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ABSTRACT 
 

Identifying the causes of failure is fundamental to 
improving the survivability of Army systems whether 
they are remote sensors, complex vehicles, or networks. 
The shape of a repair frequency curve of a complex 
system is determined by variability in the initial quality of 
its components, variability in the system’s wear and 
maintenance, and random failures independent of the 
condition of the components. The contributions of these 
sources of failure are modeled using vitality theory, which 
describes population survival curves in terms of the 
stochastic decline of a hidden Markov process (vitality) to 
an absorbing boundary representing death. By 
reinterpreting the vitality model, the population becomes 
the complex system, the individuals become the system’s 
components, vitality becomes the remaining amount of 
component wear prior to failure, and absorption into the 
boundary represents component failure and replacement. 
Fitting the model to the repair frequency curve of a 180 
ton rear dump truck, the shape of the repair curve is 
quantitatively partitioned into three factors: the operating 
environment, quality control in manufacture, and 
variability in maintenance. This information may be 
useful in identifying causes of system failure. 
 
 

1.  INTRODUCTION 
 

Characterizing and quantifying the failure patterns of 
systems is a vast field that draws on theories from 
engineering, statistics and demography. Numerous 
models derived from these fields can successfully fit both 
failure data of repairable equipment and life-time survival 
data of nonrepairable equipment (e.g. Lieblein and Zelen, 
1956; Cha and Mi, 2006). Well-known examples include 
mixed exponential functions (Vaupel and Yashin, 1985), 
non-homogenous Poisson processes (Pulcini, 2001) and 
the Weibull survival function (Mudholkar, Srivastava and 
Kollin, 1996). Perhaps the most commonly used models 
in the reliability analysis of repairable equipment are the 
non-homogeneous Poisson processes (Pulcini, 2001), 
which are based on the assumption that, when the 
equipment fails, the repair action returns the equipment to 
the condition it was in just before the failure occurrence 
(minimal repair). The above functions are largely 
empirical and so the rate parameters that characterize the 
curves often are not well defined in terms of the 
underlying processes that produce failure. For example, 
an exponential function simply assumes that the rate of 

failure is constant with age but it provides no reason why 
the rate should be constant or anything about the 
underlying mechanisms that produce failure. In contrast, 
survival/failure models based on an underlying hypothesis 
about the failure processes are desirable because the 
coefficients estimated by fitting the model to data can 
then be correlated with independent measures of the 
hypothesized process. If correlations between model 
coefficients and measures of the processes are statistically 
significant, we have some support of the model and 
quantification or ranking of the importance of the 
processes producing failure. 
 

In this paper, I describe equipment failure patterns 
with a mechanistic model developed to characterize 
survival curves in biological populations. The model 
combines age-independent and age-dependent mortality 
processes into a single equation, the vitality equation 
(Anderson, 2000). The age-dependent source of mortality 
is described as the loss of vitality, a surrogate for 
remaining survival capacity of the organism. The 
stochastic rate of loss of vitality over the organism’s life 
time is modeled with a hidden Markov process. This 
characterization of mortality is not new to biology or 
demography (Sacher, 1956; Strehler and Mildvan, 1960) 
and its mathematical characteristics are well established 
(Chhikara, R. S. and J. L. Folks, 1989; Aalen and 
Gjessing, 2001; Steinsaltz and Evans, 2004 and 2007). 
However, its applications to real issues in demography 
and ecology have been relatively limited (Weitz and 
Frazer, 2001; Anderson et al., 2008. However, because 
vitality-type models are developed from fundamental, but 
admittedly highly simplistic assumptions, they offer some 
new into the mechanisms of failure and mortality. In 
particular, an extension of the vitality model by Li (2008) 
offers a mathematically rigorous way of partitioning 
categories of failure processes that shape survival curves 
in organisms and failure curves of equipment. Here I 
explore the application of this extended vitality model to 
failure date of a repairable system, a 180 ton rear dump 
trunk, and propose that the model coefficients quantify, 
the failure processes into three categories: contributions 
of the operating environment, quality control in 
manufacture and variability in maintenance. 
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2.  MODEL DEVELOPMENT 
 

I first describe the vitality model as it applies to 
survival curves of biological populations and then discuss 
how the assumptions of the model are reinterpreted to 
describe the failure curves of repairable systems. 

2.1  Vitality theory  
 
Using the notation in Anderson (2000), consider the 

accumulation of damage leading to organism mortality in 
terms of the vitality, an abstract stochastic measure of the 
remaining survival capacity of the individual. Each 
individual begins with an initial vitality, v0, and dies when 
its vitality reaches zero (Fig. 1). The rate loss of vitality is 
described by a continuous Markov process that is 
expressed as a stochastic differential equation with mean, 
ρ, and variation, σ, in the rate of loss of vitality 

 ( )dv t
dt

= −ρ+ σξ  (1) 

where ξ is a rapidly fluctuating random term or white 
noise with a zero mean and unit intensity. The integral of 
the white noise process is typically assumed to have a 
Gaussian distribution (Gardiner, 1985).    
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Fig. 1. Individual vitality trajectories defined 
by Eq. (1) and the resulting survival described 
by Eq. (4) with u = 0. 

 
If all individuals have the same initial vitality, v0, 

then the vitality probability distribution in the population 
remaining at time, t, is  
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Fig. 2 illustrates the time varying change in of the 
density of vitality in the population according to Eq. (2). 
The population starts with an initial vitality, v0 = 1, and 
evolves into a quasi-steady distribution in 12 time units. 
The area under the curve decreases with time as the 
density is absorbed into the zero boundary, i.e. a process 
representing death. Thus, because Eq. (2) is based on the 
initial distribution being Dirac delta function of unit area, 
the area under the curve at any t > 0 is equivalent to the 
fraction of the remaining population that has not died 
from the loss of vitality.   
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Fig. 2. The vitality density defined by Eq. (2) 
evolves from a Dirac distribution at time 0 into a 
Gaussian distribution over times 2 through 6 and 
into a gamma-like distribution by time 9. The area 
under the curve diminishes by the absorption of 
vitality density into the zero boundary. 

 
 

Integrating Eq. (2) over the allowable range of 
vitality (0, ∞) yields the fraction of the population at t that 
has not died of vitality related causes. This is shown as 
the survival curve in Fig. 1. Mortality can also occur from 
processes not associated with vitality, i.e. accidental 
mortality, and in the vitality model this is described with a 
Poisson mortality process with rate k. The details of this 
three-parameter model are given in Anderson (2000) and 
Anderson et al. (2008). An algorithm to estimate model 
parameters (r, s, k) from survival data is given in Salinger 
et al. (2006).  
 

⎤
⎥

 (2) 

The vitality model based on Eq. (2) assumes all 
individuals are initially identical, which is in fact violated 
to a greater or lesser degree by every real population.  To 
correct this weakness, Li (2008) extended the model by 
expressing the initial vitality as a Gaussian distribution 
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where μ and τ are the mean and standard deviation of the 
initial vitality distribution. The resulting equation, 
expressed in terms of the cumulative mortality, which is 
the appropriate measure for failure curves, is 
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where Φ is the normal cumulative distribution and the 
coefficients are  

 , ,r s u= ρ μ = σ μ = τ μ.  (5) 

where r and s are the normalized mean and variability in 
the rate of loss of vitality, with dimension of 1/time and 
1 time  respectively, u is the coefficient of variation in 
the initial vitality distribution and k the rate of accidental 
mortality with a dimension of 1/time. 

2.2  Estimating coefficients 
 
The coefficients in Eq. (4) can be estimated with 

maximum likelihood techniques developed by Salinger et 
al. (2003) and modified by Li (2008) with a simulated 
annealing search algorithm. The details of the algorithm 
and its code written in the R® statistical language will 
appear in a forthcoming publication by Li and Anderson. 
The algorithm estimates the parameters, their standard 
errors and p-values. 

2.3  Applying vitality to repairable systems 
 
To apply the vitality model described in Eq. (4) to 

failure data of a repairable system, such as a vehicle, the 
system is taken as equivalent to the biological population 
and its components are equivalent to the organisms in the 
population. Organism vitality is reinterpreted as the 
remaining age-dependent wear of the components. The 
absorbing boundary at v = 0, which in a biological 
population represents the removal of individuals by death, 
becomes the removal of worn components by replacement 
and repair. In this construct, the model tracks the wear of 
the original components that have yet to fail. When an 
original component fails it is replaced with a component 
that has less wear, i.e. it is in better condition than the 
original part. Thus, the model assumes that as the system 
ages the number of components that can fail because of 
wear declines as the old parts are replaced with new or 
reconditioned ones. With these reinterpretations, the 
distribution of remaining wear the components can 
tolerate prior to failure is mathematically equivalent to the 

distribution of vitality in a population. The model also 
contains an accidental failure rate, which is independent 
of the state of wear in the components.  Thus, the model 
describes failure curves of repairable equipment in terms 
of age-dependent and age-independent processes. 

2.4  Attributing meaning to the coefficients 
 
Considering first the age-dependent process, we 

represent the average rate of wear by r, which is the 
average rate of loss of vitality in a biological population. 
We represent the variability in the wear rate of 
components by s. This term represents an evolving 
heterogeneity in the rate of wear in that as the system ages 
the distribution of wear amongst the components 
increases. One possible cause of this heterogeneity could 
involve routine service and maintenance. For example, it 
seems plausible that variations in cleaning and operating 
within design specification could increase the variation in 
the wear rates of components.  
 

The model implicitly assumes that replacement 
components do not fail over the usable lifetime of the 
system. However, in reality they can which would alter 
the estimates of the model coefficients. Resolving effect 
of this assumption violation is beyond the scope of this 
paper, but it could readily be evaluated with a numerical 
analysis of the model.  
 

A second major component of wear involves the 
initial quality of the system’s components. In an ideally 
designed system, the expected lifetimes of all components 
are equal. This equality is desirable so the system does 
not contain expensive over-designed components that 
outlast the useful life of the system, or correspondingly, 
under-designed components that fail early necessitating 
costly repairs and recalls. In reality, the components have 
individual lifetimes that are distributed about the system’s 
mean useful lifetime. The vitality model represents this 
variability as a distribution of initial component quality 
with coefficient of variation u. It is distinguished from the 
evolving heterogeneity noted above, in that the 
heterogeneity in component wear attributable to u does 
not change with system age while the heterogeneity 
attributable to different wear rates does change with age. 
 

The final process we need to consider is the age-
independent failure rate characterized by k in Eq. (4). By 
definition, this factor is independent of the age of a 
component and occurs at a constant random rate over the 
usable life of the system. Although the causes of random 
age-independent failure are difficult to identify, we expect 
in part they are related to the state of the operating 
environment of the system. For example, a collision of 
one vehicle with another falls readily into this category 
since the event is independent of the age of either vehicle, 
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but the probability of occurrence strongly depends on the 
environment in which the vehicles operate.  

2.5  Break-in period and the left-truncation effect 
 
Failure rate date of repairable equipment often 

exhibit a bathtub-type profile in which the rate is high 
during a burn-in or break-in period, then declines over the 
useful life of the system and again increases as the useful 
life is exceeded. The break-in period is common in 
manufactured systems and results from manufacturing 
error, defective parts and assembling defects. In 
repairable systems, these defects are identified and the 
break-in period is generally identified by a clear 
discontinuity in the failure rate. The vitality model does 
not capture this discontinuity, but the effect can be 
assessed by fitting the model to the data with and without 
the inclusion of the break-in period. However, by left-
truncating data to remove the break-in period, we affect 
the estimate of u, because the evolving heterogeneity that 
occurs in the break-in period then becomes included in 
the initial heterogeneity of the left-truncated data fit.  
 

The effect of excluding the break-in period data can 
readily be evaluated by computing estimates of model 
coefficient with different left-truncation intervals. The 
resulting coefficients must then be adjusted for the 
differences in interval length by the formulas  
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where i and j are indices for break-in periods, and  
and Tmax is the total length of the failure record.  

iT jT

2.6  Issues with the number of components  
 
In biological survival data, the initial population size 

is known and the survival curve over time is well defined. 
However, in failure data, the population size is not 
necessarily well defined. The total number of failures, N, 
may involve multiple failures and repairs of individual 
components, repairs without replacement of parts, or 
replacement of parts with new or reconditioned 
equivalents. When fitting the model to the failure curve of 
a single system, N is simply the total number of repairs 
over the usable lifetime of the system and the coefficients 
estimated are specific to the categories included in the 
definition of repair. If the failure curves of a group of 
systems are being compared then the definition of failure 
must standardized and N should be set by the member of 
the group that experienced the most failures over the 
usable lifetime of all the systems. While, N will affect the 
parameter estimates, it is unlikely to radically alter the 
relative significance of the parameters.  However, this 
extended analysis is beyond the scope of the paper. 

3.  EXAMPLE: DUMP TRUCK FAILURE 
 
3.1  Data 

 
Here we consider data on 128 failure times of a 180-

ton rear dump truck (Coetzee, 1996, extracted from 
Pulcini, 2001). The truck was composed of multiple 
subsystems that could each independently fail resulting in 
a repair event.  

3.2  Results 
 
Using Li’s (2008) simulated annealing algorithm the 

model coefficients were estimated by excluding the 
break-in period with three different left-truncation 
intervals T (Table 1). All break-in periods yielded similar 
estimates of r when adjusted according to Eq. (6). The 
coefficients normalized to no break-in period, T = 0, 
become r = 0.476 ± 0.014 (yr−1) and s = 0.004 ± 0.003 
(yr−1/2). The mean wear rate estimate has a low standard 
error. Further, the mean lifetime is approximately 1/r, 
which gives 2.05 to 2.16 operating years (17958 to 18912 
operating hrs). In comparison, the wear-rate variability, s, 
is small and contains larger uncertainty. The accidental 
failure rate, k, is not affected by the truncation and the 
three estimates cluster within the standard error. The 
coefficient of variation of the component’s initial quality, 
which is quantified by u, has a low standard error and 
increases with increasing truncation period as is expected 
by the theory.  
 
Table 1. Coefficient values from Eq.(4). Standard errors 
(se) and left-truncation beak-in period T. 
 

T 
(days) 

 r  
(yr−1) 

s 
(yr−1/2) 

k 
(yr−1) u 

value 0.464 0.0050 0.233 0.117 
0 

se 0.007 0.0417 0.038 0.006 

value 0.479 0.0006 0.208 0.122 
1.7 

se 0.007 0.0207 0.0369 0.058 

value 0.513 0.0062 0.211 0.133 
4.9 

se 0.009 0.0425 0.039 0.004 
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Failure curves for two left-truncation periods are 
shown in Fig. 3 and Fig. 4. The model fits the data well in 
all cases. 
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Fig. 3. Observed failure time of a rear dump truck (●) 
and model fit (—) with no left-truncation (T = 0).  Data 
from Coetzee (1996) extracted from Pulcini (2001). 
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Fig. 4. Model fit with a left-truncation of 4.9 days. 
 

3.3  Identifying factors of failure 
 
The vitality equation attributes failure to random 

events that are independent of age and quantified by a 
constant rate (k), and age-dependent events that depend 
on an average wear rate (r), an initial heterogeneity in the 
quality of the system components (u) and an evolving 
heterogeneity in the wear rate (s). The relative effects of 
these factors on system failure curves are illustrated in 
Fig. 5 for estimates in Table 1 with T = 0. The individual 
sub-factor failure curves have several notable features. 

The accidental failure rate (Fig. 5, Curve A), is generated 
with ( ) ( )1 expf t = − kt and accounts for about 40% of the 
failures over the 2.5 yr operating-time of the truck. Curve 
B, generated by setting u = k = 0 in Eq.(4), characterizes 
the shape of the failure curve from evolving heterogeneity 
in the wear rate. The step-like failure pattern results 
because with all components having the same initial 
quality and with little variability in wear rates all 
components fail at essentially the same time. Thus, we 
may hypothesize that variance in routine maintenance is 
small and contributes little to the shape of the failure 
curve. However, the location of the step, ~2.1 yrs, is a 
measure of the average lifetime of the truck’s 
components. Curve C, generated by setting s = k = 0 in 
Eq. (4), depicts the effects of variations in the initial 
quality of the truck’s components on the failure curve. 
The variability in initial quality accounts for ± 0.5 yr 
variation in failure time. Correspondingly, the weakest 
parts of the truck have a useable life of 1.5 yrs. Finally, at 
the cross point of the curves (~2.1 yrs) the cumulative 
number of failures from accidental and wear-dependent 
processes are equal. However, at this age the rate of 
failure from wear-dependent processes is vastly larger 
that the rate from accidental failure and failure after the 
cross point is dominated by wear. 
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Fig. 5. Model fit to failure data (●) and curves 
attributed to the different failure components. A) 
component failure curve with random events only, 
B) failure curve with evolving heterogeneity in age 
dependent failure, C) failure curve with the 
intrinsic heterogeneity in failure components. 

 
 
 
 
 
 
 

  5



  6

CONCLUSIONS 
 

The key scientific contribution of the model 
presented in this paper is its mathematically rigorous, but 
simple, representation of failure and repair of complex 
systems through an analogy to biological vitality theory. 
This foundation contributes to the model’s ability to fit 
repair curves and provides realistic meanings to the 
coefficients, which are the mean and variance in the wear 
rate, a distribution of initial component quality and a 
failure rate independent of wear. This partitioning of 
factors of failure into intuitive and meaningful categories 
is unique. In particular the possibility of identifying the 
independent effects of quality control in manufacturing 
and maintenance on failure is not found in traditional 
failure models. 
 

The model should have value in improving both the 
manufacture and maintenance of complex equipment used 
by warfighters. As an example, fitting the model to repair 
records of LMTV A1 Cargo vehicles would generate 
distributions of the four model parameters for the 
population of vehicles. Then an analysis of the parameter 
distributions against factors hypothesized to affect vehicle 
failures could potentially identify significant factors in 
vehicle failures. For example, a significant relationship 
between the quality measure, u, and manufacturing site 
might be used to rank the quality control of the different 
sites. Furthermore, under the model’s assumptions and 
interpretations this site quality ranking would be 
independent of factors related to field maintenance and 
the vehicles’ operating environments.  Field maintenance 
and operating environments could be ranked in a similar 
manner and depending on the statistical significance of 
such analyses it may be possible to identify substandard 
steps in the vehicles’ usable life cycle and thus direct 
corrective actions to specific issues. 

 
In summary, the aim of this paper is to describe 

vitality-based failure modeling and its potential for 
quantitatively assessing the quality, maintenance and 
wear patterns of complex Army systems.  
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