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Preface 

 Project 1989-107-00 was initiated to develop the statistical theory, methods, and 
statistical software to design and analyze PIT-tag survival studies. This project developed the 
initial study designs for the NOAA Fisheries/University of Washington (UW) Snake River 
survival studies of 1993−present. This project continues to respond to the changing needs of the 
scientific community in the Pacific Northwest as they face new challenges to extract life-history 
data from an increasing variety of fish-tagging studies. The project’s mission is to help assure 
tagging studies are designed and analyzed from the onset to extract the best available information 
using state-of-the-art statistical methods.  In so doing, investigators can focus on the 
management implications of their findings without being distracted by concerns of whether the 
study’s design and analyses are correct. 

 All studies in the current series, the Design and Analysis of Tagging Studies in the 
Columbia Basin, were conducted to help maximize the amount of information that can be 
obtained from fish tagging studies for the purposes of monitoring fish survival and related 
demographic parameters throughout its life cycle. Volume XXIII of this series investigates the 
statistical independence of replicated telemetry arrays used to estimate survival from release-
recapture study designs.  It is critical to ensure independence of replicated telemetry arrays 
before conducting a field study because lack of independence will cause bias in parameter 
estimates. 
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Abstract 

 Mark-recapture studies in the Columbia basin often use closely spaced replicated 
telemetry arrays to estimate the probability of detecting transmitters.  Using this approach, 
detection probabilities are estimated with the Lincoln-Petersen single mark-recapture model.  
The primary assumption of this model is that telemetry arrays are statistically independent, but 
often it is unclear how to assess the independence of telemetry arrays.  In this report, we define 
and assess statistical independence of four different array configurations where each 
configuration consists of a different pair of detection zones.  We found that the minimum 
criterion for ensuring independence among telemetry arrays is to implement one array with a 
detection zone that encompasses the entire fish passage zone through a volume of water (we 
assumed the fish passage zone consisted of the entire water column).  Given this criterion is 
satisfied, the replicate arrays will be independent even when the second array does not 
completely encompass the entire water column.  Arrays were not independent under scenarios 
where neither array encompassed the entire water column.  Lack of independence introduced 
bias into estimates of detection probabilities, and the bias was either positive or negative 
depending on the nature of the array configuration.  We found that the magnitude of bias may be 
substantial under realistic array configurations and show how bias in detection probabilities can 
introduce bias into biological parameters such as survival probabilities.  When lack of 
independence between arrays has occurred in a field study, it is difficult to remove the bias or 
even estimate its magnitude.  Thus, prior to conducting a study it is critical to design replicate 
arrays to achieve independence and to map detection zones to ensure independence.   
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Executive Summary 

 Mark-recapture studies in the Columbia basin often use closely spaced replicated 
telemetry arrays to estimate the probability of detecting transmitters.  Using this approach, 
detection probabilities are estimated with the Lincoln-Petersen single mark-recapture model.  
The primary assumption of this model is that telemetry arrays are statistically independent, but 
often it is unclear how to assess the independence of telemetry arrays.  In this report, we define 
and assess statistical independence of four different array configurations where each 
configuration consists of a different pair of detection zones.  We found that the minimum 
criterion for ensuring independence among telemetry arrays is to implement one array with a 
detection zone that encompasses the entire fish passage zone through a volume of water (we 
assumed the fish passage zone consisted of the entire water column).  Given this criterion is 
satisfied, the arrays will be independent even when the second array does not completely 
encompass the entire water column.  Arrays were not independent under scenarios where neither 
array encompassed the entire water column.  Lack of independence introduced bias into 
estimates of detection probabilities, and the bias was either positive or negative depending on the 
nature of the array configuration.  We found that the magnitude of bias may be substantial under 
realistic array configurations and show how bias in detection probabilities can introduce bias into 
biological parameters such as survival probabilities.  When lack of independence between arrays 
has occurred in a field study, it is difficult to remove the bias or even estimate its magnitude.  
Thus, prior to conducting a study it is critical to design replicate arrays to achieve independence 
and to map detection zones to ensure independence.   
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1.0 Introduction 

 Detection probabilities of telemetry arrays are integral parameters of mark-recapture 
models, allowing separation of the sampling process from the survival process.  All mark-
recapture models assume that individual telemetry arrays are independent from one another.  
Failure of this assumption could lead to bias in detection probabilities, which in turn will 
introduce bias into the biological parameters of interest.  Therefore, it is critical to understand 
how lack of independence may be introduced into a mark-recapture study and to design array 
configurations that ensure independence among arrays. 

 For CJS-type models (Cormack-Jolly-Seber), telemetry arrays are often separated by tens 
of kilometers, but are still subject to the assumption of independence.  For example, if fish do not 
mix throughout the water column and individuals remain vertically or horizontally stratified as 
they move through the series of telemetry arrays, then incomplete coverage of the water column 
by telemetry arrays could introduce lack of independence among the arrays.  Detection 
probabilities are also estimated using closely spaced (< 2 km) replicate telemetry arrays.  This 
approach uses the Lincoln-Petersen single mark-recapture model to estimate detection 
probabilities, and this model is typically incorporated as an auxiliary likelihood into a CJS-type 
model.  For example, use of this auxiliary likelihood is requisite in the route-specific survival 
model in order to estimate route-specific detection probabilities at a hydroelectric project.  Since 
fish are more likely to remain at constant depth or distance from shore as they migrate through 
closely spaced replicate arrays, ensuring independence between replicate arrays is critical to 
avoid bias in parameter estimates. 

 It is often unclear just what “independence” means (e.g. physical independence of 
electrical components versus statistical independence) and how lack of independence may 
introduce bias into estimates of detection probabilities.  To better understand the direction and 
magnitude of bias due to non-independent telemetry arrays, we investigated how the spatial 
configuration of telemetry arrays affects their statistical independence.  Our goals were to (1) 
clearly define statistical independence of telemetry arrays, (2) describe by example how array 
configuration may introduce lack of independence between arrays, (3) quantify detection 
probabilities for both independent and dependent arrays, and (4) model the magnitude of bias 
introduced when the assumption of independence is violated. 

 To assess independence, we examined detection probabilities estimated from closely 
spaced replicate arrays with the Lincoln-Petersen model because fish are less likely to mix over 
the short distance between the replicate arrays.  However, our findings also extend to widely 
spaced arrays commonly used in CJS-type models.  This analysis has practical application as 
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researchers are often confronted with technical and logistical difficulties that limit the range of 
alternative array configurations.  Further, once lack of independence in introduced and the study 
conducted, there is little recourse for removing the bias or even estimating its magnitude.  
Careful design a priori is therefore critical to ensure the assumption of independence is satisfied.  
Our hope is that this report assists researchers during the design phase of a study and aids in 
implementation of telemetry arrays that fulfill the assumption of independence. 

2.0  Assessing Independence of Telemetry Arrays 

 To assess independence of replicate telemetry arrays, we used four possible scenarios of 
array configurations and subjected these scenarios to formal tests of statistical independence.  
First the scenarios are described and formal tests of independence defined.   Next, to understand 
how independence or lack thereof affects estimates of detection probability, we calculate the true 
detection probability under each scenario and also the biased estimate of detection probability 
that results from applying the Lincoln-Petersen model to data from non-independent arrays.  
Last, for each scenario where arrays are not independent, we examine the magnitude of bias over 
a range of array configurations. 

2.1  Defining the Scenarios: Four Array Configurations 

 We investigated four scenarios, each having a different spatial configuration of detection 
zones, to understand how array configuration affects statistical independence of the arrays (Fig. 
2.1).   Detection zones are defined as the area within which a transmitter has a non-zero 
probability of detection, and beyond which there is zero probability of detection. Specifically, we 
examined detection zones for each array where  

1) both detection zones encompassed the entire water column, 

2) one detection zone covered the entire water column, but the other array had a detection 
“gap” where fish in the upper 30% of the water column had a zero probability of being 
detected, 

3) both arrays had a detection gap, but one gap occurred at the surface and the other 
occurred at the bottom, and  

4) both arrays had a detection gap at the surface. 

These scenarios consider only the vertical dimension, but the configurations in Fig. 2.1 may also 
be envisioned as a plan view of a river channel where detection gaps occur at either the left or 

  2  



right river banks.  Thus, the analysis applies to the spatial configuration of telemetry arrays as 
viewed from any spatial dimension. 

Scenario 1 Scenario 3Scenario 2 Scenario 4

1 2 1 2 1 2 1 2

depth = 0

depth = 0.3

depth = 0.7

depth = 1

Figure 2.1.  Vertical detection zones of two replicated arrays under four scenarios. 

 We made a number of assumptions to simplify interpretation and modeling of the four 
scenarios.  First, by restricting attention to only the vertical (z) dimension of water column, we 
assumed that the detection zone completely encompassed the x, y, and t dimensions.  We also 
assumed the probability of detection was distributed uniformly within each detection zone, and 
outside of the detection zone of each array the probability of detection was zero.  Third, we 
considered relative depth from 0 (surface) to 1 (bottom) and assumed fish to be uniformly 
distributed from surface to bottom.  This assumption greatly simplifies defining the probability 
of a fish passing through the detection zone.  For example, if the detection zone encompasses 
70% of water column and fish are uniformly distributed, then there is a 70% probability of a fish 
passing through the detection zone.  Last, we assumed fish remained at a constant depth when 
passing through both arrays. 

2.2  Testing for Statistical Independence 

 Informally, two events are statistically independent if the occurrence of one event does 
not affect the probability of occurrence the other event.  Since detection zones do not encompass 
the entire water column under Scenarios 2, 3, and 4, we have four events to consider: 

 Event A1 – a fish passes through the detection zone of array 1. 

 Event A2 – a fish passes through the detection zone of array 2. 

 Event D1 – a fish is detected by array 1. 

 Event D2 – a fish is detected by array 2. 
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However, to test whether the arrays are independent, we need only consider events A1 and A2.  A 
formal test of statistical independence of these events is 

  Pr(A1∩A2) = Pr(A1)Pr(A2) (1) 

where Pr(A1∩A2) is the probability of a fish passing through the detection zone of both arrays 
and Pr(A1) and Pr(A2) is the probability of passing through the detection zone of each array.  
Thus, if Pr(A1∩A2) ≠ Pr(A1)Pr(A2), then the telemetry arrays are not independent.  Given known 
detection zones and event probabilities, we can subject each scenario to these formal definitions 
to determine the independence of the arrays. 

 For scenario 1, we should expect the arrays to be independent since both detection arrays 
encompass the entire water column.  Thus, the probability of fish passing through either 
detection zone is 1 (Pr(A1) = Pr(A2) = 1).  Since the overlap of the two detection zones 
encompasses the entire water column, Pr(A1∩A2) = 1.  Clearly, Pr(A1∩A2) = Pr(A1)Pr(A2), and 
independence is satisfied under Scenario 1. 

 For scenario 2, the first detection zone covers 70% of the water column and the second 
detection zone covers the entire water column, so Pr(A1) = 0.7 and Pr(A2) = 1. From examining 
Figure 2.1, we can see that the vertical overlap of the two detection zones encompasses 70% of 
the water column and thus Pr(A1∩A2) = 0.7.  Again we find Pr(A1∩A2) = Pr(A1)Pr(A2) and 
independence is satisfied under Scenario 2. 

 Under scenario 3, each detection zone covers 70% of the water column so the probability 
of a fish passing through the detection zone of each array is 0.7 (i.e., Pr(A1) = Pr(A2) = 0.7).  The 
overlap of the two detection zones encompasses 40% of the water column and thus Pr(A1∩A2) = 
0.4.  However, note that Pr(A1)Pr(A2) = 0.49 and thus Pr(A1∩A2) ≠ Pr(A1)Pr(A2).  We therefore 
conclude that the arrays are not independent under Scenario 3. 

 Scenario 4 is similar to scenario 3 in that the probability of fish passing through each 
array is 0.7, but now the detection zones of both arrays encompass the same area of the water 
column, and any fish passing through the upper 30% of the water column will not be detected.  
The overlap of detection zones encompasses 70% of the water column, so Pr(A1∩A2) = 0.7.  
Again we find Pr(A1)Pr(A2) = 0.49, and Pr(A1∩A2) ≠ Pr(A1)Pr(A2).  We find that the arrays are 
not independent under Scenario 4. 
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2.3 Quantifying Bias Induced by Lack of Independence 

 Having established independence of arrays in each scenario, the next step is to understand 
how the lack of independence introduces bias into estimates of detection probabilities. To 
quantify bias, we first define equations for the true detection probability of arrays in each 
scenario discussed above.  These equations define the true model under which frequencies of 
detection histories will be generated.  Next, likelihood models are described to estimate detection 
probabilities from telemetry data.  Given an estimation model (i.e., the Lincoln-Petersen model) 
and the true model under which detection data is generated, we then examine the magnitude of 
bias introduced by applying a model that assumes independence to data from arrays that are not 
independent. 

2.3.1. The True Probability of Detection 

 Because detection zones in each scenario cover different fractions of the water column, 
the overall detection probability of each array is a weighted average of the detection probabilities 
inside and outside the detection zone with weights equal to the fraction of fish passing inside and 
outside of the detection zone.  Thus, the unconditional probability of detection for telemetry 
array 1 can be defined in context of the events described above: 

  P1 = Pr(A1)Pr(D1|A1) + Pr( )Pr(D1| ) c
1A c

1A

  = Pr(A1)Pr(D1|A1) (2) 

Returning to our definition of the four possible events, D1 is the event that a fish is detected by 
array 1, and thus Pr(D1| A1) is the probability of being detected by array 1 given that a fish passes 
through the detection zone of array 1.  Event c

1A  is the complement of A1, which is the event that 

a fish does not pass through the detection zone of array 1.  Since the detection probability is zero 
outside of the detection zone, Pr(D1| ) = 0 and the equation simplifies.  The detection 

probability for array 2 (P2) is defined similarly. 

c
1A

 The probability of being detected by both arrays is: 

  P12 = Pr(A1∩A2)Pr(D1| A1)Pr(D2| A2) (3) 
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Note that this equation holds for all four scenarios regardless of whether the arrays are 
independent.  The primary parameter of interest in mark-recapture models is the overall detection 
probability (P), which is the probability of being detected by either array 1 or array 2: 

   P = P1 + P2 – P12 (4) 

2.3.2. The Estimate of P from Telemetry Data 

 In a field study, the goal is to estimate P from the observed counts of fish detected by 
only the first array (detection history “10”), detected by only the second array (detection history 
“01”), and detected by both arrays (detection history “11”).  Without assuming independence 
between the arrays, the probability of occurrence of each detection history is shown in Table 2.1.  
Thus, the model in Table 2.1 applies to all four scenarios and represents the true model under 
which detection histories will be generated.  However, a problem arises when attempting to 
estimate the parameters of this model from telemetry data.  The model contains three unique 
parameters (P1, P2, and P12) but there are only two minimum sufficient statistics, and therefore 
only two unique parameters can be estimated from the data.  However, if we assume the arrays 
are independent, then P12 = P1P2 (recall the definition of independence in Eq. 1), and the 
likelihood model in Table 2.1 reduces to the Lincoln-Petersen model (Table 2.2).  Note there are 
only two unique parameters in the Lincoln-Petersen model and both are estimable.  This analysis 
shows how the assumption of independent arrays becomes embodied in the Lincoln-Petersen 
model. 

 The maximum likelihood estimators for the Lincoln-Petersen model are 

  11
1

01 11

ˆ nP
n n

=
+

 (5) 

  11
2

10 11

ˆ nP
n n

=
+

 (6) 

where  is the number of fish detected by both arrays,  is the number of fish detected by the 

second but not the first array, and  is the number of fish detected by the first but not the 

second array.  The overall probability of detection (P) is estimated as in Eq. 4, where P12 = P1P2 
because independence is assumed: 

11n 01n

10n
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1 2 1
ˆ ˆ ˆ ˆ ˆP P P PP= + − 2  (7) 

  ( )
( )( )

11 10 01 11

01 11 10 11

n n n n
n n n n

+ +
=

+ +
 

Table 2.1. Probability of occurrence for each detection history when independence between 
arrays is not assumed. 

Detection history Probability of occurrence 
11 P12/(P1 + P2 – P12) 
10 (P1 – P12)/(P1 + P2 – P12) 
01 (P2 – P12)/(P1 + P2 – P12) 

 

Table 2.2. Probability of occurrence for each detection history of the Lincoln-Petersen model, 
which assumes independence between telemetry arrays. 

Detection history Probability of occurrence 
11 P1P2/(P1 + P2 – P1P2) 
10 P1(1 – P2)/ (P1 + P2 – P1P2) 
01 P2(1 – P1)/ (P1 + P2 – P1P2) 

 

2.3.3. The Biased Probability of Detection 

 Given the scenarios described above, we can calculate the bias that arises from applying 
the Lincoln-Petersen model to data from non-independent telemetry arrays.  The (possibly) 
biased estimates are calculated by substituting the probability of occurrence of each detection 
history in Table 2.1, which does not assume independence, into the Lincoln-Petersen estimators 
(Eq. 5 and 6), which do assume independence.  Here, the detection history probabilities in Table 
2.1 are used as the expected relative counts of the detection histories in the Lincoln-Petersen 
estimators.  Using this approach, the equations for the detection probabilities reduce to: 

  12
1

2

PP
P

=  (8) 

  12
2

1

PP
P

=  (9) 

  7  



where  and  represent the biased detection probabilities that will result when applying the 

Lincoln-Petersen model to non-independent arrays.  Note that re-arrangement of Eq. 8 and 9 
yields P1P2 = P12 (the definition of statistical independence in Eq. 1) explicitly showing how 
independence is couched in the Lincoln-Petersen estimators. 

1P 2P

 The true (unbiased) detection probabilities are calculated using Eq. 4–6 with the known 
event probabilities of each scenario.  The right-hand side of Eq. 8 and 9 is calculated using Eq. 4 

and 5, and  is calculated with Eq. 7 substituting  for .  Bias is calculated as the Lincoln-

Petersen estimates ( , , and ) minus the true values (P1, P2, and P).  Thus, we should 

expect bias to be zero under scenarios 1 and 2, but non-zero under scenarios 3 and 4.  For all 
scenarios we used a value of 0.6 for the probability of detection within each detection zone (i.e., 
Pr(D1| A1) = Pr(D2| A2) = 0.6; Table 2.3). 

P iP îP

1P 2P P

Table 2.3.  Input parameter values based on the scenarios defined in Fig. 2.1 for calculating true 
and Lincoln-Petersen estimates of detection probabilities. 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 
Arrays Independent? Yes Yes No No 
Pr(A1)  1.000 0.700 0.700 0.700 
Pr(A2) 1.000 1.000 0.700 0.700 
Pr(A1∩ A2) 1.000 0.700 0.400 0.700 
Pr(D1| A1) = Pr(D2| A2) 0.600 0.600 0.600 0.600 

 

 As expected, the Lincoln-Petersen model produced unbiased estimates under Scenarios 1 
and 2 when the arrays are independent but produced biased estimates under Scenarios 3 and 4 
when arrays are not independent (Table 2.4).  The Lincoln-Petersen estimator produces 
negatively biased detection probabilities under Scenario 3, but positively biased detection 
probabilities under Scenario 4.  Furthermore, the magnitude of bias in P is quite substantial 
under both scenarios, highlighting the sensitivity of the Lincoln-Petersen model to violations in 
the assumption of independence. 

 Next, we extended these results to a range of detection zones for scenarios 3 and 4 to 
understand the magnitude of bias as a function of the size of the detection gap (Fig. 2.2).  Under 
Scenario 3, as the detection gap increases, the Lincoln-Petersen estimate of P declines more 
quickly than the true value of P, causing negative bias.  Negative bias in the Lincoln-Petersen 
estimate is less than 5 percentage points when the size of the detection gap of each array is less 
than 20% of the water column.  However, bias increases at an accelerating rate as the detection 
gap increases above 20%.  Under Scenario 4, the Lincoln-Petersen estimate remains constant but 
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the true value of P declines, causing positive bias in the Lincoln-Petersen estimate.  Under 
scenario 4, positive bias is less than 5 percentage points when the size of the detection gap is less 
than 5% of the water column, but increases linearly with the size of the detection gap. 

 

Table 2.4. True values of detection probabilities compared to those estimated under the Lincoln-
Petersen model for the scenarios defined in Fig. 2.1 and input parameters given in Table 2.3. 

Parameter True value Lincoln-Petersen estimate Bias 
 Scenario 1  
P1 0.600 0.600 0.000 
P2 0.600 0.600 0.000 
P 0.840 0.840 0.000 

 Scenario 2  
P1 0.420 0.420 0.000 
P2 0.600 0.600 0.000 
P 0.768 0.768 0.000 

 Scenario 3  
P1 0.420 0.343 -0.077 
P2 0.420 0.343 -0.077 
P 0.696 0.568 -0.128 

 Scenario 4  
P1 0.420 0.600 0.180 
P2 0.420 0.600 0.180 
P 0.588 0.840 0.252 

  

  

  9  



0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.1 0.2 0.3 0.4 0.5

-0
.6

-0
.4

-0
.2

0.
0

0.
2

0.
4

0.
6

0.0 0.1 0.2 0.3 0.4 0.5

-0
.6

-0
.4

-0
.2

0.
0

0.
2

0.
4

0.
6

Scenario 3 Scenario 4 

Size of detection gap 

D
et

ec
tio

n 
pr

ob
ab

ilit
y 

(P
) 

Lo
ca

tio
n 

of
 d

et
ec

tio
n 

zo
ne

s 
fo

r e
ac

h 
ar

ra
y 

true 

L-P estimate 

true 

L-P estimate 

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

B
ia

s 
(  

   
   

 ) 
a) 

b) 

c) 

Figure 2.2.  Location of detection zones (a), true and Lincoln-Petersen (L-P) estimates of P (b), 
and bias in Lincoln-Petersen estimates (c) under Scenarios 3 and 4 (left and right column) as a 
function of the size of the detection gap of each telemetry array. 
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3.0  Discussion and Recommendations 

 Our analysis raises a number of important considerations for researchers implementing 
replicated telemetry arrays.  Most importantly, to ensure independence between replicated 
telemetry arrays, the minimum design criterion is one telemetry array where the detection zone 
encompasses the entire fish passage zone through a volume of water.  If this design criterion is 
satisfied, then the assumption of independence will be fulfilled even when the detection zone of 
the second array does not completely encompass the water column.  However, as shown under 
Scenarios 3 and 4, when neither detection zone fully encompasses the water column, the 
assumption of independence will be violated and the consequence will be bias in the detection 
probabilities. 

 The direction of bias for non-independent arrays will depend on the nature of the array 
configuration.  If both arrays combined cover the entire water column (as in Scenario 3) then 
detection probabilities will be negatively biased.  In this case, negative bias occurs because the 
ratio of the number of fish detected by both arrays to the total number of fish detected is less than 
expected under the assumption of independence.  In contrast, detection probabilities will be 
positively biased when both arrays cover the same fraction of the water column but a detection 
gap exists where fish are never detected (as in Scenario 4).  Here, positive bias results because 
ratio of the number of fish detected by both arrays to the total number of fish detected is greater 
than expected under independence. 

 The magnitude of bias differed under each scenario, with the Lincoln-Petersen model 
being most sensitive to violations of independence under Scenario 4.  For example, due to the 
non-linear trend in bias under Scenario 3, bias remains relatively low (<5%) even if the detection 
gap of each array is 20% of the water column (Fig. 2.2).  In contrast, under Scenario 4 the bias is 
roughly 15% when the detection gap is 20% of the water column.  Although some scenarios are 
relatively robust to the violation of independence, we recommend researchers strive to achieve 
independence between the arrays because estimating the magnitude of bias from field data is 
often extremely difficult, if not impossible.  Furthermore, since bias in detection probabilities 
will introduce bias into the biological parameters, the necessary course of action is to design for 
independence. 

 Although we have shown how different array configurations may introduce bias into 
detection probabilities, ultimately, interest lies in understanding how bias in P affects estimates 
of the biological parameters.  Consider a replicated array that is implemented at the last telemetry 
station in a single-release mark-recapture study (i.e., a CJS model).  In a CJS model, only the 
joint probability (λ ) of surviving the last reach (S) and being detected at the last array (P) can be 
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estimated from the data.  However, if we use the Lincoln-Petersen model to estimate P at the last 
array, then S can be calculated as S = λ/P.  Thus, when P is negatively biased S will be positively 
biased, and when P is positively biased S will be negatively biased.  Now suppose that the true 
survival is 0.8.  Based on Scenarios 3 and 4 shown in Fig. 2.1 and Table 2.4, our estimate of S 
would be 0.98 and 0.56 and the bias is 0.18 and -0.24 respectively for scenario 3 and 4.  As this 
example shows, it is critical to achieve independence between telemetry arrays as the magnitude 
of bias in biological parameters may be substantial. 

 To simplify our analysis, we assumed fish were uniformly distributed throughout the 
water column, but a non-uniform spatial distribution could either magnify or reduce the bias 
introduced by non-independent arrays.  For example, under scenario 4 with a detection gap at the 
surface where fish are not detected (Fig. 2.1), we would expect the vertical distribution of 
juvenile salmonids to be concentrated near the surface.  This vertical distribution decreases the 
probability of fish passing through the detection zone (relative to a uniform distribution), which 
would consequently increase the magnitude of positive bias compared to our findings.  In 
contrast, radio-telemetry arrays consisting of aerial antennas are often used to monitor 
movements of juvenile salmonids, but are unable to detect fish deeper than about 10 m.  For this 
example, the surface concentration of juvenile salmonids increases the probability of passing 
through the detection zone relative to a uniform vertical distribution.  Thus, the magnitude of 
bias would be less than expected under a uniform vertical distribution.  These examples show 
that the magnitude of bias will depend strongly on the interaction between the spatial distribution 
of fish and spatial coverage of the replicated telemetry arrays.  This interaction causes great 
difficulty in accurately quantifying bias introduced by non-independent arrays in a field study 
and stresses the importance of implementing independent telemetry arrays. 

 Our findings also apply to widely spaced telemetry arrays used in CJS-type models to 
estimate survival over an entire study area.  Here the key process affecting the magnitude of bias 
is the mixing of individuals across space and time.  For example, even if juvenile salmonids are 
concentrated near the surface, variation in the depth of individuals across space and time will 
ensure that telemetry arrays “draw” a random sample from the population at any given array, 
regardless of the detection zone of individual arrays.  Thus, mixing of individuals over space as 
they migrate through the study area ensures independence among the telemetry arrays in CJS-
type study designs.  However, fish may not fully mix across space and time due to individual 
variation in habitat preferences.  For instance, some individuals could prefer shallow depths 
whereas others always remain deep as they migrate through the study area.  In the case of aerial 
radio-telemetry arrays, individual variation in depth preference would lead to positive bias 
(similar to scenario 4) if some individuals preferred to migrate at depths greater than 10 m.  A 
similar scenario could occur in PIT-tag studies if some fish consistently pass hydroelectric 
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projects through fish passage facilities (where PIT-tag detectors are located), whereas other 
individuals prefer to pass through unmonitored passage routes such as turbines or spillways.  
Again, the bias here is of the nature described in scenario 4.  The best solution to lack of mixing 
in CJS-type study designs is to ensure that the detection zones of all arrays fully encompass the 
spatial distributions of the fish.  This array configuration leads to a random sample of the 
population and ensures independent detection probabilities across the arrays.  

 This report outlines scenarios under which the assumption of independence of telemetry 
arrays is fulfilled or violated, and assesses the consequences of non-independence between 
arrays.  Our findings can be used to help design independent arrays prior to a field study.  
However, it is also important for investigators to verify the spatial extent of the detection zones 
once the arrays are deployed and before the study is conducted.  Only then can researchers be 
sure that telemetry arrays are independent and ensure that detection probabilities and biological 
parameters are estimated without bias. 
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