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Abstract 

Inseason Forecasts of Sockeye Salmon Returns to the Bristol Bay Districts of Alaska 

by Saang-Yoon Hyun 

Co-Chairpersons of the Supervisory Committee: 
Prof. Ray Hilborn & Prof. James J. Anderson 
Quantitative Ecology and Resource Management 
 

The Bristol Bay sockeye salmon fishery has been the most valuable salmon fishery 

in North America, and provides season employment for several thousand workers.   The 

fishery consists of five reasonably discrete fishing districts corresponding to watersheds 

where the salmon are returning to spawn.   The long term objective of management is to 

achieve Maximum Sustained Yield from the fishery, and this is implemented on an 

annual basis by regulating the time allowed for fishing to allow a predetermined number 

of fish to pass the fishery and make it to their natal streams and lakes to spawn. 

The expected total return of fish to each district is an important part of the fishery 

management and is equally important to the fishing fleet and the fish processors.   I 

developed a statistical model for inseason run size prediction that uses data from (1) a test 

fishery at Pt. Moller, (2) the age composition of the catch at Pt. Moller, (3) the total 

return to date by district and (4) the age composition of the return to each district.   

Optimization and Bayesian methods are used to obtain both point estimates and 

distributions of estimates.   I found that the temporal pattern in catches at Pt. Moller 

explained 59% of the variation in run timing in the fishing districts.   Using the preseason 

forecast as a prior significantly improved the performance of the estimation during the 

initial stage of the season.   This method provides a consistent way to incorporate diverse 

forms of data in a single unified statistical framework that should provide a significant 

improvement in inseason run forecasting.   The method was tested using data from 1999 

and found to perform well.   In terms of the absolute values of relative errors of forecasts 

of the returns to the main districts (Kvichak-Naknek, Egegik, and Nushagak) made on 



 
June 24, June 29, and July 4, the mean values were 86.7%, 72.4%, and 59.9% when 

preseason forecasts were not incorporated, whereas they were 27.6%, 25.4%, and 20.9% 

when preseason forecasts were incorporated.    
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CHAPTER I.  INTRODUCTION 

1.1.  RESEARCH MOTIVATION AND OBJECTIVES 

There are some common goals in managing anadromous fish like Pacific salmon 

(genus, Oncorhynchus) in the northwest.  The goals are to hit an escapement goal of 

homing fish, to conserve inherited characteristics of a stock, and to maximize the harvest 

of surplus fish.  Surplus fish mean fish left after subtracting an escapement from a run.  

The first and second goals concern biological conservation of the management stock in 

terms of not only abundance but also genetic characteristics.  The third goal concerns 

economic benefit.  To achieve these goals, managers need to know in advance the run 

size and timing of homing fish.  Generally there are two kinds of forecasts for 

anadromous fish management: a preseason forecast and an inseason forecast.  A 

preseason forecast is made before homing fish start to arrive at a local management area.  

The preseason forecast information is mainly used for fish buyers and processors such as 

canneries.  However the preseason forecast information is usually not accurate enough to 

be used for management.  The managers rely on an inseason forecast to achieve the three 

goals.  Once fish reach a local management area, managers start to monitor the run and 

collect data through a test fishery.  On the basis of these data, an inseason forecast is 

made.  As the data are accumulated, the inseason forecast is updated periodically to 

improve the estimates of run size and timing.  This inseason forecast helps managers 

regulate fisheries that target the homing fish.  The regulations include opening or closing 

a fishery in a certain area during a certain time.   

Sockeye salmon (O. nerka) of Bristol Bay, Alaska are also managed with the same 

goals as those described above.  Bristol Bay is located in the southeastern Bering Sea and 

is surrounded by five estuaries (Figures 1.1 and 1.2).  There are mainly eight stocks that 

compose the Bristol Bay sockeye salmon run.  A problem in managing the Bristol Bay 

sockeye salmon is derived from difference in escapement goal and run timing between 

stocks.  To conserve run timing profiles of stocks, optimal number of spawners should be 

allowed to reach their spawning grounds over the entire season period.  In other words, 

fishing activity should be properly distributed over the season.  Because of these stock-
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specific goals, it is not a good idea to apply the same fishing effort to all stocks during 

the season.  The current fisheries that target the Bristol Bay sockeye salmon are not 

allowed to occur in the ocean beyond the five estuaries.  But the estuary-specific fishery 

does not guarantee a stock-specific exploitation because some stocks have to pass a 

common estuary.  A drift gillnet, which is the legal fishing gear in Bristol Bay, is size-

selective but cannot be stock-selective unless the fish body size significantly differs 

between stocks.  Another factor that makes the stock-specific management difficult is the 

short time window of the salmon run.  Because about 80% of sockeye salmon usually 

migrate through Bristol Bay within two weeks, the Alaska Department of Fish and Game 

(ADFG) must make quick decisions about fishery regulations.   

Even though inseason forecasts were first made in 1968 (Eggers and Fried 1984, 

Helton 1991, Rogers 1994), there is no systematic algorithm for estimating stock-specific 

runs during the season.  The main objective of my research is to estimate stock-specific 

run sizes on a daily basis during the season.   The data are mainly catch and age 

composition from three fishery sources: an offshore test fishery, estuary fisheries, and 

escapement fisheries.   As the season progresses, the data are updated, and estimates of 

stock-specific runs are improved.  Because of the short duration of the salmon run, ‘daily’ 

estimates of stock-specific runs are desired.   This information will help ADFG managers 

to decide inseason regulations to achieve the three management goals.   Specific 

objectives of this research are to develop a computer algorithm for inseason forecasts of 

returns, and to implement the algorithm into software to be used by managers. 

  

1.2.  LITERATURE REVIEW 

1.2.1.  General features of sockeye salmon 

Pacific sockeye salmon are also called red salmon (Alaska), blueback salmon 

(Columbia River), nerka and krasnaya ryba (Russia), benizake and benimasu (Japan) 

(Burgner 1991).   Sockeye salmon are anadromous like other fish of the genus 

Oncorhynchus, but some sockeye salmon populations called ‘kokanee’ spend their entire 
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life only in fresh water.  Another important feature of sockeye salmon is the 

semelparous life history; the fish spawn only once during their entire life and then die.     

The primary spawning grounds of sockeye salmon range from 470N to 630N 

(Burgner 1991).  The grounds in North America extend from tributaries of the Columbia 

River to the Kuskokwim River in western Alaska, and those of Asia are distributed on the 

Kamchatka Peninsula, Russia.   

Mature sockeye salmon return to their natal stream mainly during June through 

September, and spawn and fertilize eggs before they die.  The sockeye eggs in stream 

gravel develop during September through January, and the sockeye alevin emerge from 

the natal gravel during January through April (Burgner 1991, Pearcy 1992).  The main 

characteristic of the alevin stage is the presence of ‘yolk.’  Once the fish yolk disappears, 

the fish stage is called ‘fry.’  The sockeye fry migrate to lakes during May through June.  

Sockeye salmon require a ‘lake’ rearing environment for the juveniles.  This requirement 

is a distinction of sockeye salmon, which is different from some fish of the genus, 

Oncorhynchus.  Chinook (O. tshawytscha) and coho salmon (O. kisutch) utilize ‘stream’ 

rearing environments as juveniles.  The residence time of the sockeye juvenile fish in 

lake ranges from one year to three years.  When the juvenile fish are ready for ocean life 

phase by undergoing a series of physiological, behavioral and biochemical changes (Hoar 

1976), they are called ‘smolts.’   The sockeye smolts migrate to the ocean during June 

through July.  Their ocean residence time, during which they are maturing, ranges from 

one year to three years.  Ocean growth of the immature and mature sockeye salmon 

continues while they reside in the ocean (French et al. 1976, Burgner 1991).   The ocean 

distribution of sockeye salmon occurs mainly in the north Pacific Ocean, covering a 

latitudinal range from 400N through 650N and a longitudinal range from 1500E through 

1250W.  
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1.2.2.  Bristol Bay sockeye salmon 

Bristol Bay 

Bristol Bay of Alaska is located at the southeastern area of Bering Sea and the co-

ordinates of the bay center are 580N 1590W (Figures 1.1 and 1.2).  The bay is surrounded 

mainly by five estuaries: Togiak, Nushagak, Kvichak-Naknek, Egegik, and Ugashik 

(Figure 1.2).  As a term of the management unit, these estuaries are often called 

‘districts.’  Districts of Nushagak and Kvichak-Naknek are connected to a few rivers.   

The flow of Nushagak district is contributed mainly by the Igushik River, the Wood 

River, and the Nushagak River, and that of Kvichak-Naknek district is contributed mainly 

by the Kvichak River, the Branch River, and the Naknek River (Figure 1.2).  Thus, 

Bristol Bay has mainly nine river systems: Togiak, Igushik, Wood, Nushagak, Kvichak, 

Branch, Naknek, Egegik, and Ugashik.  Iliamna Lake, the largest of the sockeye-

producing lakes in the world (2,622 km2) is connected to the Kvichak River (Burgner 

1991).     

Life history of the Bristol Bay sockeye salmon 

The Bristol Bay sockeye salmon begin their ocean life phase when they enter the 

bay.  Sockeye smolts enter the bay mainly during late May through June.  Despite that the 

five estuaries of the bay are radially located, the juveniles from those estuaries choose the 

coastal waters along the southeast side of inner and outer Bristol Bay during their 

seaward migration (Straty 1974).  At the juvenile stage in Bristol Bay, the main food item 

of the juveniles is zooplankton.  By September, substantial numbers of Bristol Bay 

sockeye juveniles are still only 460-560 km from their estuaries of origin.  They tend to 

remain within about 100 km of the shore during their feeding and migration movement.  

During the first fall and winter in the marine environment, their migration direction is 

variable: to the middle of the Bering Sea and to the southward through the Aleutian 

passes.  The main water source of the Bering Sea is the Alaskan Stream, an extension of 

the Alaskan Current of the Alaskan Gyre (Verkhunov 1995).  Stomachs of the juveniles 

sampled in the Bering Sea included other food items beside zooplankton: larval capelin 
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(Mallotus villosus), sand lance (Ammodytes hexapterus), and herring (Clupea harengus 

pallasi) (Foerster 1968, French et al 1976).   

The ocean distribution of the Bristol Bay sockeye salmon during their maturing 

stage ranges from about 46oN in the central North Pacific Ocean to about 64oN in the 

Bering Sea and from about 175oE to about 145oW of the Gulf of Alaska.  The limiting 

factor of the distribution seems to be water temperature (Burgner 1991, Pearcy 1992). 

The return time of the Bristol Bay mature sockeye salmon is almost simultaneous 

except the Ugashik and Togiak stocks that consistently return a few days later (Figure 

1.3).  The run duration is very short; it happens mainly during one month from about the 

middle of June through the middle of July.  About 80% of the returns occur only within a 

two-week period despite their diverse distribution at sea (Burgner 1980).  By summer, the 

Bristol Bay adult sockeye salmon are in much lower abundance in the high-seas as their 

inshore returns progress.  Four age groups account for about 98% of all Bristol Bay 

returns: 1.2, 2.2, 1.3 and 2.31 (Fried et al. 1988), even though the proportions of age 

groups can vary each year. 

In stomachs of the homing adults caught in the basin area of the central Bering Sea, 

food items were found to be more varied and included squid, fish larvae, amphipods, and 

euphausiids, whereas in the shelf area to the east, the items were almost exclusively 

euphausiids, with a small proportion of fish larvae, including walleye Pollock (Nishiyama 

1974, 1984).  The average stomach content volume was greater in the sockeye salmon 

sampled from the shelf area, which appeared to coincide with the general trend of 

zooplankton biomass distribution between the two areas (the central Bering Sea and the 

shelf area).  The caloric value per unit weight of food consumed was also greater in the 

shelf area.  This coincidence in the stomach content volume and the zooplankton biomass 

supports the idea that salmon are opportunistic feeders (Pearcy 1992).       

 

                                                 
1 This salmon age is expressed as its European way (Koo 1962).  A fish of age ‘x’.‘y’ 
spent ‘x’ winter(s) in freshwater after fry stage and ‘y’ winter(s) in the ocean.   
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Run characteristics  

One of the most remarkable characteristics of the Bristol Bay sockeye salmon run 

is high annual variability in abundance.  Dealing with the returns of year 1958 through 

2001, the coefficient of variation (CV)2 was 0.60 (Figure 1.4).  As an extreme example, 

the return size of 1995 (60,488,000 fish) was almost 27 times as many as that of 1973 

(2,245,000 fish). 

Another characteristic of the returns is a cyclic pattern (Figure 1.4).  This cyclic 

pattern is mostly due to returns of sockeye salmon to the Kvichak River (Figure 1.5).  

The Kvichak stock returns have cycled with four or five year periodicity.  Because the 

data of only the Kvichak stock returns are not available, I show the returns to the 

Kvichak-Naknek district in Figure 1.5.   The Kvichak stock generally returns as the 

highest abundance among the Bristol Bay river stocks except its off-peak years.   

Some literature suggests a possible mechanism for the cyclic pattern in the annual 

return size (Mathews 1967, Eggers and Rogers 1987).  Mathews (1967) postulated an 

interaction between spawning populations of successive years.  The postulate is that a 

large spawning population might change some controlling environmental factor such as 

food organisms or the intra-gravel environment, and this change might be detrimental to 

the production of sockeye salmon in the ensuing two years.  With the assumption, 

Mathews (1967) modified the deterministic Ricker model between spawners and recruits 

into a stochastic version by incorporating an error term in calculating recruits.  Besides, 

the modified model has spawners of the past two years as well as the current year in 

calculating the resultant recruits.  By simulation with this modified version, Mathews 

(1967) succeeded in producing the cyclic pattern in returns.  However, the real data used 

in the simulated model were limited to those of just seven years, and the values for 

parameters in the model were arbitrarily chosen. 

In addition to the suppression of production following large escapement, the 

sockeye salmon fishery also seems to have been responsible for the cyclic pattern.  The 

early fishery (before adoption of formal escapement goals) was limited by processing 

                                                 
2 CV = standard deviation / mean 
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capacity and only loosely regulated for a fifty percent exploitation rate (Eggers and 

Rogers 1987).  During the peak cycle year runs, fish mortality by this fishery tended to be 

much lower than average.  With this reasoning, Eggers and Rogers (1987) called the 

mechanism ‘depensatory fishing.’  A ‘depensatory’ mechanism is defined as a 

relationship where mortality of a population decreases as the population abundance 

increases.           

1.2.3.  Forecasts of the Bristol Bay sockeye salmon returns  

Bristol Bay sockeye salmon compose over 50% of the sockeye salmon harvested in 

North America (Fredin 1980, Rogers 1986).  Because of this high productivity, Bristol 

Bay sockeye salmon are an important economic source in the northwest.   From year 

1958 through 2001, the annual average catch of the Bristol Bay sockeye salmon was 16.4 

million (Figure 1.4).   In managing this valuable population, forecasts of returns are a 

critical part.  Recalling the high variability in annual returns (Figure 1.4) and the short 

duration in return time, accurate forecasts are strongly desired by managers and the 

fishing industry. 

The first forecasts were made by UW FRI (University of Washington Fisheries 

Research Institute) in about 1950 (Rogers 1998).  About 1962, the Alaska Department of 

Fish and Game (ADFG) started to participate in forecasting the annual runs from inshore 

observations (escapements, smolts, and age composition) and in 1984, salmon processors 

asked UW FRI to make forecasts from these data to provide a second opinion.    

Preseason forecasts  

At present, preseason forecasts of sockeye salmon returns to Bristol Bay are made 

by both ADFG and UW FRI.  Salmon buyers and processors such as canneries use 

preseason forecasts to determine staff and equipment needed for production of fresh, 

frozen, and canned products and to plan deployment of tenders and processing vessels 

(Fried and Yuen 1987).  For the industry, a forecast is most useful when available well in 

advance of the run (at least six months before the run).  ADFG also uses preseason 

forecasts to set a quota for a commercial fishery at False Pass (Hilborn, Personal 

communication); 8% of the forecast run are allocated for the False Pass fishery (Figure 
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1.1).  Run predictions are made for each major age group (usually four ages: 1.2, 2.2, 

1.3, 2.3) and summed to obtain a forecast for a river system.  Then the river system 

forecasts are summed to predict the run to a fishing district, and the predicted catch is 

obtained by subtracting the recent five year average of escapements from the district run.   

From 1987 to 1996, the ADFG forecast of the Bristol Bay sockeye salmon run 

differed from the actual run by an average of 27% (range: 9-56%), and the UW FRI 

forecast differed by an average of 22% (range: 5-43%) (Rogers 1998).  However, in case 

of forecasts of the 1997 and 1998 runs, the forecasts by both agencies differed from the 

actual runs by about 100%.  The actual runs of 1997 and 1998 turned out to be far smaller 

than the forecasts.   For example, the UW FRI preseason forecasts of the 1997 and 1998 

runs were 35.1 millions and 33.8 millions but the actual runs of those years were 18.9 

millions and 18.3 millions, respectively.  This serious discrepancy between forecasts and 

actual runs left unreliable the traditional forecast methods that ADFG and UW FRI have 

used.   

I briefly describe the methods of preseason forecasts by ADFG and UW FRI.  

ADFG uses mainly two ways to forecast individual river system stocks by major age 

group.  The first method is to use spawner-recruit data and its forecasts are calculated 

through a linear form of the Ricker model (Brannian et al. 1982). 

ysysysa EbaER ,,,, )ln()/ln( ⋅−=  

where R a,s,y: the number of age a fish returning to river system s from spawning during 

brood year y; Es,y: the number of spawners in river system s during brood year y; a and b 

are parameters.   

The second method is to use sibling and smolt data and its forecasts are estimated 

through a linear form suggest by Peterman (1981, 1982a, b). 

)ln()ln( ,,1,, ysaysa SbaR −⋅+=  

where S a-1,s,y: the number of age a-1 smolts produced by brood year y and migrating 

seaward from river system s.   Forecasts using smolt data are possible only from river 

systems that have smolt enumerating programs.   Smolt enumerating programs were 
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started in Kvichak River system in 1971, Wood River system in 1975, Naknek and 

Egegik River systems in 1982, and Ugashik in 1983, respectively.   

In UW FRI, preseason forecasts have been made traditionally by Rogers since 

1985, but the recent forecast of the 2000 run was also made by Hilborn.   The traditional 

methods by Rogers depend on relationships between numbers of fish in a run and 

estimates of the numbers of fish at earlier times in their life (e.g. the approaching run, 

immature fish at sea, seaward migrant smolt, fry in lakes, or the number of spawners) 

(Rogers 1994).  By regression models with these variables, Rogers predicts fish return by 

river system and by age.   

Hilborn et al (1999) use mainly four data sources to predict returns: (1) jack 

returns, (2) sibling returns, (3) spawners, and (4) the past year returns.  The return of 

jacks usually provides a good prediction of the next year’s return of 2-ocean fish.  And 

there often exists a strong relationship between the return of 2-ocean fish and subsequent 

return of 3-ocean fish from the same cohorts.   These relationships with jacks return and 

sibling returns offer a basis in predicting returns by regression models.   However, these 

regression analyses of Rogers and Hilborn do not incorporate an unexpected change in 

salmon ecosystem.   To avoid the serious failure of the forecasts of the 1997 and 1998 

runs, Hilborn checks the historical pattern in recruits per spawner and the total return by 

brood year.   He suggests alternative run forecasts by simply averaging the recruits per 

spawner and the recent past runs over different time horizons.              

Inseason forecast  

Inseason forecast of sockeye salmon return to Bristol Bay is useful mainly to three 

entities: (1) ADFG managers, (2) the commercial processing industry, and (3) fishermen.  

Managers need an idea of the run size to determine when to allow commercial fishing.  

The industry processors use the inseason forecast to decide how many tenders to employ 

and how many floating processors to send to the bay.  And based on the inseason 

forecast, fishermen decide whether it is worth gearing up for the fishing season (Hilborn 

et al. 1999).   
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The inseason forecast of the return is initially based on catch per unit effort 

(CPUE) of a test fishery that occurs offshore from Port Moller, Alaska during the salmon 

return season (Figure 1.1).  And the return size estimate is updated also by commercial 

catch reporting and spawning escapement monitoring every day of the season.  The 

inseason forecast project by the Port Moller test fishery had been operated by ADFG 

from 1968 to 1985, but it has been taken by UW FRI since 1987 (Eggers and Fried 1984, 

Helton 1991, Rogers 1994).  These inseason forecasts have provided more accurate 

predictions than preseason forecasts because the relative abundance of the run of a year is 

estimated just six - eight days before fish arrival in the bay.  The inseason forecast of the 

Port Moller test fishery provides the fishing industry and management agency, or ADFG 

with fish run timing as well as fish run size.     

The Port Moller test fishery gear is a drift gillnet.  Its stretched-mesh size is five 

and 1/8 inches (13.02 cm), and it is 200 fathoms long (366 m) and 60 meshes deep (7.81 

m).   CPUE at each fishery station is calculated by dividing the catch number by the 

product of the drift gillnet length times fishing time.   When the unit of fishing time is 

minutes, UW FRI uses the following CPUE formula. 

 [ ]
catchCPUE 6,000

200 fathoms fishing time (minutes)
= ×

×
 (1.1) 

where 6,000 is a scale factor.   Beside the catch data, the Port Moller fishery project 

collects information about water turbidity by Secchi disc, water temperature, air 

temperature, cloud cover, wave height, wind speed, wind direction, and tide (Rogers et al. 

1999).  UW FRI operates Port Moller test fishery from early June to about July 10.  The 

test boat attempts to fish each day at several stations located along a transect line between 

Port Moller and Cape Newenham (Figure 1.1, Rogers 1999).   From onshore to offshore 

along the transect line, the stations are named 2, 4, 6, 8, 10, and 12.  Station 2 is located 

33 miles out from Port Moller and the distance between sequential stations of these even 

numbers is 10 miles (Table 1.1).  The daily fishery operation consists of a set of these 

stations.  Traditionally only four stations, 2, 4, 6 and 8 had been considered until stations 

10 and 12 were added from year 1999.  If many fish are caught from station 8, the crew 

fishes at station 10 and even at station 12 to detect the offshore distribution of fish 
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passage.  The fish spatial distribution over the inshore through offshore (i.e. station 2 

through station 8) has not been constant every year.  With the Port Moller data set of 

1985 through 1989, Helton (1991) found that CPUE at stations 2 and 4 were higher under 

north, northwest, and west winds.  However, my analysis with the data set of 1985 

through 1999 produced a different result from that of Helton (1991).  The winds of 

northwest, north, northeast, and east led to more offshore distribution of the fish while 

those of southeast, south, southwest and west resulted in more onshore distribution 

(Figure 1.6).    

Rogers of UW FRI found that the CPUE from station 8 has been significantly 

correlated with the actual run size.   Rogers weighted the CPUE of station 8 twice those 

of the other stations 2, 4, and 6.   We call the sum of the weighted CPUEs of a day 

Rogers’ index of the day.    

 ( )2, 4, 6, 8,
4Rogers' index of day  = CPUE  + CPUE CPUE 2 CPUE
5 t t t tt ⋅ + + ⋅  (1.2) 

where CPUEs,t denotes CPUE of the test fishery deployed at station s and day t.   The 

inseason forecast with Port Moller fishery data is made by the ordinary regression model, 

where its response variable is the historical actual run size and its explanatory variable is 

the cumulative Rogers index up to the latest fishery date.   With the runs of year 1985 

through 2001 (that of 1986 is missing) to Bristol Bay and the cumulative Rogers’ indices 

up to July 9 of the corresponding years, the Rogers’ regression model was 

ˆ 14.202 0.011Y X= + ⋅  2( 0.46, 0.004)R p= =  (Figure 1.7) where Ŷ is the predicted run, 

and X is the cumulative Rogers’ index.   In Figure 1.7, the three points of 1997, 1998 and 

2001 look outliers.  Excluding those points, the regression model improved: 2 0.86,R =  

0.000p = .   The failure of the Rogers’ inseason forecasts of the 1997, 1998 and 2001 

runs also provoked re-examination of the traditional methodology of the forecast.   
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Other studies of inseason forecast  

Other studies of the inseason forecasts of the Bristol Bay sockeye salmon runs, 

Mundy (1979) and Fried and Hilborn (1988), differ from the literature described above in 

methodology.   Mundy (1979) defined ‘fish migratory timing’ as a frequency distribution 

of time.  In other words, fish migratory timing referred to fish abundance per unit time in 

a fixed geographic reference frame.  He showed by literature review that fish migratory 

timing was unique by fish stock, and used the concept of migratory timing to estimate 

fish return size.  He considered fish arrival time a random variable, and normalized fish 

migratory timing (i.e. a frequency distribution of time).  He called the normalized 

frequency of the fish arrival date ‘the time density.’  The return size of sockeye salmon to 

Bristol Bay was estimated with the time density developed with historical data from an 

offshore test fishery.  When x fish were observed up to day d from a test fishery, the total 

run size in the season could be estimated by dividing x by the cumulative time density at 

d.    

Fried and Hilborn (1988) used Bayesian law to make an inseason forecast of the 

Bristol Bay sockeye salmon return.  They combined the probability densities of four data 

sources: (1) data used for a preseason forecast, (2) cumulative commercial CPUE of 

Unimak fishery, (3) cumulative CPUE of Port Moller test fishery, and (4) cumulative 

commercial catch and spawning escapement data.  The combined probability density was 

used as the resultant joint density given the return size, which was the parameter of their 

interest.  As prior probability of the return size, they chose a set of 67 alternative 

hypotheses corresponding to total run sizes ranging from 0 to 66 million (using 

increments of 1 million sockeye salmon).  They fitted a Gamma density to the historical 

runs of year 1956 through 1987 and used the Gamma density to calculate the prior 

probability of the respective run in the 67 hypotheses.  Because the Gamma density is 

continuous, they needed to scale the prior probabilities by letting the sum of the prior 

probabilities become one.  Finally they calculated posterior probability of the return size 

by Bayesian law.  This calculation was repeated every day when the inseason data are 

updated.  As results of a hind-casting procedure, where only data prior to the year of 

interest were used to calculate predictive equations, the Bayesian composite forecast was 
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always more accurate than the least accurate one of the forecasts with individual data 

sources and was sometimes more accurate than the most accurate one of the forecasts 

with individual data sources.   

1.2.4.  Inseason forecasts of salmon runs to other areas 

Salmon runs to the Skeena River, B.C., Canada 

Walters and Buckingham (1975) developed a control system for inseason salmon 

management with sockeye salmon and pink salmon (O. gorbuscha) of the Skeena River, 

B.C., Canada.  The main idea of their control system was to correct control variables or 

management actions in the system as data were updated.  The management actions were 

determined on weekly basis.  The objective of the management was to achieve target 

escapements of the two salmon species and to allow a fishery on the surplus fish.  They 

needed to estimate the run size of the respective salmon for the objective.  Because of 

high uncertainty in the preseason forecast, they combined the preseason estimate and the 

inseason estimate by weighting these two estimates as daily data were updated.   That is, 

itpt RWRWR ⋅−+⋅= )1(  

where R: run estimated, Wt: weight based on data to time t )10( ≤≤ tW , Rp: preseason 

estimate of run, Ri: inseason estimate of run.  When the preseason forecast and the 

inseason forecast were assumed to be independent of each other, the variance of run was 

as follows.  

)()1()()( 22
itpt RVarWRVarWRVar ⋅−+⋅=  

The value of Wt was determined as Wt that minimized Var(R) in the above equation.  

Thus, the Wt was able to be expressed as a function of Var(Rp) and Var(Ri).  The Wt was 

near 1 early in the season, and decreased as Var(Ri) decreased (i.e. as time went by).  

Because of this role of the weight Wt, the run estimated was affected more by preseason 

forecast early in the season and more by inseason forecast later in the season. 

In making an inseason forecast of the salmon run, Walters and Buckingham (1975) 

used the observed run to date in the season and the historical daily run proportions of the 
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run.  The inseason estimate, Ri was calculated by simply dividing the observed run to 

date by historical cumulative proportion to the date.  The observed run to date in the 

season was the sum of catch and escapement to the date.    

datetoproportioncumulative
datetorunobservedRi =  

Regarding the calculation of Var(Ri), they directly used the formula of Bigelow of 

International Institute for Applied Systems Analysis (IIASA) without giving the 

reasoning (Walters and Buckingham 1975, p. 112).  No description was available except 

that the variance calculation of the formula was approximated.  I guess that the 

approximation may have been from the Taylor series approximation.  The variance 

formula was  

]
)(

21[
)(

)( 24

2

t

t

t

tt
i P

PVar
P

PVarR
RVar ⋅+⋅

⋅
≈  

where Rt: observed run to time t, and Pt: mean cumulative proportion returned at time t. 

This information of the estimated run was used to calculate a target exploitation 

rate3 each week.   

)(
)()(

runremainingtotal
datetocatchcatchdesiredtotalratetarget −=  

However, where there was difference between sockeye salmon and pink salmon in run 

timing, applying a common target rate to the two salmon runs would have been 

problematic.   Walters and Buckingham (1975) let different target rates be applied 

separately to sockeye salmon and pink salmon over different time zone.   

The key control variable in the system of Walters and Buckingham (1975) was the 

number of open days for the fishery each week.  The following equation of a catch curve 

was used to calculate the number of open days.   

)])(exp[1( dEcU ⋅⋅−−=  

                                                 
3 exploitation rate = catch / run 
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where U: exploitation rate, c: catchability coefficient, E: fishing effort per day open, 

and d: days open.  When exploitation rate U (= catch/run), catchability coefficient c, and 

effort per day open E are known, days open d can be calculated from the above equation.   

The calculation of exploitation rate U was described in the above paragraph.  Weekly 

fishing effort per day open E were empirically calculated on the basis of relations with 

CPUE of the previous week in the season of this year and with CPUE of the week in the 

season of last year.  Catchability coefficient c was calculated from the above relationship 

of exploitation rate U and days open d with the data of year 1971 through 1973.  Finally 

days open d could be calculated.  This procedure from the estimation of run to the 

determination of fishing days was repeated every week in the season.   

Pink salmon runs to southeastern Alaska  

Sex ratio information was used to make an inseason forecast of the pink salmon run 

to southeastern Alaska (McKinstry 1993, Zheng and Mathisen 1998).  A remarkable 

pattern in pink salmon runs was temporal change in sex ratio; male pink salmon were 

preponderant during the first half of the run and female pink salmon during the second 

half.  

Because the possible number of sexes was two (male or female) and thus sex could 

be considered a binomial variable, McKinstry (1993) used a logistic regression suited for 

binomial data.  In the logistic regression model, he estimated run timing of pink salmon, 

specifically the mean timing day (MTD).  The proportion of male fish being observed at 

time t was formulated as a logistic function. 

)exp(1
)exp()(
t

ttp
⋅β+α+

⋅β+α=  

where α and β are parameters.  The inflection of this logistic curve was considered a 

change in preponderance from males to females.  MTD was defined as the time that 

corresponds to the inflection point of the curve.  That is, the value of t, that make the 

above p(t) be 0.5, was defined as MTD.  The t value could be expressed as α and 

β: β
α−=t .  When taking the logit function in the above equation, we get a linear form:  
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t
tp

tptp ⋅β+α=
−

= )
)(1

)(log())(logit(  

These parameters α and β were able to be estimated by fitting the linear form of the 

logistic function to observed p(t).  Thus, the predicted MTD was given as ‘ βα− ˆˆ ’.  The 

mean value of the historical MTD values was adjusted by the predicted MTD in the 

season (the mean curve of historical run proportions at a given time was shifted by the 

adjusted time).  On the basis of the shifted run proportion curve, total run size was 

predicted:  






= tdateatproportionrun

tdatetorunobservedruntotalPredicted  

Adjusting run timing turned out to improve the inseason forecasts.  However a big 

improvement generally occurred only following the middle of the run. 

The setting of Zheng and Mathisen (1998)’s study was the same as that of 

McKinstry (1993).  They developed a sex ratio index with data of cumulative catch by all 

gears or cumulative CPUE of the seine fishery, and estimated run of pink salmon in the 

season by three models: a linear model, a non-linear model, and a combined model.  In 

these models, the response variable was the run size and the candidate predictive 

variables were the sex ratio index, cumulative catch, cumulative CPUE, and cumulative 

catch.   The sex ratio index was derived from deviations of weekly male proportions to 

the corresponding mean values and the deviation of the sex ratio curve to its mean curve 

for a given year.  Incorporating sex ratios into inseason forecast models correctly adjusted 

the run timing and thus improved overall forecasts.  The forecast errors of Zheng and 

Mathisen (1998) were much smaller than those reported by McKinstry (1993).  The 

difference was due to different forecast models, methods used to incorporate sex ratio 

data into forecast models, stock definitions, and periods when the forecasts were 

conducted.    

Chum salmon run to Hood Canal in Puget Sound, Washington 

Springborn et al (1998) used a time density model for an inseason forecast of the 

chum salmon run to Hood Canal in Puget Sound, Washington.  The concept of a time 
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density had been first used by Mundy (1979) to estimate fish abundance.  The concept 

was described in the sub-section, ‘Other studies of inseason forecast’ under section 1.2.3.    

Springborn et al. (1998) extended the Mundy (1979)’s idea to estimate run size and entry 

timing for the northern Hood Canal chum salmon fishery.   Two kinds of fishing gear 

were used: drift gillnets and purse seines.   Their inseason forecast model consisted of 

two parts.   The first part was to build the time density with daily CPUE data from the 

drift gillnet fishery and to estimate run size and entry timing in the season.  The second 

part was to correct the run size estimate of the first part by catch data from the purse-

seine fishery in the season.  Because of a large disparity in the daily harvest rate between 

the gillnet fishery and the purse-seine fishery, Springborn et al. (1998) did not use catch 

data from the purse-seine fishery for the time density model.  Including daily CPUE from 

the purse-seine fishery into building the time density would lead to serious inflation of 

the run size estimate.  The model deployed in the second part was a linear regression 

model where a peak 1-day purse-seine catch and the time density run estimate were used 

as independent variables to provide a ‘corrected’ run size estimate.  The peak 1-day 

purse-seine catch had been found significantly correlated with the actual run size.   

Because I already described how the time density was used to estimate the run size 

in the season, I describe here how to estimate run timing from the time density.  Letting 

‘fish arrival time’ be a discrete random variable (say Y), the mass function of Y would be 

a normalized frequency of the arrival time.   Thus, the mass function4 of fish arrival time 

in year j would be 

j

ij
ijY N

n
yf

j
=)(  

where nij: the number of fish that pass a reference region at time i in year j, Nj: the total 

number of fish over the entire time range in year j.  The expectation value of the arrival 

time would be  

                                                 
4 Even though Mundy (1979) and Springborn et al (1998) call the normalized frequency 
distribution of fish arrival time ‘time density,’ I refrain from using the term, ‘density’ 
because the random variable Y is discrete not continuous.   
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where the time interval (day) ranges from 1 to l.   The overall mean over year 1 through 

year m on the basis of historical data would be 
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When year j was the year of inseason forecast, the parameter of interest (say, β) was 

difference in run timing between the past and the year j.    

 ( )j jE Yβ = Γ −  (1.3)                         

With the historical data, the parameters βj’s of each year j could be estimated.  However, 

it is the parameter of the current year not the past year in which we are interested in the 

forecast.   

To estimate the parameter βj of the current year, Springborn et al. (1998) took the 

following steps.  With the assumption that nij, the number of fish passing a region at time 

i in year j was proportional to CPUEij of the fishery at the region on time i in year j, nij in 

the above time mass was replaced by CPUEij.   That is, ijij ncCPUE ⋅=  where c is a 

proportional constant.  And then Springborn et al. (1998) related the cumulative mass 

function of Y to a cumulative distribution function that has properties similar to the cdf of 

a normal density.  That is,  

 
1
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t
ij

Y
i j

CPUE
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= =
⋅ + − + ⋅∑  (1.4) 

 The right side of this above equation was from Mathisen and Berg (1968).  When adding 

run timing parameter βj to t in the above equation,  
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This above model was called the ‘time-shifted’ distribution.  For estimation of a, b, 

and c, the historical data of βj,  CPUEij and Nj were used.  And then βj of the season was 

estimated from the observed daily CPUEij in the season, the estimated values of a, b, and 

c, and the estimated Nj. 

Outmigration of smolts from the Snake River in the Columbia River basin 

In the Columbia River Basin, there are concerns about smolt mortality by dams 

during the outmigration because smolts must pass several dams before reaching the 

ocean.  Since 1988, wild salmon have been PIT-tagged through monitoring and research 

programs conducted by the Columbia River fisheries agencies and Tribes (Townsend et 

al. 1996, 1997).  With the data of PIT-tagged recoveries and the outmigration time (day), 

Townsend et al. (1996, 1997) predicted the proportion of a particular population that 

arrived at an index site on a given date.  The forecast of the proportion can be used to 

adjust daily spill amounts of a dam during the migration season.  Regulating the timing 

and volume of water released from storage reservoirs has become a central mitigation 

strategy for improving downstream migration conditions for juvenile salmonids in the 

Snake River.  Townsend et al. (1996, 1997) introduced three methods to predict the 

proportion p̂  of the outmigration run at a given day and site, and combined three values 

from the three algorithms to give the final estimate p̂ .   

In the first method, historical outmigration runs over time were used as an 

important reference.  For each year, the percentage of the cumulative outmigration run by 

date was calculated.  The proportions of the historical cumulative runs were plotted 

against date.  The cumulative run was divided into 100 equal portions and the slopes over 

each corresponding interval were calculated.  The cumulative runs were smoothed to 

filter out statistical randomness.  The slopes of the historical curves at each percentage 

were to be compared to that of the current year of prediction.  The total squared error for 

each predicted percentage of outmigration run was calculated according to the following.   

                              ijpij
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where Soj: the slope at the jth percentile (j = 0, 1, 2, …,100) for the current year of 

prediction,  pijS ˆ : the slope at the jth percentile for the p̂  percent the historical year i (i = 

1, 2, …, n), and Wij: weight for the jth percentile for ith historical year.  LSE denotes 

Least Squares Error.  The goal of this algorithm is to find p̂ that minimizes the LSE.  The 

weight Wij is 

io

ijoj
ij RR

DD
W

+
+

=  

where Doj: estimated number of days between the (j-1) and the jth percentile for the 

season, Dij: number of days between the (j-1) and jth percentile for the ith historical year, 

Ro: range in days of the current observed outmigration, and Ri: range in days of the ith 

historical year outmigration.  The effect of the Wij is to give more weight to the errors 

generated in the tails of the distribution, where the slopes tend to be flat and the number 

of days between sequent percentile points is high.  The sum of weights is one. 

The second algorithm used the PIT-tag data.  The proportion p̂ for a given day and 

site was calculated by the following relationship. 

Np
x

p d

×
=ˆ  

where xd: total observed smolts to day d, p : the mean ‘recapture’ proportion of the 

previous years, and N: total number of smolts tagged in the season.  The denominator 

represents the expected fish to be recovered.   

The third algorithm used the average number of days since the outmigration started, 

weighted by the number of fish observed per day.  The average number was called the 

mean-fish-run-age (MFRA).  Thus, MFRA was formulated as follows. 
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where fishd = number of fish observed on day d; n = total number of days until the 

cumulative proportion p of the total smolt outmigration has been observed.  The present 

year’s MFRA is matched to the respective historical year’s MFRA.  The historical 

observed p corresponding to the matching MFRA is the predicted p̂  from that year.     

The p̂  values from the above three algorithms were given the respective weight in 

calculating the final value, p̂ .  

1.2.5.  Current management of the Bristol Bay sockeye salmon 

Commercial and subsistence fisheries mainly target sockeye salmon.  Commercial 

sockeye salmon harvests in Bristol Bay began in 1893 (Minard and Meacham 1987, 

ADFG 1998).  The current commercial fishing is usually limited to five major fishing 

districts (Figure 1.2).  In case of the Wood River and the Naknek River, commercial ‘in-

river’ fisheries sometimes occur.  Two kinds of legal fishing gears are allowed in the 

commercial harvests: (1) 150 fathom (274.5 m) drift gillnets fished from 32 foot (11.1 m) 

gillnet boats and (2) 50 fathom (91.5 m) set gillnets attached to the beach.  A subsistence 

fishery is operated by Alaska residents.  Subsistence salmon fishing is significant in 

numbers of fish utilized as well as in its cultural importance to watershed residents 

(Minard and Meacham 1987).  The subsistence harvest has a legal priority over 

commercial and sport harvests.  A sport harvest of the Bristol Bay sockeye salmon is not 

significant.   

At present, the agency managing the Bristol Bay sockeye salmon is ADFG.  The 

primary management strategy of ADFG is expressed as three goals.  The first goal is to 

meet the required number of spawners in each of eight major river systems: Togiak, 

Igushik, Wood, Nushagak, Kvichak, Branch, Naknek, Egegik, and Ugashik.  Sockeye 

salmon return to the Branch river system is not significant.  The optimal escapements are 

set by ADFG.  The escapement goals are shown in Table 1.2 (ADFG 1998, Lew personal 

communication).  The second goal is to conserve the profile of the escapement return 

time.  To achieve this second goal, ADFG needs to distribute catches and escapements 

over the entire run and to preserve genetic diversity.  The third goal is to maximize 
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harvests of the surplus fish after subtracting the optimal escapements from the returns.  

The third goal concerns the economic aspect.   

To achieve these three goals, ADFG needs to assess the sockeye salmon run timing 

and strength during the fish return season.  The inseason assessment is based on 

observations of various sources: the Port Moller test fishery, the commercial district 

fishery, spawning escapement monitoring, aerial surveys over spawning grounds, the 

district test fishery, and the in-river test fishery (ADFG 1998).  The district test fishery is 

deployed at irregular times while the in-river test fishery is operated at every tide change 

(every flood tide and every ebb tide).   The within-district test fishery is held in every 

district except the Togiak district.   The in-river test fishery is operated in only four 

rivers: the Kvichak River, the Egegik River, the Ugashik River, and the Igushik River 

(Minard and Meacham 1987).   

The ADFG manages each of the river specific stocks as an individual entity.  

Commercial fishing openings and closures are predicated on attainment of escapement 

goals and are implemented by flexible rather than fixed fishing schedules (Minard and 

Meacham 1987).  Authority to open and close fishing districts by emergency order has 

been given to biologists located near the fishing grounds, allowing rapid management 

response time.  Thus each of the five districts is managed independently to conform to the 

individual stock characteristics of run timing and strength.        

 

1.3.  THESIS STRUCTURE 

The technical part of this dissertation comprises three chapters: Chapters 2, 3, and 

4.   In Chapter 2, I use the Port Moller test fishery data to detect run timing of Bristol Bay 

sockeye salmon during the season.   In Chapter 3, I develop an algorithm for forecasting 

district-specific run sizes, and show point estimates of runs.   In Chapter 4, I use Bayes’ 

law to show probability distributions for runs.   All forecast results in this thesis are based 

on a hind-casting procedure, where only data prior to a forecast time are used to calculate 

forecasts of run timing and run sizes. 
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In Chapter 5, I discuss a management application of this thesis work.   In 

Appendices, I show the forecast program written in Automatic Differentiation Model 

Builder (ADMB), and describe how to run the ADMB program for one who wants to use 

it. 

 

1.4.  ACRONYMS 

ADFG: Alaska Department of Fish and Game 

ADMB: Automatic Differentiation Model Builder 

CPU: Central processing unit 

CPUE: Catch per unit effort 

CV: Coefficient of variation 

K-S test: Kolmogorov-Smirnov goodness of fit test 

MCMC: the Markov Chain Monte Carlo method 

MB: megabyte(s) 

MLE: Maximum likelihood estimate (estimator) 

MSE: Error mean square or residual mean square 

RAM: Random access memory 

RTI: run timing index 

UW ASP: University of Washington Alaska Salmon Program 

UW FRI: University of Washington Fisheries Research Institute 
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Table 1.1.  Location of Port Moller test fishery stations (Helton 1991, Rogers et al. 
1999).  These stations are shown as small dots in Figure 1.1.   

Station Miles from Port Moller Latitude Longitude 
2 33 56o25.48 N 160o44.88 W 
4 43 56o35.15 N 160o50.71 W 
6 53 56o45.07 N 160o56.96 W 
8 63 56o54.43 N 161o01.96 W 

10 73 57o03.86 N 161o07.83 W 
 
 
 
 
 
 
 
 
 
 
 
Table 1.2.  The goals of sockeye salmon escapement to eight Bristol Bay river systems 
(ADFG 1998, Lew personal communication.) 

District River system Escapement goal 
Kvichak-Naknek Kvichak 4-6 millions for off-peak years 

6-8 millions for peak and pre-peak years 
 Naknek 0.8-1.4 millions 
Egegik Egegik 0.8-1.4 millions 
Ugashik Ugashik 0.5-1.2 millions 
Nushagak Igushik 150,000-250,000  
 Wood 0.7-1.2 millions 
 Nushagak 340,000-760,000 
Togiak Togiak 100,000-200,000 
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Figure 1.1.  Bristol Bay, Alaska.  The star mark indicates the location of Port Moller.  
The Port Moller test fishery occurs along a transect line between Port Moller and Cape 
Newenham.  The small dots on the transect line represent the stations of the test fishery.  
From onshore to offshore, the stations are named 2, 4, 6, 8, and 10. 
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Figure 1.2.  Five estuaries and nine river systems in Bristol Bay, Alaska.  Names of the 
respective five estuaries are abbreviated with their first letters (T: Togiak, N: Nushagak, 
K-N: Kvichak-Naknek, E: Egegik, and U: Ugashik).    
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Figure 1.3.  The cumulative run proportions of five district stocks.  The respective five 
lines are the mean values of the cumulative run proportions by day of year 1955 through 
2001 except for the Togiak district.  The data of years 1955 through 1957 for the Togiak 
district are not available.  The cumulative run proportion can be used as a run timing 
index.   I code calendar dates, starting on June 10: day code 1 = June 10, day code 2 = 
June 11, and so on.  
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Figure 1.4.  Annual returns of the Bristol Bay sockeye salmon from 1958 to 2001.  Run 
size (or return size) of a year is the sum of catch and escapement at the year.   
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Figure 1.5.  Annual returns to five districts from 1958 to 2001.  A cyclic pattern in 
annual returns is most remarkable in the Kvichak-Naknek district.  This cyclic pattern is 
mostly due to runs of sockeye salmon to the Kvichak River.    
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Figure 1.6.   The mean values of station- and wind direction- CPUE of the Port Moller 
fishery deployed during year 1985 through 1999.   The winds of northwest, north, 
northeast, and east led to more offshore distribution of the fish while those of southeast, 
south, southwest, and west resulted in more onshore distribution.  
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Figure 1.7.  The relationship between 1985-2001 runs to Bristol Bay and the cumulative 
Rogers’ indices up to July 9 of the corresponding years.  The line represents fitted values 
of the regression model: ˆ 14.202 0.011Y X= + ⋅  2( 0.46,R =  0.004)p = .   Removing the 
three data points of years 1997, 1998, and 2001, the regression model improves: 

2 0.86,R =  0.000p = .    
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CHAPTER II.  INSEASON FORECAST OF RUN TIMING 

 

INTRODUCTION 

Variability in fish run timing is one of the main factors that make difficult an 

accurate inseason forecast of fish run size.   Sockeye salmon adults return to Bristol Bay 

mainly during one month from about the middle of June through the middle of July (see 

the sub-section of ‘Life history of the Bristol Bay sockeye salmon’ under section 1.2.2).   

Figure 2.1 displays the historical run proportions against day.   The run proportions 

against day can be a run timing indicator (Figure 1.3).   I find large yearly variability in 

the run timing (Figure 2.1).   Not only in Figure 2.1 but also in this entire thesis, I code 

calendar dates, starting on June 10: day code 1 = June 10, day code 2 = June 11, and so 

on.   In sub-sections, ‘Pink salmon runs to southeastern Alaska,’ and ‘Chum salmon run 

to Hood Canal in Puget Sound, Washington’ under section 1.2.4, I described ideas about 

a forecast of fish run timing found in literature.  

At present, there is no accepted method for forecasting run timing of Bristol Bay 

sockeye salmon.   As an ad hoc index of run timing of the fish, Hilborn (personal 

communication) uses the ratio of the sum of Rogers’ CPUE of June 21 through June 30 

(day code 21) to the sum of the indices up to June 20.   Rogers’ CPUE is the weighted 

CPUE calculated with the catch data of the Port Moller test fishery (Equation 1.2).   

Though Hilborn’s run timing index provides some information about run timing, we have 

to wait until June 30 during the season to calculate the index.    

The objective of this chapter is to develop an acceptable algorithm for forecasting 

run timing of Bristol Bay sockeye salmon on a daily basis during the run season.   I use 

the Port Moller test fishery data.    
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METHODS 

2.1.  PORT MOLLER TEST FISHERY DATA 

I used Rogers’ CPUE to detect fish run timing.   In the historical catch data set of 

the Port Moller fishery, Rogers’ CPUE of some days were missing because the fishery 

could not be deployed under unexpected circumstances such as bad weather, or damage 

to the fishing gear or boat.   I replaced the missing CPUE with the mean value of those of 

the days before and after.   Figure 2.2 shows Rogers’ CPUE against day by year.   The 

Port Moller fishery was not deployed in 1986, so Figure 2.2 does not show data for 1986.    

 

2.2.  RUN TIMING INDEX 

I standardized the cumulative daily CPUE by setting the final sum equal one 

(100%).   Then, I fit the following logistic curve to the standardized cumulative CPUE. 

 1
1 exp( )

y
a b x

=
+ + ⋅

  (2.1) 

where x is time (day), y is the cumulative Rogers’ CPUE, and a and b are parameters.   I 

defined fish run timing index (RTI) as time (day) that corresponded to the inflection point 

of the fitted logistic curve.   That is, the RTI unit is ‘day,’ but not necessarily discrete.   

Figure 2.3 shows an example, where I fit the logistic curve to the standardized cumulative 

CPUE of year 1999.      

The analytical derivation of RTI was simple.   Differentiating y of Equation 2.1 

twice with respect to x, and then solving ‘ 2 2/ 0d y dx = ’ for x led to the following. 

 ax RTI
b

= − ≡  (2.2) 

The RTI value is determined by two parameters: a and b (Equation 2.2).   I call this index 

‘Hyun’s index’ to ease comparison with other alternative indices.   

I used the Delta method (Seber 1982) to derive the variance of RTI.   The idea of 

the Delta method is to expand a function of interest by the Taylor series and then to 
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consider the first significant terms.   Thus, a variance formula derived by the Delta 

method is an approximation formula.   By the Delta method, I had the following formula 

for calculation of the RTI variance. 

 2

2 2

( )

( ) ( ) ( ) 2 ( , )
( ) ( ) ( ) ( ) ( )

aVar RTI Var
b

E a Var a Var b Cov a b
E b E a E b E a E b

 = − 
 

   ⋅≈ ⋅ + −   ⋅   

 (2.3) 

I used statistical software, Splus in estimating the two parameters (a and b) in the 

non-linear logistic curve (Equation 2.1) and their covariance.   The ‘nls’ function in Splus 

enabled us to fit a non-linear model to data, and the output provided the estimates of 

parameters in the model and their variance-covariance matrix.    

 

2.3.  VALIDATION OF PORT MOLLER RTI 

Because the Port Moller catch data were from a ‘test’ fishery, the data size was not 

large enough to produce statistically reliable results.   Thus, I compared the Port Moller 

RTI with run timing of Bristol Bay sockeye salmon, which was inferred from run data (= 

catch + escapement) of the inshore Bristol Bay.   I applied the same idea to the inshore 

run data.   That is, I standardized the cumulative inshore-run, and fit the logistic curve of 

Equation 2.1 to the cumulative run size.   Finally, I defined the inshore RTI as time (day) 

that corresponded to the inflection point of the fitted curve.    

Table 2.1 shows the Port Moller RTI estimates of years 1985 through 2001.   Table 

2.2 displays the district-specific RTI estimates of the same period.   And Table 2.3 has 

those of the lumped five district fish and the lumped four district fish (excluding the 

Togiak district fish).   Standardizing the cumulative data (Rogers’ CPUE for the Port 

Moller RTI; run size for the inshore RTI) at the final days (July 9 for the Port Moller 

RTI; the end of the return season for the inshore RTI), I calculated these RTI estimates.    

Run timing of year 1994 was latest while that of year 2001 was earliest on the basis 

of the inshore RTI estimates of years 1985 through 2001 (Table 2.3).   I found a high 
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correlation between the yearly Port Moller RTI estimates and those of the inshore RTI 

except for the Togiak and Ugashik fish (Figure 2.4).   The correlation coefficients 

between the Port Moller RTI estimates and each of those of districts Kvichak-Naknek, 

Egegik, Ugashik, Nushagak, and Togiak were 0.73, 0.75, 0.53, 0.78, and 0.36, 

respectively (Figure 2.4).   The correlation coefficient between the Port Moller RTI 

estimates and those of the lumped five districts was 0.75 (Figure 2.4).   When comparing 

the Port Moller RTI estimates with those of the lumped four districts excluding the 

Togiak district, the correlation coefficient increased a little to 0.77.   The high 

correlations indicate that the Port Moller RTI can detect run timing of the Bristol Bay 

sockeye salmon.     

 

2.4.  RUN TIMING FORECAST 

To forecast fish run timing is to compare the run timing estimate of the season with 

those of the past years.   We are interested in how early or how late the run timing is 

compared to those of the past years.   That is, a forecast of run timing is a relative index 

on the basis of a comparison between the present and the past.   However, it is more 

desirable to detect run timing before the final day of the Port Moller fishery season 

because the earlier we forecast fish run timing, the more helpful the forecast information 

is.    

To capture run timing as the meaning of a relative index before the final day of the 

Port Moller test fishery,  

(1) I standardize both the cumulative Rogers’ CPUE at any arbitrary day during the 

season and those at the same day of the past years, 

(2) I calculate the Port Moller RTI of the respective years from the corresponding fitted 

logistic curves,    

(3) finally I compare the Port Moller RTI of the season with those of the past years 

(Equation 2.4).    
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Figure 2.5 illustrates an example where fish run timing of year 2001 is evaluated at 

June 24.   I intentionally extended the x-axis of Figure 2.5 beyond day code 15 (June 24) 

to emphasize that the analysis can be done at any day (not necessarily at final day); I 

ignored the historical data after the day.    

I defined the relative index of run timing of the season as the difference between 

the Port Moller RTI estimate of the season and the average of those of the years prior to 

the season.    

 ( )
( )

Relative index of run timing
= Port Moller RTI estimate of the season

the average of those of the years prior to the season−

 (2.4) 

We can calculate the relative index of run timing at any day during the season.  The 

positive sign of the relative index indicates that run timing of the season is later than the 

average of the past years, while the negative sign means that that of the season is earlier.   

In case of the above example (Figure 2.5), the relative index of the 2001 run timing 

evaluated at June 24 was ‘-1.1.’   That is, the 2001 run timing detected at June 24 was 

earlier by about one day than the average of the past years.   As the season data are 

accumulated over time, the run timing detection should improve (see Table 2.5).    

 

RESULTS 

2.5.  PORT MOLLER RTI 

Table 2.4 presents the Port Moller RTI estimates of year 1985 through 2001 and 

their standard deviation estimates evaluated at the following four days: day codes 10 

(June 19), 15 (June 24), 20 (June 29), and 25 (July 4).   Table 2.1 has those evaluated at 

day code 30 (July 9).   Figure 2.6 compares the yearly Port Moller RTI estimates 

evaluated at the respective day with those of inshore RTI of four districts (excluding 

Togiak district).   The five lines in Figure 2.6 (B) are the yearly Port Moller RTI 

estimates evaluated at day codes 10, 15, 20, 25, and 30 in order from the bottom dotted 

line to the top square box line.   The numerical values on the five lines of Figure 2.6 (B) 
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are the correlation coefficients between the respective line and the inshore RTI.   The 

correlation coefficients were high (0.75, 0.76, 0.77, and 0.77) except for the Port Moller 

RTI estimates of day code 10.   It was an encouraging result that the Port Moller RTI 

estimates of even day code 15 were highly correlated with the inshore RTI estimates (r = 

0.75 in Figure 2.6).    

 

2.6.  RELATIVE INDEX OF RUN TIMING 

Table 2.5 displays the relative index of fish run timing of years 1999, 2000, and 

2001 evaluated at day codes, 15, 20, 25, and 30, respectively.   The 1999 run timing was 

slightly later than the average of the past years while those of 2000 and 2001 were earlier.   

For example, the 1999 run timing detected at July 4 was later by about one day (0.6 in 

Table 2.5) than the average of the past years, and those of 2000 and 2001 were earlier by 

about three days and about two days, respectively (-3.4 and -2.4 in Table 2.5).   As 

expected, run timing detection improved as the season data were accumulated over time; 

absolute values of the relative indices of 2000 and 2001 increased over evaluation time 

(from 1.4 to 3.8 for year 2000, and from 1.1 to 3.3 for year 2001 in Table 2.5).   The 

results of Table 2.5 are used in Chapters 3 and 4.  

 

DISCUSSION 

Port Moller RTI of years 1985 through 2001 were well correlated with those of the 

Kvichak-Naknek, Egegik, and Nushagak fish while they were poorly correlated with 

those of the Togiak fish (Figure 2.4).   This is not a surprising result because run timing 

of the Togiak fish is significantly different from those of the other district fish (Figure 

1.3).    

Port Moller RTI seems to detect run timing, but does not explain a considerable 

portion of run timing variability.   The correlation coefficient between the yearly Port 

Moller RTI evaluated at the final day of the test fishery season and those of the lumped 

four district fish (excluding the Togiak fish) was 0.77 (Figure 2.6).   That is, Port Moller 
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RTI accounted for at most 59% of run timing variability: 0.59 = 0.772 (the 

determination coefficient = the correlation coefficient2).   If the yearly Port Moller RTI 

were evaluated before the final day, the proportion of run timing variability explained by 

Port Moller RTI would be less than 59%. 

The correlation coefficient between two sequences indicates how well the 

fluctuation of elements in a sequence corresponds to that of elements in the other 

sequence, but the value does not represent the fluctuation magnitude.   Note that the 

yearly RTI of the four district fish (excluding the Togiak fish) in Figure 2.6 (A) fluctuate 

much more remarkably than the yearly Port Moller RTI in Figure 2.6 (B).   Because the 

run timing forecast is a relative index (Equation 2.4), better detection of changes in 

fluctuation magnitude would improve the forecast.    

As an alternative index of run timing, I could use the slope of the line tangent to the 

fitted logistic curve (Equation 2.1) at x = 0.   A change in the initial slope of the fitted 

curve is correlated with that in RTI in Equation 2.2, and thus the choice of the initial 

slope would not change the current results.   However, the slope unit is not time (day), so 

I prefer the current RTI to the initial slope.         

The idea of the relative index of run timing (Equation 2.4) is the same as that of the 

run time parameter, β in Equation 1.3 (the sub-section of ‘Chum salmon run to Hood 

Canal in Puget Sound, Washington’ under section 1.2.4).   Applying the idea to the 

Bristol Bay sockeye salmon run was not successful.   To estimate the run time parameter 

β, I needed to estimate not only three parameters (a, b, and c in Equation 1.5) but also 

total run size (N in Equation 1.5).   The estimation of c, which is the proportion of fish 

caught by a test fishery on a day out of fish abundance available on the day, requires the 

prior knowledge of the day-specific proportion of total fish run size over the run season.   

In case of the Bristol Bay sockeye salmon, the proportion of total run size, which passes 

the Port Moller on a day, is very variable by year.   Besides, the variance of the inseason 

estimate of total run size is usually large.   The large variability in the day-specific 

proportion and the run size estimate prevented me from applying the idea of Springborn 

et al. (1998). 
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Figure 2.7 compares Hilborn’s indices (see Introduction of this chapter) for years 

1985 through 2001 with the yearly RTI of the lumped four district fish (excluding the 

Togiak fish).   The correlation coefficient between them was 0.68 (Figure 2.7), which was 

smaller than that between the yearly Port Moller RTI evaluated at day code 20 (June 29) 

and those of the four district fish (0.76 in Figure 2.6).   On the basis of the comparison of 

the correlation values (0.68 vs. 0.76), Port Moller RTI seems to be better than Hilborn’s 

index.   Another merit about Port Moller RTI is that we can estimate it on a daily basis (at 

any day).   The calculation of Hilborn’s index requires the Port Moller fishery data up to 

day code 21 (June 30).   
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Table 2.1.  The Port Moller RTI estimates of years 1985 through 2001, and their 
standard deviations.   The Port Moller fishery was not deployed in 1986.  The RTI 
estimate was estimated with the cumulative Rogers’ CPUE standardized at the final day 
of the fishery. 

Year RTI S.D. 
1985 17.7 0.2 
1987 16.6 0.0 
1988 17.8 0.1 
1989 17.7 0.2 
1990 19.0 0.1 
1991 17.9 0.2 
1992 17.4 0.2 
1993 16.8 0.1 
1994 20.1 0.1 
1995 18.0 0.2 
1996 18.0 0.2 
1997 18.8 0.2 
1998 20.3 0.2 
1999 19.5 0.2 
2000 14.5 0.2 
2001 14.7 0.1 

 

Table 2.2.  The district-specific RTI estimates of years 1985 through 2001, and their 
standard deviations.   The RTI estimate was estimated with the cumulative run size 
standardized at the final day of the return season.  ‘KN’ denotes Kvichak-Naknek. 

KN Egegik Ugashik Nushagak Togiak 
Year RTI S.D. RTI S.D. RTI S.D. RTI S.D. RTI S.D.
1985 26.5 0.2 24.1 0.1 29.4 0.1 26.8 0.2 34.9 0.3
1986 29.0 0.1 28.2 0.1 30.9 0.1 30.6 0.1 35.6 0.2
1987 30.2 0.1 25.2 0.1 32.8 0.2 26.8 0.2 36.7 0.2
1988 27.4 0.2 23.7 0.1 33.9 0.1 27.4 0.2 32.8 0.1
1989 24.8 0.1 25.4 0.1 32.2 0.1 25.2 0.1 34.3 0.3
1990 27.8 0.1 27.9 0.1 32.9 0.1 28.3 0.1 35.5 0.4
1991 26.6 0.2 26.9 0.1 32.5 0.1 27.0 0.1 38.6 0.2
1992 28.0 0.1 26.5 0.1 36.2 0.1 28.5 0.1 36.8 0.1
1993 23.3 0.1 21.7 0.1 29.4 0.1 23.3 0.0 33.1 0.2
1994 29.6 0.1 28.1 0.1 34.2 0.1 30.1 0.1 41.1 0.3
1995 27.4 0.1 25.4 0.1 33.4 0.3 25.9 0.1 40.1 0.2
1996 25.1 0.1 22.7 0.1 27.6 0.2 25.3 0.1 37.8 0.3
1997 28.4 0.1 23.9 0.1 30.5 0.1 27.2 0.1 34.4 0.4
1998 30.6 0.1 25.5 0.1 36.4 0.4 27.7 0.1 36.5 0.3
1999 27.7 0.2 25.2 0.2 32.8 0.1 27.6 0.2 40.6 0.1
2000 23.7 0.2 20.3 0.1 27.9 0.3 23.9 0.2 36.0 0.1
2001 21.6 0.1 19.7 0.1 30.8 0.2 22.7 0.1 35.7 0.1
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Table 2.3.   The inshore RTI estimates of years 1985 through 2001, and their standard 
deviations.  They were estimated with the cumulative run size being standardized at the 
final day of the return season.  ‘All five’ denotes the lumped five districts, and ‘Four 
districts’ means the lumped four districts where the Togiak fish were excluded. 

All five Four districts 
Year RTI S.D. RTI S.D.
1985 27.9 0.3 26.8 0.2
1986 30.5 0.2 29.7 0.1
1987 30.1 0.3 28.8 0.3
1988 29.1 0.3 28.3 0.3
1989 28.2 0.3 27.0 0.3
1990 30.1 0.2 29.2 0.2
1991 30.0 0.3 28.4 0.2
1992 31.1 0.4 29.9 0.4
1993 26.0 0.3 24.6 0.3
1994 32.2 0.3 30.6 0.2
1995 30.1 0.4 27.8 0.3
1996 27.1 0.4 25.2 0.2
1997 28.7 0.3 27.7 0.2
1998 31.0 0.4 30.0 0.4
1999 30.4 0.4 28.5 0.2
2000 26.1 0.4 23.9 0.2
2001 25.7 0.4 23.6 0.3

 

Table 2.4.  The Port Moller RTI estimates of years 1985 through 2001 and their standard 
deviations, evaluated at day codes 10, 15, 20, and 25, respectively. 

Day code 10 Day code 15 Day code 20 Day code 25 
Year RTI S.D. RTI S.D. RTI S.D. RTI S.D. 
1985 7.2 0.1 10.0 0.2 14.3 0.3 16.6 0.2 
1987 7.2 0.3 12.2 0.2 15.5 0.1 16.3 0.1 
1988 5.9 0.1 10.7 0.3 15.0 0.2 16.6 0.2 
1989 7.2 0.2 10.4 0.2 13.4 0.2 16.3 0.2 
1990 7.6 0.2 11.6 0.2 16.0 0.2 18.7 0.1 
1991 8.2 0.2 11.8 0.1 13.6 0.1 15.7 0.2 
1992 7.7 0.3 10.9 0.2 13.1 0.1 15.8 0.2 
1993 6.7 0.1 10.0 0.2 12.7 0.2 15.7 0.2 
1994 7.7 0.2 12.2 0.2 15.0 0.1 18.2 0.1 
1995 7.1 0.2 9.6 0.1 13.1 0.2 15.8 0.2 
1996 6.8 0.1 9.8 0.1 12.8 0.2 16.2 0.2 
1997 7.0 0.2 10.6 0.2 13.9 0.2 17.0 0.2 
1998 7.3 0.1 10.7 0.1 14.3 0.2 17.6 0.2 
1999 7.1 0.4 11.9 0.2 14.4 0.1 17.3 0.1 
2000 5.6 0.1 9.5 0.4 10.8 0.3 13.3 0.2 
2001 7.3 0.2 9.7 0.1 12.2 0.1 14.0 0.1 
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Table 2.5.  Relative index of fish run timing of years 1999, 2000, and 2001 evaluated 
at day codes, 15, 20, 25, and 30, respectively.  The minus sign (-) indicates that run 
timing of the season is earlier than the average of those of the past years.   These results 
are to be used in Chapters 3 and 4.   

Year June 24 June 29 July 4 July 9 

1999  1.1  0.4  0.6  1.3 
2000 -1.4 -3.3 -3.4 -3.8 
2001 -1.1 -1.6 -2.4 -3.3 
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Figure 2.1.  Historical run proportions of five stocks against day.  The data of years 1955 
through 2001 are used except for the Togiak stock.  The data of years 1955 through 1957 
for the Togiak stock are not available.   
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Figure 2.2.  Port Moller Rogers’ CPUE index against day by year.  The Rogers’ index 
unit is ‘ (6,000 catch) /[200 fathoms fishing time (min)]× × ,’ where 6,000 is a scale factor.  
I code calendar dates, starting on June 10:  day code 1 = June 10, day code 2 = June 11, 
and so on.    
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Figure 2.3.  The 1999 Port Moller RTI estimate.  Dots represent the data of the 1999 
cumulative Rogers’ indices that are standardized at day code 30 (July 9).  The solid line 
is the logistic curve fitted to the dots.  I define RTI as day that corresponds to the 
inflection point of the fitted logistic curve.  The inflection point of the curve is located at 
the coordinates of (19.45, 0.5), and the RTI estimate is 19.45 (square point). 
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Figure 2.4.  Comparison of estimates of the Port Moller RTI of years 1985 through 2001 
and those of the inshore RTI of the same period.  Dots represent the Port Moller RTI 
estimates.  Lines in the boxes of (A) through (F) indicate the RTI estimates of ‘Kvichak-
Naknek,’ ‘Egegik,’ ‘Ugashik,’ ‘Nushagak,’ ‘Togiak,’ and ‘the lumped five districts,’ 
respectively.   The numerical value above the respective box is the correlation coefficient 
between the dot line and the solid line within the box.       
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Figure 2.5.  An example of forecasting run timing in year 2001 on June 24 (day code 15).  
When I want to detect run timing of the 2001 season at June 24, I standardize the 
cumulative Rogers’ indices only up to the same day in the past years (before 2001), 
ignoring the data beyond the day.  Intentionally I extend the x-axis beyond the day code 
15 to show the idea.  And then I compare the RTI estimate of the season (2001) with 
those of the past years.  The vertical lines intersect the inflection points of the fitted 
logistic curves.   
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Figure 2.6.  (A): Yearly inshore RTI estimates of four stocks (excluding the Togiak 
stock).  (B): Yearly Port Moller RTI estimates evaluated at five day codes 10 (dot line), 
15 (circle line), 20 (triangle line), 25 (cross mark line), and 30 (square line).  The 
numerical values on the five lines in the (B) box are the correlation coefficients between 
the respective line and the inshore RTI in the (A) box.   
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Figure 2.7.  (A): Yearly inshore RTI estimates of four stocks (excluding the Togiak 
stock).  (B): Yearly Hilborn RTI estimates.  The correlation coefficient between the two 
lines is 0.68.  
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CHAPTER III.  INSEASON FORECASTS OF RETURNS BY 

OPTIMIZATION 

 

INTRODUCTION 

The objective of this chapter is to estimate stock-specific run sizes on a daily basis.   

The term, ‘stock’ in this thesis means district-specific fish.   I use all available data 

sources, with which I develop the objective functions of run sizes.   The data sets include 

the following categories: (1) the catch of the Port Moller test fishery, (2) the age-specific 

proportions in the Port Moller fishery catch, (3) the catch of commercial and subsistence 

fisheries, (4) escapements, and (5) the age-specific proportions in stock-specific run size 

(= catch + escapement).   In case of data categories (1), (3), and (4), I use not only the 

inseason data but also the historical data.   We determine fish age by reading fish scales.   

ADFG collects scales of fish randomly chosen out of the Port Moller catch, the district-

specific catch and the escapement fish, and then reports the age-specific proportions on a 

daily basis.    

The main method of this thesis is an optimization technique.   As optimization 

software, I use Automatic Differentiation Model Builder (ADMB) (Anonymous 1994, 

2000).    ADMB has the following merits: (1) to estimate many parameters or many 

predictive variables in a non-linear model, (2) to provide not only point estimates but also 

their variances, (3) to be less sensitive to initial guess values of estimates than other 

optimization software, and (4) to calculate Bayes’ posterior distributions of estimates.   
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METHODS 

3.1.  DEFINITION OF TERMS 

3.1.1.  Variables, parameters, and objective functions 

In defining variables and parameters over time, I follow the definitions by Gelman 

et al. (1995).   Figure 3.1 shows the relationship between variables and parameters, the 

estimation of parameters, and the prediction of unobserved data.   Parameters are 

involved with a function between explanatory variables and response variables.   The 

estimation of parameters is based only on observed data.   Once parameters are estimated, 

we are often interested in predicting ‘unobserved response variables’ from the function 

with the parameter estimates1 and explanatory variables.   The unobserved response 

variables are called the ‘predictive variables,’ and thus the density or distribution of the 

predictive variables is called the predictive density or distribution.   Gelman et al. (1995) 

add tilde mark (~) to unobserved variables to distinguish them from observed variables.   

In this thesis, I estimate 20 predictive variables that are run sizes of five districts and four 

ages (Figure 3.2).    

In section 3.4. ‘Objective functions,’ I develop the predictive densities of run sizes 

and the likelihood functions of run sizes.   With the densities and likelihood functions of 

run sizes, we are interested in finding modes (run sizes) that maximize those functions.   

In this thesis, the objective function of run sizes means both the predictive density and the 

likelihood function.   In most optimization software including ADMB, the objective 

function is used as its negative logarithm for ease of calculation.   In this case, our 

interest is to find values that minimize the negative objective functions.    

 

                                                 
1 The term ‘estimate’ is different from the term ‘estimator.’   An estimator is a function of 
a sample, and an estimate is the realized value of an estimator obtained when a sample is 
actually taken (Casella and Berger 1990).   
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3.2.  NOTATIONS 

The following list shows general notations used in this thesis.  Notations valid only 

in a local subsection may not be found here. 

Notation Description 

s Stock (district)-specific fish.   Five stocks were considered.   Stock code 1 = 

Kvichak-Naknek; stock code 2 = Egegik; stock code 3 = Ugashik; stock 

code 4 = Nushagak; and stock code 5 = Togiak.    

a Age.  Four age groups were considered.  Age code 1 = age 1.2; age code 2 = 

age 1.3; age code 3 = age 2.2; and age code 4 = age 2.3. 

rs,a Run size of stock s and age a. 

,sr •  
Stock-specific run size ignoring age: 

4

, ,
1

s s a
a

r r•
=

=∑  

,ar•  
Age-specific run size ignoring stock: 

5

, ,
1

a s a
s

r r•
=

=∑  

R Total run size.   The sum of district- and age- specific run sizes:  

R = 
5 4

,
1 1

s a
s a

r
= =
∑∑  

t Time (day).   Calendar dates were coded, starting on June 10:  

June 10 = 1, June 11 =2, and so on.    

Dt Rogers’ index at day t.   Rogers’ index is the weighted CPUE from the Port 

Moller fishery (see Equation 1.1). 

It The cumulative Rogers’ index up to day t.    

~ Tilde mark (~) refers to an unknown variable.   For example, R% represents 

unknown (predictive) total run size while R is known (observed) total run 

size. 

^ Circumflex mark (^) refers to the estimate of an unknown value such as a 

parameter or a predictive variable.   For example, β̂  is the estimate of β.      

Ua,t  The cumulative number of age a fish caught by the Port Moller fishery up to 

day t.    
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,tU•  The cumulative catch of the Port Moller fishery up to day t, ignoring age.   

Ga The selectivity of the Port Moller gillnet fishery for age a fish. 

kt The proportion of run size that pass a location of interest at day t; day-

specific proportion of run size.  

, ,s a tj  The observed cumulative run of stock s and age a up to day t.   I caution 

readers not to be confused with the above run sizes (‘r’ and ‘R’).   The ‘r’ or 

‘R’ indicates final run size, which is the cumulative run up to the end of the 

season. 

, ,s tj •  The observed cumulative run of stock s up to day t.    

hs,t,i The cumulative proportion of run size of stock s up to day t in past year i. 

 

3.3.  MAIN IDEA 

The general idea of the methodology is as follows: 

Step 1.  I develop the objective functions (the predictive densities or the likelihood 

functions) of run sizes.  

Step 2.  I take the negative logarithms of the respective objective functions, and treat the 

sum of the negative logarithm functions as the joint objective function. 

Step 3.  With ADMB, I look for run sizes, which minimize the joint objective function.  

Step 4.  I do the estimation of Step 3 on a daily basis during the season.   As the inseason 

data are updated, the estimation is supposed to improve. 

 

3.4.  OBJECTIVE FUNCTIONS 

3.4.1.  Predictive density of total run size 

Total run size means the sum of district- and age- specific runs in the 20 cells in 

Figure 3.2.    
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5 4

,
1 1

s a
s a

R r
= =

=∑∑  (3.1) 

The ordinary regression model between total run size and the cumulative Rogers’ index is 

significant (Rogers and Steen 2000).   I set up the ordinary regression model of total run 

size against the cumulative Rogers’ index up to June 20 through July 6, respectively with 

the data of years 1985 through 2001 excluding the outlier years (1990, 1994, 1997, and 

2001) (Figure 3.3).   The determination coefficient (R2) of the regression model ranged 

from 0.65 to 0.82 (Figure 3.3).   The 1986 Port Moller test fishery data were not available 

because the test fishery was not deployed in that year.  I used the following ordinary 

regression model to develop the predictive density of total run size.    

 
0, 1,

2
0, 1,~ ( , )

t t t t

t t t t

R I

R N I

β β ε

β β σ

= + ⋅ +

+ ⋅
 (3.2) 

where R is the total run sizes of the past years, It is the cumulative Rogers’ indices of the 

corresponding historical years at day t, ‘β0,t, β1,t, and σt
2’ are parameters, and tε is the 

error term.   The expected value of R is ‘ 0, 1,t t tIβ β+ ⋅ ’, and its variance is 2
tσ .   The 

estimates of these three parameters vary by day t, and thus the parameters have subscript t 

in Equation 3.2.   

When we have new catch data during the season and predict total run size of the 

year at day t, I use the empirical relationship of Equation 3.2.  Thus, the predictive 

density of unknown variable R%is normal. 

 
( )2

0, 1,

22

ˆ ˆ( )1( ) exp
ˆ2ˆ2

t t t

tt

R I
f R

β β

σπ σ

 − + ⋅ = − ⋅⋅   

%
%   (3.3) 

Taking the negative logarithm of the equation, and ignoring the constant terms with 

respect to R%, we get the following: 

 
( ) 2

, 0, 1,

2

ˆ ˆ
ln ( )

ˆ2
s a t t ts a

t

r I
f r

β β

σ

 − − ⋅ − ∝
⋅

∑ ∑ %r
%  (3.4) 
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I replaced R% by ‘
5 4

,
1 1

s a
s a

r
= =
∑∑% ’ in Equation 3.4.    

‘ 2ˆ2 tσ⋅ ’ in the numerator of Equation 3.4 cannot be ignored though it is constant with 

respect to R%.   Only in the single Equation 3.4, the term is constant with respect to R% 

whereas it is not constant in the joint objective function.   The term cannot be factored out 

from the joint objective function.    

The following two illustrations may help readers understand the previous 

sentences.     

(1) The following is a function of x, comparable to Equation 3.3.   

1 2

( )( ) exp
2
g xf x

σ
 = − ⋅ 

 

When taking the negative logarithm to the function f1(x), we have the following:  

1 2

( )ln ( )
2
g xf x

σ
− =

⋅
 

‘2σ2’ is constant with respect to x in this case. 

(2) The following is the function f1(x) times another function of x. 

1 2 22

( )( ) ( ) exp ( )
2
g xf x f x f x

σ
 = − ⋅ ⋅ 

 

When taking the negative logarithm to the above function, we have the following:  

[ ]1 2 22

( )ln ( ) ( ) ln ( )
2
g xf x f x f x

σ
− = −

⋅
 

In this case, ‘2σ2’ cannot be factored out, and is not constant with respect to x. 

Equation 3.4 is the first component of the joint objective function, where It is the 

observed value (data), and ‘ 2
0, 1,

ˆ ˆ ˆ, , andt t tβ β σ ’ are the estimated values.   I show the 

parameter estimation in sub-section, 3.5.1. ‘Parameters in the predictive density of total 

run size.’     
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3.4.2.  Likelihood function of age-specific run sizes 

The ADFG used fish scales sampled from the Port Moller fishery catch to 

determine fish age.   I found that the age composition of the Port Moller fishery catch 

generally matched that of returns to Bristol Bay.   Figure 3.4 compares the proportions of 

four age groups (ages 1.2, 1.3, 2.2, and 2.3) of the Port Moller catch with those of returns 

to Bristol Bay.   Regarding the Port Moller data in Figure 3.4, I used the fish only caught 

before July 5, because sockeye salmon caught after July 5 are likely to return to an area 

other than Bristol Bay (Hilborn, personal communication).   In Figure 3.4, age-specific 

proportions of the Port Moller catch are similar to those of returns to Bristol Bay except 

for years 1997 and 1998.  

I modeled the joint probability distribution of age-specific catches with the 

multinomial probability mass function.   When Ua,t  denotes the age-specific cumulative 

catch of the Port Moller fishery up to day t, the joint probability of the age-specific 

cumulative catches is as follows. 

 
( )

,
4

,
4

1,1

!
( ) ,!

a tU
t

t
aa ta

U
f U a tU

P•

=
=

 =   ∏∏
r

 (3.5) 

where Pa,t is the proportion of age a fish out of the cumulative Port Moller catch up to 

day t.   Equation 3.5 is also the likelihood function of Pa,t.    

 
,

4

1

( ) ,
a tU

t
a

L P a tP
=

∝ ∏
r

 (3.6) 

As the negative log-likelihood,  

 
4

, ,
1

( ) [ ln( )]t a t a t
a

l P U P
=

− ∝ − ⋅∑
r

 (3.7) 

The maximum likelihood estimate (MLE) of the proportion in the multinomial 

distribution is as follows.   

 ,
,

,

ˆ a t
a t

t

U
P

U•

=  (3.8) 
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I re-parameterized the age-specific proportion Pa,t  to have the function with respect to 

run sizes.    

 

, ,
, 4

,
,

1

,
,1

4 4

, ,
1 1 1

ˆ

       

a t a t
a t

t
a t

a

t

a d a
a ad

t

a d a a a
a d a

U U
P

U U

r k V G r G

r k V G r G

•

=

•
•=

• •
= = =

= =

⋅ ⋅ ⋅ ⋅
= =

⋅ ⋅ ⋅ ⋅

∑

∑

∑∑ ∑

 (3.9) 

where kd is the proportion of run size that passes the Port Moller fishery area at day d 

(day-specific proportion of run size), V is fish vulnerability to the Port Moller fishery, and 

Ga is the fishery selectivity for age a fish.   I assumed that V and Ga were constant 

regardless of day within a year.   Fish vulnerability, V may vary by year because ocean 

environmental variables are not constant by year.   However, the uncertainty in the 

vulnerability V does not cause a problem, because the vulnerability is canceled out in the 

numerator and the denominator (Equation 3.9).   The gillnet gear selectivity for age 2.3 

fish is assumed to be full (i.e. G4 = 1), so there are three parameters: G1, G2, and G3.       

Replacing Pa,t, in Equation 3.7 by that of Equation 3.9, I have the following 

likelihood function of run sizes:    

 
4

,
,

1 ,

ˆ
( ) ln ˆ

a a
a t

a a a
a

r G
l r U

r G
•

•
= •

  
⋅  − ∝ − ⋅  ⋅    

∑ ∑
r %
%

%
 (3.10) 

By the invariance property of MLE (Zehna 1966), the estimates of r•
r  in the new 

likelihood function also become MLE.   Now, the original likelihood of age-specific 

proportions (Equation 3.7) becomes the likelihood of age-specific runs (Equation 3.10).   

Equation 3.10 is the second component of the joint objective function, where Ua,t  is the 

observed value (data) and ˆ
aG is the estimated value.   I describe the estimation of G1, G2, 

and G3 in sub-section ‘3.5.2.   Parameters in the likelihood function of age-specific runs.’ 
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3.4.3.  Predictive density of stock-specific run size 

Stock-specific run size means the sum of catch and escapement that belong to its 

district (Figure 1.2).   In Figure 3.2, stock-specific run size is the row sum.   That is, 

 
4

, ,
1

s s a
a

r r•
=

=∑  (3.11) 

To forecast stock-specific run size at an arbitrary day (say t) during season, I used 

the cumulative run up to day t during the season, and the historical cumulative 

proportions of the run at day t.   If we observe the cumulative run data up to a day during 

the season, and know the cumulative proportion of the run at the day, we can estimate 

final run size by dividing the cumulative run by the proportion.   I used historical data to 

calculate the cumulative proportion of run size by day.   The run data of year 1955 

through the present were available except for the Togiak stock (those of three years 1955, 

1956 and 1957 were not available for the Togiak stock).   Figure 2.1 shows the historical 

cumulative proportions of run sizes by day for the five stocks.   Large variability in the 

proportion by day was found in all five stocks (Figure 2.1).   When estimating final run 

size with the observed cumulative run of stock s up to day t and the historical cumulative 

run proportions at the day t, I used all the proportions rather than the mean value of the 

proportions to carry the variability in the proportion.   That is, 

 
,

, , , ,

, ,,

observed cumulative run of stock  up to day during the seasonˆ
historical cumulative proportions of the stock  run at day

{ | a past year (1,..., )}

s

s t s t

s t is t

s tr
s t

j j
h i nh

•

• •

=

= =
=

r

r
 (3.12) 

The numerator is a scalar value, and the denominator is a vector.   Thus, the resultant 

dimension is also a vector: ,ŝr •

r
= , ,ˆ{ | an individual index in the sample}s ir i• = .  , ,ŝ ir •  is an  

ith element out of the estimates of final run size of stock s.    

I could consider the histogram of the run size estimates ( , ,ŝ ir • ) as an estimated 

distribution for stock-specific run size.   For instance, Figure 3.5 shows distribution of the 

1999 Egegik run size estimated at the specified day (June 24, June 30, July 6, July 12, 
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July 18, and July 24).   In Figure 3.5, the distribution predicted at June 30 extends 

beyond the x-axis limit, but I don’t show the part for the same scale of plots in the left 

column.   In Figure 3.5, the dotted vertical line represents the actual run size of Egegik 

stock in year 1999.   The variance of the predictive run distribution was small during the 

initial and final stage of the return season, while it was large during the middle of the 

season (Figure 3.5). 

I explored various parametric densities to develop the distribution of ,ŝr •

r
: normal, 

gamma, lognormal, inverse Gaussian (Wald), and location gamma.   The ‘location 

gamma’ density is named by me, and the term is not found in a statistics book.    

(1) Normal 

If 2
, , ,~ ( , )s s t s tr N µ σ• , 

 
2

, ,
, 22

,,

( )1( ) exp
22

s s t
s

s ts t

r
f r

µ
σπ σ

•
•

 −
= − 

⋅ ⋅  
 (3.13) 

Though there is no limitation for the domain of a normal random variable, the domain of  

,sr •  is positive in this case.   That is, 2
, , ,0, 0, and 0.s s t s tr µ σ• > > >   

(2) Gamma 

If , , ,~ ( , )s s t s tr gamma α β• , 

 ,

,

( 1) ,
, ,

,, ,

1( ) exp( )
( )

s t

s t

s
s s

s ts t s t

r
f r r α

α βα β
− •

• •= ⋅ −
Γ ⋅

 (3.14) 

where , , ,0, 0, and 0.s s t s tr α β• > > >    Some statistics textbooks show a different gamma 

density from the above density by using different parameterization: i.e., * (1/ )β β≡ . 

(3) Lognormal 

If 2
, , ,~ ( , )s s t s tr lognormal µ σ• , 
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2

, ,
, 22

, ,,

(ln )1 1( ) exp
22
s s t

s
s s ts t

r
f r

r
µ

σπ σ
•

•
•

 −
= ⋅ ⋅ − 

⋅ ⋅  
 (3.15) 

where 2
, , ,0, , and 0.s s t s tr µ σ• > − ∞ < < ∞ >  

(4) Inverse Gaussian (Wald) 

If , , ,~ ( , )s s t s tr inverse Gaussian µ λ• , 

 
2

, , , ,
, 3 2

, , ,

( )
( ) exp

2 2
s t s t s s t

s
s s t s

r
f r

r r
λ λ µ

π µ
•

•
• •

 − ⋅ −
= ⋅  

⋅ ⋅ ⋅  
 (3.16) 

where , , ,0, 0, and 0.s s t s tr µ λ• > > >   µs,t is a measure of location and λs,t is a reciprocal 

measure of dispersion.   Equation 3.16 is a standard form of the inverse Gaussian 

distribution (Johnson and Kotz 1970, p. 138). 

(5) Location gamma (ad hoc term) 

When the parameter α in the ordinary gamma density (Equation 3.14) is large, we 

can never have an asymmetric gamma distribution.   As the value of α increases, the 

shape of a gamma density becomes a symmetric shape.   If a random variable, say T, is 

exponential (i.e. )(~ βεT ), then the random variable is also a gamma variable where the 

parameter α of the gamma distribution is 1 (i.e. ~ (1, )T gamma β ).   When Ti are 

independent, 
1

~ ( , )i
i

T gamma
α

α β
=
∑ .   Thus when the value of α is large, the sum of Ti 

should approach a normal (symmetric) distribution by the central limit theorem.       

To overcome this problem where an ordinary gamma density with a large value of 

α cannot be asymmetric, first I shifted the distribution of ,ŝr •

r
 in Equation 3.12 by 

subtracting the minimum value of ,ŝr •

r
 from all values of ,ŝr •

r
.   The shift changes only the 

location of the distribution but not its shape.   I fit an ordinary gamma density to the 

‘shifted’ distribution of ,ŝr •

r
; I calculated two parameters of the ordinary gamma density 

with the shifted data.   The parameter value α estimated in the shifted distribution was 
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small enough to produce an asymmetric shape.  After fitting an ordinary gamma 

density to the shifted distribution, I moved both the gamma density and the shifted 

distribution of ,ŝr •

r
back to its original site.  Thus, the modified gamma density has one 

more parameter besides the original two parameters, α and β.  The additional parameter 

was the minimum value of the original values, ,ŝr •

r
.   I call the modified gamma density 

the location gamma density.   Figure 3.6 illustrates the procedure that I have described so 

far.   The histogram in Figure 3.6 is the 1999 Egegik run distribution estimated at day 

code 30 (July 9) by Equation 3.12.   In Figure 3.6, even without doing a goodness of fit 

test, we can see that the location gamma density fits a very skewed distribution much 

better than the ordinary gamma density.         

I formalize the location gamma density as follows.   If ,sr •  ~ 

, , ,( , , )s t s t s tlocation gamma α β γ , where  

 , ,
, ,

,
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j
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h
γ •

•

 
 = =      

r
r  (3.17) 

I shift the frequency distribution of ,ŝr •

r
 in Equation 3.12 by subtracting γs,t from each of 

,ŝr •

r
.   That is,  
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The parameters αs,t and βs,t are estimated with the shifted vector, ‘ , ,ŝ s tr γ• −
r

’.   Thus, a 

location Gamma density with α, β, and γ is an ordinary gamma density shifted by γ.  

Letting f* be an ordinary gamma density, I express a location gamma density f as follows. 
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Evaluation of the five parametric densities 

I used Kolmogorov-Smirnov goodness of fit test to evaluate the above five 

densities.  As an example, I fit the five densities to the 1999 Egegik run distribution 

predicted at day codes 15 (June 24), 20 (June 29), 25 (July 4), 30 (July 9), 35 (July 14), 

and 40 (July 19), respectively.   Table 3.1 shows the results of the K-S test for those 

densities fitted to the 1999 Egegik run distribution; the larger p-value is, the better the fit 

is.   The lognormal density shape always turned out to be almost identical to that of the 

inverse Gaussian density, so I did not distinguish them differently.   Figure 3.7 shows an 

example where the five densities are fitted to the 1999 Egegik run distribution estimated 

at day code 30 (July 9).   For the distribution estimated at the initial stage of the season 

(day codes 15 and 20), the best fit was the lognormal density (or the inverse Gaussian 

density) (p-values 0.581, and 0.245 in Table 3.1) while, for the distribution estimated at 

other days (day codes 25, 30, and 35), the best fit was the location gamma density (p-

values 0.570, 0.655, and 0.400 in Table 3.1).   For the distribution estimated at day code 

40, every density fit poorly (p-values 0.009, 0.001, 0.000, and 0.001 in Table 3.1).   The 

poor fit was due to a very narrow distribution around the mode of the run estimates.   The 

run distribution estimated near the season end was extremely narrowed (e.g., in Figure 

3.5, the run distributions estimated at July 18 and July 24).   However, the poor fit is not a 

problem, because the run size near the season end becomes so obvious that we don’t need 

to forecast it.    

Generally the location gamma density and the lognormal density (or the inverse 

Gaussian density) fit the predicted distribution of stock-specific run size well.   Figure 3.8 

represents the average value of p-values of five tests in Table 3.1, except for the last test 

for the distribution predicted at day code 40.   The location gamma density and the 

lognormal (or the inverse Gaussian) density were much better than the gamma density 

and the normal density in terms of goodness of fit (Figure 3.8).   However, I had a 

problem in ADMB programming when I used the location gamma density for the 

predictive density of stock-specific run size.   The location gamma density was defined 

over two separate domains (Equation 3.19).   The separation prevented ADMB from 
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differentiating the location gamma density with respect to run size over the smooth 

continuous domain.    

This situation compelled me to use the lognormal density or the inverse Gaussian 

density for the predictive density of stock-specific run size.   However, the lognormal 

density is more common than the inverse Gaussian, and the former density is 

implemented in most statistical software.   Thus, I chose the lognormal density.   Taking 

the negative logarithm of the lognormal density (Equation 3.15) and ignoring constants 

with respect to run size, we have the following. 

                
2
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,

ˆ(ln )
ln ( ) ln

ˆ2
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s s
s t

r
f r r
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•
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 −
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⋅  
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% %  (3.20) 

where 2
, , ,ˆ ˆ0, , and 0.s s t s tr µ σ• > − ∞ < < ∞ >%    Equation 3.20 is another component of the 

joint objective function.   Because there were five districts, I had to consider the 

respective five lognormal objective functions.   ,ˆ s tµ  and 2
,ˆ s tσ are estimates of µs,t and 

σs,t
2, and I describe the estimation in sub-section, ‘3.5.3. Parameters in the predictive 

density of stock-specific run size.’ 

3.4.4.  Likelihood function of stock- and age- specific run sizes  

Age composition from stock-specific run data was also available.   I applied the 

multinomial mass function to the joint probability distribution of stock- and age- specific 

proportions.   The principle is the same as that of the likelihood function of age-specific 

proportions in the Port Moller fishery catch (Equation 3.5).   That is, the joint probability 

distribution of the cumulative stock-specific and age-specific runs is: 
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where js,a,t is the cumulative run of age a fish to district s up to day t, and Ps,a,t is the 

proportion of age a fish out of the cumulative run to district s up to day t.   Equation 3.21 

also is the likelihood function of Ps,a,t. 
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Considering the MLE of Ps,a,t and re-parameterizing it with run sizes of interest, we 

have the following.  

 

, , , ,
, ,

, , , ,

,
,1

,
,

1

ˆ s a t s a t
s a t

s t s a t
a

t

s a d
s ad

t
s a

s a d a
a d

j j
P

j j

r k r
rr k

•

=

=

= =

⋅
= =

⋅

∑

∑
∑∑∑

 (3.23) 

where kd is the proportion of run size that enters district s at day d (day-specific 

proportion of district-specific run size).   Finally, I replaced the proportion in the 

likelihood function (Equation 3.22) by the relation in Equation 3.23, and took the 

negative logarithm of the function: 
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In Equation 3.24, js,a,t is observed data, and ,s ar% is the predictive variable in the objective 

function.   In this case, I did not consider the fishery selectivity for age-specific fish 

because run data were not only from the gillnet fishery but also from research beach 

seines.   Equation 3.24 is the last component of the joint objective function.   I had to 

consider the respective five multinomial objective functions because there were five 

districts. 

Table 3.2 contains the summary of the objective functions I have described so far.   

The joint objective function is the sum of the negative logarithms of the respective twelve 

objective functions: Equation 3.4, Equation 3.10, five of Equation 3.20, and five of 

Equation 3.24.    
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3.5.  PARAMETERS 

There were 16 parameters in the objective functions: three in the predictive density 

of total run size (Equation 3.4), three in the likelihood function of age-specific runs 

(Equation 3.10), and 10 in the predictive densities of the respective five stock-specific 

runs (five Equation 3.20 for each stock). 

3.5.1.  Parameters in the predictive density of total run size 

The predictive density of total run size was normal (Equation 3.4).  It had three 

parameters: 2
0, 1,, , andt t tσ β β .   The likelihood function of these three parameters is: 
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‘ ( ), ,s a is a
r∑ ∑ ’ is total run size of past year i, and It,i is the cumulative Rogers’ index at 

day t of the corresponding year i.   As the negative log likelihood,  
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Though the formulae for ML estimators of the parameters were not necessary due 

to the benefit of ADMB, I derived them to check the parameter units.   After 

differentiating the above negative log likelihood with respect to the three parameters, and 

setting them equal to zero, 

2
0, 1,

( ) ( ) ( )0; 0; 0
t t t

l l l
β β σ

∂ − ∂ − ∂ −= = =
∂ ∂ ∂

 

I solved these equations for the parameters.   The solutions are as follows:  
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Thus, the units of β1,t, β0,t and σt
2 are: 

 1, 't
fish run size

Rogers index
β =© ¬ª -« ®  (3.30) 

 1,t fish run sizeβ =© ¬« ®  (3.31) 

 2 2( )t fish run sizeσ =© ¬ª -« ®  (3.32) 

where ‘§¨’ denotes the unit notation. 

Note that, in the above likelihood function (Equation 3.26), there is no tilde mark 

(~) for rs,a,i , because they are observed values, not predictive values. 

3.5.2.  Parameters in the likelihood function of age-specific runs 

I had three parameters of G1, G2, and G3 in the likelihood function of age-specific 

runs (Equation 3.10).   Subscripts 1, 2, and 3 are age code.   These parameters are the Port 

Moller fishery selectivity for age-specific fish.   In case of the selectivity for age 2.3 fish, 

the full selectivity is assumed: i.e. G4 = 1 where subscript 4 is the age 2.3 code.   The 

following is the likelihood function of the parameters: 
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 (3.33) 

, ,a ir•  is age-specific run size of past year i, and Ua,i is age-specific catch from the Port 

Moller fishery in the corresponding year i.   I assumed that the selectivity is constant by 

time (year as well as day), so G did not have a time subscript.   As the negative log 

likelihood, Equation 3.33 becomes the following. 
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Differentiating the above negative log likelihood with respect to Ga, and setting it 

equal zero, I have an implicit equation for Ga.   However, the derivation for checking the 

parameter units is not needed because the selectivity is a fraction whose range is from 0 

to 1. 

, ,a ir•  in the above likelihood function (Equation 3.34) does not have a tilde mark(~) 

because they are observed values. 

3.5.3.  Parameters in the predictive density of stock-specific run size 

The predictive density of stock-specific run size was lognormal (Equation 3.20).   It 

had two parameters in the predictive density for each stock ( 2
, ,ands t s tσ µ ), so there were 

five pairs (i.e., 10 parameters) for five stocks.   The likelihood function of those two 

parameters is: 
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where , ,ŝ ir •  is an ith element out of the estimates of final run size of stock s (Equation 

3.12).   As the negative log likelihood, Equation 3.35 becomes the following: 
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I differentiated the above negative log likelihood with respect to the two 

parameters, set them equal to zero,  

2
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µ σ
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and solved these equations for the parameters.   I had the following solutions: 
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Thus, the units of µs,t, and σs,t
2 are: 

 , ln( )s t fish run sizeµ =© ¬« ®  (3.39) 

 [ ]22
, ln( )s t fish run sizeσ =© ¬ª -« ®  (3.40) 

The estimation of µs,t, and σs,t
2 are involved not only with historical data (hs,t,i) but 

also with inseason data ( , ,s tj • ) (recall Equation 3.12), while the estimation of the other 

parameters (β1,t, β0,t, σt
2, G1, G2, and G3) requires only historical data. 

 

3.6.  INCORPORATION OF RUN TIMING FORECAST 

In Chapter 2, I forecasted fish run timing with Port Moller fishery data.   According 

to run timing forecast, I use historical data that belong to a different day from a forecast 

day.   Figure 3.9 illustrates the idea.   Normally, when forecasting run sizes at day t 

during the season, I estimate parameters with historical data that correspond to day t in 

past years, and then predict run sizes with the estimates of parameters and inseason data 

(Figure 3.9 (A)).   If I detect run timing earlier or later by q days, I use historical data that 

correspond to day ‘t ± q’ in past years (Figure 3.9 (B)).    

There are three historical data sources: (1) total run size of year i ( , ,s a is a
r∑ ∑ ), (2) 

the cumulative Rogers’ CPUE up to day t in year i (It,i), and (3) the cumulative proportion 

of run size of stock s at day t in year i (hs,t,i).   The values of the first two sources 

( , ,s a is a
r∑ ∑  and It,i) determine the estimates of 2

0, 1,, , andt t tβ β σ  in the normal 

predictive density of total run size (Equations 3.27, 3.28, and 3.29).   The values of the 

third historical data source (hs,t,i) and the observed cumulative run of stock s up to day t 



 69
during the season ( , ,s tj • ) determine the estimates of the five pairs of 2

, ,ands t s tµ σ  in the 

respective lognormal predictive densities of stock-specific run sizes (Equations 3.37 and 

3.38, where , ,ŝ ir •  = , , , ,/s t s t ij h• ).   G1, G2, and G3 in the likelihood function of age-specific 

run sizes are not affected by the run timing incorporation because the three parameters 

are constant over time.    

For example, if I make forecasts of the 2000 run sizes at July 4, I use the historical 

data of It,i  and hs,t,i that correspond to July 7 not to July 4: i.e. t = July 7, and i = years 

prior to forecast year 2000.   The 2000 Port Moller RTI evaluated at July 4 was earlier by 

about three days than the average of those in the past years (-3.4 in Table 2.5).      

 

RESULTS 

By the hind-casting procedure, I made forecasts of returns of years 1999, 2000, and 

2001 at the following days per season (year): day codes 15 (June 24), 20 (June 29), 25 

(July 4) and 30 (July 9).       

 

3.7.  PARAMETER ESTIMATES 

Tables 3.4, 3.5 and 3.6 show the MLEs and standard deviations for parameter 

estimates, calculated with the likelihood functions in section ‘3.5.  Parameters.’   The 

units of parameter estimates are summarized in Table 3.4.   The MLEs are used when 

forecasting returns of years 1999 (Table 3.4), 2000 (Table 3.5), and 2001 (Table 3.6).   

The respective table has mainly two columns: ‘With’ and ‘Without.’   The values under 

the ‘With’ column were estimated with the run timing incorporation, while those under 

the ‘Without’ column were estimated without the incorporation.   The units of the 

estimates are shown in Table 3.5.   Regarding the Port Moller fishery selectivity for age 

specific fish (Ga), I show the estimates only once per table because the values are 

constant by day within a season.   In case of forecasting the 1999 returns at June 29, the 

parameter estimates and the run forecasts under the ‘With’ column were the same as 
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those under the ‘Without’ column (Table 3.4), because the Port Moller RTI detected at 

June 29, 1999 was almost the same as the average of those in the past years (0.4 in Table 

2.5).   

 

3.8.  FORECASTS OF RETURNS 

Tables 3.7 through 3.12 show forecasts of stock- and age- specific returns.   The 

marginal values under the ‘sum’ column indicate the stock-specific run forecasts, in 

which ADFG managers are most interested.   Tables 3.13, 3.14 and 3.15 compare the 

stock-specific run forecasts with the actual run sizes, where the difference between the 

forecast and the actual run size is expressed as relative error (%):  

 forecast - actual runRelative error (%) = 100
actual run

 × 
 

 (3.41) 

The minus (-) sign in an error value indicates an under-forecast. 

Generally forecasts (run estimates) approached their actual run sizes as time 

progressed (Tables 3.13, 3.14, and 3.15; Figures 3.10, 3.11, and 3.12).   Absolute values 

of errors in forecasts made at day code 15 (June 24) ranged from about 5% to about 

640%, and those in forecasts made at day code 30 (July 9) ranged from about 1% to about 

60%.   Forecasts of returns to Togiak district had larger errors than those to the other 

districts. 

3.8.1.  Incorporation of run timing forecast  

Forecasts of returns with the run timing incorporation were generally less biased 

than those without the incorporation, except for forecasts of the 1999 runs and of the 

Ugashik and Togiak returns.   Tables 3.13, 3.14, and 3.15 have forecasts of stock-specific 

returns for years 1999, 2000, and 2001, which were calculated with the run timing 

incorporation and without the incorporation, respectively.   Figures 3.10, 3.11, and 3.12 

show the respective summary of Tables 3.13, 3.14, and 3.15.   In those three figures, the 

horizontal dotted line represents the actual run size, and cross mark (×) points are 

forecasts of returns with the run timing incorporation while square marks are those 
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without the incorporation.   In case of the 1999 run forecasts (Figure 3.10), differences 

between cross marks and square marks are not significant because the Port Moller RTI of 

1999 was almost the same as the average of those of the past years (1.1, 0.4, 0.6, and 1.3 

in Table 2.5).   However, in case of the 2000 and 2001 run forecasts (Figures 3.11 and 

3.12), cross marks are closer to the actual run size than square marks, except for the 

Ugashik and Togiak stocks.    

3.8.2.  Incorporation of the Port Moller fishery selectivity for age-specific fish 

The incorporation of the Port Moller fishery selectivity for age-specific fish did not 

improve forecasts of returns.   Tables 3.16, 3.17, and 3.18 have the 1999, 2000, and 2001 

run forecasts, which were calculated with the selectivity incorporation and without the 

incorporation, respectively.   When I estimated forecasts of returns ignoring the 

selectivity, I let the selectivity parameters one: i.e. G1 = G2 = G3 = 1.   The forecast error 

values (%) under the ‘With’ column were not significantly different from those under the 

‘Without’ column (Tables 3.16, 3.17, and 3.18).   In both cases, I incorporated the run 

timing forecast accordingly.    

Also the selectivity incorporation did not affect age composition (proportion) in 

forecasts of returns.   In Figures 3.13 (forecasts of the 1999 returns made at July 4), 3.14 

(forecasts of the 2000 returns made at July 4), and 3.15 (forecasts of the 2001 returns 

made at July 4), age-specific proportions in the forecasts made with the selectivity 

incorporation (solid lines) are compared with those made without the selectivity (dashed 

lines).   In case of the ‘Port Moller’ boxes in those figures, the lines represent age 

composition in forecasts of age-specific run sizes ( ,ar• ).   Dots indicate age composition 

in observed values (under the ‘Port Moller’ label, dots are those in the cumulative Port 

Moller catch up to July 4; under the district name, dots are those in the observed 

cumulative run to the corresponding district up to July 4).   In Figures 3.13, 3.14, and 

3.15, solid lines and dashed lines are very close to each other, and they match dots well.   

Tables 3.19, 3.20, and 3.21 show the proportion values used to draw Figures 3.13, 3.14, 

and 3.15.             
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DISCUSSION 

3.9.  ASSUMPTION OF THE JOINT OBJECTIVE FUNCTION 

It would be vulnerable to criticism to treat the joint objective function as the 

product of the respective objective functions (in the logarithm, as the sum of the 

respective objective functions).   The treatment is based on the assumption where data 

sets in the joint objective function are independent of one another.   The following is the 

joint probability function of the respective data sets where district- and age- specific run 

sizes are involved as predictive variables or parameters.    
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Each ‘ iPr(data ) ’ is the respective objective function before the transformation of the 

negative logarithm: Equations 3.3, 3.5, 3.15, and 3.21, respectively (also see Equation 4.2 

for a different expression).   

Rigorously speaking, the independence assumption in Equation 3.42 is not correct.   

For example, the age composition data of the Port Moller fishery catch are not 

independent of those of observed run sizes to the five districts.   However, the catch of 

the Port Moller test fishery is usually small, and the catch abundance is not correlated 

with the observed run sizes especially during the initial stage of the season.   Also the run 

size and age composition of each district are independent of those of the other.   Thus, the 

violation of independence is not serious. 

 

3.10.  SAMPLE SIZE IN THE MULTINOMIAL PROBABILITY FUNCTION 

Another obstacle to forecasts of returns was data sizes in the multinomial 

likelihood functions: , ,t a ta
U U• =∑  in Equation 3.5, and  , , , ,s t s a ta

r r• =∑ in Equation 

3.21.   It is an inherent problem that occurs when a probability distribution of age 

composition (age-specific groups in number or proportion) from fisheries data is assumed 
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as a multinomial distribution.   Usually the sampling designs deployed to collect data, 

along with the selection protocols utilized in the field, generate estimates of age 

composition that necessarily depart, to some degree, from a strictly theoretical 

multinomial distribution (Crone and Sampson 1998).   The expanse and dynamics of 

fisheries prevent us from sampling in a strictly random manner.    

Thus, we are advised not to use a real catch size but to scale down the size for total 

sample size in a multinomial probability (Crone and Sampson 1998).   If I used the real 

data size (the real catch for ,tU•  in Equation 3.5, and the real run for , ,s tj •  in Equation 

3.21), I would give an over-weight to the multinomial objective function.   As a result, 

the multinomial objective function would dominate the joint objective function.   A 

question would be raised in response to the advice: ‘how much should we scale down the 

sample size?’ or ‘what is the optimum sample size that most accurately describes the 

actual variability associated with the sample estimates of age composition?’   To 

determine the optimum sample size, Crone and Sampson (1998) used weighted nonlinear 

regression analysis with the actual variance measures (e.g. CV) associated with the 

sample estimates (proportions) of age composition.   However, I could not apply the idea 

because of absence of the data.   By a process of trial and error, I set the sizes.   

Fortunately, estimates of age-specific proportions in Port Moller catch and stock-specific 

run sizes turned out to be extremely close to the observed values (Figures 3.13, 3.14, and 

3.15).   Also, forecasts of returns approached the actual returns as forecast time 

progressed during the season (Figures 3.10, 3.11, and 3.12); forecasts made at day code 

30 (July 9) were close to the actual returns.         

 

3.11.  SELECTIVITY OF THE PORT MOLLER GILLNET FISHERY 

Because the incorporation of the Port Moller fishery selectivity (Ga) for age-

specific fish did not reduce bias in forecasts of runs, the parameters did not draw 

attention.   However, the estimates of Ga may be useful for other research.   There 

appears to be no formal report regarding the selectivity of the Port Moller gillnet gear.   I 

succeeded in finding MLE of Ga, assuming the full selectivity for age 2.3 fish (G4 = 1): 
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G1= 0.557, G2 = 0.837, and G3 = 0.630 in Table 3.6, where subscripts 1, 2 and 3 denote 

ages 1.2, 1.3, and 2.2.   Because of the hind-casting procedure, the estimates associated 

with the run forecasts of years 1999 (Table 3.4), 2000 (Table 3.5), and 2001 (Table 3.6) 

are a little different.   The difference is negligible: G1 = 0.553, G2 = 0.862, G3 = 0.616 for 

the 1999 forecasts (Table 3.4); G1 = 0.560, G2 = 0.851, G3 = 0.631 for the 2000 forecasts 

(Table 3.5).   Their likelihood profiles are to be shown in Chapter 4 (Figures 4.1, 4.2, and 

4.3).    

The mean and standard deviation of length of age-specific sockeye salmon caught 

by the Port Moller fishery during the 1999 season was as follows: 505.5 mm and 24.43 

mm for age 1.2 fish (sample size: 1,738); 557.5 mm and 30.49 mm for age 1.3 fish 

(sample size: 835); 516.7 mm and 23.28 mm for age 2.2 fish (sample size: 1,021); 563.6 

mm and 30.43 mm for age 2.3 fish (sample size: 348).   Figure 3.16 displays the relation 

between fish length, fish age, and the selectivity of the gillnet fishery, though the 

statistical measures (R2 = 0.94; p-value = 0.03) are not meaningful because there are only 

four observations.   Ocean age-3 fish (1.3 and 2.3) are remarkably larger than ocean age-2 

fish (1.2 and 2.2) (Figure 3.16).     

 

3.12.  FORECASTS OF RETURNS 

Estimates of district-specific run sizes approached the actual run sizes as time 

progressed during the season (Figures 3.10, 3.11, and 3.12).   The approach is not 

surprising because data are accumulated and updated over time.    

An important finding was that the run timing incorporation improved forecasts of 

run sizes, except for forecasts of the 1999 runs and of the Ugashik and Togiak runs.   

Despite that Port Moller RTI is a little biased from true run timing (Figure 2.6), forecasts 

of returns made with the Port Moller RTI incorporation were less biased than those 

without the incorporation.   If we incorporated true run timing, we could further reduce 

bias in forecasts of runs.    
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The 1999 Port Moller RTI evaluated at day codes 15 (June 24), 20 (June 29), 25 

(July 4), and 30 (July 9) were not different from the average of the past years (1.1, 0.4, 

0.6, and 1.3 in Table 2.5).   That’s why the run timing incorporation did not make 

significant differences in the 1999 run forecasts (Figure 3.10).    

The Ugashik and Togiak fish return significantly later by a few days than the other 

stocks (Figure 1.3).   Yearly Port Moller RTI were poorly correlated with yearly RTI of 

both Ugashik and Togiak stocks (Figure 2.4: r = 0.53 with Ugashik, and r = 0.36 with 

Togiak).   Thus, the run timing adjustment on the basis of the Port Moller RTI (Table 2.5) 

did not improve forecasts of the Ugashik and Togiak runs.         
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Table 3.1.  Results of the K-S test of the five densities fitted to the 1999 Egegik run 
distribution estimated at day codes 15 (June 24), 20 (June 29), 25 (July 4), 30 (July 9), 35 
(July 14), and 40 (July 19), respectively.   In each cell, the upper value and the lower 
value inside parentheses are p-value and K-S test statistic.   

Day 15 Day 20 Day 25 Day 30 Day 35 Day 40  
Density p-value 

(K-S) 
p-value 
(K-S) 

p-value 
(K-S) 

p-value 
(K-S) 

p-value 
(K-S) 

p-value 
(K-S) 

Location gamma 0.029 
(0.222) 

0.028 
(0.216) 

0.570 
(0.115) 

0.655 
(0.107) 

0.400 
(0.131) 

0.009 
(0.244) 

Lognormal or 
Inv. Gaussian 

0.581 
(0.118) 

0.245 
(0.151) 

0.462 
(0.125) 

0.293 
(0.144) 

0.031 
(0.213) 

0.001 
(0.284) 

Gamma 0.022 
(0.230) 

0.014 
(0.233) 

0.244 
(0.151) 

0.187 
(0.160) 

0.023 
(0.221) 

0.000 
(0.391) 

Normal 0.000 
(0.351) 

0.000 
(0.356) 

0.056 
(0.203) 

0.076 
(0.189) 

0.012 
(0.236) 

0.001 
(0.293) 

 

 

 

 

 

 

 

Table 3.2.  Summary of the objective functions.    After taking the negative logarithm of 
the respective objective function, the sum of the negative logarithm functions is the joint 
objective function.      

Data source Variable of objective function Objective function nature 

Total run size Normal predictive density 
function 

 
Port Moller test fishery 

Age-specific run sizes Multinomial likelihood 
function 

Historical daily 
proportions of district run; 
district fisheries and 
escapements 

District-specific run size Lognormal predictive density 
function  

District fisheries and 
escapements 

District- and age- specific run 
sizes 

Multinomial likelihood 
function  

 

 

 

 



 77
Table 3.3.  Units of parameter estimates in Tables 3.4 through 3.6 and Figures 4.1 
through 4.3.  Subscript t represents a date.   

Parameter Unit Description 

β0,t millions 
β1,t millions/Rogers index 
σt

2 millions2 

These parameters are from the normal predictive density of the 
total run (Equation 3.4).   

µ1,t   
 
σ1,t

2 

[ln(thousands)] 
 
[ln(thousands)]2 

These parameters are from the log-normal predictive density of 
district-specific run (Equation 3.20).   Subscript 1 denotes the 
Kvichak-Naknek stock. 

µ2,t   
 
σ2,t

2 

[ln(thousands)] 
 
[ln(thousands)]2 

These parameters are from the log-normal predictive density of 
district-specific run (Equation 3.20).   Subscript 2 denotes the 
Egegik stock. 

µ3,t   
 
σ3,t

2 

[ln(thousands)] 
 
[ln(thousands)]2 

These parameters are from the log-normal predictive density of 
district-specific run (Equation 3.20).   Subscript 3 denotes the 
Ugashik stock. 

µ4,t   
 
σ4,t

2 

[ln(thousands)] 
 
[ln(thousands)]2 

These parameters are from the log-normal predictive density of 
district-specific run (Equation 3.20).   Subscript 4 denotes the 
Nushagak stock. 

µ5,t   
 
σ5,t

2 

[ln(thousands)] 
 
[ln(thousands)]2 

These parameters are from the log-normal predictive density of 
district-specific run (Equation 3.20).   Subscript 5 denotes the 
Togiak stock. 

G1,G2,G3 

 

Fraction whose range is 
from 0 to 1 

Port Moller fishery selectivity for age-specific fish.   These 
parameters are from the likelihood function of age-specific 
proportions (Equation 3.10).   Subscripts 1, 2, and 3 denote age 
1.2, age 1.3, and age 2.2, respectively. 
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Table 3.4.  Point estimates (MLE) and their standard deviations for the parameters 
used to forecast the 1999 returns at June 24, June 29, July 4, and July 9, respectively.  
Subscript t corresponds to the respective forecast date.  S.D. denotes standard deviation.  
The values under the ‘With’ column are associated with the run timing incorporation 
while those under the ‘Without’ column are not.  Because the age-specific gillnet 
selectivity (Ga) is constant by day within the season, I show the values only once.  In case 
of June 29, the estimates under the ‘Without’ column are the same as those under the 
‘With’ column, because Port Moller RTI detected at June 29, 1999 was not significantly 
different from the overall RTI in the past years (Table 2.5). 

   With Without 
Parameter Date MLE S.D. MLE S.D.

β0,t  24.138 6.289 23.281 6.447
β1,t  0.026 0.010 0.024 0.009
σt

2  108.330 0.000 106.510 0.000
µ1,t  8.902 0.224 8.566 0.193
µ2,t  7.008 0.171 6.781 0.174
µ3,t  8.754 0.134 8.709 0.148
µ4,t June 7.335 0.221 6.943 0.218
µ5,t 24 4.518 0.144 4.198 0.132
σ1,t

2  1.998 0.203 1.566 0.342
σ2,t

2  1.167 0.261 1.242 0.274
σ3,t

2  0.651 0.153 0.832 0.191
σ4,t

2  2.000 0.007 2.000 0.012
σ5,t

2  0.579 0.155 0.504 0.132
G1  0.553 0.540
G2  0.862 0.679
G3  0.616 0.502
β0,t  14.797 7.377
β1,t  0.021 0.006
σt

2  85.816 0.000
µ1,t  7.787 0.179
µ2,t  8.399 0.150
µ3,t  7.901 0.145
µ4,t June 6.922 0.193
µ5,t 29 5.378 0.195
σ1,t

2  1.405 0.300
σ2,t

2  0.996 0.212
σ3,t

2  0.887 0.194
σ4,t

2  1.640 0.350
σ5,t

2  1.181 0.300
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Table 3.4.  (continued)      

  With Without 
Parameter Date MLE S.D. MLE S.D.

β0,t  15.947 7.253 14.885 7.250
β1,t  0.015 0.004 0.014 0.004
σt

2  88.133 0.000 84.592 0.000
µ1,t  10.095 0.091 9.874 0.082
µ2,t  9.613 0.073 9.463 0.071
µ3,t  6.978 0.150 6.733 0.140
µ4,t July 9.451 0.106 9.233 0.101
µ5,t 4 4.799 0.126 4.571 0.108
σ1,t

2  0.361 0.077 0.297 0.063
σ2,t

2  0.234 0.050 0.221 0.047
σ3,t

2  0.944 0.206 0.822 0.179
σ4,t

2  0.495 0.106 0.446 0.095
σ5,t

2  0.568 0.134 0.420 0.099
β0,t  17.335 7.625 17.431 7.533
β1,t  0.011 0.004 0.011 0.004
σt

2  97.238 0.000 96.550 0.000
µ1,t  9.866 0.051 9.752 0.042
µ2,t  9.353 0.040 9.258 0.032
µ3,t  8.382 0.122 8.168 0.111
µ4,t July 9.161 0.049 9.048 0.039
µ5,t 9 5.582 0.085 5.430 0.071
σ1,t

2  0.115 0.025 0.078 0.017
σ2,t

2  0.069 0.015 0.045 0.010
σ3,t

2  0.621 0.135 0.532 0.115
σ4,t

2  0.108 0.023 0.065 0.014
σ5,t

2  0.276 0.063 0.191 0.044
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Table 3.5.  Point estimates (MLE) and their standard deviations for the parameters 
used to forecast the 2000 runs at June 24, June 29, July 4, and July 9, respectively.  
Subscript t corresponds to the respective forecast date.  S.D. denotes standard deviation.  
The values under the ‘With’ column are associated with the run timing incorporation 
while those under the ‘Without’ column are not.  Because the age-specific gillnet 
selectivity (Ga) is constant by day within the season, I show the values only once.     

  With Without 
Parameter Date MLE S.D. MLE S.D.

β0,t  21.688 6.000 23.225 6.206
β1,t  0.023 0.008 0.024 0.009
σt

2  90.060 0.000 99.056 0.000
µ1,t  10.953 0.175 11.469 0.190
µ2,t  9.926 0.168 10.188 0.179
µ3,t  8.711 0.137 8.835 0.145
µ4,t June 7.382 0.197 8.091 0.216
µ5,t 24 6.387 0.153 6.663 0.144
σ1,t

2  1.341 0.286 1.559 0.336
σ2,t

2  1.277 0.269 1.339 0.292
σ3,t

2  0.789 0.172 0.815 0.185
σ4,t

2  1.716 0.366 2.000 0.008
σ5,t

2  0.704 0.182 0.618 0.160
G1  0.560 0.516
G2  0.851 0.657
G3  0.631 0.501   
β0,t  14.722 6.690 14.802 7.135
β1,t  0.016 0.004 0.021 0.006
σt

2  74.865 0.000 80.296 0.000
µ1,t  9.485 0.101 10.605 0.180
µ2,t  9.767 0.083 10.592 0.148
µ3,t  8.881 0.146 9.529 0.142
µ4,t June 9.535 0.121 10.714 0.194
µ5,t 29 6.523 0.150 7.158 0.191
σ1,t

2  0.461 0.097 1.455 0.307
σ2,t

2  0.309 0.065 0.986 0.208
σ3,t

2  0.911 0.196 0.870 0.188
σ4,t

2  0.656 0.138 1.702 0.359
σ5,t

2  0.810 0.191 1.166 0.291
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Table 3.5. (continued)   

  With Without 
Parameter Date MLE S.D. MLE S.D.

β0,t  17.022 7.308 14.943 7.026
β1,t  0.011 0.004 0.014 0.004
σt

2  89.146 0.000 79.477 0.000
µ1,t  9.155 0.054 9.669 0.080
µ2,t  9.329 0.046 9.724 0.070
µ3,t  8.676 0.122 9.344 0.141
µ4,t July 9.240 0.070 9.762 0.099
µ5,t 4 6.358 0.071 6.918 0.114
σ1,t

2  0.133 0.028 0.291 0.061
σ2,t

2  0.096 0.020 0.218 0.046
σ3,t

2  0.641 0.138 0.857 0.185
σ4,t

2  0.221 0.047 0.437 0.092
σ5,t

2  0.192 0.044 0.480 0.112
β0,t  17.673 7.291 17.728 7.314
β1,t  0.010 0.003 0.010 0.003
σt

2  91.092 0.000 91.521 0.000
µ1,t  8.779 0.019 9.055 0.041
µ2,t  8.989 0.014 9.236 0.032
µ3,t  7.951 0.083 8.561 0.109
µ4,t July 8.984 0.015 9.263 0.038
µ5,t 9 6.428 0.050 6.896 0.072
σ1,t

2  0.016 0.003 0.076 0.016
σ2,t

2  0.009 0.002 0.045 0.009
σ3,t

2  0.309 0.065 0.520 0.111
σ4,t

2  0.010 0.002 0.064 0.013
σ5,t

2  0.098 0.022 0.202 0.046
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Table 3.6.  Point estimates (MLE) and their standard deviations for the parameters 
used to forecast the 2001 runs at June 24, June 29, July 4, and July 9, respectively.  
Subscript t corresponds to the respective forecast date.  S.D. denotes standard deviation.  
The values under the ‘With’ column are associated with the run timing incorporation 
while those under the ‘Without’ column are not.  Because the age-specific gillnet 
selectivity (Ga) is constant by day within the season, I show the values only once.     

  With Without 
Parameter Date MLE S.D. MLE S.D.

β0,t  21.033 5.523 22.411 5.758
β1,t  0.024 0.007 0.025 0.008
σt

2  84.774 0.000 93.713 0.000
µ1,t  11.531 0.179 12.045 0.194
µ2,t  10.253 0.169 10.525 0.176
µ3,t  8.914 0.136 9.033 0.144
µ4,t June 10.660 0.195 11.363 0.213
µ5,t 24 5.108 0.150 5.375 0.139
σ1,t

2  1.445 0.305 1.662 0.354
σ2,t

2  1.314 0.274 1.339 0.289
σ3,t

2  0.795 0.172 0.829 0.185
σ4,t

2  1.712 0.361 2.000 0.009
σ5,t

2  0.693 0.176 0.602 0.153
G1  0.557 0.498
G2  0.837 0.625
G3  0.630 0.492   
β0,t  15.796 5.940 15.826 6.182
β1,t  0.017 0.004 0.020 0.005
σt

2  72.216 0.000 75.490 0.000
µ1,t  10.096 0.146 10.811 0.179
µ2,t  9.210 0.127 9.746 0.149
µ3,t  7.924 0.138 8.370 0.145
µ4,t June 9.969 0.144 10.707 0.194
µ5,t 29 6.111 0.159 6.570 0.185
σ1,t

2  0.981 0.205 1.480 0.309
σ2,t

2  0.740 0.154 1.018 0.212
σ3,t

2  0.837 0.178 0.928 0.198
σ4,t

2  0.947 0.198 1.723 0.359
σ5,t

2  0.880 0.210 1.131 0.278
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Table 3.6. (continued)  

  With Without 
Parameter Date MLE S.D. MLE S.D.

β0,t  17.832 6.410 16.352 6.028
β1,t  0.011 0.003 0.013 0.004
σt

2  84.958 0.000 75.141 0.000
µ1,t  9.443 0.059 9.799 0.080
µ2,t  8.641 0.056 8.888 0.070
µ3,t  6.948 0.126 7.404 0.143
µ4,t July 9.359 0.087 9.711 0.098
µ5,t 4 6.468 0.081 6.843 0.111
σ1,t

2  0.161 0.034 0.295 0.062
σ2,t

2  0.146 0.030 0.225 0.047
σ3,t

2  0.702 0.150 0.900 0.192
σ4,t

2  0.352 0.073 0.438 0.091
σ5,t

2  0.258 0.058 0.468 0.107
β0,t  18.661 6.225 18.703 6.243
β1,t  0.010 0.003 0.010 0.003
σt

2  85.519 0.000 85.904 0.000
µ1,t  9.147 0.023 9.375 0.040
µ2,t  8.365 0.017 8.567 0.031
µ3,t  7.015 0.074 7.518 0.108
µ4,t July 9.034 0.017 9.263 0.037
µ5,t 9 6.590 0.054 6.959 0.070
σ1,t

2  0.024 0.005 0.074 0.016
σ2,t

2  0.013 0.003 0.045 0.009
σ3,t

2  0.245 0.052 0.526 0.111
σ4,t

2  0.014 0.003 0.063 0.013
σ5,t

2  0.115 0.026 0.197 0.044
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Table 3.7.  The 1999 run forecasts (thousands) with the run timing information 
incorporated.  

           Date to which  
cumulative data 

are available 
District Age 1.2 Age 1.3 Age 2.2 Age 2.3 Sum

 K-N          217        215        218        209           858 
 Egegik            73          18        190          66           348 

June 24 (15) Ugashik      16,107       3,773      8,254        997       29,132 
 Nushagak            19        173            1          10           203 
 Togiak            13          13          13          13             51 
 K-N      16,304      3,899       6,378        860       27,442 
 Egegik          771        333      1,656        494        3,255 

June 29 (20) Ugashik          659        205        295          92        1,251 
 Nushagak            15        208            1            8           231 
 Togiak            17          17          17          17             67 
 K-N      13,038      2,672      6,280      1,334       23,324 
 Egegik       4,576      1,147      5,133      1,000       11,855 

July 4 (25) Ugashik          224          68          97          31           421 
 Nushagak       3,103      3,302        326        229        6,959 
 Togiak            24          53            1            1             80 
 K-N      10,512      2,032      5,253      1,263       19,060 
 Egegik       3,904      1,043      4,973      1,020       10,940 

July 9 (30) Ugashik       1,687        302        478        126        2,593 
 Nushagak       4,328      3,463        590        235        8,616 
 Togiak            71        124            4            2           201 
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Table 3.8.  The 1999 run forecasts (thousands) with the run timing information not 
incorporated. 

       Date to which  
cumulative data 

are available 
District Age 1.2 Age 1.3 Age 2.2 Age 2.3 Sum

 K-N          239        236        240        229           944 
 Egegik            54          13        139          49           255 

June 24 (15) Ugashik      16,056      3,786      8,252        995       29,089 
 Nushagak            14        126            1            7           148 
 Togiak            10          10          10          10             40 
 K-N      16,304      3,899      6,378        860       27,442 
 Egegik          771        333      1,656        494        3,255 

June 29 (20) Ugashik          659        205        295          92        1,251 
 Nushagak            15        208            1            8           231 
 Togiak            17          17          17          17             67 
 K-N      11,876      2,440      5,713      1,214       21,242 
 Egegik        4,180      1,048      4,684        912       10,824 

July 4 (25) Ugashik          199          61          86          28           374 
 Nushagak       2,804      2,989        294        207        6,294 
 Togiak            22          48            1            1             72 
 K-N       9,788      1,885      4,887      1,176       17,736 
 Egegik       3,667        976      4,666        956       10,265 

July 9 (30) Ugashik       1,514        271        429        113        2,328 
 Nushagak       4,085      3,258        557        222        8,122 
 Togiak            67        116            3            2           188 
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Table 3.9.  The 2000 run forecasts (thousands) with the run timing information 
incorporated. 

       Date to which  
cumulative data 

are available 
District Age 1.2 Age 1.3 Age 2.2 Age 2.3 Sum

 K-N        2,564      11,741         433         276       15,014 
 Egegik        1,470       3,368      2,386      3,344       10,569 

June 24 (15) Ugashik          611       1,820         216         184         2,831 
 Nushagak            53          231            2            2           288 
 Togiak              8          290            4            1           302 
 K-N        1,060       5,672         250         331         7,312 
 Egegik          825       3,546      2,140      2,750         9,261 

June 29 (20) Ugashik           580       1,717         202         165         2,663 
 Nushagak        2,425       4,460          25          33         6,944 
 Togiak              8          297            4            1           310 
 K-N        1,151       5,439         891         432         7,914 
 Egegik          910       3,442      1,892      2,801         9,045 

July 4 (25) Ugashik          452       2,168         190         120         2,931 
 Nushagak        3,173       5,179          41          41         8,434 
 Togiak            12          458            6            1           477 
 K-N          910       4,378         565         542         6,395 
 Egegik          792       2,928      1,807      2,361         7,886 

July 9 (30) Ugashik          287       1,632         121          78         2,117 
 Nushagak        3,189       4,654          58          38         7,939 
 Togiak            14          540            7            1           563 
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Table 3.10.  The 2000 run forecasts (thousands) with the run timing information not 
incorporated. 

       Date to which  
cumulative data 

are available 
District Age 1.2 Age 1.3 Age 2.2 Age 2.3 Sum

 K-N        2,765      12,630         465         296       16,156 
 Egegik        1,611       3,683      2,610      3,656       11,560 

June 24 (15) Ugashik          659       1,965         233         198         3,056 
 Nushagak            81          351            3            3           437 
 Togiak            11          409            5            1           426 
 K-N          955       5,160         233         316         6,664 
 Egegik          741       3,231      2,015      2,670         8,657 

June 29 (20) Ugashik        1,113       3,278         395         313         5,100 
 Nushagak        2,346       4,349          25          34         6,754 
 Togiak            10          388            5            1           404 
 K-N        1,326       6,189      1,027         506         9,048 
 Egegik          944       3,535      1,993      2,999         9,472 

July 4 (25) Ugashik          568       2,705         238         152         3,662 
 Nushagak        3,433       5,543          45          45         9,066 
 Togiak            16          588            8            1           612 
 K-N        1,086       5,216         687         662         7,651 
 Egegik          919       3,397      2,149      2,830         9,295 

July 9 (30) Ugashik          392       2,222         165         106         2,885 
 Nushagak        3,945       5,734          73          48         9,800 
 Togiak            20          770          10            1           801 
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Table 3.11.  The 2001 run forecasts (thousands) with the run timing information 
incorporated. 

       Date to which  
cumulative data 

are available 
District Age 1.2 Age 1.3 Age 2.2 Age 2.3 Sum

 K-N          720      27,569      1,361      2,312       31,962 
 Egegik            32       5,067         835      2,507         8,440 

June 24 (15) Ugashik            55       2,920         246         285         3,506 
 Nushagak            10       6,104            1          72         6,186 
 Togiak              3            90            1            1             95 
 K-N          814      24,052      1,301      1,615       27,782 
 Egegik            59       3,578         676      2,228         6,540 

June 29 (20) Ugashik            65       1,051          68          88         1,271 
 Nushagak            78       8,302            6          85         8,471 
 Togiak              4          196            1            2           203 
 K-N          539      12,552         511         690       14,292 
 Egegik            59       2,877         904      2,096         5,936 

July 4 (25) Ugashik            28          453          29          38           548 
 Nushagak          365      10,783            7          81       11,237 
 Togiak              7          487            1            7           502 
 K-N          290       8,590         269         433         9,583 
 Egegik            42       1,961         739      1,583         4,325 

July 9 (30) Ugashik          139          687          33          69           928 
 Nushagak          399       7,957          11          68         8,436 
 Togiak            10          636            1          10           656 
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Table 3.12.  The 2001 run forecasts (thousands) with the run timing information not 
incorporated.  

       Date to which  
cumulative data 

are available 
District Age 1.2 Age 1.3 Age 2.2 Age 2.3 Sum

 K-N          737      27,440      1,279      2,250       31,706 
 Egegik            40       5,958      1,022      2,911         9,931 

June 24 (15) Ugashik            59       3,135         266         305         3,765 
 Nushagak            13       7,732            1          90         7,836 
 Togiak              4          123            1            1           129 
 K-N          955      29,151      1,473      1,826       33,405 
 Egegik            71       4,346         817      2,660         7,894 

June 29 (20) Ugashik            93       1,498          97         125         1,813 
 Nushagak            63       7,276            4          74         7,417 
 Togiak              5          241            1            3           250 
 K-N          822      17,348         760         952       19,882 
 Egegik            69       3,482      1,049      2,534         7,134 

July 4 (25) Ugashik            36          583           37          49           705 
 Nushagak          332      11,836            6          89       12,263 
 Togiak              9          572            1            9           590 
 K-N          370      10,964         358         562       12,254 
 Egegik            52       2,421         910      1,969         5,352 

July 9 (30) Ugashik          184          910          44          91         1,229 
 Nushagak          499      10,003          14          87       10,603 
 Togiak            13          850            1          13           878 
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Table 3.13.  Comparison of the effect of incorporating the run timing forecast on the 
1999 run forecasts and that of ignoring the run timing forecast.  ‘With’ and ‘Without’ 
denote ‘with incorporation of the run timing forecast’ and ‘without it.’  Units of the 
forecast and error values are ‘numbers in thousands’ and ‘%.’  The minus (-) sign 
indicates an under-forecast. 

 With Without Date to which  
cumulative data 

are available 
District     Forecast         Error    Forecast         Error 

 K-N          858 -94.9          944 -94.4 
 Egegik          348 -96.2          255 -97.2 

June 24 (15) Ugashik      29,132 643.3       29,089 642.3 
 Nushagak          203 -97.6          148 -98.3 
 Togiak            51 -89.8            40 -92.0 
 K-N      27,442 63.7      27,442 63.7 
 Egegik        3,255 -64.4       3,255 -64.4 

June 29 (20) Ugashik        1,251 -68.1       1,251 -68.1 
 Nushagak          231 -97.3          231 -97.3 
 Togiak            67 -86.7            67 -86.7 
 K-N      23,324 39.1      21,242 26.7 
 Egegik      11,855 29.6      10,824 18.3 

July 4 (25) Ugashik          421 -89.3          374 -90.5 
 Nushagak        6,959 -18.0       6,294 -25.8 
 Togiak            80 -84.2            72 -85.6 
 K-N      19,060 13.7      17,736 5.8 
 Egegik      10,940 19.6      10,265 12.2 

July 9 (30) Ugashik        2,593 -33.8       2,328 -40.6 
 Nushagak        8,616 1.6       8,122 -4.3 
 Togiak          201 -60.1          188 -62.6 
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Table 3.14.  Comparison of the effect of incorporating the run timing forecast on the 
2000 run forecasts and that of ignoring the run timing forecast.  ‘With’ and ‘Without’ 
denote ‘with incorporation of the run timing forecast’ and ‘without it.’  Units of the 
forecast and error values are ‘numbers in thousands’ and ‘%.’  The minus (-) sign 
indicates an under-forecast. 

 With Without Date to which  
cumulative data 

are available 
District     Forecast         Error    Forecast         Error 

 K-N      15,014 90.6      16,156 105.1 
 Egegik      10,569 29.9      11,560 42.1 

June 24 (15) Ugashik        2,831 33.0       3,056 43.6 
 Nushagak          288 -96.6          437 -94.9 
 Togiak          302 -72.7          426 -61.5 
 K-N        7,312 -7.2       6,664 -15.4 
 Egegik        9,261 13.8       8,657 6.4 

June 29 (20) Ugashik        2,663 25.2       5,100 139.6 
 Nushagak        6,944 -18.7       6,754 -21.0 
 Togiak          310 -72.0          404 -63.4 
 K-N        7,914 0.5       9,048 14.9 
 Egegik        9,045 11.2       9,472 16.4 

July 4 (25) Ugashik        2,931 37.7       3,662 72.1 
 Nushagak        8,434 -1.3       9,066 6.1 
 Togiak          477 -56.9          612 -44.6 
 K-N        6,395 -18.8       7,651 -2.9 
 Egegik        7,886 -3.1       9,295 14.2 

July 9 (30) Ugashik        2,117 -0.5       2,885 35.6 
 Nushagak        7,939 -7.1       9,800 14.7 
 Togiak          563 -49.1          801 -27.5 
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Table 3.15.  Comparison of the effect of incorporating the run timing forecast on the 
2001 run forecasts and that of ignoring the run timing forecast.  ‘With’ and ‘Without’ 
denote ‘with incorporation of the run timing forecast’ and ‘without it.’  Units of the 
forecast and error values are ‘numbers in thousands’ and ‘%.’  The minus (-) sign 
indicates an under-forecast. 

 With Without Date to which  
cumulative data 

are available 
District     Forecast         Error    Forecast         Error 

 K-N      31,962 291.2      31,706 288.1 
 Egegik        8,440 120.3       9,931 159.2 

June 24 (15) Ugashik        3,506 167.8        3,765 187.6 
 Nushagak        6,186 -17.2       7,836 4.9 
 Togiak            95 -91.4          129 -88.4 
 K-N      27,782 240.0      33,405 308.9 
 Egegik        6,540 70.7       7,894 106.1 

June 29 (20) Ugashik        1,271 -2.9       1,813 38.5 
 Nushagak        8,471 13.4       7,417 -0.8 
 Togiak          203 -81.7          250 -77.5 
 K-N      14,292 74.9      19,882 143.4 
 Egegik        5,936 54.9       7,134 86.2 

July 4 (25) Ugashik          548 -58.2          705 -46.2 
 Nushagak      11,237 50.4      12,263 64.1 
 Togiak          502 -54.7          590 -46.7 
 K-N        9,583 17.3      12,254 50.0 
 Egegik        4,325 12.9       5,352 39.7 

July 9 (30) Ugashik          928 -29.1       1,229 -6.2 
 Nushagak        8,436 12.9      10,603 41.9 
 Togiak          656 -40.8          878 -20.8 
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Table 3.16.  Evaluation of the incorporation of the Port Moller gear selectivity for age- 
specific fish in forecasting the 1999 returns.  The forecast (thousands) and error (%) 
values under the ‘Without’ column represent those calculated with the selectivity 
ignored.  The values under the ‘With’ column are the same as those under the ‘With’ 
column in Table 3.13.  In both cases, I incorporated the run time forecast information 
accordingly.  The minus (-) sign indicates an under-forecast. 

 With Without Date to which  
cumulative data 

are available 
District     Forecast         Error    Forecast         Error 

 K-N          858 -94.9       1,177 -93.0 
 Egegik          348 -96.2          362 -96.0 

June 24 (15) Ugashik      29,132 643.3      27,770 608.6 
 Nushagak          203 -97.6          219 -97.4 
 Togiak            51 -89.8            51 -89.8 
 K-N       27,442 63.7          647 -96.1 
 Egegik        3,255 -64.4       2,299 -74.9 

June 29 (20) Ugashik        1,251 -68.1      27,092 591.3 
 Nushagak          231 -97.3          235 -97.2 
 Togiak            67 -86.7            67 -86.7 
 K-N      23,324 39.1      20,216 20.6 
 Egegik      11,855 29.6      12,228 33.6 

July 4 (25) Ugashik          421 -89.3          422 -89.2 
 Nushagak        6,959 -18.0       9,075 7.0 
 Togiak            80 -84.2            80 -84.1 
 K-N      19,060 13.7      18,241 8.8 
 Egegik      10,940 19.6      10,982 20.0 

July 9 (30) Ugashik        2,593 -33.8       2,418 -38.3 
 Nushagak        8,616 1.6       9,162 8.0 
 Togiak          201 -60.1          203 -59.8 
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Table 3.17.  Evaluation of the incorporation of the Port Moller gear selectivity for age- 
specific fish in forecasting the 2000 returns.  The forecast (thousands) and error (%) 
values under the ‘Without’ column represent those calculated with the selectivity 
ignored.  The values under the ‘With’ column are the same as those under the ‘With’ 
column in Table 3.14.  In both cases, I incorporated the run time forecast information 
accordingly.  The minus (-) sign indicates an under-forecast. 

 With Without Date to which  
cumulative data 

are available 
District     Forecast         Error    Forecast         Error 

 K-N      15,014 90.6      15,169 92.6 
 Egegik      10,569 29.9      10,930 34.3 

June 24 (15) Ugashik        2,831 33.0       2,569 20.7 
 Nushagak          288 -96.6          285 -96.7 
 Togiak          302 -72.7          305 -72.4 
 K-N        7,312 -7.2       8,303 5.4 
 Egegik        9,261 13.8       9,755 19.9 

June 29 (20) Ugashik        2,663 25.2       2,507 17.8 
 Nushagak        6,944 -18.7       5,488 -35.8 
 Togiak          310 -72.0          317 -71.3 
 K-N        7,914 0.5       8,045 2.1 
 Egegik        9,045 11.2       9,425 15.8 

July 4 (25) Ugashik        2,931 37.7       3,029 42.3 
 Nushagak        8,434 -1.3       7,500 -12.2 
 Togiak          477 -56.9          482 -56.4 
 K-N        6,395 -18.8       6,417 -18.6 
 Egegik        7,886 -3.1       7,929 -2.6 

July 9 (30) Ugashik        2,117 -0.5       2,152 1.1 
 Nushagak        7,939 -7.1       7,866 -8.0 
 Togiak          563 -49.1          566 -48.8 
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Table 3.18.  Evaluation of the incorporation of the Port Moller gear selectivity for age- 
specific fish in forecasting the 2001 returns.  The forecast (thousands) and error (%) 
values under the ‘Without’ column represent those calculated with the selectivity 
ignored.  The values under the ‘With’ column are the same as those under the ‘With’ 
column in Table 3.15.  In both cases, I incorporated the run time forecast information 
accordingly.  The minus (-) sign indicates an under-forecast. 

 With Without Date to which  
cumulative data 

are available 
District     Forecast         Error    Forecast         Error 

 K-N      31,962 291.2      28,561 249.6 
 Egegik        8,440 120.3      10,940 185.6 

June 24 (15) Ugashik        3,506 167.8       3,561 172.0 
 Nushagak        6,186 -17.2       6,712 -10.2 
 Togiak            95 -91.4            95 -91.4 
 K-N      27,782 240.0       23,932 192.9 
 Egegik        6,540 70.7       8,466 121.0 

June 29 (20) Ugashik        1,271 -2.9       1,290 -1.5 
 Nushagak        8,471 13.4       9,732 30.2 
 Togiak          203 -81.7          203 -81.7 
 K-N      14,292 74.9       13,730 68.1 
 Egegik        5,936 54.9       6,237 62.8 

July 4 (25) Ugashik          548 -58.2          548 -58.1 
 Nushagak      11,237 50.4      11,177 49.6 
 Togiak          502 -54.7          503 -54.6 
 K-N        9,583 17.3       9,562 17.0 
 Egegik        4,325 12.9       4,343 13.4 

July 9 (30) Ugashik          928 -29.1          914 -30.2 
 Nushagak        8,436 12.9       8,416 12.6 
 Togiak          656 -40.8          656 -40.8 
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Table 3.19.  Age-specific proportions in data observed up to day code 25 (July 4) of 
year 1999, and those in the 1999 run forecasts made at the day.   The first category is the 
observed data available up to the day, the second category is the run forecasts made with 
the Port Moller selectivity for age-specific fish considered, and the third one is the run 
forecasts with the selectivity ignored.  These values are used to draw Figure 3.13.   

Category Area Age 1.2 Age 1.3   Age 2.2 Age 2.3 
 Port Moller 0.45 0.21 0.26 0.08 
 K-N 0.48 0.14 0.29 0.09 
Observed data Egegik 0.35 0.11 0.44 0.11 
 Ugashik 0.53 0.16 0.23 0.07 
 Nushagak 0.42 0.50 0.05 0.04 
  Togiak 0.31 0.68 0.01 0.01 
 Total 0.42 0.23 0.26 0.09 
The run forecasts K-N 0.56 0.12 0.27 0.06 
made with the Egegik 0.39 0.10 0.43 0.08 
selectivity being  Ugashik 0.53 0.16 0.23 0.07 
considered Nushagak 0.45 0.47 0.05 0.03 
  Togiak 0.31 0.67 0.01 0.01 
 Total 0.44 0.21 0.27 0.08 
The run forecasts K-N 0.50 0.14 0.27 0.09 
made with the  Egegik 0.36 0.11 0.43 0.11 
selectivity being Ugashik 0.53 0.16 0.23 0.07 
ignored Nushagak 0.42 0.50 0.05 0.04 
  Togiak 0.31 0.67 0.01 0.01 
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Table 3.20.  Age-specific proportions in data observed up to day code 25 (July 4) of 
year 2000, and those in the 2000 run forecasts made at the day.   The first category is the 
observed data available up to the day, the second category is the run forecasts made with 
the Port Moller selectivity for age-specific fish considered, and the third one is the run 
forecasts with the selectivity ignored.  These values are used to draw Figure 3.14.   

Category Area Age 1.2 Age 1.3   Age 2.2 Age 2.3 
 Port Moller 0.15 0.63 0.08 0.14 
 K-N 0.14 0.68 0.12 0.06 
Observed Egegik 0.09 0.36 0.22 0.33 
 Ugashik 0.15 0.74 0.07 0.04 
 Nushagak 0.37 0.62 0.01 0.01 
  Togiak 0.03 0.96 0.01 0.00 
 Total 0.14 0.63 0.08 0.15 
 K-N 0.15 0.69 0.11 0.06 
Predicted with Egegik 0.10 0.38 0.21 0.31 
the age selectivity Ugashik 0.15 0.74 0.07 0.04 
 Nushagak 0.38 0.61 0.01 0.01 
  Togiak 0.03 0.96 0.01 0.00 
 Total 0.16 0.61 0.09 0.14 
 K-N 0.12 0.72 0.10 0.06 
Predicted without Egegik 0.08 0.40 0.18 0.35 
the age selectivity Ugashik 0.14 0.75 0.06 0.04 
 Nushagak 0.33 0.66 0.00 0.01 
  Togiak 0.03 0.96 0.01 0.00 
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Table 3.21.  Age-specific proportions in data observed up to day code 25 (July 4) of 
year 2001, and those in the 2001 run forecasts made at the day.   The first category is the 
observed data available up to the day, the second category is the run forecasts made with 
the Port Moller selectivity for age-specific fish considered, and the third one is the run 
forecasts with the selectivity ignored.  These values are used to draw Figure 3.15.   

Category Area Age 1.2 Age 1.3   Age 2.2 Age 2.3 
 Port Moller 0.03 0.82 0.05 0.11 
 K-N 0.01 0.93 0.01 0.05 
Observed Egegik 0.01 0.51 0.11 0.37 
 Ugashik 0.05 0.83 0.05 0.07 
 Nushagak 0.02 0.98 0.00 0.01 
  Togiak 0.02 0.97 0.00 0.02 
 Total 0.02 0.84 0.03 0.11 
 K-N 0.04 0.88 0.04 0.05 
Predicted with Egegik 0.01 0.49 0.15 0.35 
the age selectivity Ugashik 0.05 0.83 0.05 0.07 
 Nushagak 0.03 0.96 0.00 0.01 
  Togiak 0.02 0.97 0.00 0.02 
 Total 0.02 0.84 0.04 0.10 
 K-N 0.03 0.89 0.02 0.06 
Predicted without Egegik 0.01 0.48 0.14 0.37 
the age selectivity Ugashik 0.05 0.83 0.05 0.07 
 Nushagak 0.03 0.96 0.00 0.01 
  Togiak 0.02 0.97 0.00 0.02 
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(A) Variables and parameters over time 

   Time index                                      1       2      ......     i-1       i    

   Explanatory variables (data)          X1       X2      ......    Xi-1      Xi 

   Parameters                                     θ1       θ2       ......    θi-1 

   Response variables (data)              Y1       Y2       ......    Yi-1         iY% 

   

                                             Unobserved data: Predictive variables 
                                             (note tilde mark)  

 

(B) Estimation of updated parameters, and prediction of unobserved data 

     1 1 2 i-1 1 2 i-1
ˆ (observed data) ( ,  , ..., , , , ..., )i f f X X X Y Y Yθ − = =  

 

     
-1

ˆ (explanatory variables at , estimates of updated parameters) 
ˆ   ( ,  )

i

i i

Y f i

f X θ

=

=

%
 

 

 

Figure 3.1.  (A) Variables and parameters over time, and (B) Estimation of updated 
parameters, and prediction of unobserved data.  Estimation of parameters is based only 
on observed data, and must not be affected by estimates of predictive variables.  After 
parameters are estimated, predictive variables at time i can be calculated with estimates 
of updated parameters and explanatory variables at time i. 
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Figure 3.2.  Contingency table of the predictive run sizes.  ‘rs,a’of each cell denotes the 
final run size of stock s and age a.  The final run size means the cumulative run size up to 
the end of the season.  ‘ ,sr • ’ and ‘ ,ar• ’ represent the respective marginal sums.   ‘R’ is the 
total sum.    
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Figure 3.3.  Rogers’ regression model by day.  The determination coefficient (R2) ranges 
from 0.65 to 0.82 when outlier data (years 1990, 1994, 1997, and 2001) are excluded.   
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Figure 3.4.  Comparison of age composition (in percent) in the Port Moller fishery catch 
(dots) and that in run size to Bristol Bay (dashed line).  Age codes 1 through 4 denote 
ages 1.2, 1.3, 2.2, and 2.3, respectively.   
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Figure 3.5.  The distribution of the 1999 Egegik run size estimated at the specified day.   
The distribution predicted at June 30 includes values above the x-axis limit, but I don’t 
show them for the same scale of plots in the left column.   The dotted vertical line is the 
actual run size. 
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Figure 3.6.  An example of developing a location gamma density from an ordinary 
gamma density.  The histogram is the 1999 Egegik run distribution predicted at day code 
30 (July 9) by Equation 3.12, and the y-axis scale is adjusted as the probability density 
scale.  In A, an ordinary gamma density is fitted to the histogram.  The ordinary gamma 
shape looks symmetric while the histogram shape is not.  I added the asterisk (*) mark to 
the two parameters, α∗  and β∗  to indicate that they are different from α and β shown in C.  
After shifting the histogram, not changing the shape, I fit another ordinary gamma 
density to the shifted histogram (B).   And then I shift the new ordinary gamma and 
histogram back to the original location of the histogram (C).   The location gamma has an 
additional parameter, γ that indicates the minimum value of the histogram.  
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Figure 3.7. An example of five densities fitted to the 1999 Egegik run distribution 
predicted at day code 30 (July 9).   Parameters in the respective six densities are 
estimated by maximum likelihood method.  
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Figure 3.8.  The results of K-S goodness fit test of five parametric densities for the 1999 
Egegik run size.  The p-value is the average of those of five tests in Table 3.1, except for 
the test for the distribution predicted at day code 40 (July 19). 
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Figure 3.9.  An illustration of how I incorporate a run timing forecast into the estimation 
of run sizes.  (A) In forecasting run sizes at day t during the season, I use historical data, 
which correspond to day t in past years, to estimate parameters in the objective functions.   
(B) When detecting run timing earlier or later by q days, I use historical data that 
correspond to day ‘t ± q’ in past years.     
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Figure 3.10.  Summary of Table 3.13, where the 1999 run forecasts are compared with 
the actual returns.  The horizontal dotted line represents the actual run size.  The cross 
mark (×) points are run forecasts made with the run timing information incorporated, 
while the square marks are those made with the run timing information not incorporated. 
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Figure 3.11.  Summary of Table 3.14, where the 2000 run forecasts are compared with 
the actual returns.  The horizontal dotted line represents the actual run size.  The cross 
mark (×) points are run forecasts made with the run timing information incorporated, 
while the square marks are those made with the run timing information not incorporated. 
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Figure 3.12.  Summary of Table 3.15, where the 2001 run forecasts are compared with 
the actual returns.  The horizontal dotted line represents the actual run size.  The cross 
mark (×) points are run forecasts made with the run timing information incorporated, 
while the square marks are those made with the run timing information not incorporated. 
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Figure 3.13.  Comparison of the effect of considering the Port Moller gear selectivity for 
age-specific fish on the 1999 run forecasts made at day code 25 (July 4) and that of 
ignoring the selectivity.  Dots indicate age composition (in proportion) observed up to the 
day, solid lines represent that in run forecasts made with the selectivity considered, and, 
and dashed lines are that in run forecasts made with the selectivity ignored.  In case of the 
‘Port Moller’ box, dots are age composition observed in the Port Moller fishery catch up 
to the day. 
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Figure 3.14.  Comparison of the effect of considering the Port Moller gear selectivity for 
age-specific fish on the 2000 run forecasts made at day code 25 (July 4) and that of 
ignoring the selectivity.  Dots indicate age composition (in proportion) observed up to the 
day, solid lines represent that in run forecasts made with the selectivity considered, and, 
and dashed lines are that in run forecasts made with the selectivity ignored.  In case of the 
‘Port Moller’ box, dots are age composition observed in the Port Moller fishery catch up 
to the day. 
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Figure 3.15.  Comparison of the effect of considering the Port Moller gear selectivity for 
age-specific fish on the 2001 run forecasts made at day code 25 (July 4) and that of 
ignoring the selectivity.  Dots indicate age composition (in proportion) observed up to the 
day, solid lines represent that in run forecasts made with the selectivity considered, and, 
and dashed lines are that in run forecasts made with the selectivity ignored.  In case of the 
‘Port Moller’ box, dots are age composition observed in the Port Moller fishery catch up 
to the day. 
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Figure 3.16.   Relation between fish length, fish age, and the selectivity of the Port 
Moller gillnet fishery.   The unit of selectivity is a fraction.   
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CHAPTER IV.  UNCERTAINTY IN ESTIMATES OF RETURNS  

 

INTRODUCTION 

This chapter is an extension of Chapter 3, where I did the point estimates of returns.   

The objective of this chapter is to show uncertainty in estimates of returns.   I use Bayes’ 

law to build the distributions of forecasts.   Fried and Hilborn (1988) used Bayes’ law for 

an inseason forecast of total run size.   In subsection ‘Other studies of inseason forecast’ 

under section 1.2.3 of Chapter I, the paper is reviewed.   Fried and Hilborn (1988) did not 

estimate stock-specific returns but only total run size. 

    

METHODS 

4.1.  PARAMETER DISTRIBUTIONS 

There were 16 parameters (Chapter 3).   Regarding the parameter uncertainty, we 

are interested in the parameter distributions in addition to the point estimates.   Generally 

when we estimate a predictive variable associated with distributions of parameters, we 

have to draw random values from the parameter distributions, and then use the values to 

build a distribution of the predictive variable (Gelman et al. 1995).   If we apply the idea 

to the forecast algorithm of this thesis, we must: 

(1) build distributions of parameters;  

(2) draw a set of random values from the parameter distributions and pass the random 

values to the optimization stage (the next step);  

(3) per the set of the random values from the parameter distributions in step 2, find 

optimized values of the predictive variables (returns) in the joint objective 

function; 

(4) after saving the optimized values, repeat the above steps until the frequency 

distributions of the run estimates become smooth.    
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However, this above procedure could not be handled in ADMB (see the ‘TPL 

file structure’ section in Appendix I for the reasoning).   As an alternative method, I 

treated the respective likelihood functions of the parameters (Equations 3.26, 3.34, and 

3.36) as the objective functions.   That is, I let the 16 parameters as well as run sizes 

become not-fixed quantities (see TPL file structure of Appendix I).   And then, I 

estimated both the predictive variables (run sizes) and the parameters, simultaneously.   

Though this idea can be easily implemented into ADMB, it is not correct because the 

parameter estimates are affected by estimates of the predictive variables.   The parameter 

estimates should be independent of the predictive variables (Figure 3.8).   Because of the 

incorrectness, I compared the alternative method with the correct method where only data 

were used for the estimation of parameters.   Figures 4.1, 4.2, and 4.3 show the likelihood 

profiles of the parameter estimates used to forecast the 1999, 2000, 2001 returns at July 4, 

respectively.   In these figures, each solid line indicates the distribution of the respective 

parameter estimated by the alternative method, while each dashed line represents that 

estimated by the correct method.    When I use the parameter estimates of the correct 

method for forecasts of returns, I pass the MLEs (i.e., fixed values) of the parameters to 

the PROCEDURE_SECTION, where the predictive returns are estimated.   Regarding 

the x-axis labels and units in Figures 4.1, 4.2, and 4.3, refer to Table 4.5 and Table 3.3.   

The difference between those two methods in mode and variance of the respective 

parameter estimate was not significant except for the estimates of ‘ga1’ (G1), ‘ga2’ (G2), 

and ‘ga3’ (G3) in Figure 4.1, and those of ‘beta0’ (β0,t), ‘beta1’ (β1,t) , and ‘sigma2’ (σ t2) 

in Figure 4.2.   In sub-section, ‘4.2.4. Alternative method revisited,’ I discuss whether the 

differences in parameter estimates between the two methods lead to a significant 

difference in the predictive returns. 
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4.2.  ESTIMATION OF RETURNS 

4.2.1.  Bayesian framework 

Both UW Alaska Salmon Program (ASP) and ADFG make preseason forecasts of 

stock- and age- specific returns.   I used the preseason run forecasts for the prior 

information of returns in a Bayesian context.   The following equation expresses the 

Bayes’ law, ignoring a denominator constant term.   

 Pr( | data) Pr(data | ) Pr( )r r r∝ ⋅r r r  (4.1) 

Pr( )rr denotes the joint prior distribution of stock- and age- returns, and Pr( | data)rr is the 

joint posterior distribution of returns.    

Pr(data | )rr  represents the probability distribution of data, and it is replaced by the 

joint objective function of returns.   To those who fully understand Chapter 3, the 

following (Equation 4.2) description may be redundant.        
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 (4.2) 

•  Pr( )R%: Predictive normal distribution of unobserved data, total run size 

( ,s as a
R r=∑ ∑ ).   This term corresponds to Equation 3.3. 

•   Pr( | )tU r
r r : Joint multinomial distribution of observed data, age-specific 

cumulative catches up to day t.   This term is Equation 3.5, where age-specific 

returns are parameters.       

•  ,Pr( )sr g% : Predictive lognormal distribution of unobserved data, stock-specific run 

size.   This term corresponds to Equation 3.15.   Five lognormal distributions are 

considered for the five stocks (note product sign over stock s).  
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•  ,Pr( | )s tj r

r r : Joint multinomial distribution of observed data, stock- and age- 

specific cumulative runs up to day t.   This term is Equation 3.21, where stock- 

and age- returns are parameters.   Five multinomial distributions are considered 

for the five stocks (note product sign over stock s). 

4.2.2.  Prior distribution of returns 

As the joint prior distribution of stock- and age- specific returns, I used two kinds: 

a uniform distribution and a normal distribution.   When I deployed the uniform prior 

distribution of returns, the ‘ Pr( )rr ’ term in Equation 4.1 was just a constant. 

In applying the normal distribution of returns to the joint prior distribution, I used 

preseason forecasts of returns made by UW ASP.   That is, for the mean value of stock- 

and age- specific run, I used preseason forecast (point estimate) of the run size.      

However, both UW ASP and ADFG do not provide the variances of preseason forecasts.   

Thus, I needed to infer the variance from error mean square (MSE) of an ordinary 

regression model where I used the historical preseason forecast and the actual run size for 

the exploratory variable and the response variable, respectively.   For example, when I 

inferred the variance of preseason forecast of Egegik- and age 1.2- run of year 2000, I 

built an ordinary regression model with the historical preseason forecasts of the runs prior 

to 2000 and the actual run sizes of the corresponding years.   I took MSE of the 

regression model for the variance of preseason forecast of Egegik- and age 1.2- run of 

year 2000.   Table 4.1 displays data that were used for the regression model.   Tables 4.2, 

4.3, and 4.4 show the variance estimates of preseason forecasts of the 1999, 2000, and 

2001 returns, respectively.    

The MSE values for preseason forecasts of Togiak returns of ocean age-2 were too 

small (almost zero) or could not be calculated, because the actual run sizes were 

negligible; Togiak- and age 1.2- run was reported as 0.1 million fish, and Togiak- and age 

2.2- run as 0 million fish every year (Table 4.1).   For the missing MSE values, I used the 

average of the MSE values for preseason forecasts of Togiak returns of ocean age-3 

(Tables 4.2, 4.3, and 4.4).    
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The respective variance estimates of preseason forecasts of stock- and age- 

returns were independent by stock and age, except for Togiak returns of ocean age-2.   I 

assume independence between preseason forecasts of 20 run sizes (Figure 3.1), so the 

joint prior density of returns is the product of the respective normal densities of returns.  

That is,   

 ,Pr( ) Pr( )s a
s a

r r=∏∏r  (4.3) 

,Pr( )s ar is the normal density of stock s- and age a- run, whose mean and variance are 

preseason forecast of the run, and MSE of the regression model of the historical actual 

run sizes against the corresponding preseason forecasts.  

 
2

, ,
,

,,

( )1Pr( ) exp
2

s a s a
s a

s as a

r E r
r

MSEMSE

  −  ∝ ⋅ −
⋅ 

 
 (4.4) 

where E(rs,a) is preseason forecast of stock- and age- specific run. 

4.2.3.  Calculation of the joint posterior distribution of returns 

The Markov Chain Monte Carlo (MCMC) calculation is implemented in ADMB.   

MCMC is a well-known method of calculating marginal posterior distributions.   When 

we calculate Bayes’ law where a multivariate density is involved, we have to integrate 

the multivariate distribution over the dimensions.   It is almost impossible to analytically 

integrate a high-dimensional distribution over the dimensions.   The MCMC is a method 

of numerically integrating a high-dimensional distribution and sampling from a posterior 

distribution to build marginal posterior distributions.   ADMB MCMC method uses the 

Metropolis-Hastings algorithm.   Studies associated with the MCMC method cite mainly 

the following literature: Gelman et al. (1995), and Gamerman (1997). 

When I calculated the marginal posterior distributions of the predictive returns, I 

did one million MCMC runs, and sampled the results at intervals of 30 because of 

autocorrelation.   Because of the sequential correlation of the Markov chain, we are 
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advised to use the run results at intervals of some simulation runs.   The procedure is 

called ‘thinning’ (Raftery and Lewis 1996; Patterson 1999).   

4.2.4.  Alternative method revisited 

Because of differences in the parameter estimates between the alternative method 

and the correct method (Figures 4.1, 4.2 and 4.3), I checked how different the estimates 

of the predictive returns made by the alternative method were from those made by the 

classical method where point estimates (MLE) of parameters were used. 

Figure 4.4 shows the posterior distributions of the 1999, 2000, and 2001 returns 

estimated at July 4 of the respective year by the alternative method (solid line) and the 

classical method (dashed line).   In both cases, I incorporated run timing forecast (Table 

2.5), and used the uniform densities for the prior densities of returns.   In Figure 4.4, the 

modes of the posterior distributions made by the classical method are a little closer to the 

actual returns (vertical dotted line) than those made by the alternative method.  But the 

differences were not significant (Figure 4.4), so I proceeded with the alternative method. 

 

RESULTS 

By the hind-casting procedure, I made forecasts of the 1999, 2000, and 2001 

returns at three days of the respective year: day codes 15 (June 24), 20 (June 29), and 25 

(July 4).   Though I also made them at day code 30 (July 9) in Chapter 3, I do not in 

Chapter 4 because the day (July 9) is after the half point of the return season, and 

forecasts of returns made after the day are not interesting.   I present the marginal 

posterior distributions of stock-specific returns, because forecasts of stock-specific 

returns are of the most interest to ADFG. 
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4.3.  POSTERIOR DISTRIBUTIONS 

It took about 17 minutes to do one million MCMC simulation runs in ADMB with 

a personal computer whose CPU speed and RAM size were 750 MHz and 192 MB, 

respectively.       

4.3.1.  Marginal posterior distributions of stock-specific returns 

Figures 4.5, 4.6, and 4.7 show the marginal posterior distributions of stock-specific 

returns of 1999, 2000, and 2001 made at three days (day codes 15, 20, and 25).   

Regardless of the prior densities of returns, the modes of the posterior distributions 

approach the actual returns (vertical dotted line), and the variances of the posterior 

distributions become narrow as forecast time progresses during the respective season 

(year). 

4.3.2.  Uniform prior vs. normal prior 

In Figures 4.5, 4.6, and 4.7, the posterior distributions of returns from the uniform 

priors (solid lines) are much wider than those from the normal priors.   Tables 4.6, 4.7, 

and 4.8 present forecast errors in terms of relative error (%) between the modes of the 

posterior distributions of returns and the actual returns.   The minus (-) sign indicates an 

under-forecast error.   Generally the normal priors of returns led to smaller errors in 

forecasts than the uniform priors, except for the 1999 run forecasts (Tables 4.6, 4.7, and 

4.8).   In case of the 2001 forecasts (Table 4.8), the errors from the normal priors were all 

smaller than those from the uniform priors, except for the Togiak run forecasts made at 

June 29 and July 4.    

   

DISCUSSION 

4.4.  PRESEASON FORECASTS 

Preseason forecasts of returns are usually not accurate enough to be used for 

management.   Absolute values of relative errors in preseason forecasts of stock-specific 
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returns of 1999, 2000, and 2001 ranged from 4.4% to 130.3% (Figure 4.8).   Despite 

the uncertainty, using the preseason forecast information for prior densities of returns 

increased the accuracy of the posterior distributions of returns (Tables 4.6, 4.7, and 4.8; 

Figures 4.5, 4.6, and 4.7).     

However, as the season progresses, we should decrease our reliance on posterior 

distributions of returns from the normal prior densities of preseason forecasts, and 

increase our reliance on those from the uniform prior densities.   As inseason data are 

accumulated, it is better not to incorporate the uncertain preseason forecast information.   

Figure 4.9 illustrates an example where forecasts (posterior distributions) of the 2000 

returns were made at June 24 (an initial time of the season) and at July 9 (a middle time 

of the season).   In Figure 4.9, dashed lines depict the posterior distributions from the 

normal prior, and solid lines depict the posterior distributions from the uniform prior.   In 

the posterior distributions of June 24 (left column of Figure 4.9), the modes of the 

distributions from the normal prior are closer to the actual returns (vertical dotted line) 

than those from the uniform prior, but the distributions from the normal prior do not 

cover the actual returns securely, especially for the Ugashik and Nushagak returns.   In 

the posterior distributions of July 9 (right column of Figure 4.9), the distributions from 

the uniform prior are obviously better than those from the normal; (1) the distributions 

from the uniform prior cover the actual returns more securely, and (2) their accuracy (in 

modes and variances) improves on that of the distributions of June 24 (left column). 

  

4.5.  PORT MOLLER FISHERY DATA 

It costs about US $100,000 to deploy the Port Moller test fishery per season.   

There is no literature that evaluates the test fishery’s value.   The traditional inseason 

forecast method (Rogers’ regression model) with the Port Moller catch data has been 

questionable.   The determination coefficients (R2) of Rogers’ regression model ranged 

from 0.65 to 0.82, where data of outlier years (1990, 1994, 1997, and 2001) are excluded 

(Figure 3.2).   When data of outlier years were included, the coefficient was only about 
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0.46 (Figure 1.7).   In response to this uncertainty, a question may be raised: say, ‘Is 

such a uncertain forecast worth the monetary value?’   

I examine a contribution of the Port Moller catch data to forecasts of returns.   

Figure 4.10 shows the effect of absence of the Port Moller data on forecasts of returns, 

displaying forecasts (posterior distributions) of the 2001 returns made at June 24 (an 

initial time of the season) and July 14 (a final time of the season).   In Figure 4.10, dashed 

lines represent the posterior distributions calculated without the objective functions of 

Port Moller data (the first and second components in Table 3.2), and solid lines are those 

calculated with them as well as the other objective functions.   For both cases, the 

uniform prior densities of returns are used, and run timing information is incorporated 

accordingly.   In posterior distributions of July 14 (right column of Figure 4.10), the two 

lines are almost identical; i.e. the absence of the Port Moller data does not make a 

difference in forecasts made at a final time of the season.   However, in posterior 

distributions of June 24 (left column of Figure 4.10), the distributions made without the 

Port Moller data (dashed lines) are extremely inaccurate.   This indicates that the Port 

Moller data are necessary to forecasts made at an initial time of the season.    
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Table 4.1.  Data that are used to calculate the variances of preseason forecasts by 
stock and age.  The unit of the actual and forecast run size is number in thousands.  KN 
denotes Kvichak-Naknek.    

Year District Age Actual Forecast Year District Age Actual Forecast
1992 KN 1.2 2,930 3,300 1994 Ugashik 2.2 2,479 1,700
1992 KN 1.3 3,940 2,500 1994 Ugashik 2.3 2,252 400
1992 KN 2.2 5,236 6,400 1995 Ugashik 1.2 2,034 600
1992 KN 2.3 4,157 1,600 1995 Ugashik 1.3 709 1,700
1993 KN 1.2 2,727 3,500 1995 Ugashik 2.2 2,302 1,300
1993 KN 1.3 3,414 1,900 1995 Ugashik 2.3 955 1,400
1993 KN 2.2 5,180 5,100 1996 Ugashik 1.2 191 900
1993 KN 2.3 4,005 2,600 1996 Ugashik 1.3 3,167 3,700
1994 KN 1.2 2,208 5,400 1996 Ugashik 2.2 597 1,200
1994 KN 1.3 2,780 2,300 1996 Ugashik 2.3 1,218 2,000
1994 KN 2.2 20,158 13,400 1997 Ugashik 1.2 265 700
1994 KN 2.3 1,144 2,100 1997 Ugashik 1.3 597 700
1995 KN 1.2 3,434 2,200 1997 Ugashik 2.2 1,013 1,000
1995 KN 1.3 2,552 3,500 1997 Ugashik 2.3 326 500
1995 KN 2.2 22,780 36,000 1998 Ugashik 1.2 333 800
1995 KN 2.3 3,898 4,700 1998 Ugashik 1.3 352 600
1996 KN 1.2 795 2,400 1998 Ugashik 2.2 241 1,100
1996 KN 1.3 6,661 3,700 1998 Ugashik 2.3 827 700
1996 KN 2.2 1,114 2,400 1999 Ugashik 1.2 2,816 600
1996 KN 2.3 2,715 4,700 1999 Ugashik 1.3 328 1,000
1997 KN 1.2 1,272 6,200 1999 Ugashik 2.2 692 1,000
1997 KN 1.3 851 1,900 1999 Ugashik 2.3 198 100
1997 KN 2.2 882 1,700 2000 Ugashik 1.2 402 400
1997 KN 2.3 513 2,100 2000 Ugashik 1.3 0 4,500
1998 KN 1.2 2,476 6,200 2000 Ugashik 2.2 0 400
1998 KN 1.3 2,441 2,000 2000 Ugashik 2.3 0 400
1998 KN 2.2 1,180 4,600 1992 Nushagak 1.2 2,016 1,100
1998 KN 2.3 564 1,700 1992 Nushagak 1.3 1,878 2,500
1999 KN 1.2 10,269 5,800 1993 Nushagak 1.2 2,925 1,300
1999 KN 1.3 2,035 2,500 1993 Nushagak 1.3 3,907 3,800
1999 KN 2.2 4,252 8,400 1993 Nushagak 2.3 131 100
1999 KN 2.3 1,237 1,000 1994 Nushagak 1.2 1,299 1,900
2000 KN 1.2 402 3,000 1994 Nushagak 1.3 3,744 2,600
2000 KN 1.3 2,340 8,800 1994 Nushagak 2.2 73 200
2000 KN 2.2 723 3,600 1995 Nushagak 1.2 3,123 1,300
2000 KN 2.3 338 1,300 1995 Nushagak 1.3 2,890 3,300
1992 Egegik 1.2 413 700 1995 Nushagak 2.2 487 100
1992 Egegik 1.3 4,561 2,000 1995 Nushagak 2.3 96 100
1992 Egegik 2.2 8,863 5,300 1996 Nushagak 1.2 2,670 1,800
1992 Egegik 2.3 4,515 2,300 1996 Nushagak 1.3 4,790 4,800
1993 Egegik 1.2 513 400 1996 Nushagak 2.2 60 200
1993 Egegik 1.3 1,278 1,100 1996 Nushagak 2.3 322 200
1993 Egegik 2.2 11,061 11,000 1997 Nushagak 1.2 1,910 1,700
1993 Egegik 2.3 11,239 5,700 1997 Nushagak 1.3 2,472 3,600
1994 Egegik 1.2 403 400 1997 Nushagak 2.2 107 200
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Table 4.1.  (continued) 

Year District Age Actual Forecast Year District Age Actual Forecast
1994 Egegik 1.3 456 1,200 1997 Nushagak 2.3 110 100
1994 Egegik 2.2 6,063 2,900 1998 Nushagak 1.2 3,066 2,900
1994 Egegik 2.3 5,650 11,700 1998 Nushagak 1.3 2,280 2,900
1995 Egegik 1.2 1,397 800 1998 Nushagak 2.2 150 300
1995 Egegik 1.3 867 1,100 1998 Nushagak 2.3 86 0
1995 Egegik 2.2 9,598 5,500 2000 Nushagak 1.2 804 1,500
1995 Egegik 2.3 3,979 4,700 2000 Nushagak 1.3 0 3,800
1996 Egegik 1.2 335 800 2000 Nushagak 2.2 0 300
1996 Egegik 1.3 3,939 1,700 2000 Nushagak 2.3 0 300
1996 Egegik 2.2 3,113 6,000 1992 Togiak 1.2 111 100
1996 Egegik 2.3 4,721 7,200 1992 Togiak 1.3 575 400
1997 Egegik 1.2 497 1,300 1993 Togiak 1.2 132 100
1997 Egegik 1.3 1,117 3,600 1993 Togiak 1.3 403 400
1997 Egegik 2.2 4,963 6,700 1994 Togiak 1.2 101 100
1997 Egegik 2.3 2,607 2,300 1994 Togiak 1.3 328 400
1998 Egegik 1.2 368 600 1994 Togiak 2.3 53 100
1998 Egegik 1.3 573 1,000 1995 Togiak 1.2 189 100
1998 Egegik 2.2 880 3,700 1995 Togiak 1.3 460 400
1998 Egegik 2.3 3,099 3,300 1996 Togiak 1.2 50 100
1999 Egegik 1.2 3,173 600 1996 Togiak 1.3 429 600
1999 Egegik 1.3 985 1,100 1996 Togiak 2.3 37 100
1999 Egegik 2.2 4,246 4,700 1997 Togiak 1.2 64 100
1999 Egegik 2.3 993 1,300 1997 Togiak 1.3 124 300
2000 Egegik 1.2 0 1,100 1997 Togiak 2.3 29 100
2000 Egegik 1.3 0 5,000 1998 Togiak 1.2 43 100
2000 Egegik 2.2 0 4,400 1998 Togiak 1.3 229 300
2000 Egegik 2.3 0 3,100 1998 Togiak 2.2 6 0
1992 Ugashik 1.2 463 800 1998 Togiak 2.3 30 0
1992 Ugashik 1.3 1,626 1,600 1999 Togiak 1.2 341 100
1992 Ugashik 2.2 1,875 1,100 1999 Togiak 1.3 166 200
1992 Ugashik 2.3 1,750 500 1999 Togiak 2.2 31 0
1993 Ugashik 1.2 694 1,500 1999 Togiak 2.3 15 0
1993 Ugashik 1.3 692 1,600 2000 Togiak 1.2 0 100
1993 Ugashik 2.2 2,144 1,500 2000 Togiak 1.3 0 900
1993 Ugashik 2.3 2,310 900 2000 Togiak 2.2 0 0
1994 Ugashik 1.2 345 600 2000 Togiak 2.3 0 100
1994 Ugashik 1.3 391 900    
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Table 4.2.  The variances of the 1999 preseason forecasts by stock and age.  The MSE 
values for preseason forecasts of Togiak returns of ocean age-2 could not be calculated, 
so the values were replaced by the average of the MSE values for preseason forecasts of 
Togiak returns of ocean age-3.  That is, 5,652 is the mean value of 8,266 and 3,037 (see 
the bottom row).  The unit is (number in thousands)2. 

  Age1.2 Age1.3 Age2.2 Age2.3
K-N    3,401,351       402,272  40,354,778   1,845,376 
Egegik       111,155       986,878   5,580,280  11,947,424 
Ugashik       112,754       178,560        38,138      402,164 
Nushagak       426,042       375,807         3,666         1,845 
Togiak          5,652          8,266         5,652         3,037 
 

 

Table 4.3.  The variances of the 2000 preseason forecasts by stock and age.  The MSE 
values for preseason forecasts of Togiak returns of ocean age-2 could not be calculated, 
so the values were replaced by the average of the MSE values for preseason forecasts of 
Togiak returns of ocean age-3.  That is, 5,457 is the mean value of 8,763 and 2,150 (see 
the bottom row).  The unit is (number in thousands)2. 

  Age1.2 Age1.3 Age2.2 Age2.3
K-N    3,154,284       346,226  34,743,877   1,806,658 
Egegik         96,060       854,278   4,664,666  10,621,201 
Ugashik         94,326       153,293        33,322      435,728 
Nushagak       426,042       375,807         3,666         1,845 
Togiak          5,457          8,763         5,457         2,150 
 

 

Table 4.4.  The variances of the 2001 preseason forecasts by stock and age.  The MSE 
values for preseason forecasts of Togiak returns of ocean age-2 could not be calculated, 
so the values were replaced by the average of the MSE values for preseason forecasts of 
Togiak returns of ocean age-3.  That is, 24,482 is the mean value of 45,772 and 3,193 
(see the bottom row).  The unit is (number in thousands)2. 

  Age1.2 Age1.3 Age2.2 Age2.3
K-N    2,805,521    5,462,567  30,058,333   1,573,821 
Egegik         98,919    2,188,391   4,122,386   9,148,752 
Ugashik       106,882    1,895,483        56,287      382,698 
Nushagak       355,097       609,315         3,238        13,327 
Togiak         24,482         45,772        24,482         3,193 
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Table 4.5.  Labels in Figures 4.1, 4.2, and 4.3.   Table 3.3 shows a detailed description 
about the parameters and their units. 

Label Correct notation 
beta0, beta1, sigma2 β0,t, β1,t, σt

2         
logmu_KN, logsigma2_KN µ1,t , σ1,t

2      
logmu_E, logsigma2_E µ2,t , σ2,t

2      
logmu_U, logsigma2_U µ3,t , σ3,t

2      
logmu_N, logsigma2_N µ4,t , σ4,t

2      
logmu_T, logsigma2_T µ5,t , σ5,t

2      
ga1, ga2, ga3 G1, G2, G3   

 

 

 

 

 

Table 4.6.  Forecast errors (%) in posterior distributions of the 1999 returns calculated at 
the given day with the two prior densities of runs being used: uniform and normal.  The 
error values are a relative difference between the modes of the posterior distributions in 
Figure 4.5 and the corresponding actual returns.  The minus (-) sign indicates an under-
forecast. 

June 24 June 29 July 4 
District Uniform Normal Uniform Normal Uniform Normal 
K-N -53.5 -5.7 4.5 -21.1 13.6 -1.7 
Egegik -38.5 -53.1 22.0 -32.0 60.6 -31.2 
Ugashik 521.3 -25.5 123.8 -26.2 16.2 -27.1 
Nushagak -7.1 -25.5 -54.5 -29.9 51.3 -19.2 
Togiak 22.0 -32.9 355.5 -18.2 -70.4 -31.4 
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Table 4.7.  Forecast errors (%) in posterior distributions of the 2000 returns calculated at 
the given day with the two prior densities of runs being used: uniform and normal.  The 
error values are a relative difference between the modes of the posterior distributions in 
Figure 4.6 and the corresponding actual returns.  The minus (-) sign indicates an under-
forecast. 

June 24 June 29 July 4 
District Uniform Normal Uniform Normal Uniform Normal 
K-N 110.5 26.8 70.6 24.0 29.1 33.9 
Egegik 54.0 25.1 67.8 21.0 29.1 20.8 
Ugashik 339.7 132.5 302.5 132.7 353.7 122.5 
Nushagak -25.4 -27.7 41.7 -22.6 41.3 -21.5 
Togiak -2.9 -21.9 35.1 -20.5 -36.8 -21.7 
 

 

 

 

 

Table 4.8.  Forecast errors (%) in posterior distributions of the 2001 returns calculated at 
the given day with the two prior densities of runs being used: uniform and normal.  The 
error values are a relative difference between the modes of the posterior distributions in 
Figure 4.7 and the corresponding actual returns.  The minus (-) sign indicates an under-
forecast. 

June 24 June 29 July 4 
District Uniform Normal Uniform Normal Uniform Normal 
K-N 162.1 -3.4 104.2 0.2 84.7 5.7 
Egegik 251.4 81.1 154.0 76.3 75.9 52.2 
Ugashik 755.1 176.7 453.1 143.1 391.4 98.3 
Nushagak 77.7 0.2 132.3 1.7 153.5 1.8 
Togiak -67.8 -65.8 14.0 -57.9 -24.2 -49.8 
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Figure 4.1.  Comparison of the alternative method (solid line) and the correct method 
(dashed line) in the likelihood profiles of the parameter estimates that are used for 
making the 1999 run forecasts at July 4.  Regarding the x-axis labels and units, refer to 
Table 4.5 and Table 3.3.    
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Figure 4.2.  Comparison of the alternative method (solid line) and the correct method 
(dashed line) in the likelihood profiles of the parameter estimates that are used for 
making the 2000 run forecasts at July 4.  Regarding the x-axis labels and units, refer to 
Table 4.5 and Table 3.3.    
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Figure 4.3.  Comparison of the alternative method (solid line) and the correct method 
(dashed line) in the likelihood profiles of the parameter estimates that are used for 
making the 2001 run forecasts at July 4.  Regarding the x-axis labels and units, refer to 
Table 4.5 and Table 3.3.    
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Figure 4.4.  Comparison of the alternative method (solid line) and the classical method 
(dashed line) in posterior distributions of the 1999, 2000 and 2001 returns estimated at 
July 4 of the respective year.  The vertical dot line refers to the actual run size.  In both 
cases, I incorporated run timing forecast (Table 2.5) accordingly, and used the uniform 
densities for the prior densities of returns.    
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Figure 4.5.  Marginal posterior distributions of stock-specific returns of 1999 made at 
three days: June 24, June 29, and July 4 (each column).  Solid lines are the posterior 
distributions with the uniform prior densities used, and dashed lines are those with the 
normal prior densities used.  Run timing forecast was incorporated accordingly (Table 
2.5). 
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Figure 4.6.  Marginal posterior distributions of stock-specific returns of 2000 made at 
three days: June 24, June 29, and July 4 (each column).  Solid lines are the posterior 
distributions with the uniform prior densities used, and dashed lines are those with the 
normal prior densities used.  Run timing forecast was incorporated accordingly (Table 
2.5). 
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Figure 4.7.  Marginal posterior distributions of stock-specific returns of 2001 made at 
three days: June 24, June 29, and July 4 (each column).  Solid lines are the posterior 
distributions with the uniform prior densities used, and dashed lines are those with the 
normal prior densities used.  Run timing forecast was incorporated accordingly (Table 
2.5). 
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Figure 4.8.  Relative errors (%) in preseason forecasts of stock-specific returns of 1999, 
2000, and 2001.  The negative errors indicate under-forecasts.  KN: Kvichak-Naknek; E: 
Egegik; U: Ugashik; N: Nushagak; T: Togiak. 
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Figure 4.9.  An example illustrating that the normal prior densities of returns decrease 
the forecast accuracy as time progresses during the season.  Forecasts (posterior 
distributions) of the 2000 returns are made at June 24 (an initial time of the season; left 
column) and July 9 (a middle time of the season; right column).  Dashed lines are the 
posterior distributions with the normal prior used, and solid lines are those with the 
uniform prior used. 
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Figure 4.10.  An example showing importance of the Port Moller fishery data.  The 2000 
run forecasts are made at June 24 (an initial time of the season; left column) and July 14 
(a final time of the season; right column) without the Port Moller fishery data (dashed 
line) and with the data (solid line).  The absence of the Port Moller data leads to 
extremely poor forecasts of returns during the initial stage of the season, but it does not 
make any difference during the final stage. 
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CHAPTER V.  CONCLUSIONS 

An accurate forecast of fish run timing will improve a forecast of salmon run size 

because it indicates the percentage of final run size that pass an area of interest on a 

certain day.   Forecasts of returns, made with the incorporation of run timing detected 

from the Port Moller test fishery data, were less biased than those made without the run 

timing incorporation (Tables 3.13, 3.14, and 3.15; Figures 3.8, 3.9, and 3.10).   However, 

the run timing detection by the Port Moller data is quite uncertain.   For example, yearly 

Port Moller RTI evaluated even at the last day of the test fishery (day code 30) does not 

account for about 41% of variation in yearly run timing of four district fish (except the 

Togiak stock); in Figure 2.6, the determination coefficient (R2) between Port Moller RTI 

of day code 30 and the inshore RTI is about 59% (= 0.772).       

Also yearly Port Moller RTI does not capture well the fluctuation magnitude in 

yearly run timing of four district fish (Figure 2.6).   Because I subtract the average of Port 

Moller RTI estimates of years prior to a season of interest from Port Moller RTI of the 

season to detect how early or how late fish run timing of the season is different from 

those of the past years (Equation 2.4), the fluctuation magnitude is an important statistic.    

Because of the uncertainty in Port Moller RTI as a run timing estimate, I suggest 

that managers should also use other indicators in judging fish run timing.   For example, 

seawater temperature may be a run timing index of the Bristol Bay sockeye salmon.   A 

few studies reported that seawater temperature was negatively correlated with the run 

timing of the Bristol Bay sockeye salmon (Burgner 1980, Nishiyama 1984): the warmer 

the ocean is, the earlier the fish return.   Variability in the fish ocean distribution in 

response to ocean temperature may explain the negative correlation.   The distribution is 

farther north and closer to coastal waters near their natal streams during warm years and 

thus the fish can arrive at their home streams earlier than during cold years when the 

ocean distribution is farther south to the open waters of the North Pacific ocean (Rogers 

1984).   However, seawater temperature also is an uncertain indicator of fish run timing.   

Burgner (1991) reported that inter-annual differences in early spring ocean surface 
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temperatures accounted for about 50% of the deviation in run timing of the Bristol 

Bay sockeye salmon.    

Given the uncertainty in a run timing forecast, managers may opt to compare 

several hypotheses regarding fish run timing based on as much information as they can 

collect such as Port Moller RTI, environmental data, anecdotal stories, and experiences.   

Managers can simulate those hypotheses by simply changing day code in the forecast 

ADMB program (section 3.6. Incorporation of run timing forecast; Appendix).   Figure 

5.1 shows an example of the idea where forecasts (posterior distributions) of 2001 returns 

are estimated at day code 20 (June 29) under three hypotheses regarding fish run timing: 

(1) fish run timing in the 2001 season is earlier by five days than the average of those in 

the past year seasons (dashed line), (2) it is not different (dashed and three-dotted line), 

and (3) it is later by five days (solid line).   Posterior distributions in the left column of 

Figure 5.1 are from the uniform prior densities, and those in the right column are from the 

normal prior densities of preseason forecasts. 

In estimating returns, I used all data available (inseason and historical data) (Table 

3.2).   In addition, I could add information of preseason forecasts of returns into the 

estimation by the Bayesian method.   During the initial stage of the season, posterior 

distributions of returns from the normal prior of preseason forecasts were generally better 

than those from the uniform prior.   However, the contribution of the preseason forecasts 

will depend on how accurate they are.   As inseason data are accumulated in time during 

the season, we should decrease reliance on the preseason forecast information  

Regarding forecasts of the Bristol Bay sockeye salmon returns, many studies have 

been done.   One of the recent studies is the research of Adkison and Peterman (2000).   

Adkison and Peterman (2000) examined errors of various forecast models with possible 

permutations of the following predictors: spawner-recruit relationships, air temperature, 

sea surface temperature, Pacific Decadal Oscillation, North Pacific Index, sibling returns 

to date, and last year’s deviation from the expected return.   Adkison and Peterman 

(2000) found that the accuracy of any model was not better that the historical accuracy of 

the ADFG and UW ASP forecasts.   The study reminds me that it is very hard to make an 

accurate forecast in a large ecosystem.    
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The value of this thesis is the development of a forecast algorithm for the 

Bristol Bay sockeye salmon returns rather than a remarkable improvement of the forecast 

accuracy.   Managers may find the forecast algorithm useful for a management tool. 

Recently Flynn and Hilborn (In preparation) developed a new model whose 

forecast of sockeye salmon run size to Bristol Bay is much less biased than the traditional 

forecast model.   As future work, I suggest that the model should be incorporated into the 

current forecast algorithm of this thesis. 
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Figure 5.1.  An example exploring several hypotheses regarding run timing.  Posterior 
distributions of the 2001 returns are estimated at day code 20 (June 29) under three 
hypotheses: (1) fish run timing in the 2001 season is later by five days than those of the 
past year seasons (solid line), (2) it is not different from those of the past year seasons 
(dashed and dotted line), and (3) it is earlier by five days than those of the past year 
seasons (dashed line).  Posterior distributions in the left column are from the uniform 
prior, and those in the right column are from the normal prior (preseason forecasts).  
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APPENDIX I.  INTRODUCTION TO ADMB 

In this appendix, I briefly describe ADMB for those who wish to use the forecast 

ADMB program developed in this thesis.   For a detailed description about ADMB, refer 

to the manual (Anonymous 1994, 2000) available free from the following website: 

http://otter-rsch.com/admodel.htm 

Quick recipe for running ADMB program 

For source code, two text files are required: a TPL file and a DAT file.   Implement 

computation code in a TPL file, and put data in a DAT file (see examples of a TPL file 

and a DAT file in Appendix II). 

When a TPL file and a DAT file are ready, we have to compile and link the TPL 

file before running the program.   The ADMB command, ‘makeadm’ compiles the TPL 

file and links it to ADMB library.   Once the compile and link are successful, an 

executable file will be generated automatically.   The name of the executable file is the 

same as that of the TPL file except for the extension name.   The extension name of a 

TPL file is ‘TPL,’ while that of its executable file is ‘EXE.’   If the executable file is 

successfully run with the DAT file, several files are generated.   Of these, some important 

files are a PAR file, an STD file, a COR file, and a REP file.   The PAR file has the 

parameter estimates, the STD file has not only the parameter estimates but also the 

standard deviations, and the COR file has the variance-covariance matrix of the 

estimates.   The REP file contains the output of REPORT_SECTION in the TPL file.   As 

an option, we may want the MCMC or likelihood profile computation.   An HST file has 

the marginal distribution of the respective parameter after the MCMC computation.   A 

PLT file contains the likelihood profile of the respective parameter after the likelihood 

profile computation.    

In the following lists, I summarize the above paragraph, assuming the names of a 

TPL file and a DAT file are ‘general.tpl’ and ‘yr2001d20.dat,’ respectively.  I display 

ADMB key words in bold font.  
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•  makeadm  general 

(compile and link TPL file, general) 

•  general -ind yr2001d20.dat 

(run executable file, general with DAT file, yr2001d20.dat)  

•  general -ind yr2001d20.dat -mcmc 1000000 -mcsave 30 

(optional computation: do one million MCMC runs and save the results every 30 

MCMC runs) 

•  general -ind yr2001d20.dat -lprof 

(optinal computation: compute the likelihood profile) 

TPL file structure 

A TPL file consists of up to nine sections.   Three of these sections are required: 

DATA_SECTION, PARAMETER_SECTION, and PROCEDURE_SECTION.   In 

DATA_SECTION, data values are set, and they are treated as constants.   In 

PARAMETER_SECTION, quantities of estimation interest are declared, and they are 

treated as not-fixed values (quantities).   The reason why I use term, ‘not-fixed values’ is 

to avoid confusion.   The general meaning of parameters is different from that of 

parameters in ADMB, where only quantities of estimation interest are called parameters1.   

Quantities, which we do not intend to estimate, must be declared outside 

PARAMETER_SECTION, and be treated as fixed values.   The estimation of not-fixed 

quantities is done in PROCEDURE_SECTION, where the objective function of not-fixed 

quantities is repeatedly differentiated with respect to all the respective not-fixed 

quantities. 

In implementing the forecast algorithm of this thesis into ADMB, stock- and age- 

specific returns are not-fixed quantities.   The 16 parameter estimates associated with the 

                                                 
1 Some of ADMB users call quantities of estimation interest ‘free parameters,’ but the 
terms are not found in ADMB manual. 
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joint objective function are fixed quantities, and should be declared outside 

PARAMETER_SECTION; they should remain fixed during PROCEDURE_SECTION 

(during the estimation of returns).   The ADMB requirement prevents the use of random 

values from the parameter distributions (see four-step procedure in section 4.1). 
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APPENDIX II.  FORECAST ADMB CODE 

TPL FILE 
I show an example of a TPL file here.   ‘//’ is followed by comments.   The first 

value in DAT file is to be passed to ‘daycode’ in the first line under DATA_SECTION.   

By changing the value, users can explore as many hypotheses regarding run timing as 

they want (section 3.6. Incorporation of run timing forecast; Chapter 5).    

   
DATA_SECTION 
  init_int daycode;   //today's daycode 
 
  init_ivector whichLike(1,4); //which likelihood 
 
  //Port Moller regression component 
  init_number pmx; // daily cumulative index (cpue) for Port M. for the regression 
  
  init_vector Ud(1,5);  //Cumulative runs of the five districts  
  
  vector ncump(1,5); //length of the elements in the historical cump (e.g. KNcump) 
 
  // Data for Multinomial A (PM) 
  init_vector pmUa(1,4);  //the cumulative age-specific catches from PM fishery 
  init_int ssize_MA // effective sample size for Mutinomial A 
  number pm_offset 
  number runs_offset 
 
  // change data to be proportions (and use assumed sample size) 
  !! pmUa /= sum(pmUa); 
  !! pm_offset =  -1.0* ssize_MA * (pmUa* log(pmUa)); //Added assumed sample size 
 
  // Data for Multinomial B (Samples from fisheries of dif districts) 
  init_matrix Uda(1,5,1,4);  //five districts and four ages 
  init_vector ssize_MB(1,5); 
  matrix ssizemat_MB(1,5,1,4); 
 
 LOCAL_CALCS 
    for (i=1;i<=5;i++)   {  
      ssizemat_MB(i)=ssize_MB(i);   
      // change data to be proportions (and use assumed sample size) 
      Uda(i) /= sum( Uda(i) ); 
      runs_offset +=  -1.0*ssize_MB(1)*(Uda(i)* log(Uda(i))); 
    } 
 END_CALCS 
 
  init_int prior_type 
  
  init_matrix mean_prior(1,5,1,4)  
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  init_matrix cv_prior(1,5,1,4) 
 
  //Data for the Port Moller index calculation  
  init_int betadim; //the number of betas in PM regression        
  init_int rpmindD; //rows of PM index data  
  init_int cpmindD; //columns of PM index data 
  init_int pmn; //rows of data matrix Xmat  
   
  init_ivector drows(1,5);  //rows of the five-district data sets 
  init_int dcols;  //columns of the five-district data sets 
  
  init_int gagen; //rows of the age ratio data  
  number gagen2;  
 
  matrix agefmat1(1,gagen,1,4); //PM age freq 
  matrix agefmat2(1,gagen,1,4); //district age freq 
  init_matrix agefreqpmmat(1,gagen,1,5); //age frequency of Port Moller catch 
  init_matrix agefreqdistmat(1,gagen,1,5); //age freq. of district run 
   
 LOCAL_CALCS 
     for(int i=1; i<=gagen; i++)   { 
        for(int j=1; j<=4; j++)  { 
            agefmat1(i,j)=agefreqpmmat(i,j+1); 
            agefmat2(i,j)=agefreqdistmat(i,j+1); 
        } 
     }         
 END_CALCS 
 
  matrix xmat(1,pmn,1,betadim); 
  matrix ymat(1,pmn,1,1); //column vector 
  init_matrix pmmat(1,rpmindD,1,cpmindD); //Port Moller data 
  
  int r; 
  !!r=1; 
 LOCAL_CALCS 
     for(i=1; i<=rpmindD; i++) 
       { 
       if(pmmat(i,2)==daycode) //2nd column is daycode 
          { 
           xmat(r,1)=pmmat(i,4); 
           xmat(r,2)=pmmat(i,5); 
           ymat(r,1)=pmmat(i,6); 
           r=r+1; 
          } 
       } 
 END_CALCS 
 
  !! int dr1=drows(1); 
  init_matrix KN_m(1,dr1,1,dcols)  //matrix form of KN data 
 
  !! int dr2=drows(2); 
  init_matrix E_m(1,dr2,1,dcols)  //matrix form of Egegik data 
 
  !! int dr3=drows(3); 
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  init_matrix U_m(1,dr3,1,dcols)  //matrix form of Ugashik data 
 
  !! int dr4=drows(4);  
  init_matrix N_m(1,dr4,1,dcols)  //matrix form of Nushagak data 
 
  !! int dr5=drows(5); 
  init_matrix T_m(1,dr5,1,dcols)  //matrix form of Togiak data 
 
  int counter;  
  int i;  
  int ii; 
  int j; 
  int k; 
 
  vector oldKNcump(1,50);  
  vector oldEcump(1,50); 
  vector oldUcump(1,50); 
  vector oldNcump(1,50); 
  vector oldTcump(1,50); 
 
 // start  the DATA SET 1 
 LOCAL_CALCS 
   ii=0; 
   for(i=1;i<=drows(1);i++) 
      { 
        if(KN_m(i,5)==daycode) //5th column is daycode 
          { 
           ii= ii+1; 
    if(KN_m(i,6)==0) 
             oldKNcump(ii)=0.00001; 
           else       
             oldKNcump(ii)=KN_m(i,6); //6th column is proportion 
          }      
      } 
 END_CALCS 
 
  vector KNcump(1,ii)  
 
 LOCAL_CALCS 
   for(k=1; k<=ii; k++) 
     KNcump(k)=oldKNcump(k); 
 END_CALCS 
 //end  the DATA SET 1 
 
 // start  the DATA SET 2 
 LOCAL_CALCS 
   ii=0; 
   for(i=1;i<=drows(2);i++) 
      { 
        if (E_m(i,5)==daycode) //5th column is daycode 
          { 
           ii= ii+1; 
           if(E_m(i,6)==0) 
             oldEcump(ii)=0.00001; 
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           else 
             oldEcump(ii)=E_m(i,6); //6th column is proportion 
          }      
      } 
 END_CALCS 
 
  vector Ecump(1,ii)  
 
 LOCAL_CALCS 
   for(k=1; k<=ii; k++) 
      Ecump(k)=oldEcump(k); 
 END_CALCS 
 //end  the DATA SET 2 
 
 //start  the DATA SET 3 
 LOCAL_CALCS 
   ii=0; 
   for(i=1;i<=drows(3);i++) 
      { 
        if (U_m(i,5)==(daycode)) //5th column is daycode 
          { 
           ii= ii+1; 
           if(U_m(i,6)==0) 
              oldUcump(ii)=0.00001; 
           else 
              oldUcump(ii)=U_m(i,6); //6th column is proportion 
          }      
      } 
 END_CALCS 
 
  vector Ucump(1,ii)  
 
 LOCAL_CALCS 
   for(k=1; k<=ii; k++) 
       Ucump(k)=oldUcump(k); 
 END_CALCS 
 //end  the DATA SET 3 
 
 //start  the DATA SET 4 
 LOCAL_CALCS 
   ii=0; 
   for(i=1;i<=drows(4);i++) 
      { 
        if (N_m(i,5)==daycode) //5th column is daycode 
          { 
           ii= ii+1; 
           if(N_m(i,6)==0) 
               oldNcump(ii)=0.00001; 
           else 
               oldNcump(ii)=N_m(i,6); //6th column is proportion 
          }      
      } 
 END_CALCS 
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  vector Ncump(1,ii)  
 
 LOCAL_CALCS 
   for(k=1; k<=ii; k++) 
     Ncump(k)=oldNcump(k); 
 END_CALCS 
 //end  the DATA SET 4 
 
 // start  the DATA SET 5 
 LOCAL_CALCS 
   ii=0; 
   for(i=1;i<=drows(5);i++) 
      { 
        if (T_m(i,5)==(daycode)) //5th column is daycode 
          { 
           ii= ii+1; 
 
           if(T_m(i,6)==0)  
               oldTcump(ii)=0.00001; 
           else 
               oldTcump(ii)=T_m(i,6); //6th column is proportion 
          }      
      } 
 END_CALCS 
 
  vector Tcump(1,ii)  
  
 LOCAL_CALCS 
   for(k=1; k<=ii; k++) 
       Tcump(k)=oldTcump(k); 
 END_CALCS 
 //end  the DATA SET 5 
   
PARAMETER_SECTION 
  init_bounded_vector pops_tmp(1,20,1.,100000.,2);  
   
  //betas in PM regression  
  init_number b0pm(1); //phase 1 
  init_number b1pm(1); //phase 1 
         
  number sig2pm;  //sigma squared in PM regression  
                  //sig2pm can be expressed as a function of data, b0pm and b1pm 
 
  init_vector lognmu_tmp(1,5,1); //mu in lognormal;//phase 1 
  init_bounded_vector lognsig2_tmp(1,5,0.,2.,1); //sigma2 in lognormal; //phase 1 
   
  init_bounded_vector gage_tmp(1,3,0.,1.,1); 
     
  sdreport_number totr; //total r 
  sdreport_vector pops_dist(1,5);  
  sdreport_matrix pops(1,5,1,4); //five districts and four ages 
  
  sdreport_vector betaPM(1,betadim);  
  sdreport_number varpm;  //equal to sig2pm 
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  sdreport_vector lognmu(1,5); 
  sdreport_vector lognsig2(1,5); 
     
  sdreport_vector gage(1,3);  
  
  number fbetasvar;   //negative log likelihood of betas and var in PM regression  
  number flognparam1; //negative log likelihood of log normal parameters 
  number flognparam2; //negative log likelihood of log normal parameters 
  number flognparam3; //negative log likelihood of log normal parameters 
  number flognparam4; //negative log likelihood of log normal parameters 
  number flognparam5; //negative log likelihood of log normal parameters 
  number fgearages;   //negative log likelihoodd of age selecivity by PM gillnet fishery 
 
  number fpm; //Port Moller predictive density 
  number fpmage; //multinomial with PM age data 
  number fage; //multinomial with runs age data 
 
  number flognormal; //likelihood for the lognormal/gamma 
 
  vector pm_multinom(1,4); //declare//PM multinomial elements 
  vector pmPredprop(1,4); //vector of PM age-specific proportions  
 
  matrix multinom(1,5,1,4); //declare//Run multinomial elements 
  matrix Predprop(1,5,1,4); //declare 
  matrix Normal_value(1,5,1,4); 
  
  matrix smat(1,betadim,1,betadim); 
  
  objective_function_value f; //negative logarithm 
 
INITIALIZATION_SECTION  
  pops_tmp 1000. 
  b0pm 25.7 
  b1pm 0.02 
  lognmu_tmp 7.0 
  lognsig2_tmp 0.5 
  gage_tmp 0.5 
   
PRELIMINARY_CALCS_SECTION 
  ncump(1)=KNcump.indexmax(); 
  ncump(2)=Ecump.indexmax(); 
  ncump(3)=Ucump.indexmax(); 
  ncump(4)=Ncump.indexmax(); 
  ncump(5)=Tcump.indexmax(); 
  gagen2=gagen;  //number of data rows for estimating MLE of age-specific gear selectivity 
   
PROCEDURE_SECTION 
  f=0.0; 
  pops.initialize(); //assign zero values 
  betaPM.initialize(); 
  lognmu.initialize(); 
  lognsig2.initialize(); 
  varpm=0.0; 
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  betaPM(1)=b0pm; 
  betaPM(2)=b1pm; 
  varpm=sig2pm; 
 
  fbetasvar=negloglike_betasvarF(betaPM); 
  f=fbetasvar; 
    
  for(i=1;i<=5;i++)  
     for(ii=1;ii<=4;ii++)  
        pops(i,ii)=pops_tmp(ii+4*(i-1)); 
 
  totr=sum(pops); 
  
  for(i=1;i<=5;++i) 
     pops_dist(i)=sum(pops(i)); 
 
  if(whichLike(3)==1) 
  {  
    fpm=(1.0/(2.0*varpm*square(1000)))*square(totr-(betaPM(1)+betaPM(2)*pmx)*1000); 
    f+=fpm; 
  } 
   
  gage=gage_tmp; 
   
  fgearages=negloglike_gearage(gagen2, gage); 
  f+=fgearages; 
 
  if(whichLike(1)==1) 
  {  
    pm_multinomial(); //multinomial A //returns pm_multinom 
    fpmage=sum(pm_multinom) - pm_offset; 
    f+=fpmage; 
  }  
 
  if(whichLike(2)==1) 
  { 
    multinomial();  //multinomial B 
    fage=sum(multinom) - runs_offset;  
    f+=fage;  
  } 
 
  lognmu=lognmu_tmp; 
  lognsig2=lognsig2_tmp; 
 
  flognparam1=negloglike_logmusig2F(lognmu(1), lognsig2(1), ncump(1), Ud(1)/KNcump); 
  flognparam2=negloglike_logmusig2F(lognmu(2), lognsig2(2), ncump(2), Ud(2)/Ecump); 
  flognparam3=negloglike_logmusig2F(lognmu(3), lognsig2(3), ncump(3), Ud(3)/Ucump); 
  flognparam4=negloglike_logmusig2F(lognmu(4), lognsig2(4), ncump(4), Ud(4)/Ncump); 
  flognparam5=negloglike_logmusig2F(lognmu(5), lognsig2(5), ncump(5), Ud(5)/Tcump); 
 
  f+=flognparam1; 
  f+=flognparam2; 
  f+=flognparam3; 



 

 

160
  f+=flognparam4; 
  f+=flognparam5; 
   
  if(whichLike(4)==1) 
  { 
    flognormal=0.0;  
    for (i=1;i<=5;++i) 
        { 
         flognormal += -1.0*log(1.0/sum(pops(i)) )+(1/(2*lognsig2(i))) * square( log(sum(pops(i)))-lognmu(i) 
);      
        } 
    f+=flognormal; 
  } 
 
  if(prior_type==1)  
     { 
       Normal_prior(); //each elements by age and district 
       f+=sum(Normal_value);  
     }  
    
FUNCTION dvariable negloglike_betasvarF(dvar_vector betas) 
   dvariable negl; 
   dvar_matrix bmat(1,betadim,1,1);//column vector 
   bmat(1,1)=betas(1); 
   bmat(2,1)=betas(2); 
   varpm=sum(square(ymat-xmat*bmat))/pmn; 
   negl=(pmn/2.0)*log(varpm)+(1/(2.0*varpm))*sum( rowsum(square(ymat-xmat*bmat)) ); 
   return negl; 
 
FUNCTION dvariable negloglike_logmusig2F(dvariable mu, dvariable sig2, double& n, dvector& yv) 
   dvar_vector negl(1,n); //each negative log likelihood 
   dvariable negL;  //sum of the respecive log likelihoods 
   for(int i=1; i<=n; i++)  
      negl(i)=(1.0/2.0)*log(sig2)+(1.0/(2.0*sig2))*square(log(yv(i))-mu); 
   negL=sum(negl); 
   return negL; 
 
FUNCTION dvariable negloglike_gearage(double& n, dvar_vector G) 
   dvar_vector negl(1,n);  //each negative log likelihood 
   dvariable negL;  //sumof the respective neg. log likelihood 
   dvar_vector gearagev(1,4); //vector of (g1,g2,g3,1) 
   gearagev(1)=G(1); 
   gearagev(2)=G(2); 
   gearagev(3)=G(3); 
   gearagev(4)=1; //assuming full selectivity for age 2.3 
   dvar_vector subnegl(1,4); 
    
   for(int i=1; i<=n; i++)  { 
      for(int j=1; j<=4; j++)   { 
         subnegl(j)=agefmat1(i,j)*log(agefmat2(i,j)*gearagev(j)/(agefmat2(i)*gearagev)); 
                //the denominator is vector*vector 
      }  
      negl(i)=-1.0*sum(subnegl); 
   } 
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   negL=sum(negl); 
   return negL; 
 
FUNCTION Normal_prior 
   Normal_value=  elem_div( square(pops - mean_prior),(2*square(elem_prod(cv_prior,mean_prior)))); 
     
FUNCTION pm_multinomial //returns vector form 
  dvar_vector gearagev(1,4); //vector of (g1,g2,g3,1) 
  gearagev(1)=gage(1); 
  gearagev(2)=gage(2); 
  gearagev(3)=gage(3); 
  gearagev(4)=1;  //assuming full selectivity for age 2.3 
   
  for(i=1;i<=4;i++)   
      pmPredprop(i)=gearagev(i)*(pops(1,i)+pops(2,i)+pops(3,i)+pops(4,i)+pops(5,i)); 
  pmPredprop /= sum(pmPredprop);    
  pm_multinom =  -1.0*ssize_MA*elem_prod(pmUa, log(pmPredprop));  
 
FUNCTION multinomial //returns matrix form 
  for(i=1;i<=5;i++) 
     Predprop(i)=pops(i)/sum(pops(i)); 
  multinom = -1.0*elem_prod(ssizemat_MB, elem_prod(Uda,log(Predprop) ) );  
 
REPORT_SECTION 
 report<<"Age frequencies of Port Moller & Districts"<<endl; 
 report<<"observed"<<endl; 
 report<<pmUa<<endl;  //observed PM age freq 
 report<<Uda<<endl;  //observed district age freq 
 report<<"predicted"<<endl; 
 report<<pmPredprop<<endl; 
 report<<Predprop<<endl; 
 report<<"PM regression from PM CPUE index"<<endl; 
 report<<"mean of regression model"<<endl; 
 report<<" "<<(betaPM(1)+betaPM(2)*pmx)*1000<<endl; 
 report<<"predicted total run"<<endl; 
 report<<" "<<totr<<endl; 
 report<<"mean values of district-run distribution"<<endl; 
 report<<" "<<mean(Ud(1)/KNcump)<<" "<<mean(Ud(2)/Ecump)<<" "<<mean(Ud(3)/Ucump); 
 report<<" "<<mean(Ud(4)/Ncump)<<" "<<mean(Ud(5)/Tcump)<<endl; 
 report<<"predicted district-runs"<<endl; 
 report<<" "; 
 for(i=1;i<=5;i++) 
    report<<sum(pops(i))<<" "; 
 report<<endl; 
 report<<"beta0, beta1 and var in PM regression model"<<endl; 
 report<<" "<<betaPM(1)<<" "<<betaPM(2)<<" "<<varpm<<endl; 
 report<<"lognormal_mu in district-run model"<<endl; 
 report<<lognmu<<endl; 
 report<<"lognormal_sigt in district-run model"<<endl; 
 report<<lognsig2<<endl; 
 report<<"Age-specific selectivity of PM gillnet"<<endl; 
 report<<gage<<endl; 
 report<<"negative log of PM multinomial: fpmage"<<endl; 
 report<<" "<<fpmage<<" "<<whichLike(1)<<endl; 
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 report<<"negative log of Inshore multinomial: fage"<<endl; 
 report<<" "<<fage<<" "<<whichLike(2)<<endl; 
 report<<"negative log of PM regression: fpm"<<endl; 
 report<<" "<<fpm<<" "<<whichLike(3)<<endl; 
 report<<"negative log of Lognormal: flognormal"<<endl; 
 report<<" "<<flognormal<<" "<<whichLike(4)<<endl; 
 report<<"Total objective: f"<<endl; 
 report<<" "<<f<<endl; 
 report<<"Prior (Normal: 1 or Uniform: 0): "<<prior_type<<endl; 
 report<<"Adjusted day code: "<<daycode<<endl; 
 report<<"duga and dtog: "<<duga<<" "<<dtog<<endl; 
 
 

DATA FILE 
I display an example of a DAT file here.   ‘#’ is followed by comments.   Because 

the historical data are so large, I omit the middle parts of the data from the example.     

#Which day? 
#adjusted day code(change)  #TODAY CODE 20 
#20  #add 2 because of being earlier by 1.6 than the past yrs (I sense it from PM data) 
22            
   
#Which likelihood (PM_Multinomial/ inshore_Multinomial/PM_Regression/ inshore_lognormal)  
1 1 1 1 
 
#pmx: Mean of cumulative Roger's weighted CPUE from PM fishery (change)     
#Unit of this value: 6000*catch/(fishing gear length (fm) * mean fishing time (minutes)) 
1821.905 
 
#For the lognormal(integrated across ages) Cummulative runsize to a particular day 
#Ud: unit of these values: (1000's) (change) 
3206 2079 124 2439 29 
 
#Data for Multinomial A (PM) 
#pmUa: cumulative age-specific catches by PM fishery (change) 
74 2960 164 385 
 
# sample size of multinomial A 
100 
 
#Data for Multinomial B (Samples from fisheries of dif districts) 
# Uda: Cumulative runs by district and age (change) 
# Real sample size 
30 3347 46 221 
29 2156 333 1337 
25 419 26 35 
14 1954 1 20 
5 253 0.1 3   #crash when 5 253 0 3 
# 
# sample size of multinomial B 
20 20 20 20 20 
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# PRIORS from preseason forecasts 
# Switch for prior type (1: normal/ 0: uniform) 
1 
 
# Prior Means (thousands)  
2500 1600 1500 1200 
600 2200 1200 1300 
400 200 300 500 
2500 4800 200 300 
100 300 40 40 
 
# Prior CV 
0.6700 1.4608 3.6550 1.0454 
0.5242 0.6724 1.6920 2.3267 
0.8173 6.8838 0.7908 1.2373 
0.2384 0.1626 0.2845 0.3848 
2.2128 0.7131 3.9117 1.4126 
 
#betadim: dimension of betas 
2 
#rpmindD: Rows of Rogers PM index data  
660 
#cpmindD: Columns of Rogers PM index data  
6 
#pmn: rows of data matrix, Xmat #(1998-1984-1)   
15 
 
#drows: Rows in the five district-specific data sets  
1714 1750 1664 1687 1385 
#dcols: The respective five district-specific data sets have 6 columns       
6 
 
#gagen: rows of age frequency data 
14 
 
#Age ratioes of Port Moller catch 
#pmyr a1.2 a1.3 a2.2 a2.3 
1987 0.462 0.185 0.182 0.171 
1988 0.190 0.505 0.200 0.105 
1989 0.106 0.203 0.503 0.187 
1990 0.108 0.234 0.410 0.249 
1991 0.140 0.517 0.158 0.185 
1992 0.079 0.349 0.322 0.250 
1993 0.063 0.200 0.266 0.471 
1994 0.068 0.202 0.398 0.332 
1995 0.138 0.157 0.506 0.199 
1996 0.075 0.520 0.131 0.275 
1997 0.119 0.335 0.279 0.267 
1998 0.176 0.381 0.090 0.352 
1999 0.447 0.211 0.260 0.082 
2000 0.147 0.633 0.078 0.142 
 
#Age ratioes of district run 
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#distyr a1.2 a1.3 a2.2 a2.3 
1987 0.496 0.232 0.119 0.153 
1988 0.208 0.430 0.229 0.133 
1989 0.103 0.161 0.641 0.095 
1990 0.141 0.215 0.432 0.213 
1991 0.194 0.479 0.209 0.119 
1992 0.133 0.278 0.356 0.234 
1993 0.128 0.189 0.341 0.342 
1994 0.084 0.147 0.585 0.184 
1995 0.161 0.118 0.572 0.148 
1996 0.107 0.520 0.128 0.245 
1997 0.203 0.262 0.346 0.189 
1998 0.344 0.294 0.129 0.233 
1999 0.513 0.212 0.211 0.064 
2000 0.202 0.622 0.080 0.095 
 
#pmmat: Rogers Port Moller index #660 rows 
#yr daycd dayindex one cumudayindex actrun 
1985 2 7.04 1 7.04 36.5 
1985 3 3.44 1 10.48 36.5 
1985 4 8.88 1 19.36 36.5 
1985 5 13.92 1 33.28 36.5 
1985 6 31.84 1 65.12 36.5 
1985 7 42.24 1 107.36 36.5 
1985 8 102.32 1 209.68 36.5 
1985 9 31.84 1 241.52 36.5 
 
..............(omitting) ...................... 
 
2000 25 25.23 1 604.12 27.8 
2000 26 19.11 1 623.23 27.8 
2000 27 28.47 1 651.70 27.8 
2000 28 13.02 1 664.72 27.8 
2000 29 5.70 1 670.42 27.8 
2000 30 0.00 1 670.42 27.8 
2000 31 0.00 1 670.42 27.8 
2000 32 0.00 1 670.42 27.8 
2000 33 0.00 1 670.42 27.8 
2000 34 0.00 1 670.42 27.8 
2000 35 0.00 1 670.42 27.8 
2000 36 0.00 1 670.42 27.8 
2000 37 0.00 1 670.42 27.8 
2000 38 0.00 1 670.42 27.8 
2000 39 0.00 1 670.42 27.8 
2000 40 0.00 1 670.42 27.8 
2000 41 0.00 1 670.42 27.8 
2000 42 0.00 1 670.42 27.8 
2000 43 0.00 1 670.42 27.8 
2000 44 0.00 1 670.42 27.8 
2000 45 0.00 1 670.42 27.8 
 
#distcd mo day yr daycd cumrunpro 
1 6 22 1955 13 0.0003 
1 6 23 1955 14 0.0003 
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1 6 24 1955 15 0.0003 
1 6 25 1955 16 0.0084 
1 6 26 1955 17 0.009 
1 6 27 1955 18 0.0685 
1 6 28 1955 19 0.0692 
1 6 29 1955 20 0.0718 
 
............... (omitting )............... 
 
5 8 7 2000 59 0.9946 
5 8 8 2000 60 0.996 
5 8 9 2000 61 0.9977 
5 8 10 2000 62 0.9985 
5 8 11 2000 63 0.9985 
5 8 12 2000 64 0.9985 
5 8 13 2000 65 0.9985 
5 8 14 2000 66 0.9989 
5 8 15 2000 67 1 
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