such possibilities

in testing a model some degree of randomness should be present in generated data.

The MakeLand program of McDill & Braze (2000) operates by first generating a set of

random nodes and then connecting each node to a given number of its nearest neighbors.

These initial nodes are placed randomly with an inhibition parameter, a minimum separation

distance between points. To create planarity, the algorithm deletes intersecting arcs until

no lines cross, always deleting the arc that has the most intersections per unit length. The

faces of the graph are taken as the forest management units, and arcs continue to be deleted

until the number of faces matches the user input number of management units, always

deleting the longest arc of the smallest face. This approach offers control over the resulting

adjacencies through two parameters: the inhibition parameter governing point placement

and the connection parameter giving the number of arcs initially drawn per point. The

authors noted that a high inhibition parameter “tends to create maps with a more even

distribution of polygon sizes.” Thus the algorithm allows for some control over the area

distribution, but the authors did not comment on the degree distribution of their results.

Another approach to generating planar maps uses Voronoi tessellations or diagrams.

Voronoi diagrams (also called Thiessen polygons) are defined based on a set of points, where

a polygon for each point is created enclosing all the area that is closer to it than to any

other point. Voronoi diagrams have wide-ranging applications, such as behavioral ecology,
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image compression, and cell biology (Du et al., 1999), and algorithms for computing Voronoi

diagrams are readily available. Barrett (1997) applied Voronoi tessellations to a similar

forest management unit-related problem: automatically generating management units from

a map of a real, undivided forest. Wyszomirski & Weiner (2009) used Voronoi diagrams

to look at crowding and competition in plants and found that the area distribution of

the polygons was dependent on the level of clustering in the initial points. As Li et al.

(2010) noted, landscapes generated from Voronoi diagrams have polygons that are always

convex. Additionally, the corners of the Voronoi polygons are formed by the intersection of

3 boundaries, whereas corners of degree 4 (as would be formed by two intersection lines) are

common in landscapes that have been divided into management units by humans. However,

I will show that these limitations can be overcome in the initial point placement and in

post-processing the resulting hypothetical landscape.

This paper describes the development of an algorithm, Rlandscape, that improves on

the existing methods of hypothetical landscape generation. We identify four landscape

characteristics important for the computational complexity of harvest scheduling models

and present a landscape generating procedure that uses Voronoi tessellations and allows the

analyst to have tight control over these parameters. By drawing the initial points from a

mixture of four random distributions and editing the resulting diagram, all of the known

weaknesses of the Voronoi diagram method are eliminated. The range of the characteristics

of output landscapes is shown to more than cover the range of characteristics observed in

real landscapes and those generated by MakeLand, and the ability to target characteristic

ranges is shown to work efficiently enough to quickly produce a large number of landscapes

with specified characteristics.

2.2 Methods

We start with a description of metrics we will use to characterize a landscape, then detail

the point processes used to create Voronoi tessellations and post-processing to correct for

the aforementioned weaknesses. Finally we describe the modeling performed to relate input

parameters and output characteristics through the stochastic landscape creation process.
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2.2.1 Choosing metrics

The number of polygons, area distribution, and degree distribution are the primary landscape

characteristics that have been shown to affect the computational complexity of harvest

scheduling models (Tóth et al., 2012; McDill & Braze, 2000; Constantino et al., 2008). The

number of polygons in a landscape, n, requires no additional explanation. Presented below

are the metrics used to describe the area and degree distributions. Taken together, all of

these metrics define what we are calling the characteristics of a given landscape.

Area

For a hypothetical landscape, total area (or equivalently, average area of a polygon given the

number of polygons) can be set post-hoc without affecting the geometry of the landscape

because the distance units used are arbitrary. However, the distribution of area among the

polygons is important. The difference between the ARM and URM models introduced above

is the size of management units relative to the maximum allowable contiguous harvest area

(Murray, 1999), and the solution methods of the much more difficult ARM problems usually

involve groupings of small polygons (e.g. McNaughton & Ryan, 2008; Önal & Briers, 2006;

Goycoolea et al., 2005). We need to consider a measure of the spread of the distribution of

areas. Standard deviation is a poor choice, because in a hypothetical landscape its units are

as arbitrary as the units of area. The mean polygon area, and thus the standard deviation

as well, will vary significantly with both the number of polygons and the area of the total

landscape, which would prevent comparisons between landscapes, thus a relative measure is

required. The coefficient of variation (CV, defined as standard deviation divided by mean

times 100%) is an appropriate measure of the spread of the area distribution. The CV is a

standardized standard deviation, and will allow for comparisons between forest landscapes,

both real and hypothetical, at any scale.

Degree

Spatially explicit optimization models consider adjacencies as well as areas, thus the degree

distribution also should be part of the landscape characteristics. Recent work has shown
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that the distribution of the degree of each polygon, i.e. how many polygons it is adjacent to,

can be significant in evaluating the potential for a strengthening procedure, which modifies

the constraints used and often outperforms other methods (Tóth et al., 2012). This is

similar to work done on even broader generalizations of these optimization problems which

uses degree extensively in bounding complexity and simplifying problem formulation (e.g.

Berman & Fürer, 1994). Unlike area, the degree distribution is scale-invariant, thus the

standard measures of a distribution, mean and standard deviation, µd and σd, are appropriate.

In spatially constrained harvest scheduling algorithms, both weak and strong notions of

adjacency are used. Two polygons are weakly adjacent if they share a finite number of points,

and are strongly adjacent when they share an infinite number of points, i.e. they have a

common border (Goycoolea et al., 2005). Strong adjacency is the type considered here. By

viewing adjacency in this manner, any landscape is equivalent to planar graph, where each

node corresponds to a polygon, and edges between nodes correspond to a shared border.

Bollobás (1998) gives a proof that a planar graph with n > 3 vertices, the maximum number

of edges is e = 3n− 6. Since each edge connects two vertices, the maximum average degree

max(µd) = 2(3n−6)/n = 6(n−2)/n, which approaches 6 in the limit as n approaches infinity.

The lower bound on µd is dependent on how connected the landscape is. Technically, µd

would be 0 if each polygon was completely isolated, but it approaches 2 for connected graphs.

Our method does not enforce connectivity (as many real forests contain disconnected pieces),

but extremely disconnected landscapes are not complex spatially, so in general landscapes

with µd < 2.5 are not of interest. Individual polygons, of course, may have degree equal to

any non-negative integer.

These four landscape statistics, n, CV, µd and σd compose the landscape characteristics;

they are readily calculated from typical forest data: adjacency and area tables. As a reference

point, we calculated statistics for real forests with adjacency tables or area tables posted as

public data on the University of New Brunswick’s Integrated Forest Management Lab website

(www.unb.ca/fredericton/forestry/research/ifmlab/index.html). Some of the landscapes’

degree distributions were omitted because they used soft adjacency, making µd and σd

incomparable.
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2.2.2 Generating a landscape

This section describes how a landscape is generated. First, points are chosen, then a Voronoi

diagram is created from the points, and finally the diagram is edited. Voronoi diagrams

are well established, the original work here is on the point processes used to pick the initial

points and on the edits performed on the diagram; these two steps are detailed below.

Point processes

Voronoi diagrams depend entirely on the points used to create them, thus the selection of

initial points is fundamental to the creation of a hypothetical landscape. A random point

process is an algorithm for creating a set of random points. Many such algorithms exist

with various properties (see Baddeley & Turner, 2005). We settled on 4 point processes

to serve as the basis for landscape creation. Others were tried, but found to be redundant

or too unpredictable. The baseline point process is the random uniform process, where x

and y coordinates are determined by independent random draws to uniform distributions

covering the feasible x and y ranges. This offers no control over point placement other than

the bounds. The only control parameter for this method is the number of points to place.

An inhibition process, where points are placed uniformly randomly but never within a

certain (inhibition distance) from another point, produces a landscape with regularly sized

polygons. Higher inhibition distance results in more evenly spaced points which create a

more regular landscape, lowering CV. Setting the inhibition distance to 0 makes this method

equivalent to the random uniform process, which allows for clustering without actively

creating clusters. This algorithm is commonly known as the simple sequential inhibition

(SSI) point process (Baddeley & Turner, 2005). (McDill & Braze (2000) used a similar point

process in MakeLand.)

To achieve the opposite extreme, landscapes with high area CV, we introduced a clustering

process. Initial trials used a Thomas clustering point process, where “parent” locations

are chosen uniformly randomly, and then a random number of “child” points are created

around each parent, with their displacement from the parent points determined by a bivariate

Gaussian distribution. This introduced an unwanted level of variability in n, as the number of
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both parent and child points were determined by random draws from a Poisson distribution.

Instead, we adapted the method by making the number of points per cluster an explicit

parameter and calculating an appropriate number of clusters based on the total number of

points to place, but preserving the Gaussian displacement from parent points.

When comparing the polygons created from these three point processes with the man-

agement unit divisions in real forests, the lack of right angles was striking. The lattice grid

method was designed specifically to allow for right-angled intersections of polygon borders.

In a Voronoi diagram based on points with coordinates drawn from continuous distributions,

all border corners will be adjacent to 3 polygons, and there will be no weakly adjacent

polygons. The only way for the corner of a border to be adjacent to 4 (or more) polygons

is if it equidistant from the four closest chosen points, an event which has probability 0

in any point process with continuous probability density. However, in actual landscapes

with borders chosen by humans, right-angle intersections and weakly-adjacent polygons

are not uncommon. Restricting point coordinates to a regular discrete scale, orthogonal

border intersections and weak adjacencies become possible. The lattice grid method overlays

a grid over the feasible area, and the samples points from the lattice points of that grid.

The numbers of horizontal and vertical grid lines are control parameters. In addition to

right angles, this method tends to produce horizontal and vertical borders, reminiscent of

how a forester might have divided a forest section into management units in the absence

of natural breaks. This point process works in conjunction with other processes to mimic

a landscape that has some natural breaks in management units as well as some imposed

artificial boundaries.

Landscapes can be created using any combination of the point processes; Figure 2.1

shows examples of Voronoi tessellations resulting from points used by each of the point

processes individually. However, using mixtures of these point processes allows for greater

flexibility in the characteristics of the output landscape.
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Editing the Voronoi tessellation

Landscapes produced by Voronoi tessellations have certain properties not described directly

by the characteristic statistics that could be different real landscapes. Right angles and

weak adjacency are imposed by using the lattice point process, but additional differences

remain: the Voronoi landscapes are completely connected with no gaps or holes, and the

polygons are strictly convex. We resolve these two issues by editing the polygons of the

Voronoi tessellation.

Polygon deletion creates holes in the landscape and opens the possibility of a disconnected

forest, which occurs in real forests when a river or road cuts through the region. The final

patchiness of the landscape is given by a control parameter, pH , equal to the proportion of

the polygons in the final landscape that are classified as holes. (Polygons that are deleted to

become holes in the final landscape are omitted when calculating other landscape statistics.)

Polygons are selected for deletion randomly with no preference given for size or adjacencies.

When a polygon is deleted all of its neighbors’ degrees decrease by 1, effectively lowering the

degree mean. The effects on σd and CV are negligible.

We address the convexity issue in a similar way: by deleting borders between two polygons

and merging them into one. As in polygon deletion, a control parameter pM is defined as

the proportion of polygons in the final landscape that are the product of a merge event.

Borders are selected for deletion uniformly among all possibilities, which then merges the

polygons they had been separating. Merging is more complicated that simply deleting

polygons, because it’s possible that more edges than those selected must be deleted. For

example, if polygon A is merged with polygon B, and B with C, the adjacencies must be

checked so that if there is a border between A and C it is also be deleted. Both deleting

and merging reduces the number of polygons, thus the number of points chosen initially is

inflated from the target n so that the expected value of n for the final landscape matches

the target. However, the nature of the merging prevents precise knowledge of the output n

as we cannot tell a priori (continuing the above example) whether the border between A

and C will also be selected for deletion or if it must be deleted afterwards in the clean-up

phase. Thus merging introduces some randomness in the final n.
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2.2.3 Meeting constraints

The previous section described how to create landscapes; this section describes how inputs

are chosen to generated landscapes with characteristics that fall within a specified range.

The control parameters relating to point processes are the number of points to be placed by

each method, nunif , nlat, nssi, and nclust, the number of horizontal and vertical gridlines for

the lattice method, the inhibition distance for the SSI method, and the number of points

per cluster and spread term for the cluster method. Additionally, to create a landscape two

more control parameters are introduced: pH and pM . These control parameters are the

inputs to the landscape creating algorithm. But, the algorithm is highly stochastic, and we

want to be able to create landscapes with specific characteristics.

Some of the relationships between control parameters and landscape characteristics can

be readily intuited. For example, when a polygon is deleted its neighbors’ degrees all decrease

by 1, so µd will also decrease. This is illustrated in Figure 2.2. Which point processes are

used has a strong effect on the area CV. Pairs plots, such as the one in Figure 2.3 show the

relationships between several variables simultaneously and hint at relationships that can

then be explored in models.

We considered three options for determining appropriate control parameters for landscape

characteristics. Two involve modeling explicit relationships between the two sets of variables,

using linear models or generalized additive models (GAMs). The third way is to estimate the

distributions of control parameters for specific landscape characteristics through a Markov

Chain Monte Carlo procedure without making any assumptions or inferences about the

relationships between the two. Of the two modeling approaches, linear models are simpler

than GAMs, which would only be necessary if the linear models proved inadequate. The

distribution-based approach has one major drawback: to provide good estimates it would rely

on repeatedly estimating multivariate distributions, which would depend on a large amount

of data, resulting in a computationally expensive algorithm. In the modeling approach, the

parameter estimation is done once up front, subsequent evaluations of the models at certain

points is as easy as evaluating an expression. With these considerations, we decided to start

with the linear model approach.
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Picking parameters

The first control parameters to estimate are the number of points to place with each process,

which for generality will be expressed as proportions of the total number of points placed,

punif , plat, pclust, and pSSI . Of the characteristics, CV is most closely related to the type of

point process as clustering increases CV and inhibition decreases CV. To avoid confounding,

defaults were set for the inhibition distance and the lattice control parameters

Based on 500 simulations, the random uniform point process produces landscapes of

mean CV 56.1 with standard deviation 5.8 when no other point processes are used and

moderate merge and hole proportions of 0.1 are applied. We use this mean as a spline point

in the regressions on whether cluster points are added to increase the CV or lattice and SSI

points added to lower the CV. The additional control parameters for these point processes,

that is the numbers of horizontal and vertical segments for the lattice grid, the inhibition

distance for the SSI and the cluster radius are related to the distance metric as well, and

thus dependent on the number of polygons and the dimensions of the entire forest. Of even

greater concern is when the bounds depend on distance specific concerns. For example, if the

inhibition distance is set too high, it will be impossible to place enough points, and number

of possible points placed by the lattice method is clearly limited by the total number of

lattice points. To avoid confounding, in these two cases we selected default values for the

point process-related control parameters, excepting the number of points placed by each

method. The inhibition distance is set at 0.639
√
a/nSSI , where a is the horizontal to vertical

aspect ratio of the entire landscape and nSSI is the number of points to be placed by the SSI

method. In 100 simulations of the point process, this was the (approximate) largest distance

that resulted in all the points being placed. For the lattice method, the number of horizontal

and vertical grid lines, v and h respectively, are set to defaults given by h = d
√
nlat/a e and

v = d√nlat · a e, the minimum values such that hv ≥ nlat with the number of horizontal and

vertical segments corresponding to the aspect ratio of the landscape. With these defaults,

rather than regressing on the control parameters with potential bounding problems, the

regressions can focus on the mixing parameters plat and pSSI , the proportions of points

placed by each method, with the rest of the points being placed by the uniform method. In
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the clustering process, regressions on initially tended to increase the number of points per

cluster to absurdly high levels when the CV was higher than average (often on the order of

50 points per cluster). To prevent this, the default number of points per cluster is set to 5,

with the spread along with pclust to be estimated based on characteristics.

Simulations were then run (50,000 for each non-uniform point process) generating

landscapes with randomly varying proportions of points placed by each process and pH and

pM . These data formed the bases for sequential regressions were to find each necessary

model parameter based on all of the specified landscape characteristics. We selected models

using step-wise model selection based on Bayes Information Criterion (BIC) beginning with

full models. Further evaluating included model parameters based on their significance using

t-tests, we found an appropriate model for each parameter. Box-Cox transformations were

applied to the response when applicable. An example model (for plat) is presented below,

see Appendix B for all of the models. The proportion point process parameters are the first

estimated parameters, so they depend only on the characteristics, however once they are

estimated they are added in as predictors for estimating the remaining parameters.

p2.6lat = β0 + β1CV + β2µd + β3σd + β4a+ β5CVµd + β6CVσd+

β7µdσd + β8CVa+ β9µda+ β10σda+ β11µdσdCV+

β12CVµda+ β13CVσda+ β14µdσda+ β15CVµdσda.

(2.1)

The β’s from the above model are all significant at the 0.001 level, and the 2.6 power

transformation of plat was determined by a Box-Cox test. This particular regression is unique

in that the aspect ratio is significant; it is insignificant for all of the other parameters. This

is understandable because the geometry of the lattice grid depends on the aspect ratio, while

all the other point processes ignore it. The next sequential regression, for pH , adds plat

to the pool of predictors. We apply a similar series of multiple regressions to determine

appropriate parameters for the high CV case.

2.2.4 Mass-producing landscapes

Mass landscape creation with specific targets is handled by two algorithms illustrated in

Figure 2.4. Both are implemented in R (R Development Core Team, 2011) and follow the
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naming convention of an “r” prefix to denote random generating function. Rlandscape

generates a single landscape from control parameters following the steps in Section 2.2.2. The

second algorithm, rland, takes as inputs the number of landscapes to be produced and the

acceptable bounds for their characteristics. It then picks specific targets for each landscape

to be generated and uses the regressions from Section 2.2.3 to select control parameters

for these targets. It then generates landscapes using Rlandscape and tests to see if their

characteristics are within bounds, and repeats this process until enough landscapes have

been generated.
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Uniform

Inhibition  (SSI)Cluster

Lattice  grid

Figure 2.1: Sample Voronoi tessellations of 100 polygons created using each of the four
point processes. The locations of the initial points are marked with gray circles. Visually,
the difference in area distributions is readily apparent: the lattice and inhibition methods
produce regularly sized cells, the uniform method produces more variation, and the clustering
method very high area variation. Also evident are the right angles and intersections of more
than three borders produced exclusively by the lattice grid method.
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Figure 2.2: This figure shows how hole proportion can lower the degree mean of landscapes.
Degree means (µd) from approximately 15,000 simulations are plotted in the top graph using
Tufte-style boxplots (the mean is indicated by the horizontal bar, vertical lines extend from
quartile to max or min), corresponding by color to sample landscapes by each of three of
the point processes.



54

Figure 2.3: An example of a pairs plot, showing the relationship between pairs of variables.
This one illustrates that the area CV statistic (examining the left column of plots) is strongly
related to the cluster parameters. Correlation coefficients are displayed in the upper right
half of the figure.
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Inputs:	  
Number	  of	  landscapes,	  
Acceptable	  sta4s4c	  
ranges,	  
Maximum	  failure	  rate	   Inputs:	  

Point	  parameters,	  
Hole	  parameter,	  
Merge	  parameter	  

Create	  random	  points	  
Uses	  point	  parameters	  

Generate	  Voronoi	  
tessella4on	  based	  on	  
random	  points	  

Delete	  polygons	  from	  
tessella4on,	  uses	  hole	  
parameter	  

Merge	  polygons	  from	  
tessella4on,	  uses	  
merge	  parameter	  

Outputs:	  
Adjacency	  list,	  
Area	  list,	  
Landscape	  sta4s4cs,	  
Plot	  

Rlandscape:	  generates	  
one	  landscape	  from	  
explicit	  parameters	  

Calculate	  explicit	  parameters	  
for	  Rlandscape	  based	  target	  
value	  within	  sta4s4c	  ranges	  
and	  regression	  models	  

Generate	  landscape	  
using	  Rlandscape	  

Do	  sta4s4cs	  
meet	  criteria?	  

Enough	  
landscapes	  
generated?	  

Save	  landscape	  
	  

yes	  

yes	  

no	  

no	  

Maximum	  
failure	  rate	  
exceeded?	  

yes	  

no	  

Save	  summary	  

Rland:	  generates	  
mul4ple	  landscapes	  
with	  characteris4cs	  
set	  by	  input	  

Stop	  

Figure 2.4: This flowchart shows the approach taken to produce hypothetical forest landscapes
with statistics that meet input criteria. The right column (in green) shows the flow of the
Rlandscape program, which generates a single landscape by editing a Voronoi tessellation
created from points chosen using a mixture of random point processes. The blue flow chart
shows how the wrapper program, Rland, estimates parameters for Rlandscape based on
input landscape statistics, tests the output for compliance, and saves a summary of the
results when the run is complete (or aborts if a maximum allowable failure rate is exceeded).
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2.3 Results and Discussion

2.3.1 Range

To test if Rlandscape is capable of producing hypothetical landscapes with similar character-

istics to actual forests, we calculated characteristic statistics for landscapes with publicly

posted adjacencies and areas on the University of New Brunswick’s Integrated Forest Manage-

ment Lab’s website (ifmlab.for.unb.ca/fmos/datasets/). We then simulated 500 landscapes

using rlandscape with randomly varying parameters. The results are shown in Figure 2.5,

along with the characteristics of 20 landscapes produced by MakeLand. The figure makes

clear that Rlandscape exceeds the ranges seen in these real forests, whereas MakeLand is

constrained in both area CV and σd.

2.3.2 Timing

Figure 2.6 shows the relationship between run time and the number of polygons in a landscape.

Run time increases approximately linearly with n (at least for n < 700)with a large part of

the variation explained by pH and pM . This is because they effectively increase the number

of polygons that must be generated; e.g. a 100-polygon landscape with no holes or merges is

100 polygons pre- and post-edit, but if pH = 0.5 than 200 polygons must be generated so

that 100 remain after 50% are deleted in the edit step. As implemented, we have successfully

created landscapes of up to 10,000 polygons (see Figure 2.7). The algorithm failed at 100,000

due to a “evaluation nested too deeply: infinite recursion” error. Capable of producing a

1,000-polygon landscape in under 10 seconds on 2.4 GHz Intel Core 2 Duo Macintosh with 6

GB of RAM, Rlandscape works efficiently enough to be a practical landscape generator.

2.3.3 Accuracy

There is significant stochasticity built into Rlandscape; Figure 2.8 shows the variation in

characteristics of landscapes generated using the exact same control parameters, however

the regression methods are effective in selecting control parameters to produce acceptable

landscapes. To illustrate this, Figure 2.9 shows the number of trials and time needed to

produce 500 landscapes under a variety of specifications. For common characteristic values
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overlapping with observations of real forests, the efficiencies tend to be above 50%. At

the extreme values of the ranges there is higher variability, which results in lower success

rates. This is particularly apparent in the case of high CV, however the steep increases is

time needed occur beyond the range of CV exhibited in real landscapes. High values of µd

require many tries, but as pH is very low in these cases the run time remains relatively short.

Applying multiple constraints compounds the efficiency reductions, typically resulting in

efficiencies of between 10% and 20%. The parameter picking algorithm is currently calibrated

for producing intermediate values efficiently, however it could be modified to evaluate the

input constraints and change methods if they are above certain thresholds.

2.3.4 Conclusions

This project accomplished two goals: to create a method for producing varied, realistic forest

landscapes, and to target the landscapes so that landscapes of specific characteristics can

be produced. The success of the first goal is demonstrated in Figure 2.5, which shows that

Rlandscape output well covers the ranges of characteristics observed in real forests. The

benchmarking shown in Figure 2.9 show that Rlandscape is viable for generating data sets

of any feasible set of characteristics.

It’s our hope that Rlandscape will prove to be a useful tool with a variety of applications.

The addition of other point processes and modifications or the tracking of additional statistics

could expand Rlandscape’s already flexible framework. It would also be possible to modify

the Voronoi diagram creation, for example Okabe et al. (2008) formulated several generalized

Voronoi diagrams which employ inward/outward distances and additively/multiplicatively

weighted shortest path distances. Additional data can be easily simulated with or without

spatial correlation on top of an Rlandscape output to mimic other landscape features.

A number of modifications could be made to these algorithms to enhance their util-

ity. Incorporating support for soft adjacency constraints, for example, would be a minor

modification that would increase the set of models that the output landscapes could test.

Other modifications could alter the polygon deletion and merging to better mimic real

forests or to improve fine control of landscape characteristics. We view the current, purely
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random implementation of these processes as an advantage, spatially correlating deletion

probabilities could simulate discontinuities present in actual forests, like rivers and roads.

Alternatively, the deletions and merges could target polygons that are outliers in degree

or area to reduce variability (or the opposite to increase variability) which would improve

efficiency and precision in producing landscapes of targeted characteristics at the expense

of randomness. Rland does not do well with extreme values of parameters. For example,

some real forests are divided into equally sized stands such that area CV= 0. The only way

for Rlandscape to mimic this behavior is to exclusively use the lattice point process, which

then drastically reduces the flexibility of the characteristic space. As a way around this,

areas could be assigned post-hoc, using only the adjacencies from the generated landscape.

No visual representation of the landscape would be available, but it would be feasible. The

current regression methods for choosing control parameters are sufficient, but using GAMs

might yield more robust fits resulting in higher efficiency in producing landscapes.

Harvest scheduling models require data on more than the layout of the stands. At a

minimum, information about the state of the forest in each stand (e.g. age class) is necessary,

which Rlandscape does not provide. Currently, we recommend that researchers assign age

classes and any other information as they see fit. Similarly, if a specific area distribution is

required for a set of trials (for example all stands having equal area) we encourage researchers

to use Rlandscape to generate the adjacencies and ignore the provided area list replacing it

with one that meets their own qualifications. The graphic representation of the landscape

will then be inaccurate, but the output landscape could be deformed into a topologically

equivalent landscape with the new area distribution, so the adjacency/area combination

remains feasible.



59

2.5 3.0 3.5 4.0 4.5 5.0 5.5

1.0

1.5

2.0

2.5

3.0

3.5

degree mean

de
gr

ee
 S

D

0 50 100 150 200 250 300
area CV

0

50

100

150

200

250

300

ar
ea

 C
V Rland output

MakeLand output
Real forests

Figure 2.5: Landscape statistics from 17 real forests (green triangles), 20 landscapes generated
by MakeLand (blue circles), and 500 landscapes generated by Rlandscape with targets
varying over the range of the real forest statistics. Rlandscape more than covers the
characteristic space of the real forests. MakeLand’s output has somewhat varied µd,
correlated with the small variation in σd, however in this output the CV is static. The
real forests are those with publicly posted adjacencies and areas on the University of New
Brunswick’s Integrated Forest Management Lab (ifmlab.for.unb.ca/fmos/datasets/).



60

Figure 2.6: Run time in seconds to produce a single landscape is plotted against the total
number of polygons in that landscape, with color showing the product of the hole proportion
and merge proportion terms for about 45,000 simulations. Both the number of polygons and
deleting and merging parameters are positively correlated with the run time.



61

Figure 2.7: A landscape with 10,000 polygons, 25% placed by each point process. For this
landscape, µd = 5.4, σd = 1.6, and CV = 42.9. This landscape took 199.485 seconds to
generate.
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Figure 2.8: The resulting statistics of 2000 landscapes of 100 polygons each created by giving
Rlandscape the same input parameters. Degree mean, on the horizontal axis, varies from
about 4.5 to 5.2, though the total feasible range is from about 3 to 6. Area CV on the
vertical axis and degree standard deviation indicated by color also vary significantly, though
all three are roughly normally distributed. Not shown is the output n: of the 2000 trials
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Figure 2.9: This shows the results of testing the time and number of tries necessary for
Rland to produce 500 landscapes under varying constraints. The number of polygons in
these landscapes was held between 95 and 105, and other constraints were set as indicated
on the horizontal axis. Only one landscape statistic was imposed at a time; when µd was
constrained, σd and CV were allowed to vary freely.
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Berman, P. & Fürer, M. (1994). Approximating maximum independent set in bounded

degree graphs. In Proceedings of the fifth annual ACM-SIAM symposium on Discrete algo-

rithms, SODA ‘94. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics,

365–371.



66

Bolker, B. & R Development Core Team (2011). bbmle: Tools for general maximum

likelihood estimation. R package version 1.0.3.

Bollobás, B. (1998). Modern Graph Theory. Springer Science+Business Media, Inc.

Burnham, K. P. & Anderson, D. R. (1998). Model Selection and Multimodel Inference:

A Practical Information-Theoretic Approach. Springer.

Claiborne, A. M., Fisher, J. P., Hayes, S. A. & Emmett, R. L. (2011). Size at

release, size-selective mortality, and age of maturity of Willamette River hatchery yearling

Chinook salmon. Transactions of the American Fisheries Society 140 1135–1144.

Conrad, J. M. & Smith, M. D. (2012). Nonspatial and spatial mod-

els in bioeconomics. Natural Resource Modeling 25 52–92. URL

http://dx.doi.org/10.1111/j.1939-7445.2011.00102.x.

Constantino, M., Martins, I. & Borges, J. G. (2008). A new mixed-integer program-

ming model for harvest scheduling subject to maximum area restrictions. Operations

Research 56 542–551.

Cowan, J. H., Jr., Rose, K. A. & DeVries, D. R. (2000). Is density-dependent growth

in young-of-the-year fishes a question of critical weight? Reviews in Fish Biology and

Fisheries 10 61–89.

Craig, J. K., Burke, B. J., Crowder, L. B. & Rice, J. A. (2006). Prey growth and

size-dependent predation in juvenile estuarine fishes: experimental and model analyses.

Ecology 87 2366–2377.

Cross, A. D., Beauchamp, D. A., Moss, J. H. & Myers, K. W. (2009). Interannual

variability in early marine growth, size-selective mortality, and marine survival for Prince

William Sound pink salmon. Marin and Coastal Fisheries: Dynamics, Management, and

Ecosystem Science 1 57–70.

Cross, A. D., Beauchamp, D. A., Myers, K. W. & Moss, J. H. (2008). Early marine



67

growth of pink salmon in Prince William Sound and the Coastal Gulf of Alaska during

years of low and high survival. Journal of the American Fisheries Society 137 927–939.

Du, Q., Faber, V. & Gunzburger, M. (1999). Centroidal Voronoi tesselations: Applica-

tions and algorithms. SIAM Review 41 637–676.

Duffy, E. J. & Beauchamp, D. A. (2008). Seasonal patterns of predation on juvenile

Pacific salmon by anadromous cutthroat trout in Puget Sound. Transactions of the

American Fisheries Society 137 165–181.
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Appendix A

SUPPLEMENTARY MATERIAL FOR CHAPTER 1

This appendix presents the actual parameter estimates with confidence intervals for the

predator susceptibility model fits, as well as other tables that supplement Chapter 1. Values

for the asymptote-controlling parameters k0 and k1 are given in units of percent, lc and σc

are in units of mm. When a variable is a fixed effect corresponding to a certain year the last

two digits of the year are notated as a left-hand-side superscript, e.g. 99k0 is the value for k0

in 1999.

A.1 Hatchery Survival to Lower Granite Dam

Sawtooth early years

Parameter Fitted value Low (95%) High (95%)

lc 127.2 119.7 135.2

σ 18.7 11.6 30.4

89k0 11.15 9.17 13.56

91k0 5.08 4.27 6.05

89k1 14.31 10.19 20.09

91k1 6.02 3.58 10.11

Table A.1: Parameter values for the Predator Susceptibility Model fit with fixed effects to
the early Sawtooth data and 95% confidence intervals. Preceding superscripts indicate the
applicable year for fixed effects terms.



77

A.2 Adult Returns: Grande Ronde River

Wild Hatchery

Estimate Low High Estimate Low High

lc 96.96 92.78 101.32 155.09 106.26 226.37

σc 15.05 9.91 22.84 39.48 18.14 85.93

k0 0.00 0.00 NA 0.00 0.00 NA

k1 1.46 1.26 1.70 2.54 0.80 8.05

Table A.2: Parameter estimates with upper and lower 95% confidence bounds for wild and
hatchery fish PIT-tagged at the mouth of the Grande Ronde River. Confidence intervals for
k0 and k1 invalid (marked NA) if the parameter estimate is not significantly different from 0.
The k∗ parameters are given as percents.
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A.3 Adult Returns: Lower Granite Dam

AIC Wild Hatchery

Model Comparison Barge River Barge River

PSM 0 0 0 15

GLM(1) 30 7 37 0

GLM(2) 47 5 94 87

Omitting 1998 and 1999

PSM 0 0 0 33

GLM(1) 28 5 26 5

GLM(2) 47 7 24 0

Table A.3: Relative AIC scores of the PSM with fixed effects asymptotes to competing
GLM fits. GLM(1) has year effects for both intercept and slope, while GLM(2) has year
effects for the intercept only. As 1998 and 1999 exhibit exceptionally small length effects,
especially for hatchery fish, the models were fit with and without those years, though it
did not qualitatively change the results regarding the PSM. Lower AIC scores are better,
with a difference of 2 indicating significant improvement and a difference of 10 indicating
highly significant improvement. The PSM improves on the GLM approach for all but the
run-of-river hatchery fish, though the gains are most significant for barged fish.
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Lower Granite, Wild, Barged

Parameter Estimate Low High

lc 107.64 106.33 108.96

σc 5.62 4.17 7.58

98k0 0.28 0.13 0.58

99k0 1.45 1.17 1.79

01k0 0.38 0.23 0.62

02k0 0.53 0.32 0.87

03k0 0.18 0.11 0.30

04k0 0.30 0.21 0.43

05k0 0.01 0.00 0.07

06k0 0.62 0.50 0.77

07k0 0.34 0.21 0.55

08k0 2.24 1.95 2.58

09k0 0.47 0.35 0.63

98k1 0.47 0.25 0.89

99k1 1.54 1.12 2.11

01k1 0.89 0.66 1.21

02k1 1.79 1.34 2.41

03k1 0.58 0.39 0.88

04k1 0.54 0.35 0.84

05k1 0.55 0.45 0.67

06k1 0.47 0.30 0.72

07k1 1.14 0.91 1.42

08k1 1.42 1.06 1.91

09k1 1.01 0.77 1.31

Table A.4: Parameter estimates with upper and lower 95% confidence bounds for wild barged
fish PIT-tagged at Lower Granite Dam. The k∗ parameters are given as percents.
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Lower Granite, Wild, Run-of-river

Parameter Estimate Low High

lc 103.11 101.04 105.22

σc 8.22 5.88 11.47

98k0 0.01 0.00 NA

99k0 0.83 0.57 1.22

00k0 0.87 0.68 1.12

02k0 0.62 0.49 0.79

03k0 0.02 0.00 0.14

06k0 0.18 0.06 0.50

09k0 0.08 0.02 0.33

98k1 0.72 0.65 0.80

99k1 0.78 0.46 1.35

00k1 1.21 0.95 1.53

02k1 0.65 0.46 0.92

03k1 0.22 0.16 0.30

06k1 0.86 0.62 1.19

07k1 0.56 0.33 0.96

08k1 1.00 0.53 1.91

09k1 0.51 0.36 0.73

Table A.5: Parameter estimates with upper and lower 95% confidence bounds for wild
run-of-river fish PIT-tagged at Lower Granite Dam. Confidence intervals for k0 and k1
invalid (marked NA) if the parameter estimate is not significantly different from 0. The k∗
parameters are given as percents.
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Lower Granite, Hatchery, Barged

Parameter Estimate Low High

lc 145.52 141.03 150.15

σc 15.73 12.64 19.57

98k0 0.65 0.62 0.69

99k0 2.03 1.89 2.17

06k0 0.22 0.14 0.33

07k0 0.46 0.36 0.60

08k0 1.20 1.05 1.36

98k1 0.01 0.00 NA

99k1 0.37 0.15 0.89

06k1 1.87 1.47 2.38

07k1 1.95 1.46 2.61

08k1 3.37 2.66 4.25

Table A.6: Parameter estimates with upper and lower 95% confidence bounds for hatchery
barged fish PIT-tagged at Lower Granite Dam. Confidence intervals for k0 and k1 invalid
(marked NA) if the parameter estimate is not significantly different from 0. The k∗ parameters
are given as percents.
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Lower Granite, Hatchery, Run-of-river

Parameter Estimate Low High

lc 141.60 137.96 145.34

σc 21.35 18.28 24.93

98k0 0.37 0.35 0.40

99k0 1.27 0.00 NA

05k0 0.07 0.06 0.08

06k0 0.07 0.03 0.19

07k0 0.22 0.21 0.23

08k0 0.36 0.28 0.46

09k0 0.01 0.00 NA

98k1 0.01 0.00 0.29

99k1 0.47 0.00 NA

05k1 0.02 0.00 NA

06k1 1.24 1.02 1.51

07k1 0.05 0.00 NA

08k1 1.95 1.65 2.31

09k1 0.96 0.84 1.10

Table A.7: Parameter estimates with upper and lower 95% confidence bounds for hatchery
run-of-river fish PIT-tagged at Lower Granite Dam. Confidence intervals for k0 and k1
invalid (marked NA) if the parameter estimate is not significantly different from 0. The k∗
parameters are given as percents.
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Year Barged Run-of-River Difference

1998 0.052 0.004 0.048

1999 0.159 0.129 0.030

2002 0.371 0.315 0.056

2003 0.042 0.160 -0.118

2006 -0.115 -0.038 -0.077

2007 0.131 0.021 0.110

2008 -0.173 -0.259 0.087

2009 0.050 0.055 -0.005

Table A.8: Pearson correlation coefficients between length and day-of-year when passing
Lower Granite (coincident with tagging and barging, when applicable) for wild spring
Chinook salmon. The final column has the difference in correlations between the barged and
run-of-river treatment groups. The correlation of the correlations is 0.888.

Year Barged Run-of-River Difference

1998 0.265 0.227 0.038

1999 0.048 0.044 0.004

2006 -0.167 -0.035 -0.133

2007 0.000 -0.368 0.368

2008 0.393 0.256 0.137

Table A.9: Pearson correlation coefficients between length and day-of-year passing Lower
Granite (coincident with tagging and barging, when applicable) for hatchery spring Chinook
salmon. The final column has the difference in correlations between the barged and run-of-
river treatment groups. The correlation of the correlations is 0.697.
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Appendix B

RLANDSCAPE USER’S GUIDE AND MODEL FITS

B.1 User’s Guide

Rlandscape was built using R version 2.15.0, and an up-to-date R installation is rec-

ommended for running it. R is an open-source and free statistical language, available

for unix, Windows, and MacOS. The most recent R version can be found at www.r-

project.org. It will also be necessary to install the Spatstat package (for example, by entering

install.packages("spatstat") in the R console). To use the Rlandscape functions, they

must first be loaded by using the source command. It is a good practice to change the

working directory to the directory where they Rlandscape files are located, either through

File\Change dir menu or by using the setwd() command, e.g. setwd("c:/directory").

Once R knows where to look for the files, entering source("rlandscape.R") will load all

the appropriate functions. The working directory is also the location where output files will

be saved by default, but this can be modified to subdirectories of the working directory or

any other folder by giving a full file path as an output argument.

B.1.1 Rland

The primary function users will interact with is rland. Its arguments are detailed below, but

default values are set so that simply entering rland() will produce 10 landscapes. They will

be saved in the working directory as landscape_%id_%datatype.extension, where %id is

a unique number for each landscape, %datatype is either adj or areas for the adjacency or

area data. A summary file called landscape_summary.csv will be saved that includes the

statistics for each of the generated landscapes.

Common usage requires R’s native concatenation command, c(), to create 2-element

vectors specifying minimum and maximum values. These can be passed to arguments n,

degMean, degSD, areaCV, and hAsp to set bounds on the number of tiles, degree mean,
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degree standard deviation, area coefficient of variance, and horizontal:vertical aspect ratio,

respectively. Arguments that are left out default to unrestrictive values, thus the call rland(n

= c(240, 260), degMean = c(4.5, 5), degSD = c(1, 2)) will produce landscapes with

between 240 and 260 tiles that have mean degree between 4.5 and 5 and degree standard

deviation between 1 and 2. The absolute bounds of these statistics is mentioned above.

Practically, degree means between 3 and 5.5 are easily attainable, especially if the user

can allow a tolerance range of about 0.5. Degree standard deviation has a narrow-seeming

range, tending to be from about 1.5 to 2.1. The recommended range for area coefficient of

variation is from about 50 to 200. Both σ and CVa have no real upper bounds, but producing

extremely high values is accomplished by having a very high pMerge which usually results

in one or two tiles dominating the landscape, or extremely tight clusters of tiles that are

minuscule when compared to the average. We encourage users to calculate these statistics

for real data sets to get a sense of how they vary in actual applications. The other arguments

taken by rland are listed below.

reps, a positive integer (default 10), which sets how many landscapes are to be produced.

varied, a boolean (default true), indicating whether the targets should be spread across the

allowable ranges (the default) or set consistently in the middles.

effort, a numeric between 0 and 1 (default 0.95), which is a maximum acceptable failure rate

evaluated every 500 iterations.

filename, a character string (defaults to "landscape") giving the initial part of the file name

under which to save results, which can optionally include a file path.

savePlot, a boolean (default false) indicating whether or not a plot of each landscape should be

saved as a .png file.

saveLand, a boolean (default false) indicating whether or not to save each landscape object as a

.Rdata file.
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saveFails, a boolean (default false) indicating whether or not to save summaries about the

landscapes that are unsuccessful, probably useful for development purposes only.

Additional parameters will be passed to the plotting function if savePlot is set to

true.

B.1.2 Rlandscape

The function that generates an individual landscape is rlandscape. It only generates one

landscape at a time (which it returns), so any batch projects will need to call it either from

rland or in a loop. The arguments it takes are

n, a vector of up to 4 non-negative integers (default c(100, 0, 0, 0)) of how many

tiles in the landscape should be based on points from the uniform, lattice, cluster, and

inhibition methods, respectively. The length of the vector can be shorter than 4, in

which case it will be filled out with zeroes.

hAspect, a numeric (default 1) which gives the horizontal to vertical aspect ratio.

pMerge, a numeric in [0, 1) (default 0.1) giving the proportion of edges in the landscape that

are deleted.

pHole, a numeric in [0, 1) (default 0.1) giving the proportion of tiles in the landscape that are

holes.

plot, a boolean (default false) indicating whether or not a plot of the resulting landscape

is displayed immediately. (It will not be saved automatically in either case.)

control, a list of control parameters passed to the point processes. The list can contain up

to three numeric vectors named “lattice”, “cluster”, and “ssi”. The lattice element

should be a vector of two integers, giving the number or horizontal and vertical

segments in the lattice grid. The cluster element should be a vector of an integer

and a numeric, giving the number of points per cluster and the spread around each
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cluster. The SSI element takes only on numeric: the inhibition distance. An exam-

ple input would be list(lattice = c(10, 12), cluster = c(15, 0.001), ssi =

.001). Any arguments that are left out will be defined by the defaults of the point

processes.

savePath, a character vector (defaults to NULL) which, if defined, will save the landscape object,

its adjacency table, its area table, and its summary statistics similar to the saving in

rland.

Additional arguments will be passed to the plotting routine if plot is set to true. As

mentioned earlier, both pHole and pMerge are accounted for when the actual points are

selected so that the output number of tiles matches the input n. The rlandscape function

returns a landscape object which may be assigned to a variable, e.g. by entering myLand

<- rlandscape(n = c(40, 60), pHole = 0.3)) at the console. Its attributes may then

be accessed within R by using the the $ operator, for example myLand$stats will print the

statistics of myLand and myLand$adjacencies will print the adjacency list. The complete list

of attributes of an landscape object can be viewed by the command attributes(myLand).

A landscape object can also be drawn with the plot command plot(myLand).

Plotting landscapes

The plotting routine defined for landscape objects takes many parameters for flexibility. The

defaults should produce nice plots, but the following arguments can be given to plot either

directly or via a call to rland or rlandscape:

number, a boolean (default false) that indicates whether the unique ID number of a tile should

be plotted on it.

points, a boolean (default is the opposite of number) indicating whether or not the point

corresponding to each tile should be drawn.

axes, a boolean (default false) indicating whether axes should be drawn.
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lineCol, a color (default is "black") with which to draw the borders between tiles.

holeCol, a color (default is "gray20") with which to fill in the deleted tiles.

There are 13 other graphical parameters giving control over colors, margins, and text sizes

used. Their details will be omitted, but they are well documented in the code (the code can

be viewed by entering plot.landscape()).

Output

Any output specified will be appropriately named and saved as described in Section B.1.1.

The adjacency files are saved in a tab-delimited format, where each line consists of 2 tile

indices that are adjacent to each other. They are sorted in order of index number, with the

first column dominating. Pairs are included so that if tile 1 is adjacent to tile 5, both 1 5

and 5 1 will be included as rows. The areas are stored in a comma-separated values (.csv)

format with columns indicating the index number, the total area of the tile, and the x and

y position of the original point that created the tile. Index numbers will not be strictly

sequential. The index values are set when the initial random points are placed, and gaps are

created when tiles are deleted or merged. If tile 17 is a hole, or was merged with tile 12, then

the index 17 will not occur in the area or adjacency tables. The summary file is also in a CSV

format, with columns recording the landscape name (with ID number), the total number of

tiles, degree mean, degree standard deviation, area coefficient of variation, the number of

points assigned by each point process, the merge and hole proportions, the horizontal aspect

ratio, and the control parameters passed to rlandscape. If the landscape object is saved, it

is written as a .Rdata file using the function dput; it can be loaded back into R using dget.

If plots are saved in rland, they will be saved as .png files with appropriate aspect ratios.

B.2 Model Fits

Box-Cox transformations were applied when appropriate. This is indicated in the text

preceding the table, and given as an exponent to which the response was raised. Predictors

with a b exponent indicate that a previously defined Box-Cox exponent is applied. hAsp is
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the horizontal to vertical aspect ratio, s is the spread of points around a cluster center in

the cluster method, and all other parameters are as defined in Chapter 2.

B.2.1 Low CV

Low CV, Low degre mean: µd < 4.5

Parameter Coefficient

Intercept 0.0018916802

CV 0.0242357612

µd 0.3448884426

σd 0.7975754620

hAsp -0.1285168319

µdCV -0.0122143735

CV σd -0.0272013806

µdσd -0.2134670817

CV hAsp 0.0047607477

µd hAsp 0.0306755782

σd hAsp 0.0890567504

µdσd hAsp 0.0069329260

µd CV hAsp -0.0009202953

σd CV hAsp -0.0032959800

µdσd hAsp -0.0192665653

Table B.1: Linear model for estimating plat. Box-Cox transformation: 2.6.
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Parameter Coefficient

Intercept -0.111726129

CV 0.020055917

µd 0.102445411

σd 1.240468628

pblat 0.971029828

µd CV -0.005162486

CV σd -0.014424910

µdσd -0.262783129

CV pblat -0.009592290

µdp
b
lat -0.376047080

σdp
b
lat -0.522937725

CV µdσd 0.003245974

CV µdp
b
lat 0.004181883

CV σdp
b
lat 0.008188504

µdσdp
b
lat 0.148101201

CV µdσdp
b
lat -0.002921096

Table B.2: Linear model for estimating pH . Box-Cox transformation: 0.71.
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Parameter Coefficient

Intercept -0.851223375

CV 0.030557526

µd -0.154347713

σd 0.605047039

pblat -2.163712546

pbH -0.323784893

µd CV -0.001861974

CV σd -0.009958089

µdσd 0.073295652

CV pblat -0.026261358

µdp
b
lat 0.882713600

σdp
b
lat 1.019102973

CV pbH -0.006171021

µdp
b
H 0.032948069

σdp
b
H 0.292099442

pblatp
b
H 1.679892644

CV µdp
b
lat -0.003114309

CV σdp
b
lat 0.019323158

σdµdp
b
lat -0.378709781

σdp
b
latp

b
H -0.884864371

Table B.3: Linear model for estimating pM . Box-Cox transformation: 0.75.
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Low CV, high degree mean: µd ≥ 4.5

Parameter Coefficient

Intercept 1.861864714

µd -0.006812436

σd -0.029767572

CV -0.031320774

Table B.4: Linear model for estimating pSSI . Box-Cox transformation: 2.5.

Parameter Coefficient

Intercept 1.463375069

pbSSI -0.098484600

mud -0.150494846

σd 0.342471110

CV -0.011659322

pbSSIµd -0.018858640

pbSSIσd 0.088031132

µdσd -0.109025814

pbSSI CV -0.002353975

σd CV 0.004181020

Table B.5: Linear model for estimating pH . Box-Cox transformation: 0.7.
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Parameter Coefficient

Intercept -3.229551001

pbSSI 0.858816217

µd 0.401164457

σd 1.141137939

CV 0.048860426

pbH 0.926730792

pbSSIµd -0.117577910

pbSSIσd -0.076030390

µdσd -0.074082431

µd CV -0.007196297

σd CV -0.005547122

pbSSIp
b
H -0.298113908

CV pbH -0.017367741

Table B.6: Linear model for estimating pM . Box-Cox transformation: 0.75.

B.2.2 High CV
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Parameter Coefficient

Intercept .45857

CV .00055712

Table B.7: Linear model for estimating pclust.

Parameter Coefficient

Intercept 1.006e+00

CV -1.161e-02

µd -2.409e-02

σd 2.048e-02

n hAsp 1.148e-04

pclust -7.454e-01

CV n hAsp -1.353e-06

CV pclust 1.339e-02

µdn hAsp 5.324e-06

n hAsp pclust 5.715e-05

CV σd -1.054e-03

CV µd 2.870e-04

µdσd 7.616e-03

σd n hAsp -4.681e-06

Table B.8: Linear model for estimating s, the spread of the clusters. Box-Cox transformation:
0.46.
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Parameter Coefficient

Intercept 1.233e+00

CV -1.282e-03

µd -1.812e-01

σd 5.212e-01

pclust -1.869e-01

s 6.585e-01

µdσd -8.997e-02

µds -1.367e-01

CV s -3.949e-03

CV σd -9.294e-04

σds -1.346e-01

CV pclust 2.477e-03

σdpclust 5.556e-02

Table B.9: Linear model for estimating pH . Box-Cox transformation: 2/3.
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Parameter Coefficient

Intercept -6.026e+00

CV 2.244e-03

µd 9.834e-01

σd 3.157e+00

n -6.879e-04

s -1.372e+00

pclust -4.003e-02

pH 2.283e+00

µdσd -4.755e-01

CV s 2.694e-02

σdpH -9.757e-01

CV σd -2.095e-03

µdpH 6.487e-02

σdn 3.241e-04

Table B.10: Linear model for estimating pM . Box-Cox transformation: 0.8.


