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EXECUTIVE SUMMARY

This is the final report of a study that measured low frequency sound generated by four
Columbia River hydroelectric projects. Low frequency sound in the range perceived by
downstream migrating fish was measured at: Bonneville Dam First and Second Powerhouses,
Lower Granite Dam and McNary Dam. The report describes the characteristics and sources of
underwater sound.

Sound is characterized by frequency and sound pressure level, defined as SPL =
20log10(p/pref), Where p and prer are measured and reference sound pressures. The SPL in turbine
entrances differed between powerhouses. Bonneville Second had the lowest SPL, while
Bonneville First had the highest SPL. Each project had a distinctive acoustic signature that, with
the exception of Bonneville Second, was constant between turbines at any given project.

Far field sound measurements indicate that fish approaching the Bonneville project perceive
sounds of the dam twice as far from Bonneville First as from the Second Powerhouse. In
addition, these same sound pressures occur farther out in the forebay at McNary than they do at
Bonneville First.

Sound pressure levels in front of the dams, designated the near field, were about 10 dBs lower
than in the fish bypass slots. In addition, bypass slot spectra had a number of acoustic peaks that
were absent in the near field. Sound levels increased about 10 dBs from just below the surface to
the level of the turbine entrance.

The acoustic signatures in the bypass slots of Bonneville Second were a function of the bypass
configurations of the bypass slots. In addition, distinct low frequency peaks appeared to increase
in intensity closer to the Submersible Traveling Screen (STS), and it appears that water flow
through the gap between the STS and turbine intake ceiling may produce these peaks.

Measurements at a turbine hatch with the airborne microphone (-3 foot elevation) at Bonneville
Second showed peaks of energy at 18 Hz and 63 Hz.

Coherence and phase data indicate that the acoustic environment at Bonneville Second is com-
plex, and much of the acoustic phenomena is unexplainable. However, sound at 18 Hz and 30 Hz
is coherent at almost all locations at the dam suggesting turbines are the primary source for these
frequencies.

Fish moving with the flow would experience higher rates of SPL increase in front of the
trashrack at Bonneville Second compared to Bonneville First and McNary Dam. In addition,
Bonneville Second had a peak of sound energy localized to the bypass slot and STS frame ranging
from 120-160 Hz. Water rushing through the gap at the STS may be the cause of this peak. This
peak was absent at the trashrack.

This report provides a background for future laboratory studies on the response of fish to
sounds at dams. If fish exhibit clear attraction or repulsion responses to sound, further studies
may be warranted.
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INTRODUCTION

Studies conducted at Columbia River hydroelectric projects suggest that a portion of down-
stream migrating salmonids avoid the Submersible Traveling Screen (STS) and pass through
turbines (Anderson 1988a; Hays 1988; Williams et al. 1988). Since a turbine entrance is virtually
dark, fish must avoid diversion structures through detection of flow changes and sounds produced
by the structures. A model of fish trajectories at a hydroelectric facility suggested that fish avoid
passing through a trashrack when an STS is located directly behind the trashrack (Anderson
1988b). The hypothesis was proposed that an STS may generate low frequency sounds that fish
perceive at a distance. If fish elicit an avoidance response to sounds of an STS, the Fish Guidance
Efficiency (FGE) might be improved by altering the distribution of sound in a diversion structure.

In order to better understand the relationship between sound and fish guidance, we measured
the underwater acoustic fields at Bonneville First and Second Powerhouses, McNary and Lower
Granite Dams. This study will provide background information to assess the response of fish to
the types of sounds generated by fish diversion systems at hydroelectric projects.

The conclusion section of this report follows the introduction and summarizes the findings of
this study. The next section of the report, the discussion, presents the methods used for measuring
the sound produced at the dams, followed by the results of the study, and finally the interpretation

of these results.

CONCLUSIONS

Low frequency sound in the range perceived by downstream migrating fish was measured in
fish bypass slots at: Bonneville First and Second Powerhouses, Lower Granite and McNary
Dams; in the forebays of Bonneville and McNary Dams; and on the trashrack and STS (sub-
mersible traveling screen) frame at Bonneville Second.

In general, each project had a distinctive acoustic signature that was reproducible between
turbines at any given project with identical bypass configurations. Bonneville First was a "noisier"
powerhouse, whereas Bonneville Second was the "quiet" powerhouse.

Forebay and reservoir measurements indicated that threshold Sound Pressure Level (SPL) for
salmonids was twice as far from Bonneville First as it was from Bonneville Second. This thresh-
old SPL was even further away at McNary.

Sound pressure levels in front of the dams, designated the near field, were about 10 dBs lower
than in the fish bypass slots. Sound levels increased about 10 dBs from just below the surface to
the level just below the STS at Bonneville Second.

The spectral patterns or acoustic signatures of the various bypass configurations at Bonneville
Second were as follows: STS and bar screen acoustic signatures were similar, and the acoustic



signature at Bonneville Second was altered by the experimental ceiling extensions and by the gap
size at the top of the STS.

A distinct low frequency peak from 120-160 Hz at Bonneville Second increased in intensity
closer to the STS. Water rushing through the gap at the top of STS may produce this peak.

Peaks at 18 Hz and 63 Hz peak were detected at the access hatch below the turbine blades at
Bonneville Second. This suggests that the turbine is the source of these low frequency peaks
detected in all water measurements.

Coherence and phase data indicate that the acoustic environment at Bonneville Second is
complex, and much of the acoustic phenomena is unexplainable. Multiple sound generators and
reflectors within the dam could conceivably startle juvenile salmonids and decrease FGE.

Assuming fish move with flow patterns, they would experience higher rates of sound pressure
increase entering Bonneville Second compared to Bonneville First and McNary Dam. In addition,
the apparent STS-generated peak between 120 Hz and 160 Hz may alter fish behavior as they
move through the trashrack.

Although the present study identified sounds that are possibly associated with turbines and
bypass screens, it is difficult to speculate on how a change in screen configuration will affect these
sounds. Resulting effects on fish guidance are even more difficult to infer. Since extended
screens are being considered for some projects, however, such speculations are useful.

The fact that different screen configurations had unique sound characteristics suggests that
extended screens will produce measurable changes in turbine entrance sounds. Since an extended
STS could decrease the effective area of the turbine entrance, and consequently increase the
velocity below the STS, noise levels below the STS also may increase, reflecting a change in
velocity. On the other hand, the 130 Hz noise, apparently produced by the flow through the gap at
the top of the STS, may increase in intensity if the velocity through the gap increases. Thus, an
extended STS may increase the average noise level below the STS and increase the 130 Hz noise
above the STS.

There is insufficient information on fish responses to sound to infer how such changes would
affect fish guidance efficiency. Scenarios can be constructed that increase, decrease or have no
effect on fish guidance. If fish are not affected by low frequency sound then, noise changes due to
extended screens would not affect FGE. If fish were attracted to loud sounds, extended screens
may move them deeper in the water column and the effect of sound on FGE would be negative. If,
on the other hand, fish were attracted to lower levels of sound, extended screens could have a
positive effect on FGE. The apparent gap noise may complicate the problem. If fish were repelled
by the noise, the FGE could be negatively affected; if they were attracted to the noise, the FGE
could be positively affected.



These scenarios suggest that sound may have a variety of effects on fish guidance. Since we
do not know how fish respond to the sounds of the dams, further studies are required to identify if
any of the scenarios are realistic. Laboratory studies can provide a cost-effective starting point by
demonstrating if smolts exhibit attraction, repulsion or no response to the sounds of the dams. If a
clear reaction is observed, further studies might be warranted to determine how sound can be op-
timized to improve fish guidance. If, in a laboratory, smolts do not respond to the sounds, then
further studies would not appear warranted.

DISCUSSION

The discussion section of this report consists of three parts: methods, results and interpretation
of results. The methods section describes how and where the sound was measured, and what the
project configurations were during the measurements. The results section describes the various
acoustic signatures of the different dams, and their associated bypass configurations.

METHODS

Low frequency sound (5 to 1000 Hz) was measured at Bonneville Dam First and Second
Powerhouses, McNary and Lower Granite Dams (Figs. 1 and 2). At each powerhouse measure-
ments were made in the fish bypass slots, which contained either an STS, or in one case a bar
screen. At Bonneville Second and McNary, measurements were made down the face of the
projects. At Bonneville Second Powerhouse measurements were made below the ceiling exten-
sion, on the STS frame, at a hatch just below the turbine blades (-3 ft elevation relative to sea
level), and at different elevations on the trashrack (Fig. 2).

Three hydrophones were used to monitor the sound at Bonneville Second, unit 15B. The first
hydrophone was fastened to a steel mounting bracket welded to sled that moved up and down the
north concrete pier of intake 15B. Measurements were made at 9 elevations relative to sea level
. (-18, -8, 2, 12, 22, 32, 41, 51, 61 foot elevations). The second hydrophone was fastened to a
bracket welded to the STS frame at the 3 foot elevation. The third hydrophone was lowered in the
bypass slot of unit 15B to the 32 foot elevation (see Fig. 21).

Sound was monitored with B & K model 88101 hydrophones. Hydrophone output signal gain
was adjusted to maximize the signal-to-noise ratio for recording on analog magnetic audio tape.
Signals were recorded on a Bell and Howell model 4010 analog tape recorder, analyzed in the field
with a Hewlett-Packard 3561 Spectrum Analyzer, and plotted with a Hewlett-Packard model
7470A two pen plotter. For the multiple hydrophone measurements, spectral coherence and
phasing were determined with a Rockland 5820A cross channel spectrum analyzer.



In the forebay of Bonneville and McNary Dams, sound was measured with a portable Sony
Walkman® unit capable of measuring sound frequencies down to 25 Hz with the B & K
hydrophone. The hydrophone was lowered to a depth of 25 feet and recordings were made while
the boat drifted with the current.

In order to differentiate between particle velocity and sound pressure, two hydrophones were
attached to a wooden frame and lowered into a bypass slot. The hydrophones were 2.5 feet apart
such that fluctuations due to turbulence would be decorrelated between the hydrophones. Thus,
fluctuations produced by sound pressure would exhibit a strong correlation between the two
hydrophones (signal correlation of 1) and fluctuations produced by turbulence would yield a low
degree of correlation between the hydrophones (correlation near zero, Buck and Green 1980). The
signal correlation was better than 0.9 over the analysis band of 10-200 Hz, indicating that measure-
ments taken were negligibly contaminated with particle velocity fluctuations (Buck and Green
1980).

The intensity of sound in this report is expressed in logarithmic scales called sound levels. One
reason for using this logarithmic scale is to compress the range of numbers required to describe the
wide range of sound intensities, which if expressed as pressure would range from 10-12 to 10
watts/m2. A second reason, is that the human ear subjectively judges the relative loudness of two
sounds by the ratio of their intensities, a logarithmic behavior. By the standard convention, sound
level is expressed as a Sound Pressure Level (SPL) and is related to sound pressure by the

equation:
SPL = 2010g(p/Pref)

where p is the pressure in Pascals (1 Pa = 1 Nm™Z = 10 pbar = 10 dyn cm2) and p,¢ is the
reference pressure, 1 Pa. For humans, SPL is expressed as decibels relative to a reference
pressure of 20 pPa. This reference pressure is the minimum pressure that a human can detect over
most frequencies. Sound pressure level was normalized to a bandwidth of 1 Hz and units
expressed as dBs relative to 1 Pascal (dBs re. 1 Pa). The instrument output was in dBV. This
was converted to dBs re. 1 Pa in order to normalize the dBV readings to a common scale, namely
dBs re. 1Pa:

SPL = dBs re. 1 Pascal = dBV - gain + 65.3 - 10log,, (BandWidth)

The gain was a function of the recording equipment settings, 65.3 was a hydrophone voltage
sensitivity constant, and bandwidth was a function of the frequency range sampled.



The change in SPL as a function of distance from the turbines at McNary and Bonneville
hydroelectric projects was determined. Average spectral energy for each spectrum was calculated
from 100-1000 and 20-200 Hz at Bonneville, and 20-200 Hz at McNary by integrating the spectra
at various distances from the turbine. The distances were: 138, 168, 183, 213, 303, 4053, and
26,493 feet at McNary; 61, 223, and 3033 feet at Bonneville Second; and 231, and 3855 feet at
Bonneville First.

The change in the average SPL as a function of distance from the turbines was determined at
McNary and Bonneville Dams. Average SPL expresses the change in sound level over a wide
frequency range. This provides a better measure of the difference in noise levels of the dams since
SPL is specific to a frequency band, 1 Hz for this study. Average SPL was calculated from 100-
1000 and 20-200 Hz at Bonneville Dams and 20-200 Hz at McNary Dam. Average SPL was
calculated using the following formula:

SPL = 10Log1o [+ £ 10SPL/10]

where SPL(J) is the SPL at frequency i and n is the number of frequencies sampled. Sound
pressure levels were sampled every 20 and 100 Hz at Bonneville and every 20 Hz at McNary Dam.

A regression of average SPL against distance from the turbine was determined at each project
to describe the acoustic environment in front of the dams. A regression was performed for each
data set in order to determine the "best fit" equation for propagation. The equation for sound
propagation is:

SPL=a+ b (log x)

where a is the intercept, b is the logarithmic slope, and x is the distance from the source.

Coherence and phase were determined by normalizing cross-correlations between different
pairs of hydrophones at Bonneville Second. Time series of the noise were decomposed using
fourier transforms into components at discrete frequencies, since phase is only applicable to signals
with a single frequency. Coherence of one is considered perfect, whereas a coherence of zero
represents no correlation for a given frequency. Coherence and phase data indicates whether
specific locations within the powerhouse are receiving sound from a common source.

RESULTS

Results of the study were placed into five categories: General comparison between dams,
sound distributions in the forebays of Bonneville and McNary Dams, sound in the near field of
Bonneville Second Powerhouse, sound generated by the various bypass configurations at



Bonneyville Second Powerhouse, and rates of sound pressure increase at McNary and Bonneville
Dams. Configurations of the bypass systems during measurements are given in Table 1, power
generation specifications of the dams are summarized in Table 2, and Appendix A lists the
characteristics of all the sites sampled.

The greatest sensitivity for hearing in salmonids falls between 50 and 250 Hz (Hawkins and
Johnstone 1978), and perception is severely diminished above 380 Hz (Fig. 3, upper curve). In
this frequency range it appears fish use sound pressure and particle velocities to identify nearby
objects, schooling activities of con-specifics, and occurrence of predators and prey. Compared to
humans, salmonids have poor hearing on the basis of perceivable frequency range and sensitivity
to sound pressure (Fig. 3). Human infants are capable of detecting sounds from 20-20,000 Hz,
and at SPL's much lower than that of salmonids. For example, in Figure 3, a human would
require about -80 dBs re. 1 Pa SPL to hear a 160 Hz tone, while a salmonid would require about -
20 dBs. Therefore, the salmonid requires close to a thousand fold increase in SPL to hear the
same 160 Hz tone.

General Comparisons Between Dams

Low frequency spectra at the four powerhouses were distinct and reproducible (Fig. 4). This
was evidenced both by coherence and phase data and by the stability of spectra at a given location
over time. Maximum SPL occurred at 30 and 70 Hz at Bonneville First Powerhouse, about 10 Hz
at Lower Granite, and about 20 Hz at McNary. The acoustic signature of Bonneville Second
Powerhouse was different from the other powerhouses with four peaks at: 30, 63, 85, and 125
Hz.

The 200 Hz frequency spectra at Bonneville Second had a number of peaks. The 1000 and
10,000 Hz spectra gradually decreased in intensity as a function of increasing frequency. Slight
differences in the spectra were observed at about 400 to 500 Hz (Fig. 5).

Measurements down the face of Bonneville Second Powerhouse and Lower Granite Dam
indicated that frequency spectra were different from those in the fish bypass slots. The SPL's at
the face were lower than levels in the fish bypass slots. In addition, SPL's at the face of
Bonneville Second Powerhouse were lower than those at the face of Lower Granite (Fig. 6).

Forebay and Reservoir Sounds

Forebay sound measurements at Bonneville Dam indicated the highest SPL's were within line
of sight of the dam. The effect is evident in Figure 6 where average SPL's were 6.1 dBs greater in
the line of sight (Station 3 vs. 4, Fig. 7). The frequency spectra 50 yards in front of Bonneville
First and Second Powerhouses and McNary Dam had different low frequency characteristics.



McNary exhibited a low frequency roll-off at about 200 Hz while Bonneville SPL's rolled-off at
about 100 Hz (Fig. 8).

The logarithmic slope of the SPL as a function of distance for McNary was -13.2 (Figure 9).
For Bonneville First the slope was -22.4. A slope of -15 would be expected based on laboratory
computations of sound propagation through water (Urich 1969). Hawkins and Johnstone (1978)
found that Atlantic salmon (Salmo salar) were most sensitive to a 160 Hz pure tone, and the
threshold for this frequency was -20 dBs re. 1 Pa. Therefore, we used this sound pressure as a
benchmark for the low frequency hearing threshold of salmonids. The region in the river where
project noise would first exceed minimum audible field thresholds of salmonids is shown for
Bonneville and McNary Dams (Fig. 10). At Bonneville, this region of perception is 1,350 yards
from the First Powerhouse and 760 yards from the Second. At McNary Dam this region was
2,500 yards from the powerhouse.

Near Field Sounds

Sound pressure levels in front of the dams, designated the near field, were about 10 dBs lower
than in the fish bypass slots. Near field measurements were made down the bulkhead and
trashrack, and below a ceiling extension. In addition, bypass slot spectra had a number of peaks
that were absent in both the ceiling extension and bulkhead near field measurements (Fig. 11, 12).
Measurements made down the water column down the face of the dam indicated that sound levels
increased about 10 dBs from just below the surface to the level of the turbine entrance (Fig. 13,
14).

Sound propagation in the near field of Bonneville Second declined logarithmically as a function
of distance (Fig. 9).

Airborne measurements made at the access hatch below the turbine blades of unit 15 at
Bonneville Second showed a number of peaks in SPL, with the largest occurring at 18, 63, and
400 Hz (Fig. 15). Although data was not collected for the same area at Bonneville First, we
walked through the area and noted the deafening SPL compared to Bonneville Second. The 18 and
63 Hz peak measured in this area suggests that the turbine is the source of these peaks at
Bonneville Second. Since the 63 Hz peak is broader than the expected AC line noise at 60 Hz, it is
very unlikely that line noise is the sole contributor to the measured SPL from 50-80 Hz.

Guidance System Sounds
The pivot point elevation of the STS had a measurable effect on sound in the fish bypass slot.

In general, an STS in the lowered position increased sound levels. The increase was particularly
marked at 63, 85, and 125 Hz (Fig. 16).



A comparison of sound in the fish bypass slot with the STS motor on and off showed no
measurable spectral difference.

A comparison of a bar screen and an STS in the lowered position indicated the two spectra
were nearly identical in the range 0 to 200 Hz (Fig. 17).

An STS in the lowered position, with a normal trashrack, had an acoustic signature similar to
that observed with a vertical distribution frame (VDF) with a streamlined trashrack. The VDF
exhibited higher SPL's at 85 and 300 Hz (Fig. 18).

The ceiling extension altered the amplitude of the spectral peaks measured in the fish bypass
slot. The extension increased peaks at 30 and 125 Hz and decreased the peak at 85 Hz (Fig. 19).

Background noise generated by adjacent intakes is illustrated by a comparison of noise in a fish
bypass slot with the turbine running to the noise in a slot with the turbine shut down. Figure 20
compares the SPL's in turbine 16 to those in turbine 11. At the time, turbines 11, 12, 13 and 20
were operating.

A comparison of the spectra at the +12 elevation on the trashrack, +3 elevation on the STS
frame and +32 elevation in the bypass slot at Bonneville second revealed a broad peak from 120-
160 Hz that was present only on the STS frame and bypass slot spectra (Fig. 21). In addition, the
STS frame location had a sharp peak of energy at 50 Hz that was not present at the other locations
sampled.

A comparison of the spectra as a function of depth on the trashrack at Bonneville second
showed an increase in SPL from 0-30 Hz, no change from 30-120 Hz, and a slight increase from
120-200 Hz as the hydrophone was lowered deeper in the water column (Fig. 22).

Rates of Sound Pressure Increase Near the turbine intake

Estimation of the rate of SPL increase experienced by a fish moving with the current, was
accomplished by calculating the difference in SPL at the trashrack and 10 feet from the trashrack.
The time required to move this 10 foot distance was calculated for each project based on turbine
intakes velocity measurements (Jensen 1987). The difference of SPL was then divided by time in
seconds which gave dBs per second (Table 3). The rate of SPL increase in this 10 foot region was
greatest at Bonneville Second, and lowest at McNary Dam (Table 3). In addition, measurements
taken at Bonneville Second indicate that a fish moving from the trashrack to the STS pivot point,
experiences a 0.54 dBs/second rate of sound pressure increase. This increase is from 120-160 Hz.

FUTURE ANALYSIS

This study has characterized the essential sound field experienced by fish approaching and
entering dams on the Columbia River. The importance of these sound features in fish guidance
and diversion requires an understanding of how fish respond to these stimuli. Two steps are being



taken to develop this understanding. First, at the request of the Army Corps of Engineers Portland
District, a literature survey will be conducted to obtain all applicable information on the response of
fish to sound stimuli. Second, a preliminary laboratory study funded by the University of
Washington Applied Physics Laboratory, will be conducted to determine the response of fish to the
sounds of the dams. This study will be conducted in a raceway using rainbow trout
(Oncorhynchus mykiss, formerly Salmo gairdneri).
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Table 1. -- Bypass system configurations of Bonneville First and Second,
McNary, and Lower Granite Projects.
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Table 2. Power generating characteristics at the four projects while measurements were taken.

Turbines Output per Total output
Project running Total cfs turbine (MW) MWw)
Bonneville I 8 88,000 50 400
Bonneville I1 4 61,000 68 272
McNary 11 119,020 66 730
Lower Granite 2 42,200 150 300

Table 3. Water velocities, sound pressure slopes and rates of increase at Bonneville First and
Second, and McNary dams. Velocities estimated from Jensen (1987).

Distance from Distance from Rate of increase
Project Turbine (ft) trashrack (ft) Velocity (ft/s) (dBs/s)
Bonneville | 91 10 1.7 0.19
Bonneville IT 83 10 3.0 0.26
McNary 103 10 1.6 0.09
Bonn II (120-160 Hz) 73 0 1.5 0.54
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Figure 2. -- Cross Section of Powerhouse II, Bonneville Dam.
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Figure 21. -- Comparison of sound spectra recorded at the bypass slot,

trashrack, and down the bulkhead at Bonneville Second (turbine 15,
gatewell B).
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