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Abstract

Optimization Models For Understanding

Migration Patterns of Juvenile Chinook Salmon
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Chairperson of the Supervisory Committee: Professor James J. Anderson
Fisheries Research Institute

There are striking geographical and temporal patterns of juvenile chinook migrations that

are not well understood. Chinook populations that migrate to the sea during their first year

of life—ocean-type populations—predominate in latitudes north of 56° N, while those

migrating later—stream-type populations—predominate south of the Columbia River. In

rivers where these two life history types are sympatric, ocean-types are typically

distributed more coastally than stream-types. Controversy exists over whether these

patterns are the result of postglacial dispersal, or a result of geographical gradients in

natural selection.

In this dissertation, I explore the selective pressures on migration timing of chinook

salmon by using increasingly complex dynamic optimization models. The optimization

models predict that migration distance can strongly influence migration timing, but other

biological and physical quantities are also important. Models also suggest that

geographical patterns of “growth opportunity”per se do not drive age at migration

patterns observed.

A dynamic optimization model reveals two types of optimal behavior that, when

appropriately pieced together, produce an optimal migration strategy. One behavior is

characterized as “feeding and predator avoidance” and the other, “active migration.” The

optimal behavior is determined by the signs of two model-derived “switching functions,”

and the value of the maximum current velocity relative to the swimming speed that

maximizes growth. Optimal strategies determined numerically show that behavior often

switches from initial feeding and predator avoidance, to active downstream migration as

the fish develops and/or during changes in environmental conditions.
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PREFACE

This dissertation contains a succession of increasingly more complex models to describe

the migration patterns of juvenile chinook salmon, focusing on the adaptive significance

of the relationship between age at migration and geographical distribution, and migration

behavior itself. I take the behavioral ecology approach of optimization modelling,

designed to help understand why animals behave as they do. This approach stands in

contrast to those that predict behavior solely on the basis of proximate mechanisms. These

two methods present two different—although related through physiological constraints—

ways to understand juvenile chinook behavior. When held together, they give broader

perspective than either approach alone.

My approach is simple. I develop parsimonious models aimed at capturing thebasic

tradeoffs of different behaviors, respecting certain physiological constraints, where

benefits and costs are measured in terms of survival and reproduction. These simple

models, although frequently attacked for not including all relevant information, harbor the

greatest potential for yielding useful biological insights. Furthermore, in simple models,

components that drive solutions are more easily identified. For example, in CHAPTER 6,

signs of the “switching functions,” which measure the costs and benefits of movement

downstream, determine which of two general behavior types— “feeding and predator

avoidance” or “active downstream migration”— is optimal.



 xx

With the risk of invoking hostility from all quarters, I encroach upon the territory of

researchers working to understanding migration behavior from a particular point of view

shaped by their salmon habitat of interest. However, I believe anintegratedapproach, one

that considers patterns of growth and mortality in streams, rivers, estuaries, and the ocean,

for example, is essential for understanding the adaptive significance of migration timing

and behavior. Would selection favor a seaward migration over a distance of 3,200 km from

the headwaters of the Yukon River if the Pacific Ocean did not harbor tremendous growth

potential?

Lastly, I want to stress that my work does not pretend to explaingeographical and

temporal patterns of migration, and I do not believe that any of the models are “correct,”

nor could they ever be. But I do believe that the models areuseful since they suggest new

hypotheses for migration behavior and suggest experiments for further understanding this

behavior. This is usually the most that can be hoped for when modelling biological

phenomena.

Seattle, October 1994 R. A. Hinrichsen
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CHAPTER 1 INTRODUCTION

1.1  Background

Chinook salmon(Oncorhynchus tshawytscha) and other Pacific salmon species may have

evolved as late as .5 to 1 million years ago (Neave, 1958) or as early as two or three

million years ago (Thomaset al., 1986). They are anadromous and semelparous, like all

Oncorhynchus species, and are distinguished by their large adult size and by their broad

variation in age at seaward migration, length of estuarine and ocean residence, ocean

distribution, and age at maturity. Spawning populations have a geographical range

extending south to California’s Ventura River (34°N) and north to Point Hope, Alaska, and

east to the Mackenzie and Coppermine rivers (Hallock & Fry, 1967; McPhail & Lindsey,

1970; Leeet al., 1980; McLeod & O’Neil, 1983; Taylor, 1990). On the Asian coast, they

range from northern Hokkaido to the Anadyr River (Berg, 1948; Shmidt, 1950; Hikita,

1956; Vronskiy, 1972; Majoret al., 1978).

The downstream migration of juveniles is both “facultative” and “obligatory” in the sense

that it can be initiated by apparent overcrowding, absence of food, abundance of predators,

high flow conditions, or other exogenous factors (“facultative” migration), and also by

their stage of ontogeny or smolt condition (“obligatory” migration) (Baker, 1978).

Smolting is a developmental process characterized by a set of physiological,

morphological, and behavioral changes that prepare salmon for a salt water environment

(Dickhoff & Sullivan, 1987). It is marked by dermal purine deposition (silvery skin),
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osmoregulation, and an increase in thyroid hormones. The rate of smolting varies among

populations for either genetic or environmental reasons, and contributes to variation in the

age and season of migration.

Two early life history types (races) are identified based on age at migration from

freshwater to saltwater (Gilbert, 1913; Clarkeet al., 1992). One race, designated “stream-

type,” spend one or more years as fry or parr in fresh water before migrating to sea. The

second race, “ocean-type”, migrates to sea during their first year of life, normally within 3

months of emergence from spawning gravel (Healey, 1991).

1.2  Literature review of juvenile migratory behavior

The following literature review focuses on studies of juvenile chinook migratory behavior

separated into four categories: migration timing, seasonal migration patterns, diurnal

migration patterns, and stream velocity selection. The first three categories could all be

placed under the heading of migration timing. The questions asked are “In what year after

emergence does the fish migrate?”, “During what time of the year?”, and “During what

time of the day?” Each of these questions is important, for there are many processes,

acting over small to large time scales, exogenous or endogenous, that create hourly,

seasonal, and yearly migration patterns.

1.2.1  Migration timing

There are two important geographic patterns observed in juvenile chinook migration

timing: (1) chinook populations are predominantly “ocean-type” south of the Columbia

River (coastal Oregon rivers and streams, California rivers such as the Sacramento and

San Joaquin Rivers), and “stream-type” north of the Skeena River (56° N.); and (2) in
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rivers where they are sympatric, (e.g. the Columbia and Fraser Rivers), “ocean-type”

populations tend to be distributed in coastal regions, while “stream-type” populations are

distributed inland.

Although these general patterns are quite striking, there are exceptions. For example, the

Hells Canyon reach of the Snake River (located between RK 240.5 and RK 396.6), despite

its distance its long distance from the ocean, is rearing habitat for ocean-type chinook. The

Vernita Bar spawning populations (located between RK 345 and RM 397) on the

Columbia River, are also ocean-type. There are also exceptions to the more northern

distribution of stream-type populations: stream-type chinook populations exist in two

upper tributaries of the Sacramento R. of California—Mill and Deer Creeks (F. Fisher,

Stockton, CA, pers. comm.).

1.2.1.1  Latitudinal gradient

The latitudinal gradient (FIGURE 1.1) has been studied by Taylor (1990), who looked at

the pattern from three points of view: zoogeography, growth, and selection.

Zoogeography. Chinook salmon likely survived the last (Wisconsinan) glaciation in two

main refugia: (i) “Beringia,” a northern region consisting of the lower Yukon and exposed

portions of the Bering Sea and Siberia; and “Cascadia,” defined as areas south of glaciers

west of the Continental Divide (Lindsey & McPhail, 1986; McPhail & Lindsey, 1986).

During deglaciation, chinook dispersed and settled along the Pacific Coast. According to

the hypothesis, “stream-type” chinook persisted in the Beringia, and “ocean-type”, in the

Cascadia, and after deglaciation, they maintained their north-south distribution.
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Growth. Next is the “growth opportunity” point of view. Stream-type chinook are

generally associated with regions of lower growth opportunity than ocean-type chinook.

The north-south temperature gradient contributes to a like gradient in growth opportunity

(i.e. regions to the south present higher growth-opportunity than northern regions). Since

smolting contributes to the propensity for juveniles to move downstream, and smolting is

FIGURE 1.1 Distribution of stream- and ocean-type juvenile chinook salmon life-

histories in the North Pacific (Taylor, 1990). Shading represents the approximate

fraction of each early life-history type. A completely blackened circle represents 100%

stream-type, and an open circle represents 100% ocean-type. The number next to each

circle is the number of populations surveyed. Regions surveyed are (clockwise from

left): Kamchatka R., south-western Alaska, lower Yukon R., upper Yukon R., south-

central Alaska, south-eastern Alaska and northern British Columbia, central British

Columbia, Fraser River, Vancouver Island and coastal Washington, lower Columbia R.,

upper Columbia R., coastal Oregon, and California.
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driven by temperature-related variables such as photo-period and growth, this pattern is

not surprising.

Selection. Selection for size at migration, coupled with selection for migration during

seasonal time “windows,” might promote genetic differences in juvenile life-history.

Locomotor and osmo-regulatory performance are inhibited at low temperatures (i.e., cold

climates north of 56°) (Brett, 1967; Knutsson & Garv, 1976; Beamish, 1978; Webb, 1978;

Virtanen & Oikari, 1984). Therefore, larger smolt size may be selected in the cold

northern environments, because larger smolts have an increased performance benefit

(Brett & Glass, 1973; McCormick & Naiman, 1984; Hargreaves & LeBrasseur, 1986).

This benefit of larger smolt size could lead to longer freshwater residence times in the

north. Age at migration is in part, inherited in salmonids—a condition necessary if

selection is to play a role in shaping it (Rich & Holmes, 1928; Ricker, 1972; Refstieet al.,

1977; Thorpe & Morgan, 1978; Carl & Healey, 1984; Taylor, 1988, 1989a,b).

1.2.1.2  Migration distance gradient

The migration distance pattern observed in migration timing data is quite simple: south of

56° N, longer migrations generally produce longer freshwater residence times (FIGURE

1.2). Two important selection-based factors are thought to explain why this pattern exists

(Taylor, 1990). Larger migration distances, select for large smolt size at migration, due to

(1) increased energetic demands (Gilhousen, 1980; Taylor & McPhail, 1985) and (2)

greater exposure to freshwater predators (Larsson, 1985; Ruggertone, 1986) relative to

short migrations.
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1.2.2  Seasonal migration pattern

Seasonal patterns of migration timing are hypothesized to be based on water velocity,

turbidity, and temperature—correlated factors that likely work together. Observations

show that juveniles tend to migrate with higher stream flows (Mains and Smith, 1964;

Raymond, 1968; Reimers, 1968; Salo, 1969; Wetherall, 1970; Stoberet al. 1973; Becker,

1973a; Anonymous, 1976; Kjelsonet al., 1982); during periods of increased water

FIGURE 1.2 Distribution of stream (darkened fish) and ocean-type (white fish)

chinook salmon life-history types in tributaries of the Columbia River (Taylor, 1990).
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Middle Fork Salmon R.; 14, upper Salmon R.; 15, East Fork Salmon R.; 16, Lemhi R.;

17, Yakima R.; 18, Wenatchee R.; 19, Gray’s R.; 20, Elochoman R.; 21, Klatskanie R.;

22, Methow R.; 23, lower Wenatchee R.; 24, Klickitat R.; 25, Washougal R.; 26, Gray’s

Harbor; 27, Cowlitz R.; 28, Columbia R. (Vernita Bar); 29, Snake R. (Hells Canyon

Reach).
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turbidity (Junge and Oakley, 1966); and with fluctuations in water temperature (Mains &

Smith, 1964; Becker, 1973b). Downstream movement of fry is typically greatest between

February and May, and is earlier in more southern populations (Healey, 1991).

1.2.3  Diel migration pattern

Natural light intensity appears to be the major environmental factor controlling diel

migration patterns of salmonid fry (Mains & Smith, 1964; Smith, 1974;Godin, 1982).

Studies on diel movements abound, and do not show consistent results, but the majority of

the studies demonstrate that chinook juveniles migrate mostly at night (TABLE 1).

One selection-based hypothesis that can explain this diurnal pattern is that juveniles

migrate mainly at night to avoid predators (Neave, 1955). If migrating during the

nighttime confers a fitness advantage, then we should look for mechanisms that produce

the behavior. Nighttime movement has been described as “passive” by some, the idea is

that movement is a result of loss of visual contact with surroundings (McDonald, 1960), or

a reduction of rheotactic response (Hoar, 1953). However, Daubleet al. (1989) suggests

that migration is not controlled solely by passive mechanisms.
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TABLE 1.1 Summary of diel observations of juvenile chinook salmon in various

Pacific Northwest Rivers (Ledgerwoodet al., 1991).a

Race Location Time of Largest Catch Source

stream Central Ferry Bridge
(Snake R.)

At night between 0300 and
0600h.

Mains & Smith 1964

stream Byer’s Landing At night. 70%between 1800 and
0600h.

Mains & Smith 1964

stream John Day (Columbia R.) During daylight between 0700
and 2100h.

Simset al. 1976

stream Lower Monumental
(Snake R.)

At night (92%). Smith 1974

stream Mayfield (Cowlitz R.) At night. 92% between 2000 and
0800h.

Allen 1965

stream Upper Mayfield (Cowlitz R.) At night. Smithet al. 1968

stream North Fork (Clackamas R.) At night. Kornet al. 1967

stream Rocky Reach (Columbia R.) At night. Leman 1978

stream John Day (Columbia R.) At night (92%). Simset al. 1976

stream The Dalles (Columbia R.) At night. 94% between 1900 and
0700h.

Long 1968

stream The Dalles (Columbia R.) During daylight. 89% between
0700h and 2100h.

Simset al. 1976
Nichols 1979

stream The Dalles (Columbia R.) During daylight. Nichols 1979

stream Hanford Reach (Columbia
R.)

At night. Peak between 2200 and
0400h

Daubleet al. 1989

ocean Puget Island and Jones
Beach (Columbia R. estuary)

During daylight. 90% between
0600 and 2100h.

Dawleyet al. 1986

ocean Sixes R. (Oregon) At night. Reimers 1973

ocean John Day (Columbia R.) During daylight. Simset al. 1976

ocean John Day (Columbia R.) At night (88%) Sims and Ossiander
1981

ocean The Dalles (Columbia R.) At night. 67% between 1900 and
0700h.

Long 1968

ocean The Dalles (Columbia R.) During daylight. Simset al. 1976
Nichols & Ransom
1980

ocean The Dalles (Columbia R.) During daylight. Nichols & Ransom
1980

ocean Skagit River (Washington) At night. Peak between 2000 and
0300h.

Davis 1981

a All sources except Dauble et al. (1989) and Davis (1981) are included in the Ledgerwoodet al. (1991) analysis.
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1.2.4  Current velocity selection

Despite the wide variation in migration timing observed among chinook populations, there

appears to be one feature that is consistent throughout their range: larger fish are usually

associated with swifter currents than smaller fish (Chapman & Bjornn, 1969; Lister &

Genoe, 1970; Wickmire & Stevens, 1971; Everest & Chapman, 1972; Schaffter, 1980;

Allen & Hassler, 1986; Dauble et al., 1989). Swifter currents typically have a greater food

delivery rate ( ), and can carry greater feeding opportunity for the juveniles (Elliot,

1967; Everest & Chapman, 1972; Fausch, 1984). As a trade-off, adjacent velocities

selected by the fish may also be swift, requiring a greater energetic investment to feed

(Jenkins, 1969; Fausch, 1984). Furthermore, the faster currents—typically located

midstream—may bring a higher predation risk than slower, inshore currents. This

underscores a trade-off inherent in many ecological processes: the trade-off between

growth and the risk of predation.

From an adaptationist’s viewpoint, the relationship between current velocity and size may

be favored by natural selection. Smaller fish may be more vulnerable to predators, and

increase survival changes by remaining in slower moving currents often associated with

cover (Solomon, 1981). A social hypothesis is also possible. The larger fish are likely

more socially dominant than the smaller ones (Newman, 1956; Kalleberg, 1958; Jenkins,

1969; Bassett, 1978), and may defend territories containing the swifter currents,

presumably because such territories offer greater food delivery rates.

cal s 1−⋅
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1.3  Optimization modelling approach

1.3.1  Migration timing

Some researchers, taking an adaptationist’s viewpoint, have recently developed an

optimization model to describe the relationships between initial length, survival and

growth in fresh and salt water, and migration timing (Bohlinet al., 1993a; Mangel, 1994).

Bohlin et al. (1993a) argue that

“If fish migrate to increase growth rate and thereby fecundity
(Gross, 1987), and if postmigratory mortality is negatively size
dependent, then the benefit of early migration would be faster
growth (as a result of longer time spent in the more productive
environment), and the cost would be increased mortality (as a result
of smaller body size at migration). The optimal migration time may
therefore be the date at which the profit (benefit minus the cost) is
maximized … The individual optimal might be predicted from life
history theory by assuming that natural selection tends to favour
reaction norms which maximize the lifetime fitness or reproductive
value.”

This problem can be described mathematically by representing the profit or “fitness” as

the log of lifetime reproduction, where lifetime reproduction is the product of pre-

migratory survival, the survival after the onset of migration, and fecundity, then

determining the effect of a marginal increase of age at migration. At the optimal age at

migration, the marginal change in profit is zero. The problem allows for both immediate

and future ramifications for decisions. So, for example, migrating out of freshwater during

a period of increased predation is not necessarily optimal, because the migration may lead

to even worse predation along the migratory route, or in the estuary or ocean. The problem

can be viewed along a time continuum, where at each moment, a fish makes the decision

to remain in freshwater, or begin its seaward migration. The point at which migration
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optimally begins is the time when the marginal benefit of delaying migration outweighs

the marginal costs (FIGURE 1.3).

Similar approaches have been used to predict habitat shifts of bluegill (Gilliam, 1982;

Werner & Gilliam, 1984). In fact, prediction of migration timing amounts to a habitat shift

problem. Gilliam’s (1982), chief result is that given the choice of two habitats (e.g.,

freshwater and ocean habitats), with growth and mortality rates, , ; and ,

respectively, a juvenile optimally chooses the habitat of maximum  (FIGURE 1.4).

This “rule” or result, however, assumes that growth rates and mortality rates do not

FIGURE 1.3 The optimal age at migration occurs when the marginal immediate costs

equal the marginal future profits. Migration prior to the optimal time, though it brings

higher pre-migratory survival, brings with it a low future profit due to high migration

and ocean mortality. Migration after the optimal time, though it brings lower migration

and ocean mortality, brings higher pre-migratory mortality and lower fecundity

(presumably because of forgone ocean growth).
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depend explicitly on time, and so must be used with caution. Although the Bohlin model

does not predict the same “rule,” it gives consistent qualitative results: all else being equal,

the larger , the longer a juvenile should wait before making a transition from freshwater

to saltwater, and the higher , the earlier a juvenile should migrate.

Can the three models (Mangel, Bohlin and Gilliam) be used to explore the yearly,

seasonal, and daily patterns of migration? Each has its advantages and disadvantages

(TABLE 1.2). Since Gilliam is not time-explicit, it is questionable whether it can address

FIGURE 1.4 Fitness and the ratio of growth rate to mortality rate for the freshwater

and ocean environments (here it is assumed that migration mortality is incorporated

into the ocean mortality function). t* is the time when a habitat shift from freshwater to

the ocean maximizes fitness. Notice that it corresponds to the point where the

freshwater and ocean ratios of growth rate to mortality rate intersect. This graph is

based on the approach of Gilliam (1982).
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any of the questions adequately, since seasonal temperature is known to strongly influence

patterns of growth and mortality. Let us assume that when considering yearly averages of

growth and survival, it can be used to predict year of migration. Then all three can predict

year of migration, only Bohlin can predict within-year migration timing, and none are

appropriate for predicting daily migration pattern.

How well do these models predict the relationship between migration timing and latitude?

The Bohlin and Gilliam models predict that delayed migration of northern chinook stocks

is not a result of freshwater growth alone. They predict that poorer growth in the north

should result in earlier migration of northern populations! They also predict that delayed

migration in the north can only be a result of (i) poorer ocean or migration survival for

northern juveniles, (ii) poorer pre-migration survival of southern stocks, or (iii) better

marine growth for southern populations. Of the three possibilities, (iii) is unlikely, while

(i) and (ii) are plausible. Note that these hypotheses are not mutually exclusive, and all can

act together to shape behavior.

TABLE 1.2 Model descriptions.

Model Time Horizon
Migration
Timing

Fitness
Criterion

State
Variable(s)

Time explicit
growth and
survival?

Bohlin fixed, 1 year Continuous Weight at end

of year

Weight yes

Mangel freea Discrete

(specific time

of year)

Expected

Reproduction

Weight or

Length

yes

Gilliam infinite Continuous Expected

Reproduction

Weight (size) No

a “free” indicates that the final time is free to be varied in the optimization.
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Mangel (1994) showed, in his analysis of young atlantic salmon migration timing, that

increasing “food utilization efficiency,” a scaling factor of both ocean and freshwater

growth rates, could lead to earlier migration. However, more model runs are required to

determine how freshwater and ocean survival and growth, varied independently, influence

migration timing, and if it can predict the observed relationship between migration timing

and latitude.

Do the models predict that of the chinook stocks located on the Columbia or Fraser River,

coastal populations migrate prior to inland populations? Assuming that size specific ocean

growth and survival are the same for upstream and downstream populations, the Bohlin

and Gilliam models could agree with the migration pattern if (i) size-specific migration

survival is poorer for upriver populations, or (ii) size-specific pre-migration survival is

better for upriver populations. Both of these scenarios are plausible, and (i) is especially

likely considering that upstream salmon probably encounter a greater number of

freshwater predators during their seaward migration. Considering the importance of (i)

and (ii), there is a need to show how freshwater survival changes explicitly as a function of

migration distance and its correlated variables such as current velocity, temperature, and

predation. Unfortunately, none of the three models treat migration distance explicitly.

1.3.2  Current velocity selection models

The problem of current velocity selection can also be approached through optimization

modeling, as one of optimal microhabitat selection. The most promising models consider

not only growth (Fausch 1984), where the usual approach is to maximize rate of energy

gain, but also survival (Gilliam 1982; Clark & Levy 1988; Leonardsson, 1991). A given
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current velocity choice may be profitable for feeding, but may also be more dangerous.

The degree of profit or danger depends on the size of the individual (Werner & Hall, 1988;

Bugert & Bjornn, 1991; Bugert et al., 1991). Gilliam’s model once again is applicable to

stream velocity selection, if we partition the river cross-section into regions of differing

stream velocities, so that a finite number of mutually exclusive regions are defined, each

having an average current velocity. Typically midstream habitats will have higher current

velocity than habitats near shore.

How well can existing models predict the movement of salmon in to faster currents as they

grow? Let us first assume that the most profitable stream positions, those maximizing

potential growth, are associated with faster currents, and the “safest” regions are in

nearshore areas, associated with slower currents. Then smaller juveniles, being more

vulnerable to predators would likely forego the more profitable growth positions in favor

of cover nearshore. As they grow, predation risk diminishes, and the juvenile can move

into faster, more profitable currents. Gilliam’s model could predict such a shift since it is

based on maximizing  (FIGURE 1.5).g µ⁄
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1.4  Research questions and problems

The literature abounds with observations and patterns concerning the early life history of

chinook salmon. Observations show latitude and migration distance patterns of migration

timing, and seasonal and diurnal patterns as well. Now that much data on the early life

history of chinook has been tabulated and general patterns recognized, the time is ripe to

ask the question, “What accounts for these patterns?” This question brings us to the realm

of behavioral ecology. I will strive to view the question in two ways: “What survival or

reproductive benefit does the behavior hold” (the adaptationist’s question); “What

mechanism accounts for the behavior.” (the mechanist’s question). The bulk of this work

focuses on the adaptationist’s question, and in the case of migrating salmon, is less studied

than mechanisms.

FIGURE 1.5 Fitness and the ratio of growth rate to mortality rate for the slow current

and swift current habitats.ws is the size at which a habitat shift from slower to faster

currents maximizes fitness.

g1

µ1 g2

µ2

Weight

slower current

faster current

ws



 17

The approach I take is to derive migration behaviors based on maximizing a measure of

lifetime salmon fitness, and compare these simulated behaviors to actual observations.

These behaviors are derived independently from the known behavioral mechanisms

(smolting and ontogenetic switch from positive rheotaxis to negative rheotaxis), but are

later compared to the known mechanism induced migration behavior. My hope is that the

behaviors produced by the selective pressures acting in the fitness optimization, match the

behaviors produced by known mechanisms, giving an independent understanding of

behavior that is lacking. This more general approach—looking at behavior from more than

one point of view—was advocated by Tinbergen (1963). In reality, however, it is only

through the physiology of the salmon and the mechanisms of behavior, that salmon could

achieve the optimal solutions predicted by the fitness model. Therefore, ultimately, the

survival and reproductive value of behavior must be considered together with mechanisms

to fully understand why salmon behave as they do.

Specifically, I will address the following behavioral questions:

1. What accounts for the relationship between early life history type and latitude? (i.e.

why are ocean-type chinook associated with lower latitudes (the Oregon coast and Cal-

ifornia), and the stream-type chinook with higher latitudes (greater than 56°N)?).

2. In rivers where both ocean- and stream-type chinook are present (i.e the Fraser R. and

the Columbia R.), why do ocean-type typically inhabit the lower reaches, while stream-

type inhabit the upper reaches?

3. Why do chinook salmon typically begin their seaward migration between the months of

February and May?

4. Why do chinook juveniles migrate mostly at night?
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5. Why do juveniles typically move from regions of slower to swifter stream currents as

they grow?

Chapters 2 and 3 address questions (1) and (2), and static optimization models are

constructed to account for selective pressures that shape migration timing. Sensitivity

analyses are preformed to observe how migration timing varies with both freshwater

“growth opportunity” (related to latitude), and migration distance. Other model

parameters are varied to examine whether the models yield sensible results.

Chapter 4 introduces seasonality into an model. Seasonality is shown to affect both the

time of year and year of migration. Hence life history type (ocean- or stream-type) may be

influenced by seasonal fluctuations of temperature and its related variables: growth

opportunity, predation, and stream velocity.

In Chapter 5, I develop an optimal control model that is able to address both seasonal and

diurnal migration timing, (3) and (4), as well stream velocity selection, (5). This model

treats swimming velocity and current velocity as control variables (also known as decision

variables). The sum of these variables gives migration velocity. The advantage of this

model over the previous models, is that migration and feeding decisions are made on a

continuous basis, and—in this respect—is more realistic.

Chapter 6 outlines the model analysis, and gives the basic mathematical results along with

their biological interpretation. The importance of the “switching functions” is discussed,

and is described in terms of the marginal increase in fitness with respect to displacement.

Two important behaviors are identified that comprise an optimal migration strategy, and
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fall into the categories of (a) predator avoidance and feeding, and (b) active migration.

These results are quite general.

In Chapter 7, fluctuations in light intensity and current velocity are considered. Their

influence on the optimal migration strategy is quantified by comparison to a simplified,

autonomous (time does not enter the differential equations explicitly) version of the

dynamic optimization model.

Appendix D contains outlines of the algorithms used to construct numerical solutions to

the dynamic optimization model. The other appendices contain detailed information on

model analysis I deemed too technical to be included in the main text.



CHAPTER 2 A HEURISTIC MODEL OF AGE
AT MIGRATION

A heuristic model of optimal age at migration developed in this chapter includes

numerous simplifying assumptions, but strives for general biological insight. The

advantage of such assumptions is that parameter sensitivity can be obtained over an entire

parameter range without resorting to numerical schemes. Also, the resulting optimization

problem will be straightforward: static and one dimensional. However, the disadvantages

can be many, depending on the specific question asked, and it is possible to “get the right

answer for the wrong reason.” The more complex models developed in later chapters are

designed to expose some of these errors.

Why use a simple heuristic model, when a more complex one may better capture reality?

One reason is that the results of complex models can be difficult to interpret. The heuristic

model is developed to build intuition about the survival and reproductive tradeoffs

associated with several habitat variables including stream velocity, migration distance,

temperature, and growth. The more complex models of later chapters do not reveal their

secrets easily—even though general relationships may exist, they are difficult to uncover.

A simple model may offer insight into these more complex and mathematically

cumbersome models. Where the complex models appear to give a “counter-intuitive”

result, a heuristic model may show that the result follows from basic assumptions.
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2.1  Model Development

The model contains parameters and state variables included to address questions about

latitude and migration distance gradients in age at migration. It consists of two state

equations, governing the change in weight and migration distance; a control or “decision”

parameter—age at seaward migration; and a fitness measure—expected reproduction. For

simplicity, I assume that a juvenile has a very straightforward migration strategy: (i)

initially it holds station, swimming against the river current; (ii) at some unspecified time,

known as the age at migration or the “switching time,” , the juvenile migrates seaward

in an average river velocity , and with average swimming velocity, ; (iii) the fish

matures and returns to spawn at a fixed time, . One important feature of this model is

that migration distance enters explicitly, and it will therefore be possible to predict

changes in optimal age as a function migration distances. Also, depredation is size-

dependent and the benefits of delayed migration (increased migration survival) and the

benefit of earlier migration (increased ocean growth) are both present.

tm

u v

ts
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TABLE 2.1 Assumptions of the heuristic model.

Assumption

Both ocean and freshwater growth are exponential

Temporal fluctuations of the environmental variables temperature, current

velocity, predator density and search velocity, food abundance are

ignored

Spawning time is fixed

Ocean survival is constant

Migration velocity is constant

Capture probability is a decreasing function of salmon weight. A

predator’s likelihood of capturing a juvenile decreases with increasing

juvenile weight

Freshwater mortality is a result of depredation alone

TABLE 2.2 Heuristic model summary.

Maximize:

Subject to:

tm
J tm( ) ẋ ζ+( ) θk w( ) dt

tm

tm a z⁄+

∫−= µdt

tm a z⁄+

ts

∫− w to( )( )log+

ẋ 0
z

{= if
if

0 t tm<≤

t tm≥

ẇ
r fw
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= if
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0 t tm a z⁄+<≤
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2.1.1  Growth

In freshwater and in the ocean, growth is exponential with parameters  and

respectively. Although exponential growth is unrealistic, the growth functions are

mathematically convenient, each utilizing a single parameter only. Since growth is much

greater in the ocean, I assume that . The freshwater growth equation is

 with solution , where , (2.1)

and the ocean growth equation is

 with solution , where . (2.2)

TABLE 2.3 Heuristic model variables and functions.

variable or
function definition

variable or
function definition

time age at migration

freshwater growth rate spawning time

migration distance objective function

predator density weight

ocean mortality rate downstream displacement

predator search velocity capture probability

migration velocity freshwater survival probability

ocean growth rate ocean survival probability

expected fecundity

t tm
r f ts
a J tm( )
θ w t( )
µ x t( )
ζ k w( )
z Sf t( )
ro So t( )
R tm( )

r f ro

ro r f>

ẇ r fw= w t( ) w0exp rft( )= 0 t tm≤ ≤

ẇ row= w t( ) w0exp rftm( ) exp rot( )= tm t ts≤<
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2.1.2  Survival

Freshwater survival is based on predator encounter rate and capture probability. The

predator encounter rate is a product of predator density, , and the sum of migration

velocity, , and predator search velocity, :

. (2.3)

I assume that during station holding, , and during migration , where  is the

sum of swimming and current velocity, hereafter called the migration velocity.

The capture probability, , is assumed to decrease with weight (i.e., as the juvenile

grows it becomes less susceptible to predators). Assuming that the probability of death

due to predation in a time interval of length  is

, (2.4)

the probability that the fish is alive at time , during freshwater residence, is

. (2.5)

Assuming a constant ocean mortality rate, , ocean survival is given by

, where . (2.6)

Although ocean mortality rate is known to vary with size, this relationship is ignored.

Fortunately, the selective pressure for larger size at migration is still present in the capture

θ

ẋ ζ
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probability function, which can be modified to include early ocean mortality. Since

freshwater depredation is most severe during migration, it may be optimal to delay

migration until the juvenile is sufficiently large to escape high predation risk.

2.1.3  Fitness measure

The fitness measure is expected reproduction, , where  is the probability of

survival from emergence to spawning, and  is the number of eggs produced by a female,

assumed to be directly proportional to spawning weight, . Expected reproduction

may therefore be written as

. (2.7)

Although the scalar multiplier of spawning weight that yields the egg number has been

ignored in (2.7), the optimal age at migration is unaltered by its absence.

2.1.4  Objective function

It is easier to work with the log of expected reproductive success than expected

reproductive success itself,

(freshwater) (2.8)

(ocean)
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, (fecundity)

where  is the objective function. The goal is to maximize this objective function with

respect to the age at migration, .

2.2  Necessary conditions

In the usual way, I approach the optimization problem by finding first and second order

necessary conditions satisfied by an optimum. There are three possibilities for an optimal

age at migration, : either it lies at one of the points  or , or it lies somewhere

between these points. In the latter case, the conditions , and

 must hold, where

, (2.9)

and .(2.10)

Although much can be said about these equations without specifying an explicit form of

the capture probability function (See “More general sensitivity results” on page 51), it is

instructive to present two examples, incorporating different functions , and explore

their salient, and potentially different features. The analysis will proceed by identifying

the optimal age at migration as a function of model parameters, then varying the

parameters to gauge the “sign” of their effect. The “sign” of an effect is deemed positive if

increasing the parameter produces an increase in age at migration, and negative otherwise.
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Of particular interest are the effects produced by varying the distance traveled to the ocean

and the freshwater growth rate. Do the parameter sensitivities qualitatively match the

observed patterns of geographical distribution (i.e. younger age at migration for shorter

migration distances, and delayed migration for slower growing fish)? The results must be

interpreted cautiously, since the sensitivities conducted do not generally consider

covariation among the parameters. The sensitivities are conducted by varying one

parameter, while holding the rest constant.

2.2.1  Example 1

In the first example I assume that the capture probability function is inverse to weight,

, and that the initial weight is , . The second order necessary

condition is

, (2.11)

.

The second derivative of the objective function is therefore nonpositive only when

.

The first order necessary condition is

,

yielding an optimal weight at migration of
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. (2.12)

In this case, the spawning time parameter,  has no influence on the optimal migration

timing. This peculiarity will also be found in “More general sensitivity results” on

page 51, and is an artifact of the exponential growth functions and assumed concavity of

fitness function (with respect to ). Notice that, by (2.12), except for the freshwater

growth parameter, if increasing a parameter produces a positive (negative) effect on

optimal weight at migration, , then it will also have a positive (negative) effect on

optimal age at migration. I use the results frequently in the sensitivity analyses (TABLE

2.4).

2.2.1.1  Effect of migration distance

By examining the first and second derivative of the objective function, I deduce that

increasing  favors a delayed outmigration. When  is less than

, the fitness function decreases with outmigration timing,

TABLE 2.4 Parameter effects (example 1).

parameter effecta

freshwater growth rate, + or -

migration distance, +

predator density +

ocean mortality rate, +

predator search velocity, -

migration velocity, + or -

ocean growth rate, -
a It is possible that the effect of the given parameter is 0

or has the indicated sign.
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ã z rf⁄( ) z z ζ+( )⁄( )log−=



 29

and the optimal choice is immediate migration. When the migration distance exceeds ,

the second derivative of the objective function is negative, and immediate migration is

favored whenever

, (where ); (2.13)

otherwise, delayed migration is favored. Note that when  is only slightly larger than

 (relative to ), then  is large, and the optimal strategy for all

realistic values of  is immediate outmigration. When  is much greater than

 (relative to ), then immediate migration is favored only for short

migration distances.

The critical migration distance increases with ocean growth rate and predator search

velocity; and it decreases with predator density, ocean mortality and freshwater growth

rate. The influence of migration velocity on the critical migration distance is more difficult

to determine.

As  gets larger, the optimal migration timing  reaches a limit, namely

. (2.14)

The effect of varying the migration distance is summarized below (FIGURE 2.1):
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• For migration distances smaller that a critical distance, , selection favors

immediate migration. This critical distance increases with ocean growth rate and

predator search velocity, and decreases with predator density, ocean mortality and

freshwater growth rate.

• As migration distance increases above the critical distance, delayed migration is

favored, and migration timing increases with migration distance. As migration distance

becomes large, the optimal migration timing approaches .

FIGURE 2.1 Optimal migration timing is an increasing function of migration

distance. For short migration distances (a < acrit), outmigration is immediate. As

migration distance increases, optimal migration timing approaches a maximum.
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2.2.1.2  Effect of migration velocity

Migration velocity has a more complicated effect. Increasing the velocity does not reduce

the number of encounters due to the juvenile’s movement, butdoes decrease the number

of encounters due to active predator searching. To gauge how this effects migration

timing, I examine the marginal change in migration timing with respect to migration

velocity:

. (2.15)

I am interested in values of  that make the numerator zero, (i.e., where ). This

occurs where

. (2.16)

A plot of (2.16) shows that there are two possibilities: (a) when predator search velocity is

less than or equal to , an increase in migration velocity produces later migration; (b)

otherwise, there is a critical migration velocity below which an increase in migration

velocity produces later migration, and above which an increase in migration velocity

produces earlier migration (FIGURE 2.2).
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2.2.1.3  Effect of freshwater growth

The influence of freshwater growth is also more complex than that of migration distance.

Migration timing may either increase or decrease with freshwater growth, depending on

the values of the parameters. I strive to partition the parameter space into regions where

migration time increases, decreases, and shows no effect.

For sufficiently small values of , the objective function has negative slope over all points

, and therefore, immediate outmigration is optimal.

FIGURE 2.2 For predator search velocities less thanarf/2, an increase in migration

velocity results in later migration. When predator search velocities exceedarf/2, there

is a critical migration velocity, below which increasing migration velocity results in

later migration, and a above which, increasing migration velocity results in earlier

migration. When predator search velocity and migration velocity fall above the dashed

curve to the upper right, migration is immediate.
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As  increases beyond a critical value , migration is delayed. This critical growth rate

satisfies the equation

, (2.17)

guaranteed to have a positive solution whenever  (this is true since I assumed

that , and  are both positive).

The critical freshwater growth rate increases with ocean growth rate and predator search

velocity, and decreases with ocean mortality rate and migration distance. The influences of

predator density and migration velocity are more difficult to determine.

The derivative of  with respect to  is given below.

(2.18)

Setting this quantity equal to zero, and solving for  produces

(2.19)

The function on the right of the above equation (viewed as a function of ) has two

vertical asymptotes: one at  and the other at .
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As the freshwater growth, , decreases toward , the R.H.S. of

(2.19) approaches , and when  increases toward , it also approaches

(FIGURE 2.3).

The results of this analysis are summarized in the three observations below (FIGURE 2.4):

• When freshwater growth rate is small, immediate migration is favored, because

remaining in freshwater at a small size leads to higher mortality, and the fish must

forego some ocean growth. Increasing the freshwater growth rate at this low level

exerts greater pressure to take advantage of growing before enduring predation during

migration; therefore, .

FIGURE 2.3 The curve above represents the values of predator density and freshwater

growth rate that give zero marginal change of age at migration with respect to

freshwater growth. Large values of predator density (above the curve) give a negative

marginal change, small values (below the curve), a positive marginal change.
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• When freshwater growth rate is sufficiently large (close to ocean growth rate− ocean

mortality rate), there is little or no advantage of migrating to the ocean, and lifetime

freshwater residence is best. Increasing the freshwater growth rate at this high level

exters greater pressure to stay in freshwater, therefore, .

• For intermediate values of freshwater growth rate, neither immediate migration or

lifetime freshwater residence is favored. The fish leave earlier to take advantage of a

longer ocean growth period, and leave at a larger weight (meaning better freshwater

survival). Increasing freshwater growth rate from this intermediate value favors earlier

outmigration.

dtm* drf⁄ 0>
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2.2.1.4  Effect of temperature

Knowing the effect of temperature hinges on knowing the relationship between the

temperature and the model parameters, and the relationship between these temperature-

influenced parameters and optimal age at migration. Freshwater temperature influences

the freshwater growth rate and the predator search velocity, and can have a strong effect

on the optimal migration timing. When food is scarce, increasing temperatures lead to a

decrease in growth rate due to high metabolic costs, that the fish is unable to offset with a

higher consumption rate. In a food rich environment, however, increasing temperatures

FIGURE 2.4 Optimal migration timing as a function of freshwater growth rate. For

small freshwater growth rates (less thanrcrit), immediate migration is favored. When

freshwater growth rate approachesro − µ, a lifetime freshwater residence strategy is

favored. For intermediate freshwater growth rates, an increase in freshwater growth

leads to earlier migration.
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may lead to a higher consumption rate that surpasses the metabolic costs, leading to a

higher growth rate. When the temperature is too high, it is lethal. Increasing the freshwater

temperature increases the predator search velocity, which in turn favors an earlier

migration (TABLE 2.4). Based on these two parameters, freshwater growth and predator

search velocity, it is clear that the sign of the effect of temperature can be either positive or

negative depending on thelevel of these parameters, and whether an increase in

temperature leads to an increase or decrease in freshwater growth (FIGURE 2.5). Other

factors influenced by temperature include migration velocity (a function of swimming

performance and current velocity) and predator density, and these must be included for a

comprehensive treatment of the influence of temperature.
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2.2.1.5  The effects of other parameters

The only parameters that do not show a monotonic effect on migration timing are

freshwater growth rate and migration velocity. An increase in predator search velocity or

an increase ocean growth rate make earlier migration more favorable. The former makes a

longer freshwater residence time more costly due to decreased freshwater survival, and the

FIGURE 2.5 Isoclines of optimal age at migration. Below the dashed curve, age at

migration declines with increasing freshwater growth rate; above the dashed curve, it

increases. An increase in temperature produces a change in freshwater growth rate, ∆rf,

in predator search velocity,∆ζ > 0, and hence in migration timing∆tm*. ∆tm* < 0

whenever∆ζ is large enough relative to∆rf. ∆tm*< 0 is guaranteed whenever

(∆tm* /drf) ∆rf < 0 (see A and B above, the arrows represent the vector (∆rf, ∆ζ)).
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latter makes the ocean more attractive. Increasing migration distance, predator density,

ocean mortality rate, makes a delayed (not immediate) outmigration optimal.

2.2.2  Example 2

It is not clear how robust the above sensitivity results are with respect to the choice of

capture probability function. To examine robustness, I select a different capture

probability function, and see how the sensitivity results compare with the first example

(TABLE 2.5). This process, although it does not represent an exhaustive treatment, can

offer some insight, especially in the case where the resulting sensitivities differ from the

previous. For this second example, only the capture probability function will change—all

other model characteristics will remain the same (see TABLE 2.1 & TABLE 2.2).

Sensitivity analysis for a wider class of capture probability functions will be explored in

the next paragraph (See “More general sensitivity results” on page 51).

TABLE 2.5 Parameter effects (example 2).

parameter effecta

freshwater growth rate, + or -

migration distance, +

predator density +

ocean mortality rate, +

predator search velocity, -

migration velocity, -

ocean growth rate, -

spawning time, -
a In all cases, it is possible for the effect to be 0, or to

have the given sign.

r f
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ts
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Let , and assume , so that the function remains between

and  as a true probability. The second derivative evaluated at this capture probability

function is

, (2.20)

demonstrating that  is a linear function of age at migration. This leaves three possibilities

for an optimal strategy, depending on the slope of the line:

(i) Immediate migration, , if the slope is negative,

(ii) Lifetime freshwater residency, , if the slope is positive,

(iii) Migration at ny age 0 and , if the slope is zero.

I proceed by building an indicator function whose sign determines the optimal migration

timing, namely . When the indicator function, , is positive, then

, when it is negative, then .

(2.21)

Assuming that , we obtain
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. (2.22)

To insure that , I stipulate that

. (2.23)

I also must assume that the duration of the ocean-ward migration is less than or equal to

the life-span of the fish,i.e.,

. (2.24)

2.2.2.1  Effect of migration distance

As in example 1, age at migration increases with migration distance. Migration distance is

allowed to vary between  and  only, so that constraint (2.24) is satisfied.

Migration distance zero. When the migration distance is zero, the indicator function is

,

a parabola in  which is negative between  and , and positive for ,

where

. (2.25)
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Using (2.23), and the assumption that ocean growth rate exceeds the sum of the ocean

mortality and freshwater growth rate, (i.e., ), the spawning time is

guaranteed to lie between 0 and , and therefore the indicator function is negative, making

immediate migration optimal.

Migration distance at maximum. When , the indicator function is

,

making lifetime freshwater residence the optimal strategy.

General relationship. In general, the indicator functions defines a parabola in  that opens

downward, with its vertex at a value too great for  to attain under constraints (2.23) and

(2.24), namely

.

Thus, the indicator function is monotonically increasing from , where immediate

migration is optimal to , where lifetime freshwater residence is optimal. For some

migration distance between these two values, , the indicator function is zero and both

strategies are optimal (FIGURE 2.6).

ro µ− r f−( ) 0>

t'

a tsz=

∆J
a tsz= θzts−

r fts
2

1−( )⋅ 0>=

a

a

avertex
z
r f

ro µ− r f−
z ζ+( ) θ 1+=

a 0=

a tsz=

acrit



 43

2.2.2.2  Effect of freshwater growth

Next, I investigate the effect of freshwater growth rate. The indicator function is a linear

function of freshwater growth rate whose slope can be positive, zero, or negative

depending on the value of the parameters. I show that the effect of freshwater growth rate

on age at migration can be positive or negative, depending on the value of migration

distance.

FIGURE 2.6 The indicator function increases with migration distance. Migration

distance is constrained to lie between 0, where∆J < 0, andtsz, where∆J > 0. For values

of the migration distance less thanacrit, immediate migration is optimal; otherwise,

lifetime freshwater residence is optimal. The migration distance at the vertex violates

the constraint ona.
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Null cline analysis. It is helpful to examine the null cline of the indicator function, (i.e. the

values of the parameters making the indicator function zero). Notice that the indicator

function is zero whenever

. (2.26)

The numerator of the R.H.S of (2.26) is positive when , is decreasing and linear in

, and has a root at the point

,

(which is less than , as required by (2.24)).

The denominator of the R.H.S. of (2.26) is a parabola that opens downwards when

considered a function of . When , the denominator is positive, and therefore it has

two real roots: one positive, and the other negative. The positive root is the one of interest,

since migration distance is assumed positive.

There are two possibilities: (a) the root of the denominator exceeds the root of the

numerator, or (b) it does not. In the case of (a) increasing  can have a negligible effect on

migration timing or increase it (FIGURE 2.7). In the case of (b), increasing  can have a

negligible effect on migration timing, or decrease it (FIGURE 2.8).
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FIGURE 2.7 Null cline of the indicator function when the root of the denominator

exceeds the root of the numerator in (2.26). For values of migration distance less than

a1, immediate migration is optimal, regardless ofrf . When migration distance is

betweena1 anda2, immediate migration is optimal for small values ofrf , and lifetime

freshwater residence is optimal for larger values ofrf. When migration distance exceeds

a2, only lifetime freshwater residence is optimal.
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2.2.2.3  Effect of predator density

The indicator function is a linear function of predator density. When predator density is

zero, the indicator function is

,

FIGURE 2.8 Null cline of the indicator function when the root of the numerator

exceeds the root of the denominator in (2.26). When migration distance is less than a1,

immediate migration is optimal; when it is greater thana2, lifetime freshwater

residence is optimal. In both of these cases, changingrf. does not influence the optimal

strategy. However, when the migration distance is betweena1 anda2, increasingrf. can

change the optimal strategy from lifetime freshwater residence to immediate migration

(negative effect).
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and is therefore negative since and both  and  are assumed

positive. Only when the slope of the line defined by  and  is positive, is it possible for

lifetime freshwater residence to be optimal (i.e. ); otherwise, the indicator function

is negative over its entire range, making immediate outmigration optimal over all values

of . Therefore the effect of  on age at migration is either negligible or positive.

2.2.2.4  Effect of predator search velocity

The indicator function is a linear function of predator search velocity, , with slope

.

Therefore, increasing the predator search velocity can only lower the indicator function,

and consequently, has a nonpositive effect on age at migration.

2.2.2.5  Effect of migration velocity

I next examine how increasing the migration velocity, , changes the migration timing.

Considering  a function of ,

. (2.27)

The R.H.S. of (2.27) is a horizontal asymptote of  as a function of . When  achieves

its lower bound of ,
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. (2.28)

To determine the slope of  as a function of , I take the derivative:

.

This equation provides two important pieces of information about  as a function of .

(1) as  decreases to zero, the third term on the R.H.S. dominates, and the derivative is

positive; (2) there is only one value of  satisfying .

Note also that the horizontal asymptote always lies below .

Piecing together these results leaves two possibilities: (a) lifetime freshwater residence is

optimal for all values of  satisfying the constraint  (FIGURE 2.9); and (b) as

increases from , the optimal strategy switches from lifetime freshwater residence to

immediate migration (FIGURE 2.10).
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FIGURE 2.9 The fitness difference as a function of migration velocity. In this case the

horizontal asymptote is positive, and the optimal strategy is lifetime freshwater

residence for all values of migration velocity, z, satisfyingz ≥ a / ts.
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2.2.2.6  Effect of spawning time

The graph of  as a function of spawning time, , defines a parabola that opens

upwards, with its vertex at the point

. (2.29)

 exceeds the upper bound on spawning time, , since the first term on the R.H.S.

of (2.29) is positive, and therefore  decreases for . At the point ,

,

FIGURE 2.10 The fitness difference as a function of migration velocity. In this case

the horizontal asymptote is negative, and the optimal strategy is lifetime freshwater

residence for migration velocities betweena / ts andzcrit. If z exceedszcrit , then

immediate migration is optimal.
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which demonstrates that for small values of spawning time, the optimal strategy is lifetime

freshwater residence. Increasing  to  can lead to two possible outcomes: (a)

remains positive, or (b) it becomes negative. In either case, it is impossible to switch from

the lifetime freshwater residence to the immediate migration strategy by increasing .

Therefore increasing the time of spawning can either produce no effect on age at migration

or decrease it.

2.2.2.7  Effect of other parameters

The remaining parameters ocean mortality, , and ocean growth, , are both linearly

related to the indicator function. The indicator function increases with ocean mortality and

decreases with ocean growth. When  is large enough,  is negative, and when small,

can be either negative or positive. When increasing the ocean mortality rate, the only

possible switch in strategy is from immediate migration to lifetime freshwater residence.

Therefore age at migration increases with ocean mortality and deceases with ocean

growth.

2.2.3  More general sensitivity results

In this more general sensitivity analysis, I focus on a class of capture probability

functions, , that decrease with weight, and produce an optimal age at migration

determined by the equation

, (2.30)

and satisfies (2.10), i.e.
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, (2.31)

where . This general class of capture probability functions includes the

function form example 1, but not example2. Except for the case of the freshwater growth

parameter, , if an increase in the parameter produces an increase (decrease) in , then

it also produces produces an increase (decrease) in . I take advantage of this fact

below.

2.2.3.1  Effect of migration distance

The effect of migration distance on migration timing may be determined by examining the

derivative of the optimal migration weight with respect to migration distance.

Differentiating implicitly in (2.30),

(2.32)

The numerator of the R.H.S of (2.32) is negative since , and the denominator is

negative by (2.10), therefore , and age at migration increases with migration

distance.

2.2.3.2  Effect of ocean mortality

Next I examine how a marginal increase in the ocean mortality rate influences the

migration timing. Differentiating (2.30) implicitly,
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. (2.33)

By (2.10), the denominator is negative, and therefore increasing the ocean mortality

increases the age at migration.

2.2.3.3  Effect of ocean growth

A richer ocean environment should lead to earlier and earlier migration, to take advantage

of increased growth, the following equation shows that this is indeed the case:

. (2.34)

By (2.10), the denominator is negative, making the derivative of the age at migration with

respect to ocean growth negative.

2.2.3.4  Effect of predator density

Increasing predator density increases the predator encounter rate in freshwater during both

station holding and migration. The encounter rate is greatest during migration, and if

predator density is large, delaying migration is the best strategy, as demonstrated below:
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Using (2.30) in the numerator,

. (2.35)

Therefore migration timing increases with predator density.

2.2.3.5  Effect of predator search velocity

Increasing the predator search velocity increases the predator encounter rate due to

predator movement uniformly over the juveniles freshwater residence. Delaying migration

only serves to increase the amount of time the juvenile is at risk in freshwater, and

therefore, an earlier migration is optimal, as demonstrated below:

. (2.36)

2.2.3.6  Effects of migration velocity and freshwater growth

Migration timing does not necessarily change monotonically with either migration

velocity or freshwater growth rate as I discovered in Example 1 above. Their sensitivies

depend on the choice of parameters, and the capture probability function.

2.2.3.7  Effect of freshwater growth on size at migration

Although the sign of the effect of freshwater growth on age at migration is dependent on

the value of the model parameters (See “Effects of migration velocity and freshwater

growth” on page 54), the sign of its effect onsize at migration is easily determined, and
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found to be positive. Taking the derivative of the optimal size at migration with respect to

freshwater growth yields

. (2.37)

This quantity is positive because the denominator is negative by (2.10), and the numerator

is negative because the capture probability function decreases with weight. Therefore

increasing freshwater growth rate increases the optimalsize at migration.

2.3  Summary

The results of this chapter may be summarized as follows: increasing predator search

velocity or ocean growth tends to decrease the optimal age at migration, while increasing

migration distance, predator density, or ocean mortality rate tends to increase the optimal

age at migration. Two of the model parameters, freshwater growth rate and migration

velocity can have either a positive or negative effect on age at migration, depending on the

value of the other parameters. Temperature influences both ocean and freshwater growth

rate, and mortality rates, and since the effect of these variables on age at migration may

counterbalance each other, it is not clear what its net effect is.

Except in the case of freshwater growth, the sign of a parameter’s effect on optimal weight

at migration is the same as the sign of its effect on age at migration (i.e early migration

means smaller weight). Increasing freshwater growth increases optimal size at migration,

but may at the same time,decrease optimal age at migration.
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2.4  Discussion

What insight has been gleaned from this endeavor? One lesson is that some variable’s

influence, (i. e. migration distance, predator density, ocean mortality rate, ocean growth

rate, predator search velocity), on age at migration is easily understood, while others are

not (migration velocity and freshwater growth). Assuming the model correctly identifies

the inherent tradeoffs associated with these variables, variables whose influence in not

easily understood are connected to selective pressures that, in combination, both reward

and punish early migration. For example, increasing freshwater growth diminishes the

cost of early migration, providing an opportunity to begin ocean feeding sooner and with

less cost during migration. On the other hand, delaying migration confers a survival

advantage to the juvenile by decreasing migration mortality. These benefits are in

competition with one another, tugging age at migration in opposite directions, and

depending on the other parameters, either side can win the tug-o-war.

The model does predict an increase in age at migration with migration distance (assuming

all else is equal), but its predictions on latitudinal gradient are less clear. Assuming the

hypothetical relationships between latitude and the parameters in TABLE 2.6, there are

influences of increasing latitude that favor earlier migration with respect to some

parameters (predator density and ocean growth rate), and later migration with respect to

others (ocean mortality rate and predator search velocity). As pointed out earlier a general

pattern of decreasing freshwater growth rate with latitude, could lead to either earlier or

later migration depending on the value of other parameters.
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The “success” of demonstrating an increase in age at migration with migration distance

must be interpreted cautiously, since it applies under the stipulation that “all else is equal.”

In reality, of course, all else is seldom equal, and the relationship between migration and

other model parameters must be understood—especially since local conditions of

temperature, food abundance, current velocity, and predation risk, for example, can

change radically with migration distance.

TABLE 2.6 Latitude and migration timing.

parameter

Hypothetical
Influence of
Latitude on
parameter

Corresponding
influence on age

at migrationa

freshwater growth rate, - ?

predator density - -

ocean mortality rate, + +

predator search velocity, - +

migration velocity, ? ?

ocean growth rate, + -
a A question mark indicates that the sign of the influence is unknown (as predicted

by the model), or no hypothetical relationship was assumed.
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CHAPTER 3 MORE REALISTIC GROWTH
AND FECUNDITY
ASSUMPTIONS

In the previous chapter, I developed a heuristic model which assumed both ocean and

freshwater growth were exponential, and that fecundity was directly proportional to size.

However, in reality, growth is exponential—or at least nearly exponential—only for small

young fish and tapers off as the fish grows. Moreover, fecundity is not usually found to be

proportional to weight, but some fractional exponent of weight (Healey & Heard, 1984).

What is gained by including more realistic assumptions? Analyzing and comparing a

model that includes more realistic assumptions at this point could reveal what results from

the heuristic model hinge on unlikely assumptions. I seek to understand how the

sensitivity results derived in the last chapter hold up when confronted with more realistic

growth and fecundity assumptions.

One of the drawbacks of including these more realistic assumptions is that the

mathematics becomes more complicated. The heuristic model optimization could be

carried out, in most cases, by examining first and second derivatives of the objective

function. Unfortunately, for the objective function in this chapter, derivatives are not

obtainable, and maximization must be accomplished through numerical schemes (Presset

al., 1988). The simpler model revealed parameter sensitivities easily, requiring basic

calculus only, and the influence of parameters could be readily determined over the entire
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range of the parameter space. Here, for practicality, we must settle for knowing a

parameter’s influence over some restricted range of the parameter space.

Again, as in the previous chapter, the main focus will be on the relationship between age at

migration, latitude and migration distance, although the effect of other variables will be

considered as well. The parameter estimates will be based on various literature values or

regressions on data found in the literature when possible; otherwise, reasonable values are

assigned (TABLE 3.2). The maximization scheme used is based on functional values

alone since derivative information is not available (Brent, 1973). It proceeds by fitting

successive parabolas to the objective function, until the optimal age at migration is found

to within a nominal error tolerance. Each objective function evaluation requires

simultaneous numerical integration to determine weight and fitness, these are performed

using either the fourth-order Runga-Kutta or Bulirsch-Stoer method (Presset al., 1988).
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TABLE 3.1 Model assumptions.

Assumptiona

Ocean and freshwater growth functions reflect diminishing returns

Fecundity is proportional to weight at spawning raised to a fractional

exponent

Temporal fluctuations of the environmental variables temperature, current

velocity, predator density and search velocity, food abundance are

ignored

Spawning time is fixed

Ocean survival is constant

Migration velocity is constant

Capture probability is a decreasing function of salmon weight. A

predator’s likelihood of capturing a juvenile decreases with increasing

juvenile weight

Freshwater mortality is a result of depredation alone
a The first two assumptions differ from the assumptions of the previous chapter.
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3.1  Development of more realistic relationships

3.1.1  Ocean growth

Both freshwater and ocean growth equations are assumed to follow a generalized von

Bertalanffy growth model,

, (3.1)

where the R.H.S. represents the difference between anabolism (growth assimilation) and

catabolism (respiration). Theoretically, the exponent  assumes the value , however,

it is instructive to vary this quantity in the upcoming sensitivity analysis. As it varies from

 to , growth varies from the standard von Bertalanffy, which is limited, to

exponential, which is unlimited. Thus, the parameter represents a bridge between ocean

growth in the current chapter (limited growth), to that in the previous chapter (unlimited,

exponential growth).

TABLE 3.2 Model summary.

Maximize:

Subject to:

tm
J tm( ) θ ẋ ζ+( ) k w( ) dt

tm

tm a z⁄+

∫−= µdt

tm a z⁄+

ts

∫− m w ts( )( )[ ]log+

ẋ 0
z

{= if
if

0 t tm<≤

t tm≥

ẇ
gf w( )

go w( )



= if
if

0 t tm a z⁄+<≤

tm a z⁄+ t ts≤ ≤

0 tm ts a z⁄−≤ ≤

ẇ αw
φ βw−=

φ 2 3⁄

2 3⁄ 1
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3.1.2  Freshwater growth

The freshwater growth function I consider here includes, handling time, food density, and

metabolic costs:

, (3.2)

where the first term on the R.H.S. represents rate of energy consumed, second and third

terms represent rate of energy lost to active and standard metabolism respectively (Ware

1978).  represents the food density on the stream surface, and , the width of the

intersection between the reactive field cross section and stream surface. The fraction of the

ration available for work and growth is . The handling time, , is the time required

for a fish to apprehend and consume one calorie of food. The conversion factor, ,

converts calories to grams.

One important characteristic of this growth function is that, like the von Bertalanffy

growth function, growth is limited. As a fish in freshwater grows, it consume more and

more food to offset its increased metabolic demand, otherwise its growth is very poor. The

freshwater environment is relatively poor in food compared with the ocean environment

and growth slows quickly after a boom (if food is available). Assuming the parameter

estimates of TABLE 3.2, as weight becomes large the freshwater growth function is

approximately

,

gf w( )
cτργ w( ) v

1 ργ w( ) h w( ) v+ cα2wβ2vη− cα1wβ1−=

ρ t( ) γ w( )

τ h w( )

c

gf w( ) cτρw0.345v cα2w0.76vη− cα1w0.624−≅
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showing that the exponents of weight for the metabolic terms dominate the exponent of

weight for the anabolic term. Therefore, as weight becomes large, growth tends to zero,

(i.e., growth is limited).

3.1.3  Fecundity

Studies confirm significant fecundity-size relationships within chinook populations

(Galbreath & Ridenhour 1964; Healey & Heard 1984). Theoretically, the fecundity is

TABLE 3.3 Parameters and their estimates.

Parameter Description
Parameter or
Relationship Estimate Data Source

standard metabolism Brett (1965)

Brett (1965)

active metabolism Brett (1965)

Brett (1965)

Brett (1965)

oxycalorific equivalent Webb (1974)

calories to grams conversion

factor

White & Li (1985)

swimming speed Brett (1965)

handling time Ware (1978)

reaction field  m Ware (1978)

food density 1

net food conversion efficiency Brett & Groves (1979)

distance from redd to estuary  km

current speed 1

initial weight  g

capture probability

predator density 1

predator search velocity 115

ocean growth rate Parker & Larkin (1959)

ocean mortality rate .316 Parker (1962)

fecundity Healey & Heard (1984)

cal s 1−⋅( ) α1 3.646584 104−×

β1 0.6239528

cal s 1−⋅( ) α2 3.651952 103−×

β2 0.7609603

η 2.360445

q 3.42 cal mg1−⋅

c 1.6949 104−× g cal 1−⋅

v 0.6 m s 1−⋅

h w( ) 18w 0.69− s cal 1−⋅

γ w( ) 0.02w0.345 π⁄

ρ cal m 2−⋅

τ 0.7

a 613

u m s 1−⋅

w0 3.38

k w( ) w 1−

θ km 1−

ζ km yr 1−⋅

g yr 1−⋅( ) go w( ) 25.870w2 3⁄ 0.7888w−

µo w( ) yr 1−

m w( ) 48.94w0.548
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proportional to the cube of length, and using an allometric relationship, I relate fecundity

to weight through the relationship

. (3.3)

3.2  Parameter effects

3.2.1  Effect of food density

All else being equal, what effect does an increase of food density have on age at

migration? There are two competing points of view:

1. When food density is larger, freshwater habitat is more attractive due to increased

growth potential, and this should lead to delayed ocean migration.

TABLE 3.4 Parameter sensitivity.

parameter parameter range

age at
migration
range (yr.) effect

heuristic
model effect

freshwater food density, 1 to 10 1.0 to 4.5 + + or -a

freshwater swimming

metabolism coefficient,

 to 1.78 to .60 - NAb

freshwater standard

metabolism coefficient,

 to 1.14 to .93 - NA

migration distance, 30 to 1500 km .06 to 2.09 + +

predator density, .02 to 1.0 1.48 to 1.04 - +

ocean mortality rate, 0.00 to 3.16 1.02 to 1.35 + +

predator search velocity, 86.25 to 143.75 1.21 to .90 - -

current velocity, 0 to 3 1.03 to 1.05 + + or -

initial weight, 1.69 to 5.07 1.15 to .94 - NA

spawning time, 2.5 to 7.5 1.00 to 1.05 + +
a Assuming that the effect exponential freshwater growth parameter of the previous chapter may be compared to the

freshwater food density of this chapter.

b NA indicates that no analogous parameter exists in the heuristic model, or it does exist but was not varied.

m w( ) amw
bm=

ρ cal m 2−⋅

α2

1.826 103−× 5.478 103−×

α1

1.823292 104−× 5.469876 104−×

a

θ km 1−

µ yr 1−

ζ km yr 1−⋅

u m s 1−⋅

w0 g

ts yr
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2. When food density is larger, a juvenile will grow faster, outgrowing its predators more

quickly. The juvenile optimally migrates earlier to take advantage of a longer ocean

growth period.

Both of these hypotheses are short-sighted, and do not consider all of the factors at play.

The first neglects the benefits of a longer ocean growth period, the second, the advantage

of migrating at a large size to avoid being eaten. However, looking at these two

hypotheses shows the countervailing selective pressures produced by a increase in food

density, and the question is, “Which force is strongest?”

In this simplified case, where there are no seasonal effects on parameters considered, the

first point of view prevails. Simply stated, the small increment in weight at spawning

produced by an earlier migration does not compensate for the corresponding decrease in

freshwater survival. It is possible to perturb parameters of the model so that hypothesis 2

wins out, but this required making the benefits of prolonged ocean growth unreasonably

high (FIGURE 3.1).
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3.2.2  Effect of migration distance

As in the case of the previous heuristic model, with exponential growth and fecundity

linear with weight, age at migration increases with migration distance. This appears to be

a robust result: when the migration corridor presents greater risk to the migrant (relative to

the risk it experiences during station holding) it should invest a greater amount of time in

growth before migrating.

FIGURE 3.1 Optimal migration time can be forced to decrease with food density if

the von Bertalanffy anabolism exponent,φ, is large enough. However, theoretically,

and in practice, this exponent lies near 2/3, where time of migration decreases with

food density.
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3.2.3  Effect of predator density

Interestingly, the effect of predator density (+) is contrary to that predicted by the previous

heuristic model (-). When predator density is larger, both the predation rate during station

holding and during migration increases. There are two possible strategies for the juvenile:

1. Migration is delayed to decrease the risk during migration.

2. Migration is earlier to decrease the time at risk in freshwater, with some compensation

through a longer ocean growth period.

Under the assumptions of exponential growth strategy 1 is favored, but when more

realistic, limited growth assumptions are added, strategy 2 is favored. Under limited

growth assumptions, the benefit to migration survival given by delayed migration does not

counter balance the benefit of decreased time at risk during station holding and a

prolonged period of ocean growth. This occurs, at least in part, because a limited

freshwater growth curve does not offer the same benefit of prolonged freshwater residence

offered by exponential growth (FIGURE 3.2).



 68

3.2.4  Effect of other parameters

The influence of freshwater growth rate (as determined by food intake, and metabolism),

migration distance, ocean mortality rate, predator search velocity, and current velocity are

all consistent with the heuristic case (TABLE 3.4).

FIGURE 3.2 The log of age at migration as a function of predator density. As the

terms leading to limited growth (metabolism, handling time) are reduced from their

estimated values to zero, through the multiplierd, age at migration becomes and

increasing function of predator density. This demonstrates how making the freshwater

growth function limiting rather than exponential, changes the relationship between

predator density and age at migration.
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3.3  Summary

Varying freshwater growth parameters reveals that as freshwater growth increases, so does

optimal age at migration. The sign of this effect reverses, however, as the influence of

limited ocean growth is decreased—becoming more exponential in nature. The effects of

migration distance, predator ocean mortality rate, predator activity, current velocity, and

spawning time are all consistent with the heuristic model. Predator density, however is

inconsistent with the heuristic model: its increase results in a decrease in age at migration.

This is partially, if not wholly, due to the introduction of the limiting effects of handling

time and metabolism on growth. By reducing these limiting effects, it is possible to

reverse the sign of the effect so that age at migration increases with predator density.

3.4  Discussion

Except in the case of predator density, adding more realistic growth and fecundity

assumptions did not change the signs of the parameter effects. The effect of predator

density changed from “+” in the heuristic case to “-” in the more general setting. I was

able to show that by reducing the influence of metabolic cost terms and handling time,

making freshwater growth less limited, it was possible to reverse the effect of predator

density (from - to +) on age at migration, making it consistent with the heuristic model

result (FIGURE 3.2). This was done while leaving the ocean growth and fecundity

relationships unchanged, indicating that the reverse in the effect of predator density was,

in part, if not wholly, attributable to the addition of limited freshwater growth. A simple

biological argument makes sense of this result. When predator density is increased, risk of

predation is greater in freshwater, and is most intense during the period of migration when

the predator encounter rate is highest. If a resulting delay in migration is optimal, then the
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benefit of growth during this delay had better offset the increased depredation risk during

the delay. But the more limited freshwater growth becomes, the less likely this offset will

occur, and therefore, as we discovered, the optimal age at migration actually decreases

with predator density.

A similar argument shows why reducing the effect of limiting ocean growth results in a

switch from a positive effect of freshwater growth on age at migration to a negative effect

on age at migration (FIGURE 3.1). For if an increase in freshwater growth leads to earlier

migration, then the increased ocean growth must offset the greater predation experienced

during the earlier migration. As ocean growth becomes more limited, however, this offset

becomes less likely, making age at migration increase with freshwater growth.

Although I present more realistic assumptions in this chapter, and, to some degree,

illustrate the robustness of heuristic model results, there are still many simple assumptions

present that certainly do not hold in reality, and these must be examined more closely. For

example, how does introducing the effect of seasonally varying temperature influence the

sensitivity results? By including seasonality, is the year of migration influenced as well as

the season of migration? These questions are addressed in the following chapter.



CHAPTER 4 SEASONAL EFFECTS

Until now, I have held important environmental and biological variables such as current

velocity, food availability, predator activity, and growth parameters, constant over time. In

reality, this assumption does not hold. Mean daily temperature (averaged over many

years), for example, follows a periodic function, and is known to influence growth and

predator activity. Do these temperature fluctuations influence migration timing?

Quantitative studies relating temperature and migration timing are scarce (Jonsson &

Rudd-Hansen 1985; Bohlinet al., 1993b), but show clear relationships. There is good

reason that a relationship between temperature and migration timing exists, for smolt

development is controlled by the temperature related variables such as growth rate and

photoperiod, and the more developed a smolt, the more likely it will migrate (Dickhoff &

Sullivan, 1987). Other seasonally related factors such as increasing stream velocity are

also thought to promote downstream movement (Kjelsonet al., 1982).

In this chapter, I include the influence of seasonality (TABLE 4.1), and as in previous

chapters, focus on how migration timing affects individual fitness, and calculate the

optimal age at migration based on hypothesized selective pressures. Including seasonality

changes the nature of the objective function, producing local maxima that represent

optimal within-year timing, and a global maximum that gives the optimal age at

migration. The model suggests that temperature regime changes not only the optimal

within-year migration timing but also, the optimalyear of migration. As in the previous
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chapters, I catalogue the effects of changing mean food availability, migration distance,

and other parameters, and then compare the results to those of previous chapters.

TABLE 4.1 Model assumptions.

Assumption

Ocean and freshwater growth functions reflect diminishing returns

Fecundity is proportional to weight at spawning raised to a fractional
exponent

Some temporal fluctuations of temperature related variables are
considered: predator activity, food abundance, metabolic processes,
food consumptiona

Spawning time is fixed

Ocean survival is constant

Migration velocity is constant

Capture probability is a decreasing function of salmon weight

Freshwater mortality is a result of depredation alone
a This assumption differs from that of the previous chapter, where seasonality is ignored.



 73

TABLE 4.2 Model summary.

Maximize:

Subject to:

tm
J tm( ) θ t( ) ẋ ζ t( )+( ) k w t,( ) dt

t0

tm a z⁄+

∫−= µdt

tm a z⁄+

ts

∫− m w ts( )( )[ ]log+

ẋ 0
z

{= if
if

t0 t tm<≤

t tm≥

ẇ
gf w t,( )

go w t,( )



= if
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4.1  Model development

Model changes include a new temperature dependent growth function and predation rate,

and also a periodic mean daily temperature function. To sync the seasonal variation with

the emergence date, time 0 will correspond to the beginning of a new year, and the

emergence date is redefined as  (TABLE 4.3).

4.1.1  Temperature dependent growth

The rates of food consumption, excretion, and metabolism are all influenced by

temperature. And to capture this influence, I use the Fish Bioenergetics 2 model1 (Hewitt

& Johnson, 1992). This model is based on the balanced energy equation

Consumption = (Metabolic Loss) + (Waste Loss) + (Growth),

1.  The Model 2 software package is available through the University of Wisconsin Sea Grant Institute. For
more information, contact: Communications Office, University of Wisconsin Sea Grant, 1800 University
Ave., Madison, WI 53705-4094. The software package runs only on IBM/compatibles.

TABLE 4.3 Main model variables and functions.

variable or
function definition

variable or
function definition

time age at migration

freshwater growth rate spawning time

migration distance objective function

ocean mortality rate weight

predator search velocity downstream displacement

migration velocity capture probability

ocean growth rate predator density

time of emergence initial weight

fecundity

t tm

gf w t,( ) ts

a J tm( )
µ w t( )
ζ t( ) x t( )
z k w t,( )
go w t,( ) θ t( )
t0 w0

m w( )

t0
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or, using variables defined later in this chapter:

.

Water temperature, fish size, energy density, and food availability are the primary factors

affecting this energy budget. The computations are based on specific rates—grams of food

per gram of predator per day.

4.1.1.1  Consumption

Consumption—the rate at which food is consumed by a fish—is determined by calculating

a maximum consumption as an allometric function of weight, then scaling it by a

parameter representing food availability and a function representing temperature

dependent feeding activity. The basic equations for calculating consumption are:

, (4.1)

, (4.2)

where  is the maximum specific feeding rate,  is fish weight,  is the specific

feeding rate (consumption),  is a proportionality constant,  and  are allometric

function parameters,  is water temperature, and  is the water temperature

dependence function. Temperature dependent functions have been developed for several

salmon species: chinook, coho, pink, and sockeye. The function is calculated using the

Thornton & Lessem (1978) algorithm.

C R S+( ) F U+( ) ∆B+ +=

C Cmax P fc T( )⋅ ⋅=

Cmax acw
bc=

Cmax w C

P ac bc

T fc T( )
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4.1.1.2  Respiration and specific dynamic action

Respiration is the amount of energy used by fish for metabolism—determined by

calculating standard metabolism as an allometric function of weight, then increasing that

value through a temperature dependent function and an activity factor. Specific dynamic

action is then added to this quantity to determine the total metabolic rate. The equations

are given by

(4.3)

, (4.4)

FIGURE 4.1 Temperature dependent food consumption functions for chinook/coho,

and pink/sockeye (Hewitt & Johnson, 1992).
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where  is the specific rate of respiration,  and  are parameters of the allometric

relationship for standard metabolism,  is the water temperature dependence

function,  is the increment for active metabolism,  is the energy lost to specific

dynamic action,  is the proportion of assimilated energy lost to specific dynamic

action, and  is the specific rate of egestion.

4.1.1.3  Waste losses (egestion and excretion)

Energy not available for growth and not lost in metabolism is lost through egestion (fecal

waste) and excretion (nitrogenous waste). The corresponding model equations are

(4.5)

, (4.6)

where  is the waste lost through egestion,  represents the fraction of consumption that

appears as fecal matter, and  is the waste lost through excretion.  will change over

time as the digestibility of diet changes.

4.1.2  Temperature dependent depredation rate

Recall that predation rate is governed by the movement of juveniles and the activity of the

predators. In equation form, it is described as

,

where  is the predator density,  is the migration velocity,  is the predator

search velocity, and  is the capture probability. Predator search velocity, capture

probability, and predator density are all functions of temperature. Until some temperature

threshold is realized, increasing temperature leads to increased predator activity (and

R ar br

fr T( )

activity S

SDA

F

F PF C⋅=

U auT
bu exp γuP( ) C F−( )⋅ ⋅=

F PF

U PF

θ t( ) ẋ t( ) ζ t( )+( ) k w t,( )

θ t( ) ẋ t( ) ζ t( )

k w t,( )
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hence predator search velocity and capture probability). Since capture probability scales

predator search velocity, let us assume that the influence of temperature on predation rate

is strictly through the capture probability function. To model this influence, I scale a

maximum capture probability function by a temperature dependent function,

. (4.7)

The temperature dependent scaling function is similar to the consumption function :

it gauges the influence of temperature on predator consumption of salmon. Using this fact,

I use the function , calibrated for the appropriate predator as the scaling function,

 (FIGURE 4.2).

k w t,( ) kmax w( ) fpred T t( )( )⋅=

fc T( )

fc T( )

fpred T( )
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4.1.3  Mean daily temperature data

Now that I have shown the importance of temperature on important biological variable, I

proceed to show how the time series of daily water temperatures, measured at a fixed

location, may be modeled. Since mean temperature patterns are periodic (with period of

one year) and are linked to photoperiod, I choose to use the standard sine function:

, (4.8)

FIGURE 4.2 The proportion of the maximum consumption as a function of

temperature for walleyr, smallmouth bass (Hewitt & Johnson 1992), and northern

squawfish (Vigg & Burley, 1991).
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where  is a mean annual temperature level,  is the amplitude of the sin curve, and

 is the phase angle. The temperature function is fit to data using nonlinear least

squares, and the fit is remarkably good for some data sets (FIGURE 4.3).

4.2  Simulation results and sensitivity

Including seasonal effects changes the nature of the fitness vs. age-at-migration curve. In

the absence of seasonal effects, the curve has one hump, and the optimal migration time

changes continuously as a function of model parameters. When seasonal effects are

present, each year contains a hump, and the top of each hump corresponds to a global or

local maximum (FIGURE 4.4). The sensitivity analysis will focus on the influence of

FIGURE 4.3 Nonlinear least squares fit of Snake River daily average temperature data

recorded at Anatone Gage, Washington, 1975-1982 (Conneret al., 1993).
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parameters on both the year, and the time of year that fish migrate. Most parameters have a

large influence on the year of migration, but little on the day of year.

TABLE 4.4 Functions, parameters, and their estimates.

Parameter Description Parameter
or

Relationship

Units Estimate Data or Parameter
Source

consumption see reference (chinook) Hewitt & Johnson (1992)

respiration see reference (chinook) Hewitt & Johnson (1992)

specific dynamic action see reference (chinook) Hewitt & Johnson (1992)

egestion see reference (chinook) Hewitt & Johnson (1992)

excretion see reference (chinook) Hewitt & Johnson (1992)

proportion of maximum
capture probability

see reference (walleye) Hewitt & Johnson (1992)

amplitude of temperature
function

C Connor et al. (1993)a

mean level of temperature
function

C Connoret al. (1993)

phase angle parameter of
temperature function

d Connoret al. (1993)

swimming speed m/s Brett (1965)

distance from redd to
estuary

km

current speed m/s 1

initial weight g

maximum capture
probability

none

predator density 1.5

predator search velocity 115

ocean growth rate Parker & Larkin (1959)

ocean mortality rate .316 Parker (1962)

fecundity eggs Healey & Heard (1984)

spawning time yr 5.0

emergence date yr 1/6 (March 1)
a The temperature function parameters where estimating using nonlinear regression on data contained in the indicated

report.

C t( ) d 1−
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FIGURE 4.4 Comparison of log fitness vs. age-at-migration curves when temperature

is constant and when it fluctuates. Notice that in the presence of fluctuating

temperatures, the optimal migration occurs almost half a year earlier. The constant

temperature model actually produces a poor strategy—migrate during the summer

when predation is high.
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4.2.1  Effect of migration distance

In previous chapters I showed that increasing migration distance leads to a delay in

migration. The same is true in the presence of fluctuating temperature. However, because

the optimization problem admits several local minima, one of which may become a global

minimum by changing migration distance, the optimal age at migration does not vary

smoothly. In other words, the best time of year to migrate stays relatively fixed as

migration distance varies, but when migration distance exceeds a certain threshold,

optimal age at migration jumps discontinuously to the next year (FIGURE 4.5).

TABLE 4.5 Sensitivity results.

parameter parameter range age at
migration
range (yr)

effect effect
(no

seasonality)

food availability, 0 to 1 .17 to 1.07 + +a

migration distance, 50 to 2000 km .17 to 4.06 + +

predator density, .2 to 6.0 1.07 to 1.07 0b +

ocean mortality rate, 0.00 to .632 1.07 to 1.07 0 +

predator search velocity, 86.25 to 143.75 1.21 to .90 - -

current velocity, 0 to 3 1.03 to 1.05 + +

initial weight, 1.69 to 5.07 1.15 to .94 - -

spawning time, 2.5 to 7.5 1.00 to 1.05 + +

amplitude of temp. function 7.27 to 12.12 1.07 to .17 - NAc

mean level of temp. function, 13 to 17 .25 to 1.09 + NA

phase angle of temp. function, 60 to 180 .90 to 1.23 + NA
a Although this food availability parameter is different from the one included in the case where seasonality is

absent (previous chapter), in both cases, its increase results in greater food availability and hence greater

growth.

b An effect of 0 indicates that no change in the age at migration was observed when varying the parameter over

the given range.

c NA indicates that no analogous parameter exists in the model where seasonality is absent.

Pvalue

a

θ km 1−

µ yr 1−

ζ km yr 1−⋅

u m s 1−⋅

w0 g

ts yr

A C

L C

φ d
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4.2.2  Effect of food availability

The P-value is defined as the proportion of the maximum consumption that is influenced

by food availability. As the P-value increases, so does food availability, and therefore I can

gauge the qualitative influence of an increase in food availability by increasing the

P-value. Using such a technique, I determined that an increase in food availability led to

decrease in age at migration—the same result obtained in the absence of seasonality

(TABLE 4.5).

FIGURE 4.5 Influence of migration distance on optimal age at migration. The step

function described by the curve of asterisks describes the global optimum age at

migration, while the lines represent local optimums. Notice that the optimal age at

migration leaps discontinuously between years as migration distance increases, but the

optimal time of year for migration changes little.
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4.2.3  Effects of temperature function parameters

Of the three temperature function parameters, the phase angle parameter, which defines

the time of year at which temperature rises above the mean temperature, has the most

influence, and its main influence is exerted on within-year migration timing. A rule of

thumb, based on the many simulations, is that fish optimally migrate at a time when

temperatures have reached a minimum, and predation risk is diminished (FIGURE 4.6).

This time of minimum temperature is controlled by the phase angle parameter. As the

amplitude of the temperature fluctuations diminishes, this relationship begins to break

down (FIGURE 4.4). In contrast, depending on their levels, the amplitude and average

temperature parameters mainly influence year of migration, affecting within-year

migration timing to a lesser degree. Like migration distance, their influence yields a

discontinuous movement of optimal age at migration from year to year.
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4.2.4  Effect of other parameters

Largely, the remaining parameters show an influence on migration timing consistent with

the case where seasonality was ignored. The exceptions are predator density and the ocean

mortality rate which showed no effect on age at migration over their given range (TABLE

4.5). This appears to be a result of the anchoring of within-year optimal migration timing

FIGURE 4.6 The effect of temperature fluctuations on the log(fitness) curve. The

maxima correspond to the minima of the temperature curve. As the fish ages, the effect

of temperature is less severe, owing to its larger size, and consequently, its greater

ability to escape enemies.
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by the temperature curve, making specific times of the year best for migration. Rather than

producing a continuous effect on optimal migration timing, migration timing either varies

little—not at all in the case of predator density and ocean mortality (for the parameter

estimates used)—or jumps between years.

4.3  Summary

In this chapter I included temporal fluctuations in food consumption, metabolic processes,

and predator activity. The temporal fluctuations in these variables were driven by a

periodic temperature function of given average temperature, phase angle, and amplitude.

The objective function has yearly humps corresponding to the best within-year migration

timing, the tallest hump representing the global maximum. As a result, seasonal

temperature fluctuations exerted a strong influence on the age at migration, not only

determining the optimalwithin-year migration timing, but also the optimalyear of

migration. The best time of migration corresponds to times of low temperature, when

predator activity is at a minimum. As fish grow, the influence of seasonality decreases

because larger fish are less susceptible to predators.

The sign of the parameter effects were consistent with the case where seasonality was

absent. The phase angle parameter defines the time of minimum temperature, and

therefore is responsible for anchoring the optimal age at migration to a particular time of

year. Other parameters have little to no effect on within-year migration timing (TABLE

4.5), but can strongly influence the optimal year of migration (e.g., migration distance)

(FIGURE 4.5).
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4.4  Discussion

The simulations show that the best time to migrate is when predator activity is at its

lowest, (i.e., during winter months). Although this seems a reasonable result, it is not

usually witnessed in nature. One may argue, from a physiological standpoint, that during

the cold winter months smolt development is retarded and is hence an unlikely time to

migration. On the other hand, one ought to ask, if winter is the best time to migrate, why

do the fish not migrate to the ocean at a less developed state, and relying on smolt

development with increased exposure to saltwater, as is witnessed in some ocean-type fry

(Reimers 1973)? My point is that although one may appeal to smolt physiology for an

explanation of migratory behavior, one wonders what survival or reproductive benefit is

produced by the population-specific smolt development schedule—a schedule depending

strongly on endogenous, as well and exogenous factors.

I believe the results of this chapter raise an important question:If predator activity is least

during winter months, why do not all salmon populations migrate at that time? I believe

the answer depends on knowing the temporal patterns of survival, not only in freshwater,

but also in the ocean and estuary. For winter migration may eliminate some freshwater

mortality, but what about size-dependent ocean and estuary mortality? Many agree that

larger fish are better able to handle the insult of a more osmotically challenging saltwater

environment (Brett & Glass, 1973; McCormick & Naiman, 1984; Hargreaves &

LeBrasseur, 1986), and that they are better able to escape predators (Werner & Hall, 1988;

Bugert & Bjornn, 1991; Bugertet al., 1991). These factors ought to be incorporated in the

ocean mortality function, and could yield more realistic migration timing patterns.
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Another result of the simulations shows that, all else being equal, increasing the mean

yearly temperature, increases freshwater residency. In reality, colder climes produce

populations with greater freshwater residence times than warmer ones. Recall that

ocean-type populations predominate in the south, and stream-type, in the south. However,

the sensitivity performed on mean temperature assumedall other factors were equal, and

certainly the other important factors vary with latitude, such as freshwater predator

abundance, and the performance demands of the ocean environment: osmo-regulator and

locomotor performance is inhibited in colder waters (Brett, 1967; Knutsson & Garv, 1976;

Beamish, 1978; Webb, 1978; Virtanen & Oikari, 1984). Another factor ignored was the

possibility of lethal temperatures. In some parts of California, a yearlong stay in certain

freshwater regions is not feasible, since summer temperature are routinely lethal in their

habitat (TABLE 4.5). I believe that including the patterns of freshwater predation,

size-dependent saltwater readiness, and lethal temperatures, would yield more realistic

latitudinal patterns.

TABLE 4.6 Lethal water temperatures in some California rivers. The estimates were

derived from USGS data.a

Gauge Station Station No. Lat. S No. days mean temp. > 25° (C)

1988 1989 1990 1991 1992 1993

Merced R. near Stevinson, CA 11272500 37° 22’ 32 --b -- 34 59 --

San Joaquin R. near Newman, CA 11274000 37° 21’ 55 -- -- -- -- 24

Tuolumne R. at Modetso, CA 11290000 37° 38’ 91 25 -- 49 -- --

San Joaquin R. near Vernalis, CA 11303500 37° 40’ 0 -- 70 36 57 19

Sacramento R. below Wilkins
Slough near Grimes, CA

11390500 39° 01’ 0 0 0 0 0 0

Sacramento R. at Freeport, CA 11447650 38° 27’ -- 0 2 2 9 0
a Lethal temperatures are estimated at > 25.1 C (Brett, 1952).

b The symbol “--” indicates that the year contained too many missing daily temperatures for an accurate estimate.
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The parameter effects of this chapter were in qualitative agreement with those of the

previous chapter, where seasonality was ignored. As before, age at migration increased

with food availability, migration distance, current velocity, and spawning time; and

decreased with predator activity and initial weight. Of special interest are the predator

density and ocean mortality rate which showed no influence on age at migration over their

chosen range. This is an artifact of added seasonality. The only parameter with a strong

influence on with-year migration timing is the phase angle: all other parameters show their

main influence on between-year age at migration (see for example FIGURE 4.5). This

suggests the possibility of carrying out the optimization in two phases: (i) determine the

optimal with-year migration timing, then (ii) given this best time of the year to migrate,

what year should the migration take place. The first phase can be accomplished using a

continuous variable (time of the year), and second with a discrete, “yes or no” variable:

should the fish migrate this year or not? The continuous approach of the first phase was the

approach of Bohlinet al. (1993), while the discrete approach of the second phase as used

by Mangel (1994). The approach I use integrates these two phases.



CHAPTER 5 A MORE GENERAL
APPROACH: DYNAMIC
OPTIMIZATION MODELLING

The study of migratory behavior is not limited to understanding age at migration. There is

a rich complex of behaviors leading up to migration and during migration itself—

behaviors promoted by ontogeny and environmental changes. Studies show that although

there is much variation in behavior among chinook populations, some common behavior

patterns are evident1: fry initially inhabit the stream or river margin, but move into higher

velocity locations as they grow; fry migrate mostly at night; fry move with freshets.

Models of the previous chapters are not able to capture the continuous decision process

involved with these migration and feeding behaviors. The previous models assumed that

once migration began, it continued at a constant rate until estuary entry. To capture the

mosaic of behaviors considered in this chapter, the fish must be able to cease migration

during different hours of the day and migrate in different cross-sections of the river or

stream. Migration, considered at this level, involves a continuous decision process: at each

instant the fish must be able to choose its migration velocity and its proximity to shore.

The previous models presented static optimization problems involving only a single

decision (i.e., when to migrate), and do not apply here. Fortunately, there exists a

modelling framework able to deal with the problem of a continuous decision process

1.  See sections 1.2.3, 1.2.4, and 1.3.2 of CHAPTER 1.
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rather than a static one:dynamic optimization modelling (Oster & Wilson 1984; Smith

1984; Mangel & Clark 1988).

As in the case of the static optimization problem of previous chapters, behavior is viewed

as an organ shaped by natural selection into a form which optimizes the salmon’s fitness.

The assumptions underlying this class of models are that (a) each behavior allowed by the

model is phyletically feasible, and (b) the organism either possesses or can develop a

mechanism for achieving nearly optimally solutions to behavioral problems (Mangel &

Clark 1988).

The model, as it is presented in this chapter, takes its most general form, making a

minimal number of assumptions (TABLE 5.1). In later chapters, special cases will be

considered and simplifying assumptions made. Attention is given to each phase the

salmon life-cycle including freshwater, estuarine, and ocean residence (FIGURE 5.1),

although the main focus is on behavior during freshwater residence and migration. The

additional problems of identifying optimal estuarine residence time and age at maturity

are subsumed by the general form of the model, but receive no treatment in upcoming

chapters.
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FIGURE 5.1 Chinook life cycle summary. Lifetime reproductive success depends on

survival in the❶ freshwater,❷ estuarine, and❸ ocean habitats, as well as❹ fecundity

and egg-to-fry survival.

❸

❹

❷

❶
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TABLE 5.1 Model assumptions.

Assumption

Ocean growth is based on a von Bertalanffy growth equation, with
parameters that are allowed to vary with time.

Estuarine growth is weight and time dependent and not locked down to a
particular form.

Freshwater growth is time, space, and size dependent. It is based on a
Holling type II disk equations for consumption, and metabolic costs
determined by fish size and temperature.

Fecundity a function of weight at spawning.

Freshwater residence time, estuary residence time, and spawning time are
free.

Emergence time is fixed.

Ocean mortality rate decreases with weight.

Migration velocity is allowed to vary continuously as the sum of
swimming velocity and current velocity control variables.a

Movement is one dimensional, measured in the upstream/downstream
direction.

Capture probability is a decreasing function of salmon weight, and
allowed to vary with time.

Freshwater mortality is a result of depredation alone.
a This assumption differs from that of the previous chapters, where once migration began, it did

not cease until the arrived in the estuary or ocean, and migration velocity was assumed

constant.
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TABLE 5.2 General optimization model summary.

Maximize: (objective functional)

Subject to: (displacement state eq.)

(weight state eq.)

(stream velocity
constraint)

(swimming velocity
constraint)

, (initial conditions)

u v tf te ts, , , ,

u v+ ζ x t,( )+( ) θ u x t, ,( ) k x w t, ,( ) td

t0

∫− Φ w tf( ) tf te ts,, ,( )+

ẋ u v+=

ẇ g v x w t, , ,( )=

0 u umax x t,( )≤ ≤

v vmax w( )≥

x t0( ) 0= w t0( ) w0=

t0 t tf≤ ≤
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5.1  Model development

A model must be selected that is able to (a) describe the range of salmon behaviors

observed, (b) treat decision making as a state dependent dynamic process, (c) consider

TABLE 5.3 Main parameters and functions.

Variable or
function

Unit Description

Time

Current velocity (control variable)

Swimming velocity (control variable)

Migration velocity

Downstream displacement (state variable)

Salmon weight (state variable)

Maximum current velocity

Maximum swimming velocity

Distance from redd to estuary

growth Growth rate of juvenile

parameters Consumption rate

and functions d Food delivery rate

Net energy gain

Calories to grams conversion constant

Prey density

dimensionless Net conversion efficiency

Reactive field diameter

Handling time

survival Predator density

parameters Predator search velocity

and functions dimensionless Capture probability

Ocean mortality rate

Estuary mortality rate

other Spawning time

Time that the juvenile arrives in the estuary

Time that the juvenile enters the ocean (from the estuary)

Time of emergence

egg number Fecundity

t s

u t( ) m s 1−⋅

v t( ) m s 1−⋅

z t( ) m s 1−⋅

x t( ) m

w t( ) g

umax x t,( ) m s 1−⋅

vmax w( ) m s 1−⋅

a m

g v x w t, , ,( ) g s 1−⋅

C cal s 1−⋅

cal s 1−⋅

N v x w t, , ,( ) cal s 1−⋅

c g cal 1−⋅

ρ t( ) cal m 2−⋅

τ

γ w t,( ) m

h w( ) s cal 1−⋅

θ u x t, ,( ) m 1−

ζ x t,( ) m s 1−⋅

k x w t, ,( )

µo w t,( ) s 1−

µe w t,( ) s 1−

ts s

tf s

te s

t0 s

m w( )
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past and future costs and benefits, and (d) realistically link the state dynamics with

decisions. It must also be mathematically and numerically manageable. Achieving all of

these desirable qualities simultaneously is difficult—if not impossible—and eventually,

some simplifying assumptions will be made.

In the dynamic optimization modelling framework I present, six elements are present: an

objective functional which values various behaviors, a set ofcontrol variables

representing the continuous choices available to the juvenile,control parameters

representing discrete choices, a set ofstate variablesrepresenting the state of the

juvenile—in this case the size and downstream location of the juvenile,control variable

constraintsspecifying the range of available choices, and boundary conditions on the state

variables (TABLE 5.2).

5.1.1  Control variables: current velocity and swimming velocity

At any given time, a juvenile makes two decisions: the current velocity in which it swims,

and its swimming velocity. These represent the control variables.

5.1.1.1  Current velocity

After emergence, juveniles have a range of current velocities in which to swim. Current

velocity is typically zero at the shoreline, and is typically maximal near midstream. Let

 represent the chosen current velocity at time . Then

, (5.9)

where  represents the maximum current velocity at downstream position  and

time .

u t( ) t

0 u t( ) umax x t( ) t,( )≤ ≤

umax x t,( ) x

t
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5.1.1.2  Swimming velocity

Juveniles also choose their swimming velocity, , measured relative to the current

velocity. Swimming velocity ranges from zero to the fatigue speed of the fish, ,

which is a function of weight. Therefore,

, (5.10)

where  is fish weight at time . Fish swimming downstream have positive swimming

velocity, and those swimming upstream, a negative swimming velocity.

Since the swimming velocity is measured relative to the current velocity, the actual

migration velocity, , is the sum of the current velocity and swimming velocity at time

 (FIGURE 5.2),

. (5.11)

v t( )

vmax w( )

v t( ) vmax w t( )( )≤

w t( ) t

z t( )

t

z t( ) u t( ) v t( )+=
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5.1.2  State variables: downstream displacement and weight

Two state variables are defined for a juvenile: its weight , and its downstream

position, , measured relative to the point of emergence. Since fish make dynamic

decisions based on weight and position, it is essential to know how these states evolve

over time.

5.1.2.1  Downstream displacement

The first simplifying assumption I make, is that movement is tracked only in the upstream

or downstream direction—no lateral movement is accounted for. This assumption makes

the change in downstream position of the juvenile easy to compute:

. (5.12)

FIGURE 5.2 The control variables: swimming velocity and current velocity. Depicted

is a chinook fry swimming against the current, which therefore has a negative

swimming velocity. Since swimming velocity is measured relative to the current

velocity, the migration velocity isu + v.

Current velocity,u

Swimming velocity,v

w t( )

x t( )

ẋ t( ) u t( ) v t( )+=
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This is the rate of displacement relative to the stream substrate. The positive direction is

taken to be downstream, and the juvenile is assumed to be at position  at , a

total distance of  meters from the estuary.

Within this framework, the juvenile can control its freshwater residence time, and

migration behavior through adjusting the values of  and  through time. When

, the juvenile is holding station, when , it is migrating

upstream, and when , it is migrating downstream.

5.1.2.2  Weight

5.1.2.2.1  Freshwater growth

Weight changes according to the amount of food the juvenile consumes, its standard

metabolic costs, and its active metabolic costs. Feeding activity involves an inherent

trade-off. If the fish is entirely inactive, then even though its metabolic cost is minimal, no

food is obtained, and consequently, weight declines. When activity is too great, metabolic

costs overtake the benefit of food intake, and weight again declines. The juvenile is faced

with choosing an activity level that strikes a balance between the rate of food intake and

metabolic costs (FIGURE 5.3). The growth function is assumed to be concave in

swimming speed, capturing the essential features described above. The speed at which

growth is maximized is denoted by .

x 0= t t0=

a

u v

v t( ) u t( )−= v t( ) u t( ) 0<+

v t( ) u t( ) 0>+

vg x w t, ,( )
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Weight changes according to the dynamical equation

, (5.13)

where  is a growth function which depends on the swimming velocity, location, weight,

and time. I express growth in terms of consumption, metabolic loss (active and inactive),

and waste loss,

FIGURE 5.3 Typical growth curve as a function of swimming speed, where weight

and temperature are fixed. Growth is concave in swimming speed, and there is one

unique maximum value,v = .48 m ⋅ s-1. Growth is negative for swimming speeds either

too small,v≤ .21 m ⋅ s-1, or too great,v≥ .71 m ⋅ s-1. This curve was derived based

on a Holling (1959) type II feeding curve, and a metabolic cost curve in Hewitt &

Johnson (1991). It represents the growth rate of a fish weighing 5 g at a temperature of

15° C.
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,

(5.14)

The form of the growth function is taken from a combination of functions found in the

literature. The net energy rate, , which consists of the portion of the ration

available for work or somatic growth is calculated according to Ware (1978), and the

metabolic rate, , according to Hewitt & Johnson (1991). The function

gives water temperature as a function of time, and from here forward,  will represent

temperature (C).

Net energy gain. The energy available for work or somatic growth is known as the net

energy gain. To calculate this function, measures of food consumption and loss due to

specific dynamic action are needed. Food consumption depends on the food delivery rate,

and to capture the advantages of searching for food at a faster rate, I assume that the rate of

food delivery increases with swimming speed. Juvenile chinook are also assumed to be

surface feeders (Becker, 1973a)—although a similar derivation is possible for a general

drift feeder—to simplify the form of the intake function. The food delivery rate is directly

proportional to the swimming speed of the juvenile:

, (5.15)

where  is the prey density on the stream surface, and  is the width of the

intersection between the reactive field cross section and the stream surface. When the

juvenile adopts a “sit-and-wait” strategy ( , picking off food from the surface as it

floats within visual range, the delivery rate is .

Growth Net Energy Gain Metabolic Loss−=

g v x w t, , ,( ) N v x w t, , ,( ) M v x w T t( ), , ,( )−=

N v x w t, , ,( )

M v x w T, , ,( ) T t( )

T

d ρ x t,( ) γ x w t, ,( ) v=

ρ t( ) γ w t,( )

v u−=

d ρ x t,( ) γ x w t, ,( ) u=
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As the delivery rate increases, not all food delivered will be consumed, because

consumption rate, , is limited by handling time of food items. A Holling (1959) Type II

feeding curve is used to model this phenomenon:

, (5.16)

where an average of  seconds must be devoted to handling a single calorie of food,

then the time spent handling food, and  is the food delivery rate. Not all of the food

consumed is available for work. Some is lost in nitrogenous and fecal waste, and to

specific dynamic action (Ware, 1980). The ratio of net energy to energy consumed is

called thenet conversion efficiency, .

Incorporating the expressions for the food delivery rate (5.15), and the food consumption

rate (5.16), the rate of net energy gain is

. (5.17)

Metabolic Rate. The metabolic rate consists of energy lost through respiration, and is

calculated by first calculating an allometric function of weight, then increasing that value

through a water temperature dependence function and a factor representing activity.

Activity will be an increasing function of swimming velocity. The respiration function is

given explicitly by

, (5.18)

where the water temperature dependence function for respiration is given by

C

C
d

1 d h w( )⋅+=

h w( )

d

τ t( )

N v x w t, , ,( )
τ t( ) ρ x t,( ) γ x w t, ,( ) v

1 ρ x t,( ) γ x w t, ,( ) h w( ) v+=

Rg v w T, ,( ) αRwB fR T( ) ACT v T,( )⋅ ⋅=
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,

and the activity function is given by

.

The variables, , represent parameters that need to be estimated.

5.1.2.2.2  Estuarine growth

Upon arriving in the estuary, a juvenile salmon faces a new set of challenges: new

predators, new food habits, and higher salinities. These new challenges necessitate the use

of estuarine specific survival and growth equations—both relevant to ultimate

reproductive success of the individual.

Observations indicate that estuarine growth varies seasonally. Estimates of the

instantaneous increase in mean weight are  in the Campbell River estuary

(Levingset al., 1986),  in the Nanaimo estuary (Healey 1982), and

in the Nitinat estuary (Healey, 1982). Reimers (1971) showed that in the Sixes River

estuary, growth in the estuary was from late April to early June , but was

relatively poor during June to August ( ). Neilsonet al. (1985) suggested this

decline in growth resulted from a combination of high temperatures that reduced growth

efficiency and competition for food.

These observations suggest using an exponential growth equation with a time varying rate

of increase for the duration of estuarine growth. However, unlimited growth is unrealistic,

fR T( ) exp θRT( )=

ACT v T,( ) exp TOR TMR T⋅( )−( ) v( )=

θR TOR TMR, ,

2.1–2.7% d1−⋅

5.5% d1−⋅ 3.5% d1−⋅

0.9 mm d1−⋅

0.07 mm d1−⋅
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and some amount of time growth should taper off, as it does when a von Bertalanffy is

applied. If I were to assume exponential growth instead, it would be difficult to get fish to

leave the estuary at all (unless the growth rate was assumed sufficiently small), because

the estuarine residence time,  is assumed to be free.

5.1.2.2.3  Ocean growth

Of the three chinook habitat types I cover: stream, estuarine, and ocean, the ocean contains

the greatest growth potential for salmon. For example, upon entering the ocean, chinook

can average  in fork length, and after  of ocean growth, average about

in fork length (Loeffel & Wendler, 1969). Data of Loeffel & Wendler (1969) show two

important characteristics: ocean growth rate is greatest in the chinook’s first year of life

and tapers off with time, and there is a definite seasonal pattern of growth, with rapid

summer growth and slow winter growth. Like Henry (1972), I use a Bertalanffy growth

curve to model ocean growth (Ricker, 1976):

. (5.19)

The first term, , describes anabolism, and the last term, ,

catabolism.

5.1.3  Fitness measure

The fitness measure is lifetime reproductive success, , where  is the probability

of survival from emergence to spawning, and  is the number of eggs produced by a

female at spawning. The probability of survival from emergence to spawning consists of

three factors: the freshwater survival, , estuarine survival,  and ocean entry to

te tf−

10 cm 5 yrs 90 cm

ẇ ao t( ) w t( ) 2 3⁄ bo t( ) w t( )−=

ao t( ) w t( ) 2 3⁄ bo t( ) w t( )

R l m⋅= l

m

S tf( ) Se te( )
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spawning survival, . Since survival factors and reproduction are typically size

dependent, growth in freshwater, the estuary, and the ocean is also considered.

Expected lifetime reproduction is defined by

.

(I have ignored the egg-to-fry survival in the above expression since, assuming it is

constant, it does not influence the optimal solution sought.) I could attempt to maximize

lifetime reproductive success directly with respect to the control variables and control

parameters, however, there it is more convenient to use the natural log of reproductive

success,

.

In the context of dynamic optimization,  is a functional that depends on the control

variables  and  as well as control parameters , , and : all of the variables that

represent choices. This functional is

So ts( )

R S tf( ) Se te( ) So ts( ) m w ts( )( )=

J R( )log=

J

u v tf te ts
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The newly introduced variables appearing in this expression will be defined later.

For convenience, define a post-migration fitness component,

(5.20)

.

Then the functional  can be simplified to

(5.21)

.

(freshwater)

(estuary)

(ocean)

(fecundity)

J u v tf te ts, , , ,( ) =

u v+ ζ x t,( )+( ) θ x t,( ) k w t,( ) td
t0

tf

∫−

µe w t,( ) dt
tf

te

∫−

µo t( ) dt
te

ts

∫−

am( )log bm w ts( )( )log+( )+

Φ w tf( ) tf te ts, , ,( ) =

µe w t,( ) dt
tf

te

∫− µo w t,( ) dt
te

ts

∫ am( )log bm w ts( )( )log++−

J

J u v tf te ts, , , ,( ) =

u v+ ζ x t,( )+( ) θ x t,( ) k x w t, ,( ) td
t0

tf

∫− Φ w tf( ) tf te ts, , ,( )+
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Since the log is a monotone increasing function, control variables maximizing  also

maximize , and vise versa. In this formulation,  is theobjective

functional, or theperformance index; it is the quantity we strive to maximize with respect

to the control variables  and , and the times, , , and .

5.1.3.1  Freshwater survival

Predation is often implicated as the main cause of juvenile mortality after emergence, and

heavy predation losses have been documented (Foerster & Ricker, 1941; Hunter, 1959).

Unfortunately, little is known of the in-river losses due to other morality agents like

disease, parasitism, and starvation. Throughout, I assume that predation is the sole source

of mortality. When the other mortality factors are constant with respect to the control

variables and parameters, then the optimal behavior is unaltered by their inclusion.

Although this assumption is unrealistic, the influences of other mortality factors are likely

qualitatively similar to the influence of predation: longer residence time means greater

exposure risk, and risk decreases with juvenile weight.

Encounters with predators are due to a combination of predator and prey activities. The

predator encounter rate (i.e., an instantaneous rate giving the average number of predators

encountered per second) increases with migration speed and also with predator search

velocity. Predator search velocity is incorporated to allow for predator encounters whether

or not the juvenile is stationary. Over a small increment of time, , the probability of a

predator encounter is

, (5.22)

where  is the predator density, and  is the predator search velocity.

R

J J u v tf te ts, , , ,( )

u v tf te ts

∆t

Pr Encounter in∆t{ } u v+ ζ x t,( )+( ) θ u x t, ,( ) ∆t=

θ u x t, ,( ) ζ x t,( )
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The predator density function represents predators per meter of river and is allowed to

vary with current velocity. This allows for the possibility that predator densities may be

smaller in nearshore areas, where more protective cover may exist (Solomon, 1981). Next,

I assume that the probability that an encounter leads to a capture is a function of position,

fish weight and time, . In most taxa, larger individuals are assumed to stand a

better chance of escape than smaller ones (Werner & Gilliam, 1984).

Temperature also influences predation rate. Vigg & Burley (1991) observed that the daily

ration of northern squawfish(Ptycholcheilus oregonensis), a major salmonid predator on

the Columbia River, increased with temperature from about  at

 to  at . The influence of temperature may be

incorporated in the capture probability, , as a function of time, , and

downstream position, .

Putting these elements together, I derive the probability that a juvenile survives from

emergence to an arbitrary time , during its freshwater residence. The probability of death

between time  and , is the probability of an encounter and a capture in this interval,

namely,

. (5.23)

The probability that the juvenile is alive at time  is equal to the probability that it

survives to time  times the probability that it remains alive between  and :

. (5.24)

k x w t, ,( )

0.5 salmonids predator1−⋅

8.0°C 7.0 salmonids predator 1−⋅ 21.5°C

k x w t, ,( ) t

x

t

t t ∆t+

Pr death in t t ∆t+,[ ]{ } u t( ) v t( )+ ζ x t,( )+( ) θ x t,( ) k x w t, ,( ) ∆t=

t ∆t+

t t t ∆t+

S t ∆t+( ) 1 Pr Death in t t ∆t+,[ ]{ }−( ) S t( )=
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By substituting (5.23) into (5.24) and taking the limit as  tends to zero, we obtain the

differential equation for survival during migration as

,

with the initial condition .

The probability of surviving in-stream from emergence to an arbitrary time,  is then

. (5.25)

The fish arrives at the estuary at time —a control parameter—and begins its salt water

residence.

5.1.3.2  Estuarine survival

Little is known about the mortality of juvenile salmon during estuarine residence, but in

this general treatment, I allow estuarine mortality rate to vary with size and season.

Specifically, I assume that the probability of death in an interval  is proportional

to :

, ,

where  is the instantaneous estuary mortality rate. The probability of survival

from time from the moment the juvenile enters the estuary to an arbitrary time ,

prior to ocean entry, is the probability that it is alive at  times the probability that is does

not die during :

∆t

dS
dt

u v+ ζ x t,( )+( ) θ u x t, ,( ) k x w t, ,( ) S−=

S t0( ) 1=

t

S t( ) exp u v+ ζ x ξ,( )+( ) θ u x ξ, ,( ) k x w ξ, ,( ) ξd
t0

t

∫−
 
 =

tf

t t ∆t+,[ ]

∆t

Pr Death in t t ∆t+,[ ]{ } µe w t,( ) ∆t= tf t te≤ ≤

µe w t,( )

t ∆t+

t

t t ∆t+,[ ]
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, (5.26)

Subtracting  from both sides of (5.26), dividing by , and then taking the limit as

 tends to zero, yields the differential equation

,

with boundary condition ; its solution is

. (5.27)

In the most general case, estuarine residence time, , is left free, since it depends on

control parameters  and .

5.1.3.3  Ocean survival

As in the case of freshwater mortality, ocean mortality is thought to decline with size

(Parker, 1962). Early during their ocean residence, salmon fall prey to fishes, birds, and

mammals, and as they growth become potential prey for fewer and fewer species. At a

weight of about 250 g salmon are no longer available to most birds. On the high seas, the

number of predators that can take large salmon (e.g., halibut and killer whales) is limited

(Ricker, 1976). I assume that the probability of death in a small interval of time

is proportional to ,

, ,

where  is the weight and time dependent instantaneous ocean mortality rate, and

 is the time that the chinook returns to spawn. Assuming the observations of and Parker

Se t ∆t+( ) Se t( ) 1 µe w t,( ) ∆t−( )=

Se t( ) ∆t

∆t

dSe

dt
µe w t,( ) Se t( )−=

Se tf( ) 1=

Se t( ) exp µe w ξ,( ) dξ
tf

t

∫−
 
 =

te tf−

te tf

t t ∆t+,[ ]

∆t

Pr Death in t t ∆t+,[ ]{ } µo w t,( ) ∆t= te t ts≤ ≤

µo w t,( )

ts
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(1962) and Ricker (1976) are true, mortality rate falls rapidly for small weights, and

approaches a constant as weight increases.

Following a development similar to that of the derivation of the estuarine survival

function, the ocean survival is

. (5.28)

5.1.3.4  Fecundity

The next component of the fitness measure (reproductive success) considered here is

fecundity. Many studies have confirmed significant fecundity-size relationships within

chinook populations (Galbreath & Ridenhour, 1964; Healey & Heard, 1984). The majority

of these studies relate the fork length of a mature female to the number of eggs. I relate

fecundity to weight rather than length, using an allometric relationship between length and

weight to convert length data to weight data. The form of the fecundity-weight

relationship is

, (5.29)

where  is egg number and  is weight.

5.1.4  Egg-to-fry survival

To complete the description of survival during the chinook life cycle, we must consider

egg-to-fry survival, which is the average number of eggs surviving to the fry stage divided

by the average number of eggs deposited in a redd per female. Factors influencing egg

So t( ) exp µo w ξ,( ) dξ
te

t

∫−
 
 =

m w( ) amw
bm=

m w( ) w
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mortality include low dissolved oxygen concentrations, high percentage of small particles

(fines) in the substrate, flooding and scouring, and dewatering. According to Healey

(1991) the estimates of egg-to-fry survival are hard to interpret because of uncertainty in

the estimates of both the potential eggs deposited and the numbers of fry produced. In the

proposed model, I will assume that egg-to-fry survival is a constant, and since it merely

scales the lifetime reproduction of a female, it has no influence on the solution to the

optimal control problem at hand.

5.2  Optimization model summary

In this chapter, I presented a justification for approaching the problem of diel migration

pattern and current velocity selection from a behavioral ecology perspective. By

considering the possible selective pressures on shaping the behavior of young salmon, and

couching them in equation form, I developed an optimization model that retained the

ability to predict migration timing as in other chapters, but was much more general in that

it treated diel migration and current velocity selection patterns. The resulting optimization

problem was dynamic, and included current velocity and swimming velocity as control

variables; time of entry into the estuary, time of ocean entry, and spawning time as control

parameters; weight and downstream displacement as state variables, and the log of

expected reproductive success as the objective functional.

5.3  Discussion

The dynamic optimization model presented here retains the ability to predict migration

timing as previous chapters, but includes more detail on the migratory and pre-migratory

behavior itself, such as diel migration and current selection. Although this behavior is
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really the focus of the model, in its most general form, it is also able to predict time of

entry in the estuary and ocean, as well as spawning time. These times are chosen so that

the fitness criterion is as large as possible.

One must use such a general model cautiously. In the case where a general model does a

good job of giving qualitative results consistent with observations of nature, one gains

very little. Often, it is only when the model misses the mark that anything can truly be

gleaned from the modelling experience. This fact together with the need to find numerical

solutions to the optimization problem prompts the use of an incremental approach

demonstrated in the treatment of age at migration in previous chapters. First, a very simple

form of the model is assumed and its qualitative results are compared to nature. Observing

the areas of inconsistencies with nature, hypothesis for the discrepancies are given, and

new elements are added to the model to test the hypothesis. The results of this model are

then weighed against reality, and the process continues.

Be aware that the models used here an in previous chapters are based on perfect

knowledge, and that the behaviors predicted might be nearly optimal, but the salmon may

have no known mechanism for achieving the optimal behavior. (Recall that I assumed

from the outset that the organism either possesses or can develop a mechanism for

achieving nearly optimal solutions.) A complex behavior such as migrating upstream to a

ephemeral feeding area at exactly the right time, may be an optimal, but it is likely

impossible based on known mechanisms. However, from a philosophical point of view,

nature usually punishes inefficiency (sub-optimal behavior), and in response, animals can

develop elaborate behaviors, which at first seem improbable, to “solve” ecological

problems.
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Although this model was developed specifically to analyze the problem of chinook

migratory behavior, its use is not limited to this species. The rest of the genus

Oncorhynchusis subject to the selective pressures operating on chinook, albeit to different

degrees. Very simple migration strategies such as immediate migration after emergence

displayed by pink salmon can be treated with the model as well as complex migration

strategies, such as upstream to a lake prior to migration displayed by some sockeye

populations.



CHAPTER 6 MODEL ANALYSIS

Now that the dynamic optimization model has been specified, it must be solved. A

solution consists of swimming velocity and current velocity schedules, as well as estuary

entry, ocean entry, and spawning times that make the fitness measure as large as possible.

In mathematical terms, it consists of control variables and control parameters that

maximize the objective functional. Since the problem involves optimizing with respect to

functions of time (the control variables), the solution is not found by simply taking a

derivative and setting it equal to zero—a technique applied to a typical static optimization

problem. Rather, dynamic optimization problems are usually approached with the

techniques ofdynamic programming (Mangel & Clark, 1988) orPontryagin’s Maximum

Principle (PMP) (Pontryaginet al., 1962), and recently, with the modern computational

techniques of genetic algorithms (Michalewiczet al., 1992) and evolutionary

programming (Fogel, 1994). In this chapter, I apply the PMP, or in more recent

terminology, due to generalizations,the maximum principle.

Dynamic optimization problems are of two types: continuous and discrete time. In the

continuous time case, the dynamic programming approach is equivalent to the maximum

principle (Dixit, 1976), but in practice, optimal control is usually applied to continuous

time problems, and dynamic programming, to discrete time problems. Dynamic

programming is the technique applied by Mangel (1994) in his studies of salmon life

history. It is a solution method that starts with the final stage of the life history
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(reproducing individuals) and then links to previous stages working backwards through

time (Mangel & Clark, 1988).

For some unusual problems, it is possible to findanalytical solutions to optimal control

problems using dynamic programming or the maximum principle, but in practice,

numerical techniques must be applied. My strategy for solving the optimal control

problem is to apply an analytical technique to simplify the computer algorithms used to

obtain numerical solutions. Besides simplifying the algorithms, these analytic findings can

reveal qualitative information about the solution useful for biological insight.

TABLE 6.1 General optimal control problem.a

Maximize: (objective functional)

Subject to: (displacement state eq.)

(weight state eq.)

(stream velocity
constraint)

(swimming velocity
constraint)

, , (initial and final
conditions)

, . (control parameter
constraints)

a This general model has control constraints that depend on the state variables and an objective functional integrand

that is not continuously differentiable in the control parameters (i.e., it involves the absolute value of the sum of

the control variables). Therefore it is a nonsmooth dynamic optimization problem.

u v tf te ts, , , ,

u v+ ζ x t,( )+( ) θ u x t, ,( ) k x w t, ,( ) td

t0

tf

∫− Φ w tf( ) tf te ts,, ,( )+

ẋ u v+=

ẇ g v x w t, , ,( )=

0 u umax x t,( )≤ ≤

v vmax w( )≥

x t0( ) 0= x tf( ) a= w t0( ) w0=

t0 t tf≤ ≤ tf te ts≤ ≤



 118

The analytic technique I wish to apply is the maximum principle; however, as the general

problem stands (TABLE 6.2), there are two difficulties preventing its use. First of all, the

problem involves control parameters (i.e., ), but the formulation of Pontryagin et al.

(1962) allows no such parameters. However, Hestenes (1966) handles the control

parameters in a formulation of thegeneral control problem of Bolza. Secondly, (i) the

control constraints are functions of the state variables, and (ii) the integrand of the

objective functional is not continuously differentiable in the control variables. If the

control problem involved (i) alone or (ii) alone, it would remain in the realm of Hestenes’s

work, but as it stands, it is a problem ofdynamic and nonsmooth optimization1, which

requires a more general technique than the maximum principle (Clarke, 1989).

To side-step this last difficulty, I will assume that the control constraints are independent

of the state variables—although in reality this assumption is violated—simplifying the

problem so that it becomes a general control problem of Bolza. Removing the state

dependence to the control constraints may not change the qualitative nature of the optimal

solution, only its quantitative nature. This can be tested by applying nonsmooth

techniques, dynamic programming, or stochastic optimization.

6.1  More simplifying assumptions

With the goal of first developing some intuitive results appearing in analytic rather than

numerical form, I choose to make another simplifying assumption: that is to remove the

relationship between current velocity and predator density. Unfortunately, this removes a

1.  It is imprecise to call these problems optimal control problems. They are more accurately called
differential inclusion problems which subsume problems in optimal control. The techniques to solve such
problems generalize Pontryagin’s Maximum Principle (Clarke, 1975).

tf te ts, ,
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selection pressure that favors small fish remaining inshore to avoid predators in swifter

currents, and the solution will likely not reflect the fact that fish move into swifter waters

as they develop. As an advantage, the optimization problem becomes simpler to analyze,

and at least the selection pressure for diurnal patterns of migration is retained.

Another assumption made to simplify the optimization is that fitness is enhanced by a

small increase in weight. This assumption makes the co-state variable associated with

weight positive (See “Co-state variables” on page 123). It is a reasonable assumption

since larger fish are generally more likely to avoid predators, and have a greater survival

probability.

TABLE 6.2 Simplifying assumptions of this chapter.a

Assumption

 A.1  Maximum current velocity does not vary with river kilometer, but is
allowed to vary with time.

 A.2  Maximum swimming speed does not vary with weight, but is
allowed to vary with time.

 A.3  Predator density does not vary with current velocity.

 A.4  A marginal increase in fish size increases fitness.
a These assumptions result in a less general model than that presented in CHAPTER 5.
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TABLE 6.3 The simplified optimal control problem.

Maximize: (objective functional)

Subject to: (displacement state eq.)

(weight state eq.)

(stream velocity
constraint)

(swimming velocity
constraint)

, , (initial and final
conditions)

, . (control parameter
constraints)

u v tf te ts, , , ,

u v+ ζ x t,( )+( ) θ x t,( ) k x w t, ,( ) td

t0

tf

∫− Φ w tf( ) tf te ts,, ,( )+

ẋ u v+=

ẇ g v x w t, , ,( )=

0 u umax t( )≤ ≤

v vmax t( )≥

x t0( ) 0= x tf( ) a= w t0( ) w0=

t0 t tf≤ ≤ tf te ts≤ ≤
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6.2  Applying the maximum principle

The goal of applying the necessary conditions that comprise the maximum principle is to

maximize the objective function with respect to the control variable functions and control

parameters, and to use these optimal choices to help determine optimal state trajectories.

In the discussion that follows, optimal choices of the control parameters, control variables,

TABLE 6.4 Special notation.

Variable or function Description

Optimal current velocity.a

Optimal swimming velocity.

Optimal downstream displacement trajectory.

Optimal weight trajectory.

Optimal time of arrival in the estuary.

Optimal time of ocean entry.

Optimal spawning time.

The co-state variable associated with downstream displacement.

The co-state variable associated with weight.

The switching function when  is positive

The switching function when  is nonpositive

Maximum growth speed. It is the unconstrained swimming speed that

maximizes growth.

Constrained maximum growth speed. The swimming speed that maximizes

growth, when constrained it is constrained by the maximum swimming speed.

.

Critical current velocity.b It is a critical value of the maximum current velocity

used to determine the values of the current velocity and swimming velocity that

maximize the Hamiltonian.

Constrained critical current velocity. It is the critical current velocity

constrained by the maximum swimming speed. .
a The policy functions use similar notation but are functions of the state and co-state variables.

b The critical current velocity is defined more clearly in APPENDIX B. It is useful in the case where the switching

function is negative and the maximum swimming velocity exceeds the maximum current velocity.

u* t( )

v* t( )

x* t( )

w* t( )

tf*

te*

ts*

λ1 t( )

λ2 t( )

σ1 x w λ1 t, , ,( ) λ1 t( )

σ2 x w λ1 t, , ,( ) λ1 t( )

vg x w t, ,( )

ṽg x w t, ,( )

ṽg min vg vmax,( )=

ucrit x w λ1 λ2 t, , , ,( )

ũcrit x w λ1 λ2 t, , , ,( )

ũcrit min ucrit vmax,( )=
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and state variables are indicated by an asterisk “*” (TABLE 6.4). Using this convention,

 and  represent optimal choices for the current velocity and swimming

velocity variables,  and , optimal choices for the downstream displacement

and weight variables, and , , and  represent optimal choices for the control

parameters.

The maximum principle is applied in two phases. First, a function called the Hamiltonian

is maximized with respect to its control variable arguments. Secondly, these maximizing

arguments are used to construct a two-point boundary value problem whose solution

includes the optimal state variable trajectories (i.e., the optimal weight and downstream

displacement schedules).

6.3  The value function

Thevalue function at time , , also known as theoptimal return function, is

defined as the unique value of the objective functional acquired by starting from a point

 and proceeding optimally to the terminal time, in this case . For convenience,

the terminal time is the time of entry into the estuary, because at that point, the integration

in the objective functional terminates. The value function is defined mathematically as

(6.30)

.

The constraints on the control variables, terminal condition, and conditions on the control

parameters must be observed in calculating the value function (TABLE 6.1). The value

function is sometimes called thefitness-to-go in the behavioral ecology context, because it

u* t( ) v* t( )

x* t( ) w* t( )

tf* te* ts*

t V x w t, ,( )

x w t, ,( ) tf

V x w t, ,( ) =

max

u v tf te ts, , , ,
u v+ ζ x ξ,( )+( ) θ x ξ,( ) k w ξ,( ) ξd

t

tf

∫− Φ w tf( ) tf te ts,, ,( )+{ }
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represents the remaining fitness of the individual from time , to the final time, ,

assuming an optimal choice for the control variables  and , and the control parameters

 and .

6.3.1  Co-state variables

 and  represent, respectively, the marginal contributions of the state variables

 and  to the objective functional at time . Mathematically, they are defined by

 and .1

These variables are calledco-state variables. In economics, they are known asshadow

prices. Biologically, they show how the fitness, measured over the juvenile’s remaining

lifetime, is influenced by a marginal increase in downstream displacement or weight. For

example, if the co-state variable associated with displacement, , is positive, then

remaining fitness is enhanced by an increase in downstream position; otherwise, if ,

then a downstream increment decreases remaining fitness. If  there is no advantage

to being further upstream or downstream. In the analysis that follows, only the co-state

variable associated with weight is assumed positive (see simplifying assumption A.4 of

TABLE 6.2). This assumption cannot be imposed without specifying certain conditions on

the model parameters and functions, because the co-state variables are dependent upon

model functions and parameters. The following two results describe situations in which

the co-state variables are known to be positive or nonnegative from the time of emergence

to estuary entry (i.e. the time horizon). The proofs of these results are in APPENDIX A.

1.  The notation denotes partial differentiation with respect to the subscript, (i.e.,  and ).
This notation is used throughout.

t tf

u v

tf te, ts

λ1 t( ) λ2 t( )

x t( ) w t( ) t

λ1 t( ) Vx x w t, ,( )= λ2 t( ) Vw x w t, ,( )=

Vx x∂
∂V= Vw w∂

∂V=

λ1

λ1 0<
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Result 6.1 If  is decreasing in  and  is increasing in , then  is nonnegative

for all  in the time horizon. If, in addition, either  is strictly decreasing in , or  is

strictly increasing in , then  is positive for all  in the time horizon.

Result 6.2 If  and  are increasing in ; , , and  are decreasing in ; and  is

decreasing in ; then  is nonnegative for all  in the time horizon.

6.3.2  The Hamiltonian

The first step of the maximum principle is to maximize theHamiltonian with respect to its

control variable arguments. The Hamiltonian consists of elements of the objective

functional integrand and the state equations,

(6.31)

.

In maximizing the Hamiltonian, the control constraints must be observed.

The maximizing control variable arguments will be “functions” of  and .

These maximizing arguments are not really functions, since it is possible for multiple

values of  and  to maximize the Hamiltonian at the same point . The

maximizing arguments, calledpolicy functions1, are denoted by  and

 (Dixit, 1976). Whenever the value returned by one of these policy

functions is a single point (i.e., the singleton set), the set is represented by the point itself;

otherwise, the entire maximizing set is specified. Do not confuse the policy functions with

1.  This is a term borrowed from economics. To be more precise, these “functions” are actually
multifunctions whose output can be a set containing more than one element.

k w Φ w λ2 t( )

t k w Φ

w λ2 t( ) t

umax g x k ζ θ x k

w λ1 t( ) t

H x w u v λ1 λ2 t, , , , , ,( ) =

u v+ ζ x t,( )+( ) θk x w t, ,( )− λ1 u v+( ) λ2g v x w t, , ,( )+ +

x w λ1 λ2,, , t
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the optimal controls themselves; the optimal controls are functions of time alone (TABLE

6.1). Although they are given similar notation, the context will make it clear which is

meant. The optimal control variables are connected to their corresponding policy

functions through

 and (6.32)

.1 (6.33)

The simple act of maximizing the Hamiltonian yields a great deal of information about the

optimal behavior types, although more is needed before the optimal state and control paths

can be constructed (FIGURE 6.1).

The analysis will proceed by considering two different cases: the first where the co-state

variable associated with displacement is positive, and the second, where it is nonpositive.

In both cases, I first determine what values of the current velocity are optimal given an

arbitrary choice of the swimming velocity. This amounts to maximizing the Hamiltonian

over cross-sections defined by fixed swimming velocity. This allows me to write  as a

function of . When the result is substituted into the Hamiltonian, the optimization

problem becomes one-dimensional, involving only the swimming velocity, and it is easier

to analyze. For the sake of brevity, only an outline of the methodology and results are

presented in this chapter. A more complete demonstration of the Hamiltonian optimization

may be found in APPENDIX B.

1.  The distinction between an optimal control a policy function (which returns a set of values maximizing
the Hamiltonian) is very important in the case of a singular path, where the optimal control is not uniquely
determined by the policy function (Conrad and Clark 1987; Huffakeret al. 1992).

u* t( ) u* x* t( ) w* t( ) λ1 t( ) λ2 t( ) t, , , ,( )∈

v* t( ) v* x* t( ) w* t( ) λ1 t( ) λ2 t( ) t, , , ,( )∈

u*
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A function known as the switching function plays an important role in determining the

optimal migration behaviors. There are two different switching functions used:

 and . (6.34)

When the co-state variable associated with displacement is positive,  is used as the

switching function; otherwise,  is the best choice. It turns out that behavioral changes

will be determined by a change in sign of one of these switching functions.1

6.3.2.1  When the co-state variable λ1 is positive

In this section, I present the optimal behavior results when the co-state variable associated

with displacement is positive. There are three types of behavior that the fish show at any

time: 1) a predator avoidance and feeding behavior and 2) an active migration behavior 3)

a behavior intermediate to (1) and (2) that represents a singular case (FIGURE 6.1). These

three behaviors correspond to when the switching function, , is negative, positive, and

zero, respectively.

1.  In linear optimal control problems involving a single control variable, the switching function is the
multiplier of the control variable, as it appears in the Hamiltonian. It indicates whether the maximum or
minimum value of the control variable is optimal. When the switching function is zero, there are infinitely
many values of the control variable that maximize the Hamiltonian, and it is possible that the solution admits
asingular control. The control problem presented here is not linear. However, the Hamiltonian is piecewise
linear in , the migration velocity. When the migration velocity is positive, its multiplier is ; when
negative, its multiplier is . It turns out, in maximizing the Hamiltonian, that the sign of the function, ,
provides the best indicator of the optimal controls when the co-state variable  is positive, and  provides
the best indicator when  is nonpositive.

σ1 λ1 θk−= σ2 λ1 θk+=

σ1

σ2

u v+ σ1
σ2 σ1

λ1 σ2
λ1

σ1



 127

FIGURE 6.1 Optimal current and swimming velocities as determined by maximizing

the Hamiltonian whenλ1 is positive.a In figure (a) the maximum current velocity

exceeds the maximum growth speed. In figure (b) the reverse is true. When the

switching functionσ1 is negative,❶, behavior is driven by predator avoidance and

feeding. When it is positive,❷, behavior is driven by the need to migrate to the ocean

and take advantage of its tremendous growth potential. When it is zero, behavior is

intermediate to❶ and❷, and the current velocity is not uniquely determined (unless

umax = 0).
a In all cases I assumed that the maximum swimming speed exceeded the maximum growth speed.
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The results of the Hamiltonian maximization can be divided into three different cases

depending on the sign of the switching function . In the following analysis, each of the

three cases characterized by the sign of the switching function is considered separately,

and I determine the optimal current and swimming velocities associated with each

(TABLE 6.5). To guide intuition, recall that the switching function  is the difference of

the marginal value of an increment in downstream displacement, , and the predation

gradient, , which represents the marginal predation risk of migration over this

increment of downstream displacement. When the predation gradient is small relative to

, making  positive, downstream migration is optimal; otherwise, a behavior that

keeps immediate predation risk low is best.

TABLE 6.5 Optimal choices of current velocity corresponding to different choices of

the swimming velocity whenλ1 is positive.

Case Number

Sign of
Switching
Function

Swimming Velocity
Condition

Optimal Current
Velocities

1 + none

2a -

2b -

2c -

3aa 0

3b 0

3c 0
Three different cases arise, depending on the sign of the switching function. Optimal current velocity depends on the

sign of the switching function and the swimming velocity.

In cases 3a and 3c there is no single optimal choice for the current velocity. This is the case where the switching

function is zero, and the problem may admit a singular path.

σ1

u* umax=
v 0> u* 0=
umax v 0<+ u* umax=
v 0 umax v+≤ ≤ u* v−=
v 0> u* 0 umax,[ ]=
umax v 0<+ u* umax=
v 0 umax v+≤ ≤ u* v− umax,[ ]=

σ1

σ1

λ1

θk

λ1 σ1
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6.3.2.1.1  A positive switching function (σ1 > 0)

When the predation gradient, , exceeds , then the switching function is positive and

the optimal current velocity is known to be  (TABLE 6.5). A plot of the Hamiltonian

along the curve  shows that the optimal velocity is given by ,

where  satisfies

. (6.35)

When there is not solution to (6.35), then the maximizing velocity is . This occurs

when , where  is a right-hand derivative. This represents an extreme

case in which an increase in swimming velocity above zero serves only to decrease

growth.

Overall, the behavior when the switching function is positive can be characterized as an

active downstream migration behavior; a behavior driven more by the need to migrate

than by immediate feeding and predator avoidance. A fish’s best option is to actively

migrate downstream, swimming in the swiftest current. Its swimming velocity is zero (in

the case of severely depressed growth), or greater than its optimal growth velocity

(provided that the optimal growth velocity does not exceed the maximum swimming

speed, ).

6.3.2.1.2  A negative switching function (σ1 < 0)

When predation gradient, , is less than , then the switching function is negative and

the optimal current velocity lies along the curve

θk λ1

umax

u umax= v min v' vmax,( )=

v'

σ1 λ2gv v' w t, ,( )+ 0=

v* 0=

σ1 λ2gv v 0=
+ 0< gv

vmax

θk λ1
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.

Optimizing the Hamiltonian over this curve yields the desired optimal swimming velocity

(TABLE 6.6). The optimal strategy can be more complicated when the switching function

is negative than when it is positive. When the switching function is positive, the optimal

strategy is always downstream migration. When it is negative, the optimal strategy may

involve no migration, downstream migration, or even upstream migration,depending on

the value of the maximum current speed relative to the maximum growth velocity. When

the maximum current speed exceeds the maximum growth speed, then the fish holds

station, swimming against the current at a rate that maximizes growth. Here, the fish has

the best of both worlds: it minimizes its expected risk of predation (its predator encounter

rate is smallest when stationary), and it maximizes its growth.

What happens when the maximum current velocity drops below the maximum feeding

speed? One thing is known for sure: it isimpossible for a fish to have the best of both

worlds. For if it minimizes predation risk by remaining stationary (with respect to the

substrate), its growth is not maximal, and conversely, if its growth is maximal (i.e., it is

swimming at its maximum growth speed), then its predator encounter rate is not minimal

since it is not stationary. The fish must choose a swimming velocity that balances the

trade-off between feeding and predation, and this means that the optimal strategy will

consist of swimming more slowly than the optimal growth speed while migrating either

upstream or downstream. When the maximum current velocity is zero, downstream

migration is optimal and the optimal current velocity choice is zero. When the maximum

u

0

umax

v−



=
i f

i f

i f

v 0>
v umax−<
umax− v 0≤ ≤
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current velocity approaches the optimal growth speed, upstream migration is optimal and

the optimal current velocity choice is .

The possibility of upstream migration is surprising since, in essence, migrating upstream

serves to increase the length of the migration route, and consequently the number of

predator encounters. What compensates for this detriment? The answer is—growth during

the upstream migration. Recall that predator encounters are less likely to lead to capture if

the juvenile is larger. Therefore, if the maximum current velocity is less than the

maximum growth speed, the juvenile may opt to swim upstream near its maximum growth

speed (and in the swiftest current to reduce predator encounters), with the benefit of

increased growth, and hence the possibility of better survival, even though the strategy is

known to lead to a greater number of encounters.

TABLE 6.6 Optimal swimming velocity summary when the switching functionσ1 is

negative.a

Possibility  Condition
Optimal current and swimming
velocities

i ,

iia ,

iib ,

iic Velocities given in (iia) and (iib) are both
optimal.

Here the switching function is negative. The optimal swimming velocity depends on the value of  relative to the

constrained maximum growth velocity . When the maximum current velocity exceeds

(possibility i), the juvenile optimally holds station swimming against the current at its optimal growth speed. If the

maximum current velocity does not exceed the constrained maximum growth speed (possibility iia–c), the optimal

velocities depend on the maximum current velocity relative to a critical value,  or the constrained critical

current velocity .

a In iia-b the optimal swimming velocity is unique and lies in the specified interval.

umax

umax

ṽg umax< u* v*−= v* ṽg−=

0 umax ũcrit≤ ≤ u* 0= 0 v* ṽg≤ ≤

0 ucrit umax ṽg≤< < u* umax= ṽg− v* umax−≤ ≤

vmax umax> ucrit 0>=

umax

ṽg min vg vmax,( )= ṽg

ucrit

ũcrit min ucrit vmax,( )=
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6.3.2.1.3  Switching function zero (σ1 = 0)

When the switching function is zero, the optimal swimming velocity is found by

maximizing the Hamiltonian over the region

.

This maximization problem does not yield a unique current and swimming velocity

(TABLE 6.7). Rather, unless , there are infinitely many current velocities

maximizing the Hamiltonian. One consistent result, however, is that the optimal

swimming speed is always .

This case may correspond to a singular path. Although maximizing the Hamiltonian does

not produce unique values of the current and swimming velocity when the switching

function is zero, it does not mean that the optimal controls are not unique. More analysis is

needed, and dynamics must be considered (See “The canonical equations and optimal

control parameters” on page 138). It is also possible that the switching function is zero for

only an instant of time, ruling out the possibility of a singular path.

u

0 umax,[ ]
umax{ }
v umax,−[ ]




=
i f

i f

i f

v 0>
v umax−<
umax− v 0≤ ≤

umax 0=
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6.3.2.2  When the co-state variable λ1 is nonpositive

In this section, I derive optimal behavior when the co-state variable associated with

displacement is nonpositive (meaning that the marginal value of displacement

downstream is zero or negative). The results show that there are three types of behavior

that a fish shows at any given time: 1) predator avoidance and feeding, 2) activeupstream

migration, or (3) a behavior intermediate to (1) and (2) (FIGURE 6.1). These three

behaviors correspond to when the switching function, , is positive, negative, and zero,

respectively.

TABLE 6.7 Optimal swimming velocities when the switching functionσ1 is zero.

Possibility  Condition Optimal Velocities

i  and , or

 and

ii  and

Here the switching function is zero. As in case 2, the optimal velocities depend on the maximum current velocity

relative to the constrained maximum growth velocity. Regardless of the value of , the optimal current

velocity is not uniquely determined, while the swimming speed, , is always equal to the constrained

maximum growth speed. When , the juvenile swims with the current, but when , the juvenile

optimally swims either with the current or against the current.

umax

ṽg umax≤ u* ṽg umax,[ ]= v* ṽg−=

u* 0 umax,[ ]= v* ṽg=

umax ṽg< u* 0 umax,[ ]= v* ṽg=

umax

v*

umax ṽg< ṽg umax≤

σ2
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FIGURE 6.2 Optimal current and swimming velocities as determined by maximizing

the Hamiltonian whenλ2 is nonpositive.a In figure (a) the maximum current velocity

exceeds the maximum growth speed. In figure (b) the reverse is true. When the

switching functionσ2 is positive,❶, behavior is driven by predator avoidance and

feeding—fish swim in the swiftest current holding station, or moving upstream. When

it is negative,❷, behavior is driven by the need to migrate upstream. When it is zero, a

behavior intermediate to❶ and❷ is best.
a In all cases I assumed that the maximum swimming speed exceeded the maximum growth speed.
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6.3.2.2.1  A negative switching function (σ2 < 0)

When the predation gradient, , is less than , then the switching function  is

negative and we need only optimize the Hamiltonian along the curve  (TABLE 6.5).

A plot of the Hamiltonian restricted to this curve shows that the optimal velocity is given

by , where , and satisfies

. (6.36)

If  (  is a left-hand derivative), then (6.36) has no solution, and the

maximizing swimming velocity is . This is an exceptional case where growth is so

depressed that an increase in swimming speed above  decreases growth.

Overall, when the switching function  is zero, an upstream migration behavior is

optimal. It is a behavior which is driven more by the need to migrate than by freshwater

TABLE 6.8 Optimal choices of current velocity corresponding to different choices of

the swimming velocity whenλ1 is nonpositive.

Case Number

Sign of the
Switching
Functionσ2

Swimming Velocity
Condition

Optimal Current
Velocities

1 - none

2a +

2b +

2c +

3a 0

3b 0

3c 0
Three different cases arise, each depending on the sign of the switching function. Optimal current velocity depends on

the sign of the switching function and the swimming velocity.

In cases 3a and 3c there is no single optimal choice for the current velocity. This is the case where the switching

function is zero, and the problem may admit a singular path.

u* 0=
v 0> u* 0=
umax v 0<+ u* umax=
v 0 umax v+≤ ≤ u* v−=
v 0> u* 0=
umax v 0<+ u* 0 umax,[ ]=
v 0 umax v+≤ ≤ u* 0 v−,[ ]=

θk λ1 σ2

u 0=

v* m− in v'' vmax,( )= v'' 0<

σ2 λ2gv v'' x w t, , ,( )+ 0=

σ2 λ2gv v 0=
+ 0> gv

v* 0=

0

σ2
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predator avoidance and feeding. A fish’s best option is to actively migrate upstream,

swimming in the slowest current (typically nearshore). The optimal swimming velocity

greater than its optimal growth velocity (provided that the optimal growth velocity does

not exceed the maximum swimming speed, ), or zero if growth is too depressed.

6.3.2.2.2  A positive switching function (σ2 > 0)

When the predation gradient, , is less than  the switching function is negative and

the optimal current velocity lies along the curve

 (TABLE 6.6).

The optimal strategy can be more complicated when the switching function  is positive

than when it is negative. When the switching function is negative, the optimal behavior is

TABLE 6.9 Optimal swimming velocity summary when the switching functionσ2 is

positive.

Possibility  Condition
Optimal current and
swimming velocities

i ,

iia  & ,

iib  & ,

The optimal swimming velocity depends on the value of  relative to the constrained maximum growth velocity

. When the maximum current velocity exceeds the constrained maximum growth speed

(possibility i), the juvenile optimally holds station swimming against the current at its (constrained) optimal

growth speed. If the maximum current velocity does not exceed the constrained maximum growth speed

(possibility iia–b), the optimal velocities depend on the sign of . The optimal behavior

is characterized by station holding (in i and iib) or upstream migration in slack current at a swimming velocity that

does not exceed the maximum growth speed.

vmax

θk λ1

u
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umax
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always upstream migration. When positive, the optimal strategy may involve upstream

migration or station holding,depending on the value of the maximum current speed

relative to the maximum growth velocity. When the maximum current speed exceeds the

maximum growth speed, then the fish holds station, swimming against the current at a rate

that maximizes growth. Here, the fish has the best of both worlds: it minimizes its

expected risk of predation (its predator encounter rate is smallest when stationary), and

maximizes growth.

When the maximum current velocity drops below the maximum feeding speed it is

impossible for a fish to have the best of both worlds. For if it minimizes predation risk by

remaining stationary (with respect to the substrate), its growth is not maximal, and

conversely, if its growth is maximal (i.e., it is swimming at its maximum growth speed),

then its predator encounter rate is not minimal since it is not stationary. The fish must

choose a swimming velocity that balances the feeding and depredation tradeoffs, and this

means that the optimal strategy will consist of swimming more slowly than the optimal

growth speed, holding station or moving upstream, always in the most rapid current.

6.3.2.2.3  Switching function zero (σ2 = 0)

When the predation gradient, , equals , the switching function is zero, and the

optimal swimming velocity is found by maximizing the Hamiltonian over the region

.

θk λ1

u
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0 umax,[ ]

0 v−,[ ]
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Unless , this maximization problem does not yield a unique current and

swimming velocity (TABLE 6.7). Rather, there are infinitely many current velocities

maximizing the Hamiltonian. One consistent result, however, is that the optimal

swimming speed is always . This case may correspond to a singular path

(compare to ).

6.3.3  The canonical equations and optimal control parameters

The next step in the maximum principle is to develop a system of simultaneous differential

equations called the canonical equations, whose solution gives the optimal state and co-

state paths. The canonical equations consist of a set of four ordinary differential equations

that govern the change in the optimal state variables and the co-state variables over time.

To begin with, define

, (6.37)

so that  is a function that does not include the control variable arguments—it is a

function of  and  alone.

TABLE 6.10 Optimal swimming velocities when the switching functionσ2 is zero.

Possibility  Condition Optimal Velocities

i  and , or

ii  and

As in case 2, the optimal velocities depend on the maximum current velocity relative to the constrained maximum

growth velocity. Unless , the optimal current velocity is not uniquely determined, while the swimming

velocity is always equal to the negative of the constrained maximum growth speed. Notice that it is always

optimal to swim against the current, and that since the migration velocity is always nonpositive, migration is

allowed only in the upstream direction.

umax 0=

m− in vg vmax,( )

σ1 0=

umax

ṽg umax≤ u* 0 ṽg,[ ]= v* ṽg−=

umax ṽg< u* 0 umax,[ ]= v* ṽ− g=

umax 0=

H* H u v,( ) u* v*,( )==

H*

x w λ1 λ2, , , t
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According to the maximum principle, the co-state variables satisfy

 and (6.38)

; (6.39)

and the optimal state variables must satisfy the original state equations evaluated at

and , namely

 and (6.40)

. (6.41)

Recall that, in general, the policy functions, ; depend on . Therefore,

equations (6.38)–(6.41) represent a system of four simultaneous differential equations in 4

variables, without explicit dependence on  and . These are the canonical equations. In

the next section the boundary conditions will be specified, making it possible to solve

these equations.

6.3.4  Transversality conditions

So far, only three boundary conditions are available for the canonical equations:

, , and ; and furthermore, , and  are

unknown. It is therefore impossible to solve the system of equations without another

boundary condition, and the values of , and . All of this information is supplied

by thetransversality conditions:

, , , and , (6.42)

λ̇1 Hx*−=

λ̇2 Hw*−=
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v*

ẋ u* v*+=

ẇ g v*=

u* v*, x w λ1 λ2 t, , , ,

u v

x t0( ) 0= w t0( ) w0= x tf*( ) a= tf* te*, ts*

tf* te*, ts*

λ2 tf*( ) Φw w w tf*( )=
= Φtf

H+( )
t tf*=

0= Φte te te*=
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where I assume that , (i.e., ocean residence and estuarine residence time are

not zero).

To summarize, the necessary conditions consist of a total of 4 canonical equations with

three boundary conditions specified at the outset, and 4 transversality conditions. These 4

transversality conditions supply the 4th condition needed to solve the canonical equations

as well as a set of 3 equations for determining the optimal values of the 3 control

parameters, , and . The canonical equations, along with their boundary

conditions, comprise atwo point boundary value problemwhich can, in theory, be solved

using some numerical routine. Two popular methods for solving this type of problem are

theshooting method and therelaxation method (Presset al., 1988).

6.4  Summary

The optimal control problem was presented in a form that allowed application of the

maximum principle. To avoid the need to resort to nonsmooth techniques, dependence of

the control variable constraints on the state variables was omitted. In addition, for

simplicity, the dependence of predator density on current velocity was also omitted. Once

the problem was specified, the maximum principle was applied: the Hamiltonian was

maximized with respect to the control variables to obtain the policy functions, the co-state

and state equations were defined, and the transversality conditions were developed to

supply enough boundary conditions to provide a boundary condition for the canonical

equations and to determine the optimal control parameters.

A remarkable amount of information about the optimal controls was gleaned by simply

maximizing the Hamiltonian (FIGURE 6.1). One important result is that optimal behavior

tf* te* ts*< <

tf* te*, ts*
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is largely controlled by the sign of the switching function (defined as  when , and

 otherwise).

First focussing on the case where a marginal increase in downstream displacement is

beneficial to fitness (i.e., ), the sign of the switching function  is informative.

When it is positive, active downstream migration is optimal: the fish swims downstream in

the swiftest current, at a speed that exceeds the maximum growth speed (if the maximum

swimming speed permits).

When the switching function, , is negative, there are three possibilities: (i) if the

maximum current velocity exceeds the maximum growth speed, then the fish holds

station, migrating against the current, swimming at its maximum growth speed; (ii)

otherwise, the juvenile either (a) migrates upstream, swimming in the most rapid current,

and at a swimming velocity that exceeds the maximum current velocity, but is less than the

optimal growth velocity or (b) swims downstream in a current of zero velocity, and at a

swimming velocity that does not exceed the optimal growth velocity. Option (a) is optimal

when the maximum current velocity is close to zero (relative to the maximum growth

velocity), and option (b) is optimal when it is close to the maximum growth velocity.

When the switching function  is zero, maximizing the Hamiltonian gives more limited

knowledge of the optimal controls. If the maximum current velocity exceeds the

maximum growth speed, then one of two behaviors is optimal: (a) the fish swims against

the current at its maximum growth speed and in a current velocity at least as great as its

maximum growth speed; (b) the fish swims downstream in a current velocity not

exceeding its maximum current velocity, with a swimming speed equal to its maximum

σ1 λ1 0>

σ2

λ1 0> σ1

σ1

σ1
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growth speed. Notice that, unless , the optimal current velocity is not uniquely

determined, but is only known to lie in an interval; the swimmingspeed, however, always

equals the maximum growth speed. If the maximum current velocity is less than the

maximum growth speed, then option (a) is optimal.

Focussing next on the case where the co-state variable associated with displacement is

nonpositive, the sign switching function  largely characterizes the optimal behaviors.

When it is negative, a fish displays upstream migration behavior, swimming in slack

current or near the shore ( ), while swimming upstream at a speed that exceeds the

maximum growth speed (if the maximum swimming speed allows).

When the switching function  is positive, a fish shows feeding and predator avoidance

behavior, but there are actually three possible behaviors based on the maximum current

velocity. (a) If the optimal current velocity exceeds the maximum growth velocity, the fish

holds station, swimming against the current at their maximum growth speed. Otherwise,

the fish swims in the swiftest current either (b) holding station, or (c) migrating upstream

with a swimming speed between the maximum growth speed and the maximum current

velocity. Only one of these three behaviors is optimal at any given time.

When the switching function  is zero, a fish displays a behavior intermediate to when

 is positive or negative. Unless , the optimal behavior is not actually uniquely

determined by this case, and further analysis of the canonical equations is needed.

However, it is known that the fish swims upstream at its constrained maximum growth

velocity, swimming in any current from 0 to .

umax 0=

σ2

u 0=

σ2

σ2

σ2 umax 0=

min ṽg umax,( )
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This analysis shows that when the co-state variable associated with displacement is

nonpositive, no downstream migration strategy is ever optimal.

6.5  Discussion

Probably the most useful result of this section is that behaviors are largely determined by

the switching functions and the difference between the maximum current velocity and the

maximum growth velocity. When the co-state variable associated with displacement is

positive, the switching function is , and represents difference between (i) the marginal

change in future fitness for a marginal increase in downstream displacement and (ii) the

probability of death over a marginal increase in downstream displacement. The analysis

shows that when the marginal value of and increment in downstream position exceeds the

marginal cost of predation over that distance increment, then the juvenile optimally

migrates downstream. This corresponds to the case where the switching function  is

positive. The optimal behavior, at this point, is driven more by selection pressure to

migrate to the ocean than pressure to avoid predators or feed. Because, during active

migration, predation risk is not minimal and growth is not maximal (unless ).

What happens when the switching function  is negative? In this case, the fish is averse

to active migration. Although the fishwill  move under low maximum current velocity

conditions, behavior is driven more by feeding and predator avoidance. Movements when

 is negative are more properly referred to asappetitive movements (Southwood, 1962)

rather than migration. When maximum current velocity exceeds maximum growth speed,

then the fish enjoys the best of both worlds—minimal predation and maximum growth—

by holding station and swimming against the current at its optimal growth speed. If, on the

σ1

σ1

vmax vg≤

σ1

σ1
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other hand, maximum current velocity is less than the maximum growth speed, the fish

must make the best of a bad situation and some unexpected behavior ensues. For example,

it is possible for the fish to move upstream! This occurs when the benefit to growth during

the upstream movement (in the form of reduced predation risk in the future and other size-

related benefits), exceeds the cost of greater predator encounters during this upstream

movement. The other possibility (when maximum current velocity is less than the

maximum growth speed) is that the fish moves downstream in a river current of zero (i.e.,

near shore) with a swimming velocity less than is maximum growth speed. Here the fish

accepts a higher predator encounter rate (i.e., migration velocity is not zero), for the sake

of increased growth rate. Another benefit is that less migration distance will need to be

covered in the future.

When the switching function  is zero, maximizing the Hamiltonian produces less

information on the optimal migration strategy. However it does appear to be an

intermediate strategy, lying between the case where migration is the driving force of

behavior, and the case where growth and predator avoidance are the driving forces. This

case must be explored further by considering the dynamics of the canonical equations. A

singular solution may show a smooth transition between growth and predator avoidance-

driven behavior, and active migration behavior. If, on the other hand, the switching

function  is zero only for an instant, there will be a abrupt change from one behavior to

the other. This issue and others will be explored in later chapters, in which emphasis is

placed on obtaining a numerical solution to the control problem.

The above discussion assumed that the co-state variable associated with displacement was

positive. When it is nonpositive, the switching function is  rather than , and can be

σ1

σ1

σ2 σ1
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interpreted as the difference between (i) the probability of death over a marginal increase

in upstream displacement and (ii) the marginal change in future fitness for a marginal

increase in upstream displacement. When this quantity is positive, cost of migration is too

great and station holding is optimal; when it is negative, the benefit of upstream movement

is high enough that the fish migrates upstream. The case where it is zero represents an

intermediate strategy, where neither upstream movement or station holding behavior is

better. In this case, the possibility of a singular solution must be explored.

FIGURE 6.3 The juvenile chinook behavior space is partitioned into four quadrants

defined by the sign of the switching functionσ1 (assumingλ1 > 0) and the difference

between the maximum current velocity and maximum growth speed. Behavior in

quadrants I and II is characterized as downstream migration; III and IV, as predator

avoidance and feeding behavior which involves station holding (III or possibly IV) or

appetitive movements (IV only).

umax ṽg−

I (+,+)
d.s migration

II (+,-)
d.s migration

stream-type chinook in
impounded mainstem

III (-,-)
possible appetitive
movements (u.s or d.s)
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IV (-,-)
station holding

σ1
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How do these model-derived behaviors compare with observed juvenile chinook

movements? Observations of movements on the Snake River show that during the

“migration” season, stream-type chinook move more swiftly through the Lower Granite

reservoir than do ocean-type chinook. Zabel (1994) estimated an average migration rate of

5.22 (km/d) for 17 release groups of stream-type chinook, and 1.41 (km/d) for ocean-type

chinook (only 1 release group) during the 1991 season. My optimization results suggest

that ocean-type chinook migrate more slowly because their movements are appetitive,

characterized by a negative switching function  and low current velocity. These ocean-

type chinook rear in the mainstem of the Snake River, subject to low current velocities of

impounded waters where station-holding feeding behavior is suboptimal because delivery

rate of food is low, making appetitive movement best. In contrast, stream-type chinook

rear in tributaries of the Snake River (e.g., the Salmon and Clearwater Rivers), and when

they reach the mainstem of the Snake River are moving more quickly downstream. This

suggests that these fish have a positive switching function  in the mainstem (FIGURE

6.3).

σ1

σ1



CHAPTER 7 EFFECTS OF FLUCTUATING
LIGHT, TURBIDITY, AND
CURRENT VELOCITY ON
MIGRATION BEHAVIOR

7.1  Introduction

Patterns of migration exhibited in salmon populations appear to be driven in part by

fluctuations of light intensity. Migration has observed to occur mostly at night, or in some

cases during freshets when turbidity is high. High turbidity can produce nighttime

conditions and stimulate a “nighttime” migration response (Junge & Oakley, 1966). Once

the juvenile is in a physiological state which predisposes it to downstream migration (i.e.,

its smolt development is sufficient), a change in light can provide the environmental cue

for migration to begin.

None of the previous chapters have dealt with fluctuating light intensity explicitly.

However, if I can establish a link between the switching function, discussed in the

previous chapter, and light intensity, then its influence can be quantified, because behavior

is largely characterized by the switching function. Recall that when the switching function

is negative, an active migration behavior is optimal, and when positive, a predator

avoidance and feeding behavior is optimal. The switching function is comprised of three

elements, the co-state variable associated with downstream displacement, the predator
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density, and the capture probability. Fluctuating light levels can influence the capture

probability, providing the link to the switching function I seek.

My approach to understanding the influence of fluctuating light levels is to compare

solutions in the absence of fluctuating light levels—anautonomous1 case, to solutions in

its presence. This represents a controlled experiment—not on nature, but on the dynamic

optimization model. What results do I expect? Just as seasonality modulated the fitness

function in CHAPTER 4, making certain times of the year better for migration, I expect

fluctuating light and current velocity will modulate the fitness functional of this chapter,

making certain times of the day and year better for migration than others. So that the

effects are not confounded, I eliminate time varying factors not related to current velocity

or light, and I make some other simplifying assumptions for ease of model analysis

(TABLE 7.2).

1.  The termautonomous is used to indicate that the underlying canonical equations are not explicit func-
tions of time.
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7.2  An autonomous case

The simplest case I consider is an autonomous one that removes explicit time dependence

of the model parameters. In this case the influence of light and current velocity

fluctuations are deliberately omitted, so that their influence can be quantified later by way

of comparison. This represents the “control” simulation. The assumptions for the

autonomous case are summarized in TABLE 7.2.

TABLE 7.1  Further model simplifications.a

Assumption

The control parameters,  and  are treated as known

Maximum swimming velocity, , is constant

Predator density, , and predator search velocity, , are constant

Food density is constant

, allowing sufficient time to journey to the estuary.

The maximum current velocity exceeds the maximum swimming velocityb

Estuarine mortality rate is equal to ocean mortality rate and are constant
a The simplifications are in addition to those of the previous chapter.

b This simplifies the problem of maximizing the Hamiltonian (see FIGURE 6.1a).

te ts

vmax

θ ζ

tf umax vmax+( ) a≥
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7.2.1  Optimal solution types

By using the maximum principle—maximizing the Hamiltonian and building the

canonical equations— it is possible to characterize all solutions to the autonomous case on

the based simply on the initial sign of the growth function and the initial sign of the

switching function (See APPENDIX C). The maximized Hamiltonian and the canonical

TABLE 7.2  Model assumptions (autonomous case with fixed estuary entry
time).a

Assumption

The maximum current velocity is constant

The growth function depends only on weight (not on time)

Predation rate depends only on weight (not on time)

Time of estuary entry, , is treated as known
a The third and fourth assumptions will be relaxed when fluctuating light levels are considered (See “Light

sensitive predation” on page 154)

TABLE 7.3 Optimal control problem (autonomous case with fixed estuary entry time).

Maximize:
(objective functional)

Subject to: (displacement equation)

(weight equation)

(current velocity constraint)

(swimming velocity constraint)

tf

u v,
u v+ ζ+( ) θk w( ) td

0

tf

∫− Φ w tf( )( )+

ẋ u v+=

ẇ g v w,( )=

0 u Umax≤ ≤

v vmax≤
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equations are easily determined by the techniques of the last chapter, and are summarized

in TABLE 7.3.

For the autonomous optimal control problem presented above, one of the following three

behaviors is optimal:

S1. Initially, the juvenile holds its station at , swimming against the current at its

optimal growth speed. At some critical weight, it begins migrating downstream,

swimming in the swiftest current, and actively swimming downstream at a speed

greater than its optimal growth speed. The juvenile does not reach  until

(assumed fixed).

TABLE 7.4  Maximum principle applied to the autonomous case.a

—Maximized Hamiltonian—

{ b

if

if

—Canonical Equations—

{ if

if

{ if

if

{ if

if

—Boundary Conditions—

, , ,

a The switching function can be zero for only an instant (APPENDIX C), and therefore the case

where  is omitted.

b  is defined in CHAPTER 6.

H* =
θζk w( )− λ2g vg w,( )+

umax ṽ ζ+ +( ) θk w( )− λ1 umax ṽ+( ) λ2g ṽ w,( )+ +

σ 0<

σ 0>

ẋ =
0

umax ṽ+

σ 0<

σ 0>

ẇ =
g vg w,( )

g ṽ w,( )

σ 0<

σ 0>

λ̇1 = 0

λ̇2 =
λ2− gw vg w,( ) θζkw w( )+

λ− 2gw ṽ w,( ) umax ṽ ζ+ +( ) θkw w( )+

σ 0<

σ 0>

x t0( ) 0= x tf( ) a= w t0( ) w0= λ2 tf( ) dΦ dw⁄=

σ 0=

ṽ

x 0=

x a= tf
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S2. The juvenile begins migrating immediately after emergence, swimming at a speed

greater than or equal to its optimal growth speed, and in the swiftest current. It

ceases migration only when . If the juvenile reaches  before , then it

holds its station at , swimming against the current at its optimal growth speed.

S3. An infinite number of behaviors is optimal. At each instant the juvenile swims

downstream at its optimal growth speed, or against the current at its optimal

growth speed. Migration upstream is not permitted.

The three strategies S1, S2, and S3 were discovered by considering the initial sign of the

growth function evaluated at the maximum growth speed, , and the initial sign of

FIGURE 7.1 Optimal strategy types. (a) The juvenile initially holds station until it

grows above a critical weight, then continually migrates downstream until it reaches

the estuary attf (strategy S1). (b) The juvenile begins downstream migration

immediately, ceasing only when it reaches the estuary; it then holds station untiltf
(strategy S2).
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the switching function (TABLE 7.5). Be aware that certain sign combinations are

impossible.

Strategy S1, when examined in a more general light, represents a strategy commonly

found in juvenile chinook populations. The fish initially demonstrate a feeding and

predator avoidance behavior, followed by a rapid downstream migration. The

optimization model predicts that this strategy will occur when growth potential is good

and the estuary entry time is not chosen too small. Strategy S2 is best when growth is poor,

(i.e., ) or when estuary entry time is small.

It is important to recognize the implications of fixing time of estuary entry in the

autonomous formulation above. I assumed that the fish must choose a swimming velocity

and current velocity schedule that would place them in the estuary at a pre-specified time,

. It is not immediately clear that if  is allowed to vary, that the three strategies, S1, S2,

S3 represent a comprehensive list of optimal strategy types. The results of this section do

generalize to the case where  is free, however, because the above results apply toany

given —including the optimal one.

TABLE 7.5 Optimal strategies based on the initial sign of the growth and switching
functions.

Impossible Impossible S2

Impossible S3 or S2a S2

S1 S2 S2
a S3 applies when , S2 otherwise.

σ w0( ) 0< σ w0( ) 0= σ w0( ) 0>
g vg w0( ) w0,( ) 0<
g vg w0( ) w0,( ) 0=
g vg w0( ) w0,( ) 0>

T Umax vg w0( )+( ) a>

g vg w0( ) w0,( ) 0<

tf tf

tf

tf
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7.3  Light sensitive predation

The strategies derived under the assumption of autonomous canonical equations do not

show the influence of fluctuating light levels as seen in the cycle of day and night and in

situations of high turbidity. Given that predation is influenced by light levels, for example

where predators are largely visual predators, light level may influence the capture

probability, and consequently the switching function, making migration during low light

TABLE 7.6 Functions, parameters, and their estimates.

Parameter Description Parameter
or

Relationship

Units Estimate Data or Parameter
Source

Metabolic cost g ⋅ s−1 see reference (chinook) Hewitt & Johnson (1992)

oxycalorific equivalent Webb (1974)

calories to grams

conversion factor

White & Li (1985)

handling time Ware (1978)

reaction field m Ware (1978)

food density 1.15

net food conversion

efficiency

none Brett & Groves (1979)

swimming speed m ⋅ s−1 .6 Brett (1965)

migration distance km 150

current speed m ⋅ s−1 1.0

initial weight g 3.38

capture probability none

predator density km−1 .15

predator search velocity km ⋅ yr−1 252.288

ocean growth rate g ⋅ yr−1 Parker & Larkin (1959)

ocean mortality rate yr−1 Ricker (1976)

fecundity eggs Healey & Heard (1984)

spawning time yr 4.0

M t( )

q cal mg 1−⋅ 3.42

c g cal 1−⋅ 1.6949 104−×

h w( ) s cal 1−⋅ 18w 0.69−

γ w( ) 0.02w0.345 π⁄

ρ cal m 2−⋅

τ 0.7

v

a

u

w0

k w t,( ) Ω t( ) w 1−

θ

ζ

go w( ) 25.870w2 3⁄ 0.7888w−

µo w( ) 3.6915w 0.7675−

m w( ) 48.94w0.548

to
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levels best. This would mean a flip-flop between an active migration strategy and a

feeding and predator avoidance behavior: when light levels fall the active migration

behavior is optimal, and when they rise again feeding and predator avoidance behavior is

best. This intuitive insight is not complete, as the simulations will show, because

migration timing also depends on the fish size. Premature downstream movement, before

the fish is of sufficient size to adequately defend against predators in the estuary, or along

the migration route is undesirable.

7.3.1  Numerical example (estuary entry time fixed)

This switching behavior can be easily illustrated by specifying a light sensitive capture

probability function. For example,

, (7.1)

where the function  represents the influence of light intensity on the capture

probability function. As light intensity decreases, it is assumed that  decreases as

well, so that the capture probability diminishes with nighttime or during a period of

increased turbidity. For the sake of illustration, let

, (7.2)

so that between 100 and 101 days after emergence, light levels drop due to high turbidity,

decreasing the capture probability by a maximum of 100 × κ%. On all other days, no

decrease in predation rate is assumed to be the result of light fluctuation, but rather as a

k w t,( ) 1
w

( ) Ω t( )⋅=

Ω t( )

Ω t( )

Ω t( ) 1 κ 16( ) t 72−( ) 2 73 t−( ) 2−
1

{= if 72 t 73< <
otherwise
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result of increasing size. Although the daily fluctuations in light due to the earth’s rotation

are not explicitly treated here, the example will generalize.

Using the results obtained by maximizing the Hamiltonian (See “The Hamiltonian” on

page 137.), and applying the shooting method to solve the resulting two-point boundary

problem represented by the canonical equations and their boundary conditions, I obtain

numerical solutions. The time of estuary entry,  is allowed to vary as a control parameter,

and its optimal value is determined by using a numerical function maximizing algorithm

known as Brent’s Method (Brent, 1973; Presset al., 1988).

7.3.1.1  Singular path?

Another important detail is that, in this example, the switching function cannot be zero for

more than an instant of time, and therefore the problemdoes not admit a singular path. I

demonstrate this by showing that if the switching function is zero over an interval, then the

capture probability must also be constant over the same interval, leading to a

contradiction.

To this end, suppose that the switching function is zero over an interval of time, . Then

since  is constant over the time horizon,

 over , (7.3)

which further implies that

 over . (7.4)

tf

I

λ1

σ̇ θk̇− θ kwẇ* kt+( )− 0= = = I

ẇ*
kt−

kw

w* Ω̇ Ω⁄
0

{= = if 72 t 73< <
otherwise

I
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In the example, however, whenever the switching function is zero, , since

, and  for all feasible values of . Therefore  can only lie in the

interval .

If a singular path exists, then the functions  and  would have to be

identical over . However, there is nothing that links these two functions together (when

the switching function is zero)—they were chosen independently, and a simple plot shows

that for any value of  where they agree, they diverge after a step forward in time. The

two functions can only agree for an instant of time, ruling out the possibility of a singular

path.

7.3.1.2  The optimal strategy

As the fish grows, the capture probability diminishes, since it is inversely related to fish

weight, making the quantity,  (I call it theeffective predator density), gradually

smaller. When the turbidity increases, the effective predator density decreases rapidly.

When it falls below the value of the co-state variable associated with displacement, the

switching function rises to a positive value, and active migration begins (See “A positive

switching function” on page 141.). After the turbidity subsides, the switching function

falls negative once again and migration ceases in favor of a feeding and predator

avoidance behavior (i.e., holding station, and feeding at the maximum growth velocity).

Once the fish’s growth drives the switching function positive once again, the fish migrates

to the estuary (FIGURE 7.2 & FIGURE 7.2).

ẇ* 0>

v* vg= g vg w,( ) 0> w I

72.5 73,( )

g vg w* t( ),( )
w* t( ) Ω̇ Ω⁄

I

w

θk w t,( )
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FIGURE 7.2 Effective predator density diminishes due to increased weight of the fish

and during the onset of high turbidity. As turbidity subsides, the switching function

falls negative and the fish returns to feeding and predator avoidance behavior. As the

fish continues to growth, the switching function rises again to a positive value, and the

fish resumes active migration. This interrupted migration strategy occurs when the time

of estuary entry,tf , is fixed.
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Without this time fluctuation in the capture probability (or other model parameters and

functions), the autonomous case prevails, interrupted migration behavior does not occur

—there is simply one switch from feeding and predator avoidance to an uninterrupted,

active migration. When fluctuations in capture probability occur, the dips represent

windows of active migration opportunity during which predation is lower. By taking

advantage of these opportunities, a migrant increases its expected freshwater survival.

FIGURE 7.3 Downstream displacement plotted as a function of weight. The first

increment in displacement is caused by an increase in turbidity, the second by the

natural decrease in capture probability due to larger size. When the fish is not migrating

downstream, it is holding station showing a feeding and predator avoidance behavior.

There is no “critical weight” per seat which migration begins. Rather, active migration

results from a combination of factors both external and internal—increased turbidity

and increased weight.
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There is a catch, however, because in this example, I assumed that the time of arrival in

the estuary was fixed, and was not free to vary in the optimization. As this next example

shows, when time is allowed to vary, optimal strategies can tend to either ignore the period

of lower capture probability (my not migrating) or migrate during the period and continue

to migrate to the estuary once it subsides—in other words an interrupted migration does

not occur.

7.3.2  Numerical example (estuary entry time free)

In the previous example, I assumed that the time of estuary entry was “fixed”, and

discovered an instance when an interrupted migration strategy was optimal. However, as

we will discover in this section, this does not mean that this type of strategy is optimal

when time of estuary entry is free to vary. In fact, for the functions and parameters used in

the previous example (TABLE 7.6), the interrupted migration behavior does not appear to

be optimal, regardless of the timing, duration, and magnitude in the decrease in capture

probability.

When time of estuary entry is free to vary, there are just two optimal reactions to a

decrease in capture probability: it should be ignored (the fish should continue to hold

station), or it should stimulate a migration that does not cease until the fish has arrived in

the ocean. This is clear from a plot of fitness as a function of estuary entry time. Generally,

there are two humps in this curve, each corresponding to a candidate for the optimal time

of estuary entry. One hump is due to the period of increased turbidity, and the other to the

decreased capture probability due to fish growth (FIGURE 7.4).
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FIGURE 7.4 Influence of turbidity on optimal time of estuary entry. There are two

maxima of the fitness curve as a function of estuary entry time, the one on the left,

corresponding to the period or turbidity, and the other corresponding to decreased

capture probability due to natural growth. As the turbidity intensity parameter,κ,
increases from 0, the global maximum switches fromtf* = 82.48 d to the maxima

corresponding to an increase in turbiditytf* = 73.18 d. This fitness curve is bimodal,

and estuary entry times lying between the two modes are suboptimal. This leads to two

possible optimal behavior (usually only one of which is truly optimal): either ignore the

increased turbidity altogether, or initiate an uninterrupted seaward migration.
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One surprising feature of the sensitivity of migration timing to a period of increased

turbidity, is that it may take only a small change in capture probability to induce a much

earlier migration. For example, FIGURE 7.5 shows that a .55% decrease in the capture

probability over a one day period can induce migration. In the absence of increased

turbidity, the capture probability must drop to .2670 before migration begins, but in its

presence, the fish optimally migrate when the capture probability does not fall below

.2773. Why should migration be so attractive during this minuscule change in capture

FIGURE 7.5 The co-state variable corresponding to downstream displacement

increases in response to a sufficient increase in turbidity intensity parameter,κ. As κ
increases from 0 to .0055 (representing a .55% decrease in the capture probability), the

co-state variable varies fromλ1 = .2670 toλ1 = .2773, making the switching function

positive at an earlier date (8.3 days earlier), and therefore making an earlier migration

optimal.
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probability? (This is especially puzzling since the capture probability does not even come

close to the low level necessary for migration in the absence of increased turbidity.) The

answer is that earlier migration is attractive not only because of reduced capture

probability, but also because of reduced exposure time to predators in freshwater, and

longer growth opportunity in the ocean. Juveniles migrating early during elevated

turbidity, might suffer greater mortality enroute to the ocean than a juvenile migrating

later at a larger size, but suffer lower overall freshwater mortality because of a shorter

freshwater residence time, and experience greater growth over its lifetime. This argument

hinges on the assumption that an earlier migration is not prohibited by a large decrease in

ocean survival for the smaller migrant. Otherwise, a larger decrease in the capture

probability might be necessary to make earlier migration optimal.

7.3.2.1  Note on applying the maximum principle

When seasonal or daily fluctuations of model parameters are allowed, the fitness curve is

not necessarily a simple concave function with respect to the estuary entry time, , and the

transversality condition  can yield spurious solutions. In fact, for the example

presented above, there are 3 solutions to —two maxima and a minimum, only

one of which is a global maximum—namely, , which all correspond to critical

points of the fitness curve (FIGURE 7.4). Therefore, I take the cautious approach of first

plotting the fitness curve as a function of , (as in FIGURE 7.4) to avoid local maxima

and minima, and to obtain a bracket on the optimal estuary entry time, . Once the

global solution is bracketed, I apply an algorithm that uses both inverse parabolic

interpolation and golden section search—Brent’s method (Press et al., 1989).

tf

H Φtf
+ 0=

H Φtf
+ 0=

tf* 73.18=

tf

tf*
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7.4  Fluctuating current velocity

During a freshet, when capture probability might diminish due to higher turbidity, the

maximum current velocity increases. This occurs when there is a greater flow of water

through a restricted cross-sectional area. In Davis (1981) all major salmonid outmigration

occurred during a phase of a spring freshet, many other studies confirm that increases in

flow correspond to higher catches of migrants (Mains & Smith, 1964; Raymond, 1968;

Reimers, 1968; Salo, 1969; Wetherall, 1970; Stoberet al., 1973; Becker, 1973b;

Anonymous, 1976; Kjelsonet al., 1982; Hopkins & Unwin, 1987). As demonstrated

earlier, (See “Light sensitive predation” on page 154) when the freshet grows in strength,

turbidity can increase, making outmigration favorable. At the same time, there may be a

benefit due to increased current velocity.

If the juvenile is in a sufficiently ready state to migrate to the ocean (i.e., it is approaching

the point at which the benefits of migration (better ocean growth) outweigh the costs

(mortality), then migration during a freshet can serve to decrease migration time,

decreasing the overall exposure time to predators on its seaward journey. To test this

hypothesis in simulation, I allow fluctuations in the maximum current velocity over time,

keeping all else equal (even turbidity levels), and like the previous section, gauge the

simulated influence of increased current velocity on migration behavior.
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7.4.1  Numerical example

I simulate the change in maximum current velocity through the equation

 (during a freshet ), (7.1)

and  otherwise.

where . In this example, there will be a total of

four consecutive freshets each lasting one day, starting at day 71,74,77, and 80

respectively. During each freshet, the current velocity increases by %. For this

example, I assume that the maximum current velocity doubles over the freshet, so that

. For the ‘control’ simulation, the current velocity is held constant at 1.0.

The simulations show that if the freshet is of sufficient duration and intensity, and is timed

when the juvenile is in a sufficient state of readiness (i.e., relatively large so that its

capture probability is relatively small), then the juveniles optimally migrate with freshets

(FIGURE 7.6). This occurs without the additional benefit of high turbidity, because the

increased maximum current velocity associated with a freshet, reduces the travel time to

the estuary, in turn reducing the time at risk to predators during migration.

Mathematically, it occurs because a freshet timed prior to the optimal time of estuary entry

in the absence of a freshet, serves to increase the co-state variable associated with

downstream displacement, —a quantity interpreted as the marginal increase brought by

an increase in downstream displacement. This means that the switching function turns

positive sooner, making migration begin sooner (FIGURE 7.7).
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FIGURE 7.6 The influence of freshets on the optimal time of estuary entry. (b) Of the

four freshets of equal intensity starting at 71, 74, 77, and 80 days respectively, those

timed closest to the optimal time of estuary entry in the absence of freshets,tf*, have

the most influence.tf* represents a good measure of the approximate time of migration

readiness. (a) Freshets that occur too early (relative totf*) do not influence time of

estuary entry (see➊), but those that do not occur to early, do have influence (see➋).
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The two examples of fluctuating light levels and maximum current velocity, taken

together, demonstrate that there can be two advantages of migrating with freshets: reduced

time at risk (due to high current velocity), and lower average capture probability (due to

high turbidity).

7.5  Summary

In the first section of this chapter, I developed an exhaustive list of optimal strategy types

when time fluctuations in model parameters were ignored (the autonomous case). These

strategies were then compared to the optimal strategies in the case where light levels and

FIGURE 7.7 A well timed freshet can increase the co-state variable associated with

displacement,λ1, making the switching function zero earlier, and therefore leading to

earlier seaward migration.
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maximum current velocities were allowed to fluctuate. This allowed me to gauge the

influence of freshets and nighttime on migration behavior. In the autonomous case, one of

three behaviors was found to be optimal:

S1. Initially, the juvenile holds station, swimming against the current at its optimal

growth speed. At some critical weight, it begins migrating downstream, swimming

in the swiftest current, and actively swimming downstream at a speed greater than

its optimal growth speed. The juvenile does not reach the estuary until  (assumed

fixed).

S2. The juvenile begins migrating immediately after emergence, swimming at a speed

greater than or equal to its optimal growth speed, and in the swiftest current. It

ceases migration only it is about to reach the estuary. If the juvenile reaches the

estuary before , then it holds station prior to entering the estuary, swimming

against the current at its optimal growth speed.

S3. An infinite number of behaviors is optimal. At each instant the juvenile swims

downstream at its optimal growth speed, or against the current at its optimal

growth speed, and migration upstream is not permitted.

When time of estuary entry was fixed, it was possible for interrupted migrations,

characterized by downstream movement during periods of relatively low capture

probability, and station holding when it is higher. When time of estuary entry was allowed

to vary in the optimization problem, interrupted migration ceased to be optimal, and the

optimal strategy was S1—initial station holding followed by an unceasing seaward

migration. In the case of fluctuating capture probability or maximum current velocity, the

tf

tf
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reactions of the fish are similar, and exemplified by the optimal reaction to a freshet: either

the freshet should be completely ignored (station holding), or the fish should migrate with

the freshet, moving nonstop toward the estuary, migrating even after the freshet subsides.

Fish ignore a freshet if it is not of sufficient strength or duration, or if it is not timed during

a large enough size (i.e., near the time marking the onset of migration in the absence of a

freshet.)

7.6  Discussion

The methodology of this chapter follows a that of a controlled experiment, conducted not

on nature, but on the dynamic optimality model. The questions posed— “What are the

effects of fluctuation daylight? Fluctuating maximum current velocity?”, are addressed by

first analyzing the model in the absence of these fluctuations (the control), and then in their

presence (the treatment). In the autonomous case, there were three strategy types found,

with the first— station holding followed by an unceasing migration initiated at a critical

weight—optimal whenever growth is initially positive (when maximized by ), and the

time of optimal estuary entry is sufficiently greater that .

Comparing the optimal strategies in the case of fluctuation light levels or current velocity,

shows that there are certain windows of opportunity created by lower capture probability

(in the case of low light levels) and shorter travel time to the estuary (in the case of current

velocity). One thing made clear by the simulations, however, is that migration during

these “windows of opportunity” is optimal only if they offer either sufficiently shorter

travel time, or capture probability, and if they are properly timed. Those windows of

opportunity, timed prematurely are optimally ignored by the fish. In contrast, when it is

v

a umax vmax+( )⁄
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timed at a state of migration readiness (in this case, sufficiently near the optimal migration

timing in the absence of these windows of opportunity), then the fish optimally migrate

during the window of opportunity. I believe this result is crucial, and bears on the proper

management of salmon stocks: if we are to increase current velocity in the rivers to aide

fish during migration, this increase must be well-timed, synced with the physiological

development, or the state of readiness to migrate.

Another result of the model (at least for the calibration used in the numerical examples), is

that interrupted migrations do not occur. In fact, the only way I was able to induce a

interrupted migration was by fixing the time of estuary entry. This is only a reasonable

assumption if the fitness curve peeks at the fixed estuary entry time, , and is very steep in

a neighborhood of . This was not what I expected, but after some thought, does make

sense, in terms of the model used. Since spatial homogeneity was assumed, there are not

special feeding spots that juveniles should migrate to, stop and feed, and continue on their

way. Furthermore, fish are assumed to have perfect knowledge of the duration, intensity,

and timing of all fluctuations in current velocity, and future growth, disallowing risk-

taking behavior such as migrating with and early freshet rather than holding out for later

freshet that might not materialize. To capture these types of strategies, a stochastic element

and/or spatial heterogeneity must be added.
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CHAPTER 8 SUMMARY AND DISCUSSION

8.1  Overview

In this work I focused on the migration behavior of salmon using a behavioral ecology

approach. Specifically, I used optimization modelling to show how selective patterns

shape geographical patterns of age at migration, seasonal and diurnal migration timing,

and current velocity selection. The goal was to suggest explanations or hypothesis of

migration behavior that could in turn possibly suggest new experiments and lead to further

insight into why salmon behave as they do. In developing the models, I strove for

parsimony and respect for the underlying salmon biology.

Like other models of habitat shifts (in this case salmon are shifting from a freshwater to an

ocean habitat), I considered the growth and predation risk of both environments, but I also

included the special cost of migration itself— in terms of energetic expenditure and

predation risk enroute to the ocean. By approaching the problems using optimal control

theory, it was possible to characterize optimal current velocity and swimming velocity

choices based on the signs of the “switching functions” and the maximum current velocity

relative to the swimming speed at which growth is maximal. Numerical and analytic

solutions to the static optimization models (used in earlier chapters) led to insights into the

selective pressures associated with of migration distance and growth opportunity and to

insights about the selective pressures associated with daily and seasonal fluctuations in

light and temperature. The selective pressures associated with each of these factors
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influence age at migration as well as timing of migration, and the models are able to

quantify the “sign” of the influence.

Analyzing salmon migration from this evolutionary perspective, provides new insight into

behavior and aids in understanding the proximate mechanisms that determine behavior

and the variation in life history types they produce. Ultimately, it is my hope that the

results or indirect results (results due to further modelling or experiments) can be used to

help manage salmon stocks properly.

8.2  Summary by chapter

Chapter 1 contains introductory material: a literature review, problems and questions that

the research addresses, justification for a behavioral ecology approach to the problems and

questions addressed, and the evidence for spatial and temporal patterns of chinook

migration behavior.

In Chapter 2 I develop and analyze a simple heuristic model of age at migration, that is

designed to build intuition, and to yield simple analytic results. The results may be

summarized as follows: increasing predator search velocity, ocean growth tends to

decrease the optimal age at migration, while increasing migration distance, predator

density, or ocean mortality rate tends to increase the optimal age at migration. Two of the

model parameters, freshwater growth rate and migration velocity can have either a

positive or negative effect on age at migration, depending on the value of the other

parameters. Temperature influences both ocean and freshwater growth rate, and mortality

rates, and since the effect of these variables on age at migration may counterbalance each

other, it is not clear what its net effect is. Except in the case of freshwater growth, the sign
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of a parameter’s effect on optimal weight at migration is the same as the sign of its effect

on age at migration (i.e., early migration means smaller weight). Increasing freshwater

growth increases optimal size at migration, but at the same time candecrease optimal age

at migration.

In Chapter 3 I add more realistic growth and fecundity assumptions to the model. The

ocean growth is determined by a von Bertalanffy curve rather than exponential curve;

fecundity is proportional to a fractional exponent of spawning weight, rather than directly

proportional to spawning weight; and the exponential freshwater growth of Chapter 2 is

replaced by a growth curve that is the difference between a Holling Type II feeding

function and a metabolic cost function that depends on weight and swimming velocity.

Varying freshwater growth parameters reveals that as freshwater growth increases, so does

optimal age at migration. However, the sign of this effect reverses as the influence of

limited ocean growth is decreased—becoming more exponential in nature. This shows

that limited ocean growth is at least in part—if not wholly—responsible for the positive

effect of freshwater growth rate. The effects of migration distance, predator ocean

mortality rate, predator activity, current velocity, and spawning time are all consistent with

the heuristic model. Predator density, however is inconsistent: its increase results in a

decrease in age at migration. By reducing the limiting effects of handling time and

metabolism, it is possible to reverse the sign of the effect so that age at migration increases

rather than decreases with predator density.

In Chapter 4 I included seasonality by through temporal fluctuations in food consumption,

metabolic processes, and predator activity. The temporal fluctuations in these variables

were driven by a periodic temperature function of given mean annual temperature, phase
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angle, and amplitude. The resulting objective function had yearly humps corresponding to

the best within-year migration timing, the tallest hump representing the global maximum.

As a result, seasonal temperature fluctuations exerted a strong influence on the age at

migration, not only determining the optimalwithin-year migration timing, but also the

optimalyear of migration. The best time of migration corresponded to periods of low

temperature, when predator activity was at a minimum. As fish grew, the influence of

seasonality decreased because larger fish were assumed less susceptible to predators.

The sign of the parameter effects were consistent with the case were seasonality was

absent. The phase angle parameter defines the time of minimum temperature, and

therefore is responsible for anchoring the optimal age at migration to a particular time of

year. Other parameters have little to no effect on within-year migration timing, but can

strongly influence the optimal year of migration.

In Chapter 5, I justified approaching the problem of diel migration pattern and current

velocity selection from a behavioral ecology perspective. By considering the possible

selective pressures shaping the behavior of young salmon, and couching them in equation

form, I developed an optimization model that retained the ability to predict migration

timing as in other chapters, but was much more general in that it treated diel migration and

current velocity choice. The resulting optimization problem was dynamic, and included

current velocity and swimming velocity as control variables; time of entry into the estuary,

time of ocean entry, and spawning time as control parameters; weight and downstream

displacement as state variables, and the log of expected reproductive success as the

objective functional.
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In Chapter 6, the optimal control problem was presented in a form that allowed application

of the maximum principle. To avoid resorting to nonsmooth techniques, dependence of the

control variable constraints on the state variables was omitted. For simplicity, the

dependence of predator density on current velocity was also omitted. Once the problem

was specified, the maximum principle was applied: the Hamiltonian was maximized with

respect to the control variables to obtain the policy functions, the co-state and state

equations were defined, and the transversality conditions were developed to supply

enough boundary conditions to solve the canonical equations and determine the optimal

control parameters.

A remarkable amount information was gleaned by simply maximizing the Hamiltonian.

One important result, is that optimal behavior is largely controlled by the sign of the

appropriate switching function (defined as  when , and  otherwise).

First focusing on the case where a marginal increase in downstream displacement is

beneficial to fitness (i.e., ), the sign of the switching function  is informative.

When it is positive, active downstream migration is optimal: the fish swims downstream in

the swiftest current, at a speed that exceeds the maximum growth speed (if the maximum

swimming speed permits).

When the switching function  is negative, there are three possibilities: (i) if the

maximum current velocity exceeds the maximum growth speed, then the fish holds

station, migrating against the current, swimming at its maximum growth speed; (ii)

otherwise, the juvenile either (a) migrates upstream, swimming in the most rapid current,

and at a swimming velocity that exceeds the maximum current velocity, but is less than the

σ1 λ1 0> σ2

λ1 0> σ1

σ1
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optimal growth velocity or (b) swims downstream in a current of zero velocity, and at a

swimming velocity that does not exceed the optimal growth velocity. Option (a) is optimal

when the maximum current velocity is close to zero (relative to the maximum growth

velocity), and option (b) is optimal when it is close to the maximum growth velocity.

When the switching function  is zero, maximizing the Hamiltonian gives more limited

knowledge of the optimal controls. If the maximum current velocity exceeds the

maximum growth speed, then two strategy classes are optimal (a) the fish swims against

the current at its maximum growth speed and in a current velocity at least as great as its

maximum growth speed (b) the fish swims downstream in a current velocity not exceeding

its maximum current velocity, with a swimming speed equal to its maximum growth

speed. Notice that the optimal current velocity is not unique determined: it is only known

to lie in an interval. The swimmingspeed, however, always equals the maximum growth

speed. If the maximum current velocity is less than the maximum growth speed, then

option (a) is optimal.

When the co-state variable associated with displacement is nonpositive, the sign switching

function  largely characterizes the optimal behaviors. When it is negative, the fish

display an “upstream migration” behavior, swimming in slack current or near the shore

( ), while swimming upstream at a speed that exceeds the maximum growth speed

(if the maximum swimming speed allows).

When the switching function  is positive, fish show a “feeding and predator avoidance”

behavior, but there are actually three possible behaviors based on the maximum current

velocity. (a) If the optimal current velocity exceeds the maximum growth velocity, the fish

σ1

σ2

u 0=

σ2
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holds station, swimming against the current at its maximum growth speed. Otherwise, the

fish swims in the swiftest current either (b) holding station, or (c) migrating upstream with

a swimming speed between the maximum growth speed and the maximum current

velocity. Only one of these three behaviors is optimal at any given time.

When the switching function  is zero, fish follow a strategy characterized as

intermediate to when it is positive or negative. The optimal behavior is not actually

uniquely determine by this case, and further analysis of the canonical equations is needed.

However, it is known that the fish swims upstream at its constrained maximum growth

velocity, swimming in any current from 0 (resulting in upstream migration) to the

constrained maximum growth velocity (resulting in station holding).

When the co-state variable associated with displacement is nonpositive, no downstream

migration strategy is optimal.

In Chapter 7 I explore how migration behavior is influenced by fluctuations in light

intensity and maximum current velocity. In the first section I developed an exhaustive list

of optimal strategy types when time fluctuations in model parameters were ignored (the

autonomous case). These strategies were then compared to the optimal strategies in the

case where light levels and maximum current velocities were allowed to fluctuate. This

allowed me to gauge the influence of freshets and nighttime on migration behavior. In the

autonomous case, one of three behaviors was found to be optimal:

σ2
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S1. Initially, the juvenile holds its station, swimming against the current at its optimal

growth speed. At some critical weight, it begins migrating downstream, swimming

in the swiftest current, and actively swimming downstream at a speed greater than

its optimal growth speed.

S2. The juvenile begins migrating immediately after emergence, swimming at a speed

greater than or equal to its optimal growth speed, and in the swiftest current. It

migrates nonstop to the estuary.

S3. An infinite number of behaviors is optimal. At each instant the juvenile swims

downstream at its optimal growth speed, or against the current at its optimal

growth speed. Migration upstream is not permitted.

When time of estuary entry was fixed, it was possible for interrupted migrations,

characterized by downstream movement during periods of relatively low capture

probability, and station holding when it is higher. When time of estuary entry was allowed

to vary in the optimization problem, interrupted migration ceased to be optimal, and the

optimal strategy was S1—initial station holding followed by a nonstop migration to the

ocean. In the case of fluctuating capture probability or maximum current velocity, the

reactions of the fish were similar, and exemplified by the optimal reaction to a freshet:

either the freshet should be completely ignored (station holding), or the fish should

migrate with the freshet, moving nonstop until arriving at the estuary. Fish ignored a

freshet if it is not of sufficient strength or duration, or if it did not occur when the fish was

of sufficient size (i.e., near the time marking the onset of migration in the absence of a

freshet.)
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8.3  Discussion

8.3.1  Age at migration

Several factors can act separately or together, to produce relationship between “growth

opportunity” and age at migration. Some of these factors are:

(i) Ocean-challenge factor. Focusing on the latitudinal gradient, since northern

oceans represent a more osmotically challenging environment, the slower growing fish

of these northern latitudes benefit by migrating out at a larger size (Taylor, 1990).

(ii) Predation vs. migration distance factor. Focusing on the migration distance

gradient observed in the Columbia and Fraser Rivers, since areas of low growth

opportunity are generally associated with upper tributaries (positively correlated with

migration distance), and larger fish are more likely to survive longer migrations, it is

beneficial for fish inhabiting these upper reaches to migrate later.

(iii) Freshwater-predation factor.Freshwater predation is reduced in regions of low

growth opportunity, giving a greater survival value to longer freshwater residence.

(iv) Lethal-temperature factor. Focusing on the latitudinal gradient, fish inhabiting

California rivers would be exposed to lethal summer temperatures if they resided in

freshwater for a year.

(v) Starvation factor. Areas of high growth opportunity (e.g., coastal streams of

Oregon, California rivers, and lower altitude regions of the Fraser and Columbia

Rivers) in the spring and early summer, become uninhabitable as food resources

dwindle, and metabolic costs do not diminish enough to make up for it. Fish rearing in

these regions migrate earlier than fish in regions of low growth opportunity.
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(vi) Temperature-related freshwater predation factor. Regions having high summer

temperatures can bring high predation rates due to temperature-elevated consumption

rates of predators. In these regions, juveniles failing to migrate before temperature

increases are confronted, not only with higher metabolic costs (vii), but also reduced

survival. This factor is similar to (iv), but involvesfluctuations in predation rather than

mean predation rate.

(vii) Zoogeographical factor. The distribution of the ocean- and stream-type fish is a

result of their post-glacial dispersal, with ocean-type dispersing to the south, and

stream-type, to the north (Taylor, 1990).

Some of these factors have been addressed directly through modelling, others have not. I

appeal to literature and model predictions to examine each. Most are based explicitly on

adaptation, linking behavior directly to growth, reproduction, and survival.

The idea of an ocean challenge factor (i) is supported by studies of smolt performance, and

may explain why Alaskan chinook salmon (even populations rearing near the ocean) are

of stream-type. Locomotor and osmo-regulatory performance are inhibited at low

temperatures (i.e., cold climates north of 56°) (Brett, 1967; Knutsson & Garv, 1976;

Beamish, 1978; Webb, 1978; Virtanen & Oikari, 1984). Therefore, larger smolt size may

be selected in the cold northern environments, because larger smolts have an increased

performance benefit (Brett & Glass, 1973; McCormick & Naiman, 1984; Hargreaves &

LeBrasseur, 1986), leading to longer freshwater residence times in the north. It is

uncertain if this factor has bearing on the age at migration pattern observed in river

drainages where ocean- and stream-types are sympatric, because these fish enter the ocean

in the same location.
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A predation-migration distance factor (ii) could, at least in part, account for greater age at

migration of upstream populations on rivers where ocean- and stream-type populations are

sympatric. The models of chapters 2-4 show thatwhen all else is equal, increased

migration distance, creating greater predation risk enroute to the ocean, is optimally offset

by delaying migration. However, all else is seldom equal, and the result must be used

cautiously. For example, upper tributaries generally have lower growth opportunity, which

in itself can produce pressure for earlier migration (according to the models of chapters 2-

4). Furthermore, throwing at least some doubt on the importance of this factor, is the fact

that there exist a few ocean-type populations that rear in inland locations on the mainstem

of the Snake and Columbia Rivers. If at play, this predation-migration distance factor does

not differentiate stream- and ocean-type populations in Alaska, since according to Taylor

(1990), these populations areall stream-type, regardless of migration distance. In

California, this factor can have little bearing since the majority of populations are ocean-

type, but the two stream-type populations known to exist originate in Mill and Deer

Creeks (F. Fisher, Stockton, CA, pers. comm.), upper tributaries of the Sacramento River.

The freshwater-predation factor (iii) may act if predation is less severe in regions of low

growth opportunity making later migration more favorable than in high-growth-

opportunity locations. If indeed predation is lower in areas of low growth opportunity,

then models of chapters 2-4 suggest that the loss of growth experienced by greater

freshwater residence time can be compensated by greater survival probability and larger

size at migration and ocean entry. It is unclear if this growth-opportunity vs. predation

pattern exists in nature. However, it is known that some important salmon predators are

less abundant in upper tributaries. For example, the northern squawfish (Ptychocheilus
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oregonensis), which is common in the pools formed by dams on the mainstem of the

Columbia River, is scarce in lower order streams (Beecheret al., 1988), and is known to

prefer areas of slow to moderate flow, and temperatures of 20° C to 23° C. The

smallmouth bass (Micropterus dolomieui), a lesser salmon predator on the Columbia

River, prefers slight gradients (.078% to .473%), associated with higher order streams, and

high water temperatures (21° C to 27° C). Predation is an important determinate of age at

migration, and more research is needed to define its relationship to growth opportunity. In

fact, it appears to be the only factor thatpotentially explains the pattern observed between

growth opportunity age at migration throughout the chinook’s range.

The lethal-temperature factor (iv) has limited application over the range of chinook

salmon, but can be important in California rivers and streams where summer temperatures

reach lethal levels(TABLE 4.5). The preponderance of ocean-type chinook in California

may be due, to some extent, to a decrease in habitat suitability (Southwood, 1962) as

temperatures rise.

The starvation factor (v) is similar to (iii) in that, in both, migration is prompted by a

decrease in habitat suitability. A decrease in river flows accompanied by rising summer

temperatures are correlated with fish migration in the Hanford Reach (Becker, 1973a). A

decrease in flows can lead to a decrease in the rate of food drift (Waters, 1969), and can

accompanied by an increase in temperature. These factors together could lead to starvation

(or at least poor growth), making the river habitat unsuitable (FIGURE 8.1). In contrast,

streams and rivers of lower growth opportunity (upper reaches of rivers or populations

north of 56°N) may not warm enough in the summer to make metabolic costs prohibitive

(FIGURE 8.2).
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FIGURE 8.1 (a) Detection time if 46 PIT-tagged subyearling salmon at Lower Granite

Dam, water temperature, flow, and temperature-dependent specific rate of respiration of

a 5-gram subyearling. Migration timing may be attributed to a decrease in habitat

suitability. As summer progresses, (b) temperatures rise, (c) respiration rate increases,

and (d) flows decrease. The temperature-dependent specific respiration rate function is

taken from Hewitt & Johnson (1992).
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Another factor that is linked with habitat suitability is the temperature-related freshwater

predation factor (vi). As in (iv) and (v), migration is prompted by a decrease in habitat

suitability due to increasing temperatures. The maximum consumption rate of salmon

predators such as the northern squawfish, smallmouth bass, and walleye is known to

increase as temperature rises, failing to diminish over the sublethal temperature range of

FIGURE 8.2 Comparison of 1981-82 flow, temperature, and specific rate of

respiration of a 5-gram fish at the Snake River Anatone USGS gauge (RK 269) and the

East Fork of the Salmon R. above Big Boulder Creek (USGS gauge 13297453).
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salmon (FIGURE 4.2). If the feeding activity of the predators is severe in the regions of

high growth opportunity, one expects to see seaward migration, or at least migration out of

these environs (FIGURE 8.3). The results of CHAPTER 4 suggest that age at migration

can indeed decrease when temperature dependent predation is considered. To test

importance of this selection pressure, one must understand the geographical distribution of

salmon predators and temperature regime (FIGURE 8.2). A simple model run (FIGURE

8.4) demonstrates that spatial structure in temperature regime can be important in

determining optimal age at migration.

The zoogeographical factor (vii) does not directly address the adaptive significance of the

geographical distribution of stream- and ocean-type chinook, and it ignores the selection

gradients that might have produced the observed distribution. Over the 13,500 years since

the Wisconsinan glaciation, chinook salmon have produced approximately 2,700

generations. A combination of this large number of generations, consistent and strong

geographically-varying selection pressures, heritability of migration behavior, and genetic

variability, supplies conditions necessary and sufficient for local adaptation.

Various factors [i.e., (iii), (v), (vi), and (vii)] could contribute to both the latitudinal

gradient and the migration distance gradient in age at migration. Given that I have thrown

some doubt on (vii), the remaining factors capable of explaining both gradients are: (iii)

freshwater-predation, (v) starvation, and (vi) temperature-related freshwater. All other

factors must be combined with others to explain both gradients (TABLE 8.1).
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FIGURE 8.3 Detection time of PIT-tagged subyearling salmon at Lower Granite Dam,

water temperature, and a temperature-dependent consumption function for northern

squawfish. The subyearlings were tagged between 30 May and 2 July of 1991 in the

Snake River drainage between RK211 and RK250 above Lower Granite Dam. Mean

daily water temperature data were recorded at Billy Creek (RK 265). (a) The peak of

detection occurred in mid July, and most emigrated by September. Note that this peak

in migration corresponds to periods of high temperature (b), which also corresponds to

peak consumption rate of northern squawfish (c). The temperature dependent

consumption function (d) is a generalized gamma, and is taken from Vigg & Burley

(1991).
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FIGURE 8.4 Comparison of fitness curves showing the influence of simple spatial

structure. Curve➊ uses the seasonal temperatures of 1981-82 from the Anatone Gauge

(RK269 of the Snake R.), no spatial river structure, and a migration distance of 800 km.

Curve➋ also uses a migration distance of 800 km, but in the first 10 km, temperatures

of East Fork Salmon R. 1981-82, and over the last 790 km, the warmer Anatone Gauge

temperatures apply. Predation parameters were set toθ = .11 km-1andζ = 1400 km⋅yr-1,

and the remain parameters are as given in TABLE 4.4. A juvenile optimally migrates

during the first year when➊ applies, and during the second year if➋ applies. This

occurs because the colder temperatures in➋ give reduced predation (due to a

temperature-dependent consumption rate), giving the juvenile an opportunity to remain

in the upper river and grow for a year (under reduced predation conditions), before

migrating through regions of more aggressive predators.
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8.3.2  Applications to the Columbia River System

The Columbia River has both stream- and ocean-type populations present, with the

stream-type fish typically distributed inland and the ocean-type distributed coastally.

When ocean-type chinook are distributed inland, they typically rear in the mainstem of the

Columbia or Snake Rivers, while, in contrast, stream-type chinook rear in tributaries

which are associated with higher elevations and usually, colder annual temperatures. The

fundamental differences in the behavior of these two life-history types that must be

respected when managing the river for their mutual benefit.

8.3.2.1  Response to increased flow or drawdown

Of the two life-history types, the model suggests that ocean-type chinook will show less

migration response to measures of increased flow. If, as suggested in CHAPTER 6 (See

FIGURE 6.3), ocean-type chinook are operating in a “predator avoidance and feeding”

mode, one expects that increasing flow can actuallyreduce movement of ocean-type

chinook by making a station holding superior to active foraging (appetitive movement). In

contrast, stream-type chinook, which are likely to be in a more aggressive downstream

migratory state than ocean-type chinook, may truly benefit from a measure that increases

TABLE 8.1  Factors and the gradient(s) they address.

Relationship addressed Applicable factors

Latitudinal gradient (i), (iii), (iv), (v), (vi), (vii)

Migration distance gradient (ii), (iii), (iv), (v), (vi), (vii)
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maximum current velocity and decreases travel-time (and consequently time at risk to

predators) to the ocean.

These model-related predictions are borne out, to some extent, by data. Raymondet al.

(1975) and Simset al. (1976) found that even during high-flow years, large numbers of

ocean-type chinook remained in John Day Reservoir for a protracted period compared

with stream-type chinook. These early observations are supported by more recent studies

of ocean-type migration as well. Giorgiet al. (1994) discovered that ocean-type chinook

not only show protracted reservoir residence, but also upstream movements after marking,

indicating that the these fish are not consistently displaced downstream. Note that these

upstream movements support the notion that ocean-types are showing predator avoidance

and feeding behavior along with low-flow induced appetitive movements.

8.3.2.2  Long-term effects of dams

Hydroelectric developments has had a strong impact on migration and survival of both

stream- and ocean-type chinook salmon, as well as other salmon species. There is direct

mortality due to passage through the turbines, spillways, and bypass systems at the dams.

The cumulative effect of passage through a series of dams can produce high mortalities for

upstream salmon stocks. For example, juveniles originating above the Lower Granite Dam

must pass 9 dams (if they are not transported) enroute to the ocean.

From a lifetime-fitness perspective, fish have two possible strategies that fish can follow:

lifetime freshwater residence (residualism), or migration to the ocean to feed (anadramy).

It is possible that since the migration corridor is expensive (due to dams and predation in

their impoundments), if there exists suitable year-round upstream habitat, residualism may
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become more commonplace. This is possible if the conditions for natural selection are met

(heritability, variability, and persistent, directional selection pressure). Of course, the

stipulation of suitable year-round upstream habitat is essential. Earlier in this discussion, I

argued that if habitat suitability decreases rapidly during the summer, due to temperature-

related factors, there can be intense selective pressure for migration. Of the two life-

history types, it seems most reasonable that stream-type chinook will have more suitable

year-round habitat than ocean-type chinook, as well as a tendency to remain in freshwater

longer, and therefore will be more likely to exhibit residualism.

Aside from considerations of age at migration, the reduced current velocities associated

with impoundments, can also influence migration rates and feeding behavior. Although

appetitive movements of ocean-type chinook appear to be important in waters with

reduced current velocity, they may have been much less so when dams were absent and

river currents were swift. At the same time these impounded waters made it possible for

predators, such as the northern squawfish, typically absent from swift-moving sections of

rivers and cooler waters, to thrive throughout the mainstem of the Columbia and Snake

Rivers. The increased appetitive movements made more important by reduced current

velocity, together with an increase in predators, probably led to a substantial increase in

predation. Because increased movements could also, in theory, make the juveniles more

visible to predators, exacerbating the problem of increased predator density.
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APPENDIX A CO-STATE VARIABLE
RESULTS

The two results that follow give sufficient conditions for the co-state variables to be

nonnegative. Although both results are of interest, Result A.2 is of most concern here,

since the optimal migration strategies were derived under the assumption that the co-state

variable associated with weight, , was positive. In contrast Result A.1 is less

important since the optimal strategy was constructed both for the case where the co-state

variable associated with displacement it is negative and when it is nonnegative.

Furthermore, there is no good biological reason to assume that it is positive. As luck

would have it, the proof of Result A.2 is both the simplest to prove and the most

important.

Result A.1 If  and  are increasing in ; , , and  are decreasing in ;  is

decreasing in ; and  is increasing in ; then  is nonnegative for all  in the time

horizon.1

Proof

I prove that  by comparing the values, given by the value function, of two

juveniles of identical weight beginning at different locations at time . I show that the

1.  The time horizon is assumed to be the time from emergence to the time of arrival in the estuary. Also, for
convenience,  will represent the optimal time of estuary entry.

λ2 t( )

umax g x k ζ θ x k

w Φ w λ1 t( ) t

T

λ1 t( ) 0≥

t
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juvenile located further downstream enjoys a value (defined as the remaining fitness) at

least as great as the value of the upstream fish at time , so that .

In overview, I first assume that the upstream fish arrives in the estuary at its optimal

terminal time follows its optimal velocity trajectories. I then use the optimal decisions

followed by the upstream fish to construct a terminal time, a current velocity trajectory,

and a swimming velocity trajectory, which if applied to the downstream fish, give an

objective functional value at least as great as the value of the upstream fish. Since the

value of the downstream fish must be at least as great as the objective functional evaluated

at the terminal time and velocity trajectories I constructed, it must also be at least as great

as the value of the upstream fish. Consequently, .

Suppose that at time , fish 1 is located at position  and fish 2 is located at position

, downstream from fish 1, but upstream from the estuary. Suppose also that both

fish weigh  a time . For fish 1, let , optimal terminal time, and let , ,

, and  be the position, weight, current velocity, and swimming velocity

respectively for each time  such that . I next use the optimal terminal time and

optimal trajectories for fish 1 to construct a decision scenario for fish 2. It is constructed so

that: (i) the swimming speed of fish 2 always matches the swimming speed of fish 1, (ii)

fish 2 is always at least as far downstream as fish 1, (iii) fish 2 weighs as least as much as

fish 1 from time  to , (iv) fish 2 arrives at the estuary at the same time as fish 1, and (v)

fish1 has a migration speed which either matches or exceeds the migration speed of fish 2

from time  to . Let , ,  and  be the position, weight, current

velocity, and swimming velocity of fish 2 at any time  from  to , not necessarily

optimal. Define  and  in the following manner:

t λ1 t( )
x∂

∂V
0≥=
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t1 x
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t t1 T1
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Case 1.  If  and

a. , then  and .

b. , then  and .

c. , then  and .

Case 2.  If , then  and .

I next show that (i)-(iv) hold.

Proof of (i). In both cases above, the swimming speed of fish 2 equals the swimming speed

of fish 1 (i.e., ). Thus (i) holds.

Proof of (ii). If (ii) does not hold, then at some time . By continuity of

the displacement trajectories, at some time , , and  for

any  such that . Note that case 2 holds on from time  to , and therefore

 and . Hence the ordinary differential equations governing

the displacement of fish 1 and fish 2 are identical from time  to , with the same

condition at , namely,  Since the solution to an ordinary differential

equation is unique, , contradicting the earlier statement that

. Therefore (ii) must hold.

Proof of (iii). To prove (iii), I must show that from time  to , .

. Assume otherwise. Then by continuity of the weight trajectories, there

exists a time  such that , , and

, for . Using (i) and the fact that  does not

x1 t( ) x2 t( )<

0 v1 t( )< u2 t( ) 0= v2 t( ) v1 t( )−=

u1 t( )− v1 t( ) 0≤ ≤ u2 t( ) v1 t( )−= v2 t( ) v1 t( )=
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depend on the sign of the swimming velocity (i.e., ), I may

write

. (A.1)

Consequently,

 (by (A.1))

 (since , and  are continuous in )

 (since ).

Furthermore, since , and  are continuous in ,

. Therefore,

 implies that

.

But this is impossible since , and  was assumed to be increasing in .

Therefore, (iii) holds.

Proof of (iv). If at some point in time, , case 2 holds (i.e., fish 1 and fish 2 are at the same

position), then the two fish will swim together from  to , because they have identical
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migration velocities. Therefore they will both arrive at  at time . If however, case 2

never holds, then  is decreasing from time  to , so that , for  such that

. Define the function . Then

 since fish 2 is downstream from fish 1 at time , and

 since  decreases from ,

where . But  is continuous. Therefore  (i.e., case 2 holds for

some  between  and ). This contradicts the earlier statement that case 2 never holds.

Hence the position trajectory of fish 2 satisfies the terminal condition (i.e., ).

Proof of (v). To prove (v) I consider each case in the definition of the velocity trajectories

for fish 2. In case 1a, . In case 1b,

. In cases 1c and 2, . Therefore

(v) holds.

Fish 1 has value , and fish 2 has value . By our hypothesis, ,

, and  are decreasing in ,  is decreasing in , and  is increasing in . Therefore by

(ii)  and (iii) , ,

, , and

 for all  in the time horizon. By these inequalities in

addition to (v)  for all  in the time horizon, and (iv)

,
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.

Thus . Since  was arbitrary,  for

all  in the time horizon.■

Result A.2 If  is decreasing in  and  is increasing in , then  is nonnegative

for all  in the time horizon. If, in addition, either  is strictly decreasing in , or  is

strictly increasing in , then  is positive for all  in the time horizon.

Proof

I demonstrate that  is nonnegative by comparing the value of two fish of different

sizes released at position  at time . I show that the larger fish enjoys a value at least as

great as the value of the smaller fish, and hence the marginal contribution of  at an

arbitrary time  is positive (i.e., ).

Consider two different sized fish at time . Fish 1 is the smaller fish weighing , and fish

2 weighs . Assume both fish are at position  at . For fish 1, let  be the optimal

terminal time, and let , , and  be the optimal current velocity,

swimming velocity, and weight respectively for  such that . Suppose fish 2

chooses terminal time , and follows current velocity and swimming velocity controls

 and  respectively, with resulting weight function . I may then show

that fish 2 remains larger than fish 1 from time  to , (i.e.,  for
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). Suppose otherwise. By continuity of the weight trajectory, there exists a time

 such that both fish 1 and fish 2 weigh . Consider weight trajectories moving

backwards in time from  to : Fish 1 and fish 2 are of identical weight at , they follow

identical velocity decisions from time  to , and yet obtain different weights at

time . This is impossible since the ordinary differential equation governing weight must

yield a unique solution. Therefore fish 2 always weighs more than fish 1.

At , fish 1 has value , and Fish 2 has value . Assuming that

 is decreasing in  and  is increasing in , then  and

. Therefore

,

and since  was arbitrary, . If, in addition,  is strictly

decreasing in  or  is strictly increasing in , then either  or

. Therefore

,

and since  was arbitrary .■
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APPENDIX B MAXIMIZING THE
HAMILTONIAN

The Hamiltonian is maximized below as function of swimming velocity,  and current

velocity, . It is convenient to maximize the Hamiltonian in two separate cases: when the

co-state variable associated with displacement is positive, and when it is nonpositive. A

function known as the switching function, is used to help characterize the optimal

migration behaviors. When the co-state variable  is positive, the switching function is

defined as , when it is nonpositive, the switching function is .

This static maximization problem and can be solved by simply plotting cross-sections of

the Hamiltonian, and appealing to first order derivatives when necessary. We first

maximize with respect to  along cross-sections defined by fixed swimming velocities.

The maximizing ’s, each indexed by a value of fixed  , are then substituted into the

Hamiltonian to make the problem single dimensional (in ).

For notational convenience, the arguments  and  are dropped from all functions,

since they do not enter explicitly into the maximization problem. The arguments

and  are retained. So, for example, the growth function is denoted by  instead of

. The maximizing choices of  and  will be denoted  and

respectively. These are not unique for any given point . Do not confuse

v

u
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σ1 λ1 θk−= σ2 λ1 θk+=

u

u v

v

x w, t
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the velocities  and , which maximize the Hamiltonian, with the optimal controls,

which are paths that maximize the objective functional .

B.1  Positive displacement co-state variable

Any cross-section of the Hamiltonian defined by fixing  may be written as

, where

. (B.1)

When , , and when , . Any  that

maximizes  also maximizes . Therefore the problem of maximizing along a

cross-section reduces to: maximize  with respect to , subject to . This

problem is solved by inspection of a plot of  (FIGURE B.1). The maximizing

depends on the sign of the switching function, , and the value of the fixed swimming

velocity,  (TABLE B.1).

u* v*

J

v

H v fixed Y u( ) cons ttan+=

Y u( ) λ1 u v+( ) u v+ θk−=

u v−≤ Y u( ) σ2 u v+( )= u v−> Y u( ) σ1 u v+( )= u

Y u( ) H v fixed

Y u( ) u 0 u umax≤ ≤

Y u( ) u

σ1

v
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FIGURE B.1 The optimal choice of the current velocity depends on the sign of the

switching function,σ1. Note that sinceλ1 is positive, so is σ2 . Whenσ1 is positive

(case 1), the maximizingu is clearlyumax, when it is negative (case 2), the

maximizingu is eitherumax, −v, or 0, depending on whether−v lies to the right,

within, or to the left of the interval [0, umax] respectively. Whenσ1 is zero (case 3),

the maximizingu is eitherumax, any value in the interval [−v, umax], or any value in

the interval [0,umax], depending on wheter -v lies to the right, within, or to the left of

[0, umax] respectively.

 (case 3)σ1 0=

 (case 2)σ1 0<

 (case 1)σ1 0>

u

Y

σ2 0>

u v−=
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We next consider the cases 1, 2 and 3 separately— each defined by the sign of the

switching function . In all cases the Hamiltonian is written as a function of  alone, by

restricting  to its known maximizing value for each given  (TABLE B.1). Each

resulting restricted Hamiltonian is then the sum of , a piece-wise linear function

, and a constant (in ), making the one dimensional maximization quite simple. In

each case, it is solved by inspecting a plot of  and the piece-wise linear function

on the same coordinate system. Rather than explaining this methodology repeatedly for

each individual case, we will simply derive the piecewise linear function, , plot  and

 on the same coordinate system, and derive maximizing velocity choices.

TABLE B.1 Optimal choices of migration velocity corresponding to different

choices of the swimming velocity whenλ1 is positive.

Case number
Sign of switching
functionσ1

Swimming velocity
condition

Maximizing current
velocity

1 + none

2a -

2b -

2c -

3a 0

3b 0

3c 0

The maximizing current velocity depends on the sign of the switching function, and the value ofv relative to0 and

−umax. In cases 3a and 3c, the maximizing current velocity is any value in the specified interval.

umax

v 0> 0

v umax−< umax

umax− v 0≤ ≤ v−

v 0> 0 umax,[ ]

v umax−< umax

umax− v 0≤ ≤ v− umax,[ ]

σ1 v

u v

λ2g v( )

L v( ) v

λ2g v( ) L

L L

λ2g
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B.2.1 If the switching functionσ1 is positive

For case 1, , and the Hamiltonian becomes , where the

piece-wise linear function  is given by

. When ,

; when ,

.

FIGURE B.2 Whenσ1 is positive,v* maximizes the sum ofL1 andλ2g, subject to

−vmax≤ v ≤ vmax.

u* umax= H L1 λ2g+ θζk+=

L1

L1 v( ) umax v+( ) θk− λ1 umax v+( )+= umax v 0≤+

L1 v( ) umax v+( ) σ2 λ2g v( )+= umax v 0>+

L1 v( ) umax v+( ) σ1 λ2g v( )+=

v

v umax−= v 0=

λ2g

σ1 v umax+( )

σ2 v umax+( )

λ2g

L1
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SinceL1 is increasing in  and is symmetric about , then  is nonnegative

(FIGURE B.3). If  (  is a right-hand derivative), then ;

otherwise, as depicted in FIGURE B.3, the sum of the functions is largest at a point ,

where  is zero. Therefore—applying the constraint

—when , .

B.3.2 If the switching functionσ1 is negative

For Cases 2a, 2b, and 2c, the Hamiltonian may be written as , where

the piece-wise linear function  is

.

v λ2g v 0= v*

σ1 λ2gv 0( )+ 0< gv v* 0=

v''

σ1 λ2gv v''( )+ 0=

vmax v vmax< <− σ1 λ2gv 0( )+ 0≥ v* min v' vmax,( )=

H θζk λ2g L2+ +=

L2

L2 v( )

σ2 v umax+( )

0

σ1v



=
i f

i f

i f

v umax−<

umax− v 0≤ ≤

v 0>



 224

There identify 4 possibilities, each depending on  and  defined below (FIGURE

B.3):

i. If , then , and .

ii. If , then  and

a.  if  (  is a right-hand derivative); otherwise

b. , where .

FIGURE B.3 Whenσ1 is negative,v* maximizes the sum ofL2 andλ2g subject to

−vmax≤ v ≤ vmax. Note that the slope of the the left-most linear piece ofL2 is steeper

than its right-most linear piece, sinceσ2 = λ1 + θk > |λ1 − θk| = |σ1|.

vvg−

case 2acase 2ccase 2b

v umax−= v 0=

u umax= u v−= u 0=

λ2g

σ1vσ2 v umax+( )

λ2g

L2

umax ucrit

min vg vmax,( ) umax< v* min vg vmax,( )−= u* v*−=

0 umax min ucrit vmax,( )≤ ≤ u* 0=

v* 0= λ2gv 0( ) σ1+ 0≤ gv

v* min v' vmax,( )= λ2gv v'( ) σ1+ 0=
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iii. If , then

a.  if ; otherwise

b.  where .

iv. If  then there are two points which maximize the Hamilto-

nian—the velocities given by (iib), and those given by (iiib).

 is defined either the critical value of  that ensures that the velocities in (iib) and

(iiib) both maximize the Hamiltonian—such a value exists whenever

(  is a left-hand derivative), or  if no such critical value exists. These results are

summarized in TABLE B.2.

0 ucrit umax min vg vmax,( )≤< < u* umax=

v* umax−= λ2gv u− max( ) σ2+ 0≥ v* max v' vmax−,( )=

v* v''= λ2gv v''( ) σ2+ 0=

vmax umax> ucrit 0>=

ucrit umax

λ2gv 0( ) σ2+ 0<

gv 0
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B.4.3 If the switching functionσ1 is zero

If , there are infinitely many points that maximize the Hamiltonian. In the case, the

Hamiltonian (restricted to the maximizing choice of ) may be written as

, where

.

TABLE B.2 Optimal swimming velocity summary when the switching functionσ1 is

negative.

Possi-
 bility  Condition

Derivative
condition

Maximizing
current
velocity

Maximizing
swimming
velocity

i none

iia†

iib

iiia

iiib

iv none The velocities of both (iib) and
(iiib)

The optimal swimming velocity depends on the value of  relative to the constrained maximum growth velocity

. If the maximum current velocity does not exceed the constrained maximum growth speed

(ii-iv), the optimal velocities depend on the maximum current velocity relative to a critical value, , or the

constrained critical current velocity .

† in (iia-b) is a right-hand derivative.

umax

ṽg umax< ṽg ṽg−

0 umax ũcrit≤ ≤ λ2gv v 0=
σ1+ 0≤ 0 0

λ2gv v 0=
σ1+ 0> 0 min v' vmax,( )

0 ucrit umax ṽg≤< < λ2gv v umax−=
σ2+ 0≥ umax umax−

λ2gv v umax−=
σ2+ 0< umax max v'' vmax−,( )

vmax umax> ucrit 0>=

umax

ṽg min vg vmax,( )=
ucrit

ũcrit min ucrit vmax,( )=

gv

σ1 0=

u

H θζk λ2g L3+ +=

L3 v( )
σ2 v umax+( )

0
{=

i f

i f

v umax−<

umax− v≤
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Since  is constant for , there is possibly more than one choice for

(FIGURE B.4). If , both ,

 and ,  maximize the Hamiltonian;

otherwise, the maximizing velocities are  and . These

results are summarized in TABLE B.3.

FIGURE B.4 In this case the switching functionσ1 is zero, and the goal is to

maximize the sum of the functionsL3 andλ2g with respect tov, while observing the

constraint,−vmax≤ v ≤ vmax.

vvg−

case 3acase 3ccase 3b

v umax−= v 0=

u umax= u v− umax,[ ]∈ u 0 umax,[ ]∈

λ2g

σ2 v umax+( )

vg

0

λ2g

L3

L3 v umax−≥ v*

umax max vg v− max,−( )≤− v max vg v− max,−( )=

u v− umax,[ ]∈ v min vg vmax,( )= u 0 umax,[ ]∈

v* min vg vmax,( )= u 0 umax,[ ]∈
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B.5  Nonpositive displacement co-state variable

The methodology of this section mirrors that of the previous. I will maximize the

Hamiltonian (with respect to  ) along all cross-sections defined by fixing , then use this

result to couch the problem in one dimension. Throughout the rest of the optimization, the

switching function will be defined as  instead of .

As demonstrated before, cross-sections of the Hamiltonian may be written as

, where  is defined in (B.1). Any  that maximizes

 also maximizes . By examining a plot of , and respecting the

constraint , it is possible to solve this maximization problem by inspection

(FIGURE B.1). The maximizing  depends on the sign of , and the value of the fixed

swimming velocity,  (TABLE B.4).

TABLE B.3 Optimal swimming velocities when the switching functionσ1 is zero.

Possibility  Condition
Maximizing current
velocity

Maximizing
swimming velocity

i†

ii

†The velocities of both rows of possibility (i) maximize the Hamiltonian.

In all cases, the swimming speed equal to the constrained maximum growth speed and the current velociy is not

uniquely determined—it is only known to lie in the specified interval.

umax

ṽg umax≤ ṽg umax,[ ]

0 umax,[ ]

ṽg−

ṽg

umax ṽg< 0 umax,[ ] ṽg

u v

σ2 λ1 θk+= σ1

H v fixed Y u( ) constant+= Y u( ) u

Y u( ) H v fixed Y u( )

0 u umax≤ ≤

u σ2

v
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FIGURE B.5 The maximizing choice of the current velocity depends on the sign of

the switching function,σ2 . Note that sinceλ1 is nonpositive, σ1 is negative

(assumingθk > 0). Whenσ2 is negative (case 1), thenY is strictly decreasing inu,

and therefore the maximizing current velocity is0. When σ2 is positive (case 2), the

maximizing current velocity isumax, −v, or 0, depending on whether−v lies to the

right of, within, or to the left of the interval [0, umax] respectively. Whenσ2 is zero

(case 3), the maximizing current velocity is any value in [0, umax], any value in [0,

−v], or 0, depending on whether−v lies to the right of, within, or to the left of the

interval [0, umax] respectively.

 (case 3)σ2 0=

 (case 2)σ2 0>

 (case 1)σ2 0<

u

Y

σ1 0<

u v−=
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As before, we proceed by considering cases 1, 2 and 3 separately, and reducing the

Hamiltonian to one dimension by restricting it to the known maximizing  (TABLE B.4).

In all cases the Hamiltonian can be written as the sum of , a piece-wise linear

function , and a constant (in ). The maximizing velocities are found by placing the

functions  and  on the same plot.

TABLE B.4 Maximizing choices of current velocity corresponding to different

choices of the swimming velocity whenλ1 is nonpositive.

Case number
Sign of switching
functionσ2

Swimming velocity
condition

Maximizing current
velocity

1 - none

2a +

2b +

2c +

3a 0

3b 0

3c 0

The maximizing current velocity depends on the sign of the switching function, and the value of the swimming

velocity relative to0 and−umax. In 3b and 3c, it is any value in the specifed interval.

0

v 0> 0

v umax−< umax

umax− v 0≤ ≤ v−

v 0> 0

v umax−< 0 umax,[ ]

umax− v 0≤ ≤ 0 v−,[ ]

u

λ2g v( )

L v( ) v

λ2g v( ) L v( )
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B.6.1 If the switching functionσ2 is negative

Whenσ2 is negative, the Hamiltonian is to be maximized over the curve  (TABLE

B.4). This restricted Hamiltonian is , where

. When , then ; when , .

SinceL4 is decreasing inv, andλ2g is symmetric aboutv = 0, the maximizingv is

nonpositive (FIGURE B.3). If  (where  is a left-hand derivative), then

; otherwise, , where  ( ).  is

less than the maximum growth velocity (in absolute value).

FIGURE B.6 If σ2 is positive,v* is identified by maximizing the sumL4 andλ2g,

while observing the constraint,−vmax≤ v ≤ vmax.

u 0=

H L1 v( ) λ2g v( ) constant+ +=

L1 v( ) v θk− λ1v+= v 0≤ L1 v( ) vσ2= v 0> L1 v( ) vσ1=

v
vg−

v 0=

λ2g

σ1v

σ2v

λ2g

L4

0

σ2 λ2gv 0( )+ 0> gv

v* 0= v* max v'' v− max,( )= σ2 λ2gv v''( )+ 0= v'' 0< v''
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B.7.2 If the switching functionσ2 is positive

When the switching functionσ2 is positive, the Hamiltonian (restricted to maximizing

choices of ) may be written as ,

where

is the desired piece-wise linear function.

u H θζk λ2g L2 v( )+ +=

L2 v( )

σ2 v umax+( )

0

σ1v



=
i f

i f

i f

v umax−<

umax− v 0≤ ≤

v 0>
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Thre are two possibilities, depending on the maximum current velocity,  (FIGURE

B.3):

i. If , then , and .

ii. If , then  and

a.  if ; otherwise,

FIGURE B.7 If σ2 is positive,v* is the value ofv that maximizes the sum ofL2 and

λ2g, while observing the constraint,−vmax≤ v ≤ vmax. Note that the right-most

linear piece ofL2 is steeper than the left-most linear piece, because |σ1| =−λ1 + θk >

λ1 + θk = σ2.

vvg−

case 2acase 2ccase 2b

v umax−= v 0=

u umax= u v−= u 0=

λ2g

σ1vσ2 v umax+( )

λ2g

L2

0

umax

min vg vmax,( ) umax< v* m− in vg vmax,( )= u* v*−=

0 umax min vg vmax,( )≤ ≤ u* umax=

v* umax−= λ2gv u− max( ) σ2+ 0≥
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b. , where  ( ).

These results are summarized in TABLE B.2.

B.8.3 If the switching functionσ2 zero

When the switching functionσ2 is zero (case 3), the Hamiltonian may be written as

,

where

,

is a piece-wise linear function.

TABLE B.5 Optimal swimming velocity summary when the switching functionσ2 is

positive.

Possi-
bility condition Derivatve condition

Maximizing
current
velocity

Maximizing
swimming
velocity

i none

iia ,

iib ,

The optimal swimming velocity depends on the value of relative to the constrained maximum growth velocity

. When the maximum current velocity exceeds the constrained maximum growth speed

(possibility i): the juvenile optimally holds station swimming against the current at its (constrained) optimal

growth speed. If the maximum current velocity does not exceed the constrained maximum growth speed

(possibility iia–b), the optimal velocities depend on the sign of . The optimal behavior is

characterized by station holding (in i and iib) or upstream migration in slack current at a swimming velocity that

does not exceed the maximum growth speed.

v* max v'' v− max,( )= λ2gv v''( ) σ2+ 0= v'' 0<

umax

ṽg umax< ṽg ṽg−

umax ṽg< λ2gv u− max x w t, , ,( ) σ2+ 0> umax u− max

umax ṽg< λ2gv u− max x w t, , ,( ) σ2+ 0≤ umax max v'' v− max,( )

umax

ṽg min vg vmax,( )=

λ2gv u− max w t, ,( ) σ2+

H θζk λ2g v( ) L5 v( )+ +=

L5 v( )
0

σ1v
{=

i f

i f

v 0<
v 0≥
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Since  is strictly decreasing over  and  is symmetric about ,

is nonpositive (FIGURE B.4). Since  over ,  is found by maximizing

. This, by definition, occurs at the point . When

, then  is any value in ; otherwise, it is any value in

. These results are summarized in TABLE B.6.

FIGURE B.8 When the switching functionσ2 is zero. The goal is to maximize the

sum of the functionsL5 andλ2g with respect tov, where−vmax≤ v ≤ vmax.

vvg−

case 3acase 3ccase 3b

v umax−= v 0=

u 0 u, max[ ]∈ u 0 v−,[ ]∈ u 0=

λ2g

vg

0

λ2g

L5

L5 v( ) v 0≥ λ2g v( ) v 0= v*

L5 v( ) 0= v 0≤ v*

λ2g v( ) v* max vg v− max,−( )=

u− max v*< u* 0 umax,[ ]

0 min vg vmax,( ),[ ]
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TABLE B.6 Optimal swimming velocities when the switching functionσ2 is zero.

Possibility  condition
Maximizing current
velocity

Maximizing swimming
velocity

i

ii

As in case 2, the optimal velocities depend on the maximum current velocity relative to the constrained maximum

growth velocity. Regardless of the value of , the optimal current velocity is not uniquely determined, while

the swimming velocity is always equal to the negative of the constrained maximum growth speed. Notice that it

is always optimal to swim against the current, and that since the migration velocity is always nonpositive,

migration is allowed only in the upstream direction.

umax

ṽg umax≤ 0 ṽg,[ ] ṽg−

umax ṽg< 0 umax,[ ] ṽ− g

umax



APPENDIX C AN AUTONOMOUS CASE

In this appendix, I present a simplified version of the optimal control problem, where

among other simplifications, state and time dependency is removed from the control

constraints, and the system of canonical equations is autonomous. Specifically, the

maximum current velocity, , and the maximum swimming speed  are constants,

the capture probability  is allowed to vary only with weight, the predation

parameters  and  are constants, the growth function does not depend explicitly on time,

and the final time, also known as the time of estuary entry, , is fixed. Furthermore, to

avoid the complications of low maximum current velocity (see CHAPTER 6), the

maximum current velocity is assumed to exceed the maximum swimming velocity. Also,

, ensuring that the fish will be able to swim to  within  time

units.

For notational convenience  will denote the time of estuary rather than . The optimal

control problem is summarized in TABLE C.1. The switching function will be taken as

 throughout the appendix, since the assumption of autonomy make the co-state

variable associated with displacement positive (See Result 6.2). Other special notation of

this appendix is found in TABLE C.2.

Several special cases of this problem will be treated, demonstrating the limited number of

optimal strategy types that arise from the model. In each case analyzed, the canonical

vmax umax

k w( )

θ ζ

T

T umax vmax+( ) a≥ x a= T

T tf

σ σ1=
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equations are developed based on the maximized Hamiltonian, and a qualitative analysis

of their possible solutions is explored based on the initial sign of the switching function

and growth function.

TABLE C.1 Optimal control problem (autonomous case with fixed estuary entry
time).

Maximize:
(objective functional)

Subject to: (displacement equation)

(weight equation)

(current velocity constraint)

(swimming velocity constraint)

TABLE C.2 Special notation.

Variable or function Description

Optimal current velocity.

Optimal swimming velocity.

Optimal downstream displacement path.

Optimal weight path.

Optimal time of arrival in the estuary (fixed).

The co-state variable associated with downstream displacement.

The co-state variable associated with weight.

The switching function.

Maximum growth speed. It is the unconstrained swimming speed that

maximizes growth.

.

u v,
u v+ ζ+( ) θk w( ) td

0

T

∫− Φ w tf( )( )+

ẋ u v+=

ẇ g v w,( )=

0 u umax≤ ≤

v vmax≤

u* t( )

v* t( )

x* t( )

w* t( )

T

λ1 t( )

λ2 t( )

σ x w λ1 t, , ,( )

vg x w t, ,( )

ṽg x w t, ,( ) ṽg min vg vmax,( )=
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C.1  The simplest case

In this section, a very simple case is explored and analyzed to the fullest, serving as an

introduction of the methods used in a more complicated case. Specifically, I make the

added simplifying assumptions:

A1.

A2.  and  are such that  for  in , where  is the

weight achieved by a fish swimming at its maximum swimming speed from time

to time .

A3. The maximum growth velocity exceeds the maximum swimming velocity, (i.e.,

 for  in ).

The canonical equations for this problem are developed using the results of TABLE C.3

which gives the values of current velocity and swimming velocity that maximize the

Hamiltonian. It is best to consider cases #1, #2, and #3, separately, all determined by the

switching function . The three cases correspond to ,

, and  respectively.

TABLE C.3 Optimal swimming velocity summary whenumax > vmax.

Sign of switching function
Optimal current and swimming
velocities

- ,

+ ,

0  and , or

 and

u* ṽg= v* ṽg−=

u* umax= v* v'˜=

u* ṽg umax,[ ]∈ v* ṽ− g=
u* 0 umax,[ ]∈ v* ṽg=

umax vmax≥

ρ vmax g vmax w,( ) 0> w w0 wmax,[ ] wmax

0

t

vmax vg w( )< w w0 wmax,[ ]

σ w( ) λ1 θ1k w( )−= σ w( ) 0>

σ w( ) 0< σ w( ) 0=
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Case #1—when the switching function is negative.Assuming that , the

optimal velocities are  and , and the resulting maximized

. The maximized Hamiltonian is

, when

Case #2—when the switching function is positive. The optimal velocities are

and , giving the maximized Hamiltonian

, when .

Case #3—when the switching function is zero. The optimal velocities are given by

 or

, and the maximized Hamiltonian is

when

Combining these three results, the maximized Hamiltonian is

The canonical equations are then given by

, (C.3)

={ if

if

(C.1)

={ if

if
(C.2)

vmax vg w( )<

u* umax= v* vmax=

H* t( ) H t( )
u* v*,( )=

H* t( ) σ w( ) umax vmax+( ) λ2 t( ) g vmax w,( ) ζθk w( )−+= σ w( ) 0>

u vmax=

v vmax−=

H* t( ) λ2 t( ) g vmax w,( ) ζθk w( )−= σ w( ) 0<

u* v*,( ) u v,( ) : vmax u umax≤ ≤ v, vmax−={ }∈

u* v*,( ) u v,( ) : 0 u umax≤ ≤ v, vmax={ }∈

H* t( ) λ2 t( ) g vmax w,( ) ζθk w( )−= σ w( ) 0=

H* t( )
λ2 t( ) g vmax w,( ) ζθk w( )−

σ w( ) umax vmax+( ) λ2 t( ) g vmax w,( ) ζθk w( )−+

σ w( ) 0≤

σ w( ) 0>

λ̇2 t( )
λ2 t( ) gw vmax w*,( ) ζθkw w*( )−

λ2 t( ) gw vmax w*,( ) ζ umax vmax+( )+( ) θkw w*( )−

σ w* t( )( ) 0≤

σ w* t( )( ) 0>

ẇ* t( ) g vmax w* t( ),( )=
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, (C.4)

 if

There are two possibilities arising from these equations:

a.  on , or

b.  for some  in .

If the first possibility holds, then by (C.5), , and so at time

. By assumption, , and so .

Therefore if , then the second possibility must be correct. Assume that

. If  holds throughout , then  which is

only possible if : in which case the juvenile does not need to migrate at all. Next

assume that  for some  in ; since  and  are constants, and

 is strictly decreasing in , there exists a unique weight  such that

. Since  (by hypothesis), there must be a

unique time  such that . This means that the switching function is zero for

only an instant of time, and thereforeno singular path is possible.

In conclusion, when , the juvenile optimally waits until it grows to a critical size

and then migrates downstream to the ocean at velocity . The critical weight ,

is that weight attained by a juvenile at time . Its growth is governed

by (C.3). Interestingly, the exact forms of the functions  and  are not

required to solve for the trajectories  and . The switching function is known to be

={ if

if
(C.5)

λ̇1 t( ) 0=

ẋ* t( )
0

umax vmax+

σ w* t( )( ) 0<

σ w* t( )( ) 0>

ẋ* t( ) 0 umax vmax−,[ ] vmax umax vmax+,[ ]∪∈ σ w* t( )( ) 0=

σ w* t( )( ) 0> 0 T,[ ]

σ w* t( )( ) 0≤ t 0 T,[ ]

x* t( ) umax vmax+( ) t= T

x* T( ) umax vmax+( ) T= x T( ) a= T
a

umax vmax+( )=

T
a

umax vmax+( )>

T
a

umax vmax+( )> σ w* t( )( ) 0< 0 T,[ ] x T( ) 0=

a 0=

σ w* t''( )( ) 0> t'' 0 T,[ ] λ1 θ

k w( ) w w'

σ w'( ) λ1= θ1k w'( )− 0= g vmax w t( ),( ) 0>

t' w t'( ) w'=

a 0> w'

umax vmax+ w'

T a umax vmax+( )⁄−

k w( ) Φ wT( )

x* w*
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zero precisely at time  regardless of the precise form of . I

merely used the fact that  is decreasing in  and  is increasing in . These

facts were essential in showing that both  and  are nonnegative, and subsequently in

maximizing the Hamiltonian.

An important question which arises from this example is “Under what conditions on the

food density  is it guaranteed that assumptions (A2) and (A3) are satisfied?” The food

density is expected to play an important role in shaping the optimal weight and

displacement trajectories, and it would be nice to know under what conditions the simple

solution described in the special case is optimal. Of course  will depend on , and

this dependence must be known to answer the question.

Fortunately, assumption (A2) is equivalent to . To prove this, assume

otherwise, so that  and when , there exists  in

 such that . Since  is continuous in , there

exists a weight  in  such that . Solving the differential

equation backwards in time starting with the time  such that  yields

 for  in . This contradicts that fact that . When

, the same contradiction arises. Thus (A2) is indeed equivalent to

.

C.2  The general case where .

Next I explore a more complicated situation under the assumption that the maximum

swimming speed is less than the maximum current velocity, but the maximum swimming

velocity is not restricted to be less than the maximum growth velocity—the velocity that

T a umax vmax+( )⁄− k w( )

k w( ) w Φ wT( ) wT

λ1 λ2

ρ

wmax ρ

g vmax w0,( ) 0>

g vmax w0,( ) 0> w T( ) w 0( )> w'

w 0( ) w T( ) ],( g vmax w',( ) 0≤ g vmax w,( ) w

w'' w0 w',( ) g vmax w'',( ) 0=

t'' w t''( ) w''=

w t( ) w''= t 0 t'',[ ] g vmax w0,( ) 0>

w T( ) w 0( )<

g vmax w0,( ) 0>

vmax umax<
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maximizes the unconstrained growth function. For convenience, in the remaining analysis,

I will restrict the optimal growth velocity to be less than or equal to the maximum

swimming speed, and the new optimal growth velocity will be defined as

. This is the maximum of the growth function attained when

the swimming speed is constrained to not exceed .

In the forthcoming development, I will consider three possibilities that will help to

characterize the optimal strategy types

1. .

2. .

3. .

The maximizing paths can take on a very different character depending on the case which

applies.

As in the last section, I proceed by first obtaining the maximized Hamiltonian, and then

building the canonical equations. As before, I consider the three possible cases stemming

from the sign of the switching function . The optimal velocities for

each case are found in TABLE C.3.

case #1—when the switching function is negative. The optimal velocities are

 and , where  satisfies

. (C.6)

Since the swimming velocity can never exceed the maximum swimming velocity, , it

will be convenient to work with the quantity  instead of . Since

ṽg w( ) min vg w( ) vmax,( )=

vmax

g ṽg w0( ) w0,( ) 0=

g ṽg w0( ) w0,( ) 0>

g ṽg w0( ) w0,( ) 0<

σ w( ) λ1 θk w( )−=

u* umax= v* min v' vmax,( )= v' 0>

σ w( ) λ2gv v' w,( )+ 0=

vmax

v'˜ min v' vmax,( )= v'
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 is concave for , and the quantities , and  are positive,  exceeds

the maximum growth velocity, . Working in terms of  and , it is known

only that . This gives

,  when .

case #2—when the switching function is positive. The optimal velocities are given by

, and  yielding

,  when .

case #3—when the switching function is zero. There are two possibilities for the optimal

velocities: 1)  and , or 2)  and

. In either case,

,  when .

The canonical equations are then given by

={
if

if
(C.7)

={ if

if
(C.8)

g v w,( ) v 0> σ w( ) λ2 v'

vg w( ) v'˜ ṽg w( )

v'˜ ṽg w( )≥

Hw* θkw w( )− umax v'˜+( ) λ2 t( ) gw v'˜ w,( ) ζθkw w( )−+= σ w( ) 0>

u* ṽg w( )= v* ṽg w( )−=

Hw* λ2 t( ) gw ṽg w( ) w,( ) ζθkw w( )−= σ w( ) 0<

u* ṽg w*( ) umax,[ ]∈ v* ṽg w*( )−= u* 0 umax,[ ]∈

v* vg=

H* w λ2 t( ) gw ṽg w,( ) ζθkw w( )−= σ w( ) 0=

λ̇2

λ2− gw ṽg w*( ) w*,( ) ζθkw w*( )+

λ− 2gw v'˜ λ1 λ2 w*, ,( ) w*,( )

ζ umax v'˜ λ1 λ2 w*, ,( )++[ ] θkw w*( )+

σ w* t( )( ) 0≤

σ w* t( )( ) 0>

ẇ*
g ṽg w*( ) w*,( )

g v'˜ λ1 λ2 w*, ,( ) w*,( )

σ w* t( )( ) 0≤

σ w* t( )( ) 0>
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(C.9)

 if .

Before proceeding, it is useful to derive a result describing the behavior of the growth and

switching functions in the event that, at the same instant, the growth function is zero and

the switching function nonpositive.

C.2.0.1  Result. If  and  at some time  in , then

the switching function and the weight path are constant throughout .

Proof: Assume that  and  at time

. At the point , the differential equation governing weight is

(C.11)

and the variables , , and  exert no influence on this differential equation. Since

 is a stationary point of (C.11), the weight path is unable to deviate from ,

and hence remains there throughout . Working backwards through time shows that

the weight path must also be constant throughout .■

C.2.0.2  Corollary. If  and  at some time  in ,

then  and  on .

Proof: By result C.2.0.1, if the switching function is nonpositive and the growth is zero

then the switching function must be constant throughout . Therefore

={ if

if
(C.10)

λ̇1 0=

ẋ*
0

umax v'˜ λ1 λ2 w*, ,( )+

σ w* t( )( ) 0<

σ w* t( )( ) 0>

ẋ* t( ) 0 umax ṽg w*( )−,[ ] ṽg w*( ) umax ṽg w*( )+,[ ]∪∈ σ w*( ) 0=

σ w* t1( )( ) 0≤ ẇ* t1( ) 0= t1 0 T,[ ]

0 T,[ ]

σ w* t1( )( ) λ1= θ1k w* t1( )( )− 0≤ ẇ* t1( ) 0=

t1 0 T,[ ]∈ t1

ẇ* g ṽg w*( ) w*,( )=

λ1 λ2 x

w* t1( ) w* t1( )

t1 T,[ ]

0 t1,[ ]

σ w* t1( )( ) 0≤ ẇ* t1( ) 0= t1 0 T,[ ]

σ w* t1( )( ) 0= w* t1( ) w0= 0 T,[ ]

0 T,[ ]



 246

. If , then the juvenile fails to migrate to the target

. Hence  on . ■

C.2.0.3  Result. If  and  at some time  in , then

the switching function remains zero for only an instant of time.

Proof: Assume that  and  for some

. Then  since  and

 is assumed to be strictly decreasing in . Therefore the switching function departs

from zero instantly, and hence remains zero for only an instant of time.■

C.2.0.4  Result. If , and  for  in , then the

switching function remains zero for only an instant of time.

Proof: I proceed by showing that if , and  for  in ,

then , and hence by result C.2.0.3, the switching function will remain zero for

only an instant of time. If , then by corollary C.2.0.2

, contradicting the hypothesis that .

Therefore , and by result C.2.0.3, the switching function remains zero for

only an instant of time.■

Armed with these results, I will explore all possible optimal strategies.

C.2.1  The case where .

In this case, the juvenile can initially only maintain its weight by swimming at its

maximum growth velocity—all other velocities lead to weight decrease. By corollary

σ w* t( )( ) σ w0( )= 0≤ σ w0( ) 0<

x a= σ w* t( )( ) σ w0( ) 0= = 0 T,[ ]

σ w* t1( )( ) 0= ẇ* t1( ) 0≠ t1 0 T,[ ]

σ w* t1( )( ) λ1= θ1k w* t1( )( )− 0= ẇ* t1( ) 0≠

t1 0 T,[ ]∈
td

d σ w* t1( )( ) kw w* t1( )( ) ẇ* t1( )− 0>= ẇ* t1( ) 0≠

k w( ) w

σ w0( ) 0≠ σ w* t1( )( ) 0= t1 0 T,[ ]

σ w0( ) 0≠ σ w* t1( )( ) 0= t1 0 T,[ ]

ẇ* t1( ) 0≠

ẇ* t1( ) 0=

σ w* t1( )( ) σ w0( ) 0≠= σ w* t1( )( ) 0=

ẇ* t1( ) 0≠

g ṽg w0( ) w0,( ) 0=
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C.2.0.2, it is impossible for the switching function to be initially negative, leaving only the

possibilities that the initial value of the switching function positive or zero. These

possibilities are examined below.

C.2.1.1  Switching function initially zero.

If , then by result Result 6.2, switching function and the growth rate remain

zero throughout , and the canonical equations are

(C.12)

(C.13)

(C.14)

(C.15)

where  may be chosen as  or  at each time in . When

, I can rule out this possibility, for by (C.15), ,

and the juvenile has no hope of migrating a distance of  within time , therefore I will

assume that . If , then (C.15) becomes

, since this is the only choice of  and  satisfying the boundary

condition . If , equation (C.15) leaves infinitely many

choices for , and it is only necessary for . Do each of these choices yield

the same value of the objective functional? If so, then a maximizing displacement path is

not unique.

σ w0( ) 0=

0 T,[ ]

λ̇2 λ2− t( ) gw ṽg w*( ) w*,( ) ζθkw w*( )+=

ẇ* g ṽg w*( ) w* t( ),( ) 0= =

λ̇1 0=

ẋ* 0 umax ṽg w*( )−,[ ] ṽg w*( ) umax ṽg w*( )+,[ ]∪=

v* ṽg w0( ) ṽg w0( )− 0 T,[ ]

T ṽg w0( ) umax+( ) a< ẋ* umax ṽg w0( )+≤

a T

T ṽg w0( ) umax+( ) a≥ T ṽg w0( ) umax+( ) a=

ẋ* ṽg w0( ) umax+= v u

x T( ) a= T ṽg w0( ) umax+( ) a>

ẋ* x* T( ) a=
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Let  represent any displacement path satisfying . Then the objective

functional becomes

(Since )

(Since )

. (Since )

Thus all solutions to (C.15) yield the same value of the objective functional, and hence all

are maximizing displacement paths.

C.2.1.2  Switching function initially positive.

If the switching function is initially positive, (i.e., ), then the optimal

swimming velocity is at least as great as the optimal growth velocity (i.e.,

), and since  is concave in ,

, demonstrating that growth

is initially nonpositive.

I next examine the case where growth is initially negative. Since the growth function is

concave in , his can occur only when . Is it possible for the juvenile to later

grow back to size  within time ? The answer is no. Otherwise, there exists a time

 such that  and  for all , where .

x* x T( ) a=

ẋ* t( ) ζ+( ) θk w* t( )( ) td
0

T

∫− Φ w* T( )( )+

ẋ* t( ) ζ+( ) θk w0( ) td
0

T

∫− Φ w0( )+= w t( ) w0=

θk w0( ) ẋ* t( ) ζ+( ) td
0

T

∫− Φ w0( )+= ẋ* t( ) 0≥

k w0( ) θ− a Tζ+( ) Φ w0( )+= ẋ* t( ) td
0

T

∫ a=

σ w0( ) 0>

v'˜ λ1 λ2 0( ) w0, ,( ) ṽg w0( )≥ g v w,( ) v

ẇ* 0( ) g v' λ1 λ2 0( ) w0, ,( ) w0,( )= g ṽg w0( ) w0,( )≤ 0=

v ṽg w0( ) vmax<

w0 T

t1 0> w* t1( ) w0= w* t1 ε−( ) w0< ε 0> t1 ε− 0>
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Because I assumed that the switching function was initially positive, then the switching

function must also be positive at , since , and therefore by the

concavity of the growth function, . Next note

that  and therefore . But  contradicts our

earlier result that . Thus

when the switching function is initially positive and growth initially negative, the

juvenile’s weight immediately falls below , and remains below .

If the growth function is initially zero, then

, and therefore

. I show that it is impossible for weight t deviate

from  on . Suppose otherwise. Then there must exist a time  such that

, and . Since the switching function was positive at , it must

also be positive at . Furthermore,

But this contradicts our hypothesis that . Therefore weight never deviates

from . The switching function remains positive throughout  and the juvenile

optimally migrates downstream at speed  throughout. This can only occur when

.

= (C.16)

=

=

t1 σ w* t1( )( ) σ w0( ) 0>=

g v' λ1 λ2 t2( ) w0, ,( ) w0,( ) g ṽg w0( ) w0,( )<

w* t1( ) w* t1 ε−( )− 0> ẇ* t1( ) 0≥ ẇ* t1( ) 0≥

ẇ* t1( ) g v'˜ λ1 λ2 t2( ) w0, ,( ) w0,( ) g ṽg w0( ) w0,( )< 0= =

w0 w0

g v'˜ λ1 λ2 0( ) w0, ,( ) w0,( ) g ṽg w0( ) w0,( ) 0= =

v'˜ λ1 λ2 0( ) w0, ,( ) ṽg w0( ) vmax= =

w0 0 T,[ ] t1

w* t1( ) w0= ẇ* t1( ) 0≠ w0

w* t1( )

ẇ* g v'˜ λ1 λ2 t1( ) w* t1( ), ,( ) w* t1( ),( )

g v'˜ λ1 λ2 t1( ) w0, ,( ) w0,( )

g vmax w0,( ) 0=

ẇ* t1( ) 0≠

w0 0 T,[ ]

vmax umax+

T vmax umax+( ) a=
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C.2.1.3  Optimal initial value of the switching function.

I have now discussed some qualities of the solutions of the canonical equations in the

event that , and have discussed the outcomes resulting from the initial

sign of switching function. I found switching function cannot be initially negative, and so

can only be initially positive or zero. Under what conditions is it initially zero? I showed

that if the , then , otherwise the juvenile could not

reach its downstream destination,  within the allotted time, . Therefore, when

 the switching function is initially positive, and the juvenile begins

its downstream migration immediately at time zero.

On the other hand, what if ? Is the initial value of the switching

function initially zero, or is it positive? To answer this question, I appeal to the objective

function directly, and evaluate it using the results of sections C.2.1.1 and C.2.1.2. In

section C.2.1.1, I showed that when the switching function is initially zero, the weight of

the juvenile remains at  throughout . In section C.2.1.2 I showed that when the

switching function is initially positive, and , the juvenile’s weight

remains below  throughout . Let , ,  represent the velocity,

displacement, and weight trajectories in the case that the switching function is initially

positive. When  and  the objective functional is

g vg w0( ) w0,( ) 0=

σ w0( ) 0= T ṽg w0( ) umax+( ) a≥

a T

T ṽg w0( ) umax+( ) a<

T ṽg w0( ) umax+( ) a≥

w0 0 T,[ ]

T vmax umax+( ) a>

w0 0 T ],( v1* x1* w1*

σ w0( ) 0> T vmax umax+( ) a>

ẋ1* t( ) ζ+( ) θk w1* t( )( ) td
0

T

∫− Φ w1* T( )( )+
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(Since , )

(Since )

. (Objective func.when )

This string of inequalities demonstrates that when the switching function is positive

initially and , the value of the objective functional is inferior to that of

the objective functional when the switching function is initially zero. Therefore the

switching function is indeed initially zero.

In conclusion, whenever  and , the switching

function is initially positive, and as a result, the juvenile begins its migration at time zero.

If on the other hand , , and , then

the switching function is initially zero, and an infinity of displacement paths are optimal

whenever  (see section C.2.1.1).

The very last case I need to cover, is the case where

. I showed earlier that when the switching

function is initially positive and , then weight remains at  throughout

 and the optimal strategy clearly consists of migrating downstream in the fastest

current , swimming downstream at the maximum swimming speed, . Any other

strategy does not allow the fish to arrive at  within time . Interestingly, this strategy is

also covered by case where the switching function is initially zero. This suggests that there

ẋ1* t( ) ζ+( ) θk w0( ) td
0

T

∫− Φ w0( )+< w1* t( ) w0< t 0>

θk w0( ) ẋ1* t( ) ζ+( ) td
0

T

∫− Φ w0( )+= ẋ1* t( ) 0≥

θk w0( )− a Tζ+( ) Φ w0( )+= σ w0( ) 0=

T vmax umax+( ) a>

g vg w0,( ) 0= T vg w0( ) umax+( ) 0<

g vg w0,( ) 0= T vg w0( ) umax+( ) 0≥ T vmax umax+( ) a>

T ṽg w0( ) umax+( ) 0>

T ṽg w0( ) umax+( ) T vmax umax+( ) a= =

ṽg w0( ) vmax= w0

0 T,[ ]

umax vmax

a T
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is no unique optimal initial value of the switching function, and that is only required to be

negative.

C.2.2  The case where .

In this section I examine the optimal juvenile behavior in the case where the initial growth

rate is negative. This is possible when food density is low, or standard and active

metabolism is elevated due to high temperatures. An important result in this case is that

the juvenile’s weight can never again reach  on .

C.2.2.1  Result. If , then the weight path remains below

throughout .

Proof: Suppose otherwise, so that  and  for some  in

. Since the weight path is necessary continuous in time, it is possible to assume

that  is the minimum time such that  and . At any time , such

that  and , , and therefore ,

implying that . However, by hypothesis,

, yielding a contradiction. Hence

on . ■

C.2.2.2  Switching function initially negative?

Recall that the switching function is a decreasing function of weight. Therefore, if it is

initially zero (i.e., ), by result C.2.2.1, it must remain negative

throughout . This is impossible because the juvenile would never migrate to the

ocean. It is therefore impossible for the switching function to be initially negative.

g ṽg w0( ) w0,( ) 0<

w0 0 T ],(

g ṽg w0( ) w0,( ) 0< w0

0 T ],(

g ṽg w0( ) w0,( ) 0< w* t1( ) w0≥ t1

0 T ],(

t1 t1 0> w* t1( ) w0= t1 ε−

ε 0> t1 ε 0>− w* t1 ε−( ) w0< w* t1( ) w* t1 ε−( )− 0>

td
d w* t1( ) 0≥

td
d w* t1( ) g v* t1( ) w* t1( ),( ) g ṽg w0( ) w0,( ) 0<≤=

w* t( ) w0< 0 T ],(

λ1 θ1k w0( )− 0<

0 T,[ ]
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C.2.2.3  Switching function initially zero?

By result C.2.0.3, if the switching function is initially zero, then it can remain zero for

only an instant of time. Therefore the switching function either becomes initially negative

or positive after time . If it becomes negative, then it remains negative so that the

fish fails to migrate, which is impossible since by hypothesis, . Therefore

if the switching function is initially zero, it immediately rises to a positive value. This is

also impossible since by hypothesis . Thus the

switching function is not initially zero.

C.2.2.4  Switching function initially positive.

In sections C.2.2.2 and C.2.2.3 I showed that it is impossible for either the switching

function to be initially negative or zero, and therefore the switching function is initially

positive. This means that the juvenile begins migration immediately at , swimming

a rate faster than the optimal growth velocity, and in the swiftest current, and continues

this behavior as long as the switching function is positive. Does the switching function

remain positive? If it does, then

. (C.17)

If (C.17) fails to hold, then at some point in time, say  in the interval , the

switching function must eventually fall to zero (i.e., ) but by result

C.2.0.4, remains at zero for only an instant of time. Let  be the minimum time at which

this occurs. If the switching function becomes positive immediately after , then

, and consequently, ,

t 0=

x* T( ) a= 0>

td
d σ w0( ) θkw w0( ) ẇ* 0( )− 0<=

t 0=

a x* T( ) v'˜ λ1 λ2 t( ) w* t( ), ,( ) dt Tumax+
0

T

∫ ṽg w* t( )( ) dt Tumax+
0

T

∫>==

t1 0 T ),(

σ w* t1( )( ) 0=

t1

t1

td
d σ w* t1( )( ) 0=

td
d σ w* t1( )( ) kw w* t1( )( ) ẇ* t1( )− 0= =
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implying that  since  is strictly decreasing in . By corollary C.2.0.2,

the switching function must then be zero throughout . This contradicts the

hypothesis that the switching function is initially zero, and therefore, at least at the very

first time the switching function reaches zero the switching function is negative

immediately after . During the time when the switching function is negative, the juvenile

holds its station at , swimming against the current at its optimal growth velocity.

If the juvenile has not reached  at , (i.e., ), then at some point in time it must

begin migrating downstream again, and therefore, once again the switching function

becomes positive. This can only occur if at some time after  the juvenile’s growth rate is

zero and the switching function is negative. However, by result C.2.0.1, this implies that

the switching function is a negative constant over . This contradicts the hypothesis

that the switching function is initially positive. Therefore the juvenile must reach position

 by .

C.2.2.5  Summary of behavior when .

In summary, it was shown that when the growth function is initially negative at the

optimal swimming velocity, then the juvenile begins migration immediately at time zero,

and does not cease to migrate until it reaches its final destination at . Upon reaching

, it holds its station, migrating against the current at its optimal growth velocity

until time .

When does the juvenile arrive at ? Since , there is a lower

bound for , namely

ẇ* t1( ) 0= k w( ) w

0 T,[ ]

t1

x* t1( )

a t1 x* t1( ) a≠

t1

0 T,[ ]

x a= t1

g vg w0( ) w0,( ) 0<

x a=

x a=

T

x a= ẋ* t( ) umax vmax+≤

t1
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.

Furthermore, if the optimal growth velocity does not vary too much over , then an

approximate upper bound is given by

.

C.2.3  The case where .

In this case, the juvenile initially is able to grow by swimming at its optimal growth

velocity. There is the possibility, however, that in order to achieve its downstream

migration target in the allotted time, it will be unable to travel at its optimal growth

velocity, and may even have to settle for negative growth. This is one of the several issues

examined in this section.

As before, I proceed by considering the initial sign of the switching function.

C.2.3.1  The case where the switching function is initially negative.

At least intuitively, it is not possible to rule out the possibility that the switching function

is initially negative when the juvenile has positive initial growth potential. For if time

permits, the juvenile could reduce its overall predation risk by initially taking advantage of

its growth opportunity and minimizing its predator encounter rate, then running the

gauntlet of predators at a larger size.

Assuming that the switching functionis initially negative, then the juvenile holds its

station at , swimming against the current at is optimal growth velocity. Since

a
umax vmax+( ) t1<

0 t1,[ ]

a
umax vg w0( )+

g vg w0( ) w0,( ) 0>

x 0=
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growth is then initially positive and the switching function is an increasing function of

weight, the switching function is also increasing. The switching function must increase

above zero at some time, otherwise, no downstream migration would be possible. Let

 be the first time that the switching function reaches zero. By corollary C.2.0.2, the

growth function and the switching function cannot be simultaneously zero at .

Therefore, either , or . Since  is the first time that the switching

function reaches zero, , and since the switching function is a strictly

increasing function of weight, . Thus immediately after , the switching

function increases above zero, and the juvenile begins migrating downstream at a velocity

greater that its optimal growth velocity and in the swiftest current.

Does the switching function, once it rises above zero, later turn around and descend to

zero? I show that it cannot. Suppose the switching function does display this behavior, so

that there exists a minimum time  such that . By

corollary C.2.0.2, the switching function and the growth function cannot be zero

simultaneously, otherwise , contradicting the hypothesis that

. Therefore the switching function must be negative immediately after

. Consequently,  which in turn implies that . Since

,

.

This contradicts the early finding that . Therefore it is impossible for the

switching function to fall back to zero once it becomes positive.

t1 0>

t1

ẇ* t1( ) 0> ẇ* t1( ) 0< t1

td
d σ w* t1( )( ) 0>

ẇ* t1( ) 0> t1

t2 t1> σ w* t2( )( ) σ w* t1( )( ) 0= =

σ w* t2( )( ) σ w0( ) 0<=

σ w* t2( )( ) 0=

t1 td
d σ w* t2( )( ) 0< ẇ* t2( ) 0<

w* t1( ) w* t2( )=

ẇ* t1( ) g ṽg w* t1( )( ) w* 1,( ) g ṽg w* t2( )( ) w* t2( ),( ) ẇ* t2( ) 0<= = =

ẇ* t1( ) 0>
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C.2.3.2  The case where the switching function is initially nonnegative.

If the switching function is initially nonnegative, then the juvenile initially swims

downstream at a velocity greater than the optimal growth velocity until the switching

function becomes negative or it reaches its destination of . Actually, I will show that

it is impossible for the switching function to become negative, and the migration will not

terminate before at time .

Suppose that the switching function turns negative, so that there exists a time  such

that  and  for any  sufficiently small. Once

negative, the switching function must remain negative throughout , otherwise it is

possible to use corollary C.2.0.2 to show that the switching function is zero and the weight

path are constant over , violating the hypothesis that .

Therefore the juvenile’s migration must terminate at , where . During the

time period , the juvenile holds its station, and swims against the current at its

optimal growth speed.

I proceed by showing that the above scenario is never optimal, because there exists

another strategy which is superior. Let fish 1 follow the velocity trajectories  and

 outlined in the above paragraph, and as usual let  and  represent the

displacement and weight paths. Now consider a juvenile, hereafter referred to as fish 2,

adopting velocity curves  with corresponding state paths , such

that its initial weight is , where

,  when , (C.18)

,  when . (C.19)

x a=

T

t1 T<

σ w* t1( )( ) 0= σ w* t1 ε+( )( ) 0< ε 0>

t1 T ],(

0 T,[ ] g ṽg w0( ) w0,( ) 0>

t1 x* t( ) a=

t1 T,[ ]

v1 t( )

u1 t( ) x1 t( ) w1 t( )

v2 t( ) u2 t( ), x2 t( ) w2 t( ),

w0

v2 t( ) v1 t t1+( )= u2 t( ) u1 t t1+( )= t T t− 1<

v2 t( ) v1 t T t1−( )−( )= u2 t( ) v1 t T t1−( )−( )= t T t1−≥
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I show that the strategy of fish 2 is superior to that of fish 1. In the first step, I demonstrate

that fish 2 satisfies the terminal condition . This is true because

(Since  on )

(By (C.19))

. (Since ).

Next, I derive a series of results used to show that the strategy of fish 2 is superior to that

of fish 1.

Initially, both fish weigh . On the interval , fish 2 follows the autonomous

differential equation

. (C.20)

There are two possibilities:  or . Suppose the

second of these possibilities prevails. Since  and , there

must exist a time  in  such that . But this implies that  is a

stationary point of (C.20). Since it is impossible for a path arising from an autonomous

differential equation to reach a stationary point if it begins away from it,

 is the only possibility.
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I now compare the weight of fish 2 over  to the weight of fish 1 over .

Our claim is that  when . For convenience, define

, and , so that our claim is

equivalent to  when . Both  and  follow the

differential equation

, (C.21)

but , while , as demonstrated earlier. If at some time

, the weight path  and  coincide, then the uniqueness of solutions of

ordinary differential equations is violated, and therefore  as claimed

earlier.

Next, I show that the weight of fish 2 over  dominates the weight of fish 1 over

, (i.e.,  for  in ). This time define

. Our claim is equivalent to  on . Both

 and  follow the differential equation

, (C.22)

but , while  (this follows since the switching function is zero at

and positive at ). By uniqueness of solutions to ordinary differential equations,

 on .

I next appeal to the switching function to demonstrate that . Suppose

otherwise, so that . Since  for  in ,

. Since the switching function is increasing in weight,

. This contradicts the earlier finding that the switching
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function must remain negative after . Therefore the terminal weight of fish 2 is at least as

large as that of fish 1.

Armed with these results, it is now possible to show that fish2 has a greater objective

functional value than fish 1. Evaluating the difference in objective functional values for

fish 1 and fish 2 gives

t1
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∫ ẋ2 ζ+( ) θk w2 t( )( ) td
T t1−

T

∫−−>

ζθk w1 t( )( ) td
t1

T
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.

Thus the value objective functional of fish 2 exceeds that of fish 1. Therefore it is

impossible for the switching function, assumed initially positive, to fall to a negative value

in the interval . Furthermore, if it ever becomes zero, it must do so exactly at .

C.2.3.3  Varying .

Now that behavior in the case where the switching function is initially nonnegative has

been described, it is useful to know whether it can possibly happen. The answer is yes. For

example, if  is chosen such that , then the migration rate must

remain at  throughout  in order to achieve the downstream target of

. This is possible only when the switching function is initially nonnegative.

Intuitively, the switching function must be nonnegative initially whenever

barely exceeds . On the other hand, if  is much greater than , then the

juvenile can afford to delay migration initially and spend its early days growing at its

optimal rate and avoiding predators.

C.3  Summary

The possible behaviors of the maximizing paths are simple to enumerate. One of the

following three behaviors is optimal:

ẋ2 t( ) θ1 θ2+( ) k w1 t T t1−( )−( )( ) ẋ2 t( ) θ1 θ2+( ) k w2 t( )( )−{ } dt
T t1−

T

∫>

0>

0 T,( ) T

T

T umax vmax+( ) T a=

umax vmax+ 0 T,[ ]

x a=

umax vmax+( ) T

a umax vmax+( ) T a
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S1. Initially, the juvenile holds its station at  swimming against the current at its

optimal growth speed. At some critical weight, it begins migrating downstream,

swimming in the swiftest current, and actively swimming downstream at a speed

greater than its optimal growth speed. The juvenile does not reach  until .

S2. The juvenile begins migrating immediately after emergence swimming at a speed

greater than or equal to its optimal growth speed, and in the swiftest current. It

ceases migration only when . If the juvenile reaches  before , then it

holds its station at , swimming against the current at its optimal growth speed.

S3. An infinite number of behaviors is optimal. At each instant the juvenile swims

downstream at its optimal growth speed, or against the current at its optimal

growth speed, and migration upstream is not permitted.

The strategies are exhaustive and the optimal one is determined by examining the sign of

the growth function and swimming function (TABLE C.4).

Strategy S1. The strategy is characterized by initial station holding. It occurs only when

, and  is sufficiently larger than .

Strategy S2.The strategy is characterized by initial migration. It occurs under a variety of

conditions:

• When  and  is not sufficiently greater than .

• When  and  does not exceed .

• When .

x 0=

x a= T

x a= a T

a

g vg w0( ) w0,( ) 0> T umax vmax+( ) a

g vg w0( ) w0,( ) 0> T umax vmax+( ) a

g vg w0( ) w0,( ) 0= T umax vg w0( )+( ) a

g vg w0( ) w0,( ) 0<
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Strategy S3. This is actually a class of strategies—infinitely may strategies are optimal.

This occurs when  and  is greater than .

TABLE C.4 Optimal strategies based on the initial sign of the growth and switching
functions.

Impossible Impossible S2

Impossible S3 or S2a S2

S1 S2 S2
a Strategy S3 applies when , S2 otherwise.

g vg w0( ) w0,( ) 0= T umax vg w0( )+( ) a

σ w0( ) 0< σ w0( ) 0= σ w0( ) 0>
g vg w0( ) w0,( ) 0<
g vg w0( ) w0,( ) 0=
g vg w0( ) w0,( ) 0>

T umax vg w0( )+( ) a>



APPENDIX D NUMERICAL METHODS

This appendix outlines the methods used to solve the optimal control problem in the case

where the solution does not admit a singular path, when the switching function is always

 (i.e., the co-state variable associated with displacement is positive, the maximum

current velocity exceeds the maximum swimming velocity, and the only control parameter

is —the time of estuary entry. Under these assumptions, the system of four canonical

equations (two state and two co-state equations) are easily specified, along with their

boundary conditions. Three of the boundary conditions are specified by end conditions on

the state variables: , , and . And a fourth condition is

supplied by a transversality condition . Since the control parameter, , is

unknown, it will need to be determined as well. In the standard treatment of optimal

control, this control parameter is determined by using a second transversality condition,

namely

, (D.1)

where  and  are evaluated at the optimal terminal states and co-states. However,

temporal fluctuations in model parameters can make the fitness curve contain multiple

maxima and minima, so that solutions of (D.1) can be misleading. Therefore I adopt the

more conservative approach broken into three basic steps: First, I of solve the canonical

equations for many fixed values of , obtaining a plot of how the value of the fitness

σ σ= 1

tf

x 0( ) 0= w 0( ) w0= x tf( ) a=

λ2 tf( ) Φw= tf

H Φtf
+ 0=

H Φtf

tf
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functional varies with ; secondly, I bracket the optimal value through visual inspection;

lastly, I use a standard one-dimensional numerical function maximizing routine to locate

the best value of .

This solution technique requires two types of numerical algorithms—a method for solving

a two-point boundary value problem described by the 4 canonical equations along with

their four boundary conditions, and a maximizing routine to identify the optimal estuary

entry time, and to identify the controls that maximize the values of the controls that

maximize the Hamiltonian. To solve the two-point boundary value problem, I use the

shooting method, a method that is essentially a root finding routine with a built-in

integration routine.

D.1  The shooting method

The shooting method starts by solving the canonical equations using the two known initial

conditions,  and , and two guesses for the initial co-state values,

say  and . The resulting terminal states are then evaluated to see how close

they come to satisfying the known terminal constraints:  and

. The error, represented by the a discrepancy vector,F, where

is then used to construct better estimates of the initial co-state variables (I use Newton-

Raphson), and the process repeats. When the terminal constraints are satisfied (to within a

specified tolerance), and the solution paths are output (FIGURE D.1). I use the routine

tf

tf

x 0( ) 0= w 0( ) w0=

λ̂1 0( ) λ̂2 0( )

x tf( ) a=

λ2 tf( ) Φw w tf( ) tf,( )=

F1

F2

x̂ tf( ) a−

λ̂2 tf( ) Φw− ŵ tf( ) tf,( )
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shoot() for the shooting method, along with the numerical integration routineodeint() that

implements Runge-Kutta with adaptive step size control (Presset al., 1988).

Each step of the Newton-Raphson algorithm requires building a 2x2 matrix containing

partial derivatives of the discrepancies calculated by finite differencing. Finite

differencing requires an increment vector dλ (see FIGURE D.1), and building the matrix

requires three passes of the routineodeint().

D.2  Overcoming difficulties of the shooting method

As mentioned before, this implementation of the shooting method is essentially a Newton-

Raphson algorithm that builds a matrix of partial derivatives by finite differencing to

update its solution estimate. Choosing good increments for

numerical derivatives is crucial for the success of shooting. If the increments are too large,

round-off error can make the solution lose meaning, and if too large, the terminal values of

the state and co-state variables may whiplash so that the finite differences do not

adequately approximate the partial derivatives.

procedure shooting method begin t=0

initialize λ1(0), λ2(0), x(0), w(0)

initialize ∆λ

do

begin

λ1(0), λ2(0) <− newton raphson ∆λ, λ1(0), λ2(0), x(0), w(0)

end

while(not terminal condition)

FIGURE D.1 Pseudo code for the shooting method.

∆λ ∆λ1 0( ) ∆λ2 0( ),[ ]=
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Another difficulty arises in choosing good estimates of the unknown initial co-state

variables. The Newton-Raphson method will work only when the discrepancy vector,F,

varies smoothly in a neighborhood of the solution, and if the initial guess is close enough

to the actual solution. In the vicinity of the root, the method performs well, converging

quadratically.

Both of the difficulties mentioned above can be overcome by finding good initial estimates

of the initial co-state variables. These estimates would give a good idea of the scale

appropriate for choosing the increments dλ, and put the guesses close enough to the actual

solution to allow quadratic convergence of Newton-Raphson. Fortunately, some important

qualitative knowledge about the optimal paths of the state variables, and information

about the optimal controls assists in choosing these values.

My approach proceeds by solving the canonical equations backward in time to the initial

states and co-states, starting with reasonable estimates for the terminal state and co-state

variables. Doing this requires good estimates of the terminal weight (weight at estuary

entry) and the approximate time that the switching function is zero. A good estimate of

terminal weight is obtained by recalling that early juvenile behavior is governed largely by

feeding and predator avoidance, with the juvenile optimizing its food intake. This means

that its terminal weight is approximated by the weight achieved by maximizing its growth

over the time horizon—call it . The terminal value of the co-state variable associated

with weight can then be approximated using the relationship

wmax

λ2 tf( ) Φw w tf( ) tf,( )= Φw wmax tf,( )≅
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Another quantity that can be estimated is the time the switching function is zero.

Assuming that migration occurs mainly at the end of the time horizon, and approximating

the travel time by assuming that the fish migrates in the swiftest current and at a

swimming speed that maximizes its growth, it is then possible to solve the displacement

backwards from the terminal conditions  and  to the point in time that

. This time approximates the time that the switching function is zero. At this time,

referred to as the switching time, ,

,

giving an estimate for , that I use to estimate . I should point out that will

not always be a good estimate, especially with a large degree of spatial heterogeneity

modelled, but for most of my numerical work the estimate was adequate for convergence.

Given the approximations of the terminal values of the co-state variables, the weight

variable, and the known value of the displacement variable, , I solve the canonical

equations backward in time to estimate the initial values ofλ1 andλ2. This method of

estimation, applied in CHAPTER 6 resulted in convergence usually within 4-6 Newton-

Raphson steps. (Note however, that algorithm tolerances also determine the number of

necessary steps.)

w wmax= x a=

x 0=

tswitch

0 σ λ1 tswitch( ) k x tswitch( ) w tswitch( ) tswitch, ,( )−= =

λ1 tswitch( ) λ1 tf( )

x a=
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D.3  Driver for shoot

I have included a documented C program code that drives the functionshoot(). It is

contained in the program filetarget.c. The methods and arguments ofshoot() are found in

FIGURE D.2.

target.c

/* Driver for routine SHOOT */
/* Solve for lambda1(0) and lambda2(0) using */

#include <stdio.h>
#include <math.h>
#include “nr.h” /* contains Numerical Recipes declarations */
#include “bio.h” /* contains declarations of biological functions */

#define NVAR 4 /* number of state and co-state variables */
#define N2 2 /* number of unknown initial conditions */
#define DELTA 1.0e-3 /* used to scale increment for finite differences */
#define EPS1.0e-10 /* tolerance in Runge-Kutta */
#define DEPS1.0e-7

/* TABLE of global variables
* T - time of estuary entry (final time)
* a - migration distance
* init_lambda1 - initial lambda1
* init_labmda2 - initial lambda2

void shoot(nvar, v, delv, n2, x1, x2, eps, h1, hmin, f, dv)
int nvar, n2;
double v[], delv[], x1, x2, eps, h1, hmin, f[], dv[];
Improve the trial solution of a two point boundary value problem fornvar coupled ODEs [ordinary
differential equations] shooting from x1 to x2. Initial values for thenvar ODEs atx1 are generated
from the coefficientsv[1..n2], using the user-supplied routineload. The routine integrates the ODEs
to x2 using the Runge-Kutta method with toleranceeps, initial step sizeh1, and minimum step size
hmin, At x2 it calls the user-suppled routinescore to evaluate the [discrepancy] functionsf[1..n2]
that ought to be zero to satisfy the boundary conditions atx2. Multi-dimensional Newton-Raphson is
then used to develop a linear matrix equations for the incrementsdv[1..n2] to the adjustable
parameters v. These increments are solved for and added before return.

FIGURE D.2 Arguments and method of the routineshoot() (Presset al., 1988).
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*/

/* TABLE of states and co-states
* y[1] - weight state
* y[2] - lambda2 co-state
* y[3] - displacement state
* y[4] - lambda1 co-state
*/

/* used by shoot set the initial values of the states and co-states */
void load(x1, v, y)
double x1, v[], y[];
{

y[1] = init_weight;
y[2]= v[1];
y[3] = 0.0;
y[4] = v[2];

}

/* used by shoot to build the discrepancy vector f */
void score(x2,y,f)
double x2,y[],f[];
{

double dphidw(); /* partial of phi with respect to w */

f[1] = y[2] - dphidw(y[1], x2);
f[2] = y[3] - a;

}

/* the main driver for shoot */
void target()
{

double h1,hmin,x1,x2;
double delv[3],v[3],dv[7],f[7];
double guess_lambda1();
double guess_lambda2();
double l2_guess;

v[1] = guess_lambda2(); /* estimate of initial lambda2 */
v[2] = guess_lambda1(); /* estimate of initial lambda1 */
l2_guess = v[1]; /* save for convergence criterion */

delv[1]=DELTA*v[1]; /* increment in lambda2 for partial derivs */
delv[2]=DELTA*v[2]; /* increment in lambda1 for partial derivs */
h1=0.1; /* initial step size for Runge-Kutta */
hmin=0.0; /* minimum step size for Runge-Kutta */

x1 = 0.0; /* initial time */
x2= T; /* final time (estuary entry time) */

do {
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shoot(NVAR,v,delv,N2,x1,x2,EPS,h1,hmin,f,dv);
} while (fabs(dv[1]) > fabs(DEPS*l2_guess) || fabs(dv[2]) > fabs(DEPS * a));

init_lambda2 = v[1]; /* set global variable to best est. of lambda2(T) */
init_lambda1 = v[2]; /* set global variable to best est. of lambda1(T) */

return;
}

D.4  Maximization routines

There are two optimization algorithms incorporated, the first, to solve for the swimming

velocity that maximizes the Hamiltonian, and the second to maximize the fitness

functional with respect to the estuary entry time. In the former case, I use Brent’s method

with derivatives,dbrent() (Press et al., 1988). Maximizing the Hamiltonian with respect

to swimming velocity requires simple function evaluations based on the growth function

and its derivatives, as well as values and derivatives of the switching function. Recall that

when the switching function is negative, we seek to maximize

, with derivative

and when the switching function is positive, we seek to maximize

 with derivative .

To determine the optimal paths, these maximization problems need to be solved for every

step of the numerical integration routine.

I use the routinebrent() (Presset al., 1988), a method based solely on function values, to

maximize the objective functional with respect to estuary entry time, . Every function

evaluation of the method involves solving the two-point boundary value problem using

g v x w t, , ,( ) gv v x w t, , ,( )

σ λ1 x w t, , ,( ) v g v x w t, , ,( )+ σ λ1 x w t, , ,( ) gv v x w t, , ,( )+

tf
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the functiontarget() described above. Sincetarget() itself requires intensive computation,

the function evaluations are expensive.
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