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Human Mortality 
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Professor James J. Anderson 
Quantitative Ecology and Resource Management 

 
 

Over life, the accumulation of small day-to-day processes associated with behavior, 

nutrition, health care, stress and other events contribute, in sum, to mortality. A biology-

motivated framework is developed in this work to quantify these contributions through 

two stochastic processes: an intrinsic process defining the survival capacity (i.e. vitality) 

of an organism declines stochastically to a zero-boundary, and an extrinsic process 

representing the occurrence of external stresses. Each of the two components is 

represented parsimoniously using relations that strongly reflect the general mechanisms 

underlying the killing processes. The model is demonstrated to be able to fit the mortality 

data of entire human life, provide biologically meaningful explanations for the observed 

mortality patterns, and conduct mechanism-based mortality partition. Finally, the ability 

to analyze historical mortality patterns through process-based parameters and explain the 

irregular patterns from other models (i.e. Strehler and Mildvan general theory of aging 

and mortality) helps address fundamental questions in demography, such as how the 

dynamics of environmental and physiological interactions change over time.
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 Chapter I: Introduction 

1.1 In Search for a Law 

In the past 200 hundred years, history has witnessed so many great achievements attained 

by human beings. Perhaps one of the most exciting achievements is that the average life 

expectancy of human beings has doubled from about 35 years to 70 years (Gurven and 

Fenelon 2009). This accomplishment is so inspiring that great efforts have been put into 

investigating the reasons behind such a dramatic improvement (Acsádi and Nemeskéri 

1970; Kunitz 1984; Hacker 1997; Cutler, Deaton et al. 2006).  More interestingly, we are 

eager to know whether there is a limit to the extension of human longevity (Manton, 

Stallard et al. 1991; Oeppen and Vaupel 2002; Bongaarts 2006; Vaupel 2010). However, 

answering these questions relies on a fundamental issue: why death and senescence 

happen?  

        As one of the greatest mysteries in the human history, the mechanisms underlying 

death and senescence attract scholars from a wide range of fields. The focus have unique 

to the individual fields. Biochemists have explored the free radical theory as a cause of 

senescence, molecular biologists have focused on telomere attrition, evolutionary 

biologist have investigated the age dependent forces of natural selection, and 

demographers have concentrated on illuminating functional forms underlying 

survivorship curves. In the field of demography, interests in age-specific mortality 

trajectory of human beings are largely aroused by its highly regular yet complex pattern, 

which is believed to be informative, reflecting the combined effects of natural aging with 

environmental insults (Neafsey 2008).  
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        Characterizing and understanding how the pattern of human mortality changes 

with age has been of great interest since the astronomer Edmond Halley (1694) 

constructed age-specific life tables for the city of Breslau in Silesi, now the city of 

Wrochlaw in Poland. After that the modern life table developed by the early British 

actuaries helped further reveal an approximately exponential increase in mortality with 

age (Gompertz 1825), in particular between age 30 and 80. With the advance of 

mathematical techniques and the improvement in the accuracy of death registration, the 

age-specific mortality pattern can be represented in more details. It is astonishing that the 

general features in this pattern have persisted over the centuries, in spite of the significant 

increase in human longevity. 

In particular, the pattern of human survival in both cohort and period lifespan data 

can be characterized by four visually distinct features when the log of the age-specific 

mortality rate log( )μ is plotted against age x (Fig. 1.1). The most dominant feature is the 

slope in curve which is typically characterized as linear, such that the mortality rate 

increases exponentially with age. The other persistent features of the curve characterize 

departures from the linear slope. An early age “hook” in the curve characterizes higher 

child mortality, an “elbow” characterizes a distinct increase in the curve slope at middle 

age and a “plateau” characterizes a leveling off of the mortality rate at old age. Besides 

these primary features, the curve sometimes has a pronounced secondary feature, a 

“hump”, known as the mortality peak at young adulthood (Fig. 1.1B). It is classified as a 

secondary feature, because, albeit widely observed, the pattern is not evident in all 

populations (Gage and Mode 1993). To resolve the mortality pattern, endeavors in two 

perspectives are essential. One is to fit the important elements of mortality curves and the 
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other is to explain the shape through biologically meaningful processes. Historically, a 

variety of models or so called theories and laws have been developed to address the 

mortality patterns emphasizing one or both of the perspectives.  
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Figure 1.1: Mortality rate in log scale against age for period Swedish females at year 1890 (A) 
and period Swedish males at year 1940 (B) (data source: Human mortality database (HMD 2010)). 
The general trend in mortality can be described by a linear increase with age, designated here the 
“Gompertz slope”. Deviations from the linear slope can characterized by three primary anomalies: 
an early age “hook”, middle age “elbow” and old age “plateau” and a second feature, young adult 
“hump”, significantly evident in the plot (B) only. 
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       Gompertz (1825) was the first to consider the pattern of mortality and proposed 

that to a reasonable degree the mortality rate can be expressed as an exponential function 

of age as ( ) exp( )x a bxμ = . The log form, log ( ) logx a bxμ = + , yields the first feature of 

Fig. 1, a linear increase in log mortality with slope b. The major contributions of 

Gompertz were in defining the increase in mortality with age which usually occurs within 

middle age span and proposing that there exists a general mechanism behind death. So 

fundamental were these ideas that his model was assumed to be the law of mortality. It 

quickly became a paradigm and to this day it is widely applied to mortality data due to its 

simplicity and universal applicability. The model is generally applied to truncated human 

mortality data starting from age 30 or 40 to avoid addressing the childhood “hook”. 

However, in spite of, or because of, its simplicity and stature, controversies have 

surrounded the law since it was proposed 175 years ago (Carnes, Olshansky et al. 1996; 

Olshansky and Carnes 1997). The Gompertz law, based on the instantaneous rate of 

mortality, is challenged as lacking a plausible mechanism (Bonneux 2003; Rauser, 

Mueller et al. 2006). Although Gompertz suggested at the same time that an unspecific 

force might destroy the material of organization necessary for life, the connection 

between this force and mortality rates is vague and makes the concept of an instantaneous 

mortality rate elusive and biologically tenuous (Aalen and Gjessing 2001; Li and 

Anderson 2009). Most importantly, a focus on the mortality event itself implicitly 

disregards the fact that, as Aalen and Gjessing (2001) note, “apart from pure accidents, 

mortality events do not happen out of the blue, they are the endpoint of some process that 

develops with age”. Additionally, the observed anomalies away from the exponential 

increase, in particular, the old age “plateau” limit the universality of the Gompertz 
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equation (Golubev 2009). However, despite its inadequacies, the law remains highly 

influential and has stimulated a variety of studies that have attempted to either improve 

the model or propose alternative theories for the senesces and death (Olshansky and 

Carnes 1997).   

        The first significant improvement to the Gompertz law was made by Makeham 

(1860) who added a constant term to the age-dependent mortality rate. The Makeham-

Gompertz model ( ) exp( )x A a bxμ = +  efficiently increases the goodness-of-fit to 

empirical mortality data. The Makeham term accounts for the up-bending trend for the 

truncated mortality curve (starting from age 30), and thus partially explains the “elbow” 

(Fig.1.1). Nevertheless, the biological sense of the constant term is largely unresolved 

(Carnes, Olshansky et al. 1996; Golubev 2004; Carnes, Holden et al. 2006; Golubev 

2009). The initial interpretation, treating the constant term as accidental mortality 

independent of age and the other part as senescence related mortality (Makeham 1860), 

lacks biological justification and thus is considered as inappropriate (Carnes, Olshansky 

et al. 1996; Carnes, Holden et al. 2006).  

         The Strheler-Mildvan (SM) general theory of mortality and aging (Strehler and 

Mildvan 1960) proposes a biological explanation for the Gompertz law, though the 

theory is not designed to improve the model fit. To overcome the inadequacy in the 

theory of the Gompertz law, Strehler and Mildvan (1960) used an analogy to chemical 

kinetics (Golubev 2009) in which the increase in the age-specific mortality rate results 

from the interaction between the internal energy reserves of the organism and the external 

energy demands from environmental insults. They defined the term “vitality” as the 

organism’s capacity to remain alive and assumed that vitality declined linearly with age. 
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Death occurs when the external challenge exceeds the remaining vitality and the 

distribution of challenge magnitudes is assumed to follow a Maxwell-Boltzmann 

distribution. An essential finding of the SM theory, known as the SM correlation, is a 

negative correlation between the Gompertz parameters a and b. Despite the fact that the 

SM theory has appealing and intuitive elements, it does not resolve the arguments 

surrounding the Gompertz law. Firstly, because the SM theory is based on the Gompertz 

equation, the dimensionality of the model is simply too small. Artificial constraints must 

be put on some of the underlying coefficients to estimate the others, e.g. the vitality 

decline rate (this will be illustrated in later chapters in detail). The Gompertz parameters 

derived for recent mortality data exhibit significant deviations from the SM correlation 

(Krementsova and Konradov 2001; Yashin, Begun et al. 2001; Yashin, Begun et al. 2002) 

and Yashin et al. (2001) has suggested that this new trend “requires a revision of 

traditional gerontological concepts”. Secondly, the SM theory is only designed to 

interpret the exponential rise in age-specific mortality rate and thus is inadequate to 

address the pattern over the entire lifespan. Finally, since the vitality in SM theory is 

defined in a deterministic way, it is unable to account the heterogeneity of a population 

which has a significant effect on patterns of mortality with age (Vaupel, Manton et al. 

1979; Vaupel, Carey et al. 1998; Zens and Peart 2003; Benton, Plaistow et al. 2006; 

Saccheri and Hanski 2006; Anderson, Gildea et al. 2008; Li and Anderson 2009).  

        To specifically address how heterogeneity affects population mortality, the 

concept of frailty, which denotes the susceptibility to death, was introduced by Vaupel et 

al. (Vaupel, Manton et al. 1979). The idea is that individuals possess different frailties at 

birth which results in the more frail individuals tending to die earlier and the less frail, i.e. 
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robust, individuals surviving to old age. One substantial achievement of the frailty model 

is its ability to capture the mortality “plateau”. The slowing down of mortality at old ages 

is explained as the consequence of systematic selection of robust individuals in old age. 

However, the shape of the mortality curve and the occurrence of the plateau depend on 

the distribution of fragility at birth. In the frailty model, this distribution is expressed by 

describing the Gompertz parameter, a, through a gamma distribution which further 

improves the model fit to the age-specific mortality rate at old ages, and provides new 

insight into the mortality process. But as an affiliate to an existing model, the frailty 

framework is not a completely independent theory that explains why mortality happens. 

In addition, the heterogeneity is incorporated into the population as a fixed level, such 

that the frailty model is inadequate to represent the survival differences evolving with age.     

       The Heligman-Pollard model (1980) is one of the best known models that attempt 

to model mortality over all ages (Thiele 1872; Wittstein 1883; Siler 1979; Gage 1988; 

Gage 1993). In the Heligman-Pollard model, the mortality pattern is divided into three 

stages: childhood, young adult and old age, each of which is characterized by 2 or 3 

parameters making a total of 8 parameters. The model successfully fits the general 

mortality pattern including the childhood “hook”, the middle age “elbow” and the old age 

“plateau”. It also captures secondary features such as the mortality “hump” observed in 

young adult stage of period data mostly in the first half of 20th century. In spite of its 

extraordinary performance in fitting data, the model does not explain the mortality 

patterns, because it lacks a biological basis connecting the model parameters to the 

mechanism of death. Besides, the gradual disappearance of the mortality “hump” in the 
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data of recent years makes it hard for the model to differentiate the stages of young adult 

and old age designed by its original structure (Heligman and Pollard 1980). 

         The models discussed above are formulated differently, but all take the Gompertz 

approach which characterizes the change of mortality rate with age. Meanwhile, several 

non-Gompertzian models or theories also make significant contributions in describing the 

temporal nature of mortality. Nevertheless, they mainly focus on a biological 

interpretation of the rise in mortality rate starting from middle ages along with an 

explanation for the old age mortality “plateau”.        

          The reliability theory makes an analogy between biological aging and system 

failure (Gavrilov, Gavrilova et al. 1978; Gavrilov and Gavrilova 1991; Gavrilov and 

Gavrilova 2001; Gavrilov and Gavrilova 2004). The term “redundancy” is introduced as 

a key for understanding the systemic nature of aging. In systems with redundant 

irreplaceable elements, the elements deteriorate over time, even if they are built of non-

aging elements. Within this framework, the exponential rise of mortality rates with age is 

explained by taking into account initial flaws in newly formed system and the late-life 

mortality deceleration is explained in terms of the loss of redundant elements over the life 

course.  

          The evolutionary theory for aging can be traced back to as early as 1891, when 

Weismann proposed that aging was a product of evolution (Weismann 1891). Modern 

theories of evolutionary aging (Hamilton 1966; Haldane 1990; Rose 1991; Rose, Burke et 

al. 2008) express the temporal increase in mortality as the declining force of natural 

selection. In addition, the old age deceleration in mortality is interpreted as the 
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consequence that “natural selection does not discriminate among genetic effects that act 

at very late ages which have had no impact on fitness during the evolutionary history of a 

population” (Rose, Burke et al. 2008).  

         Finally, a group of models based on a killing Markov process provides an 

alternative theory for understanding age-specific mortality patterns. Those models 

express mortality through the process point-of -view. They characterizes the first passage 

time of a random abstract measure of survival capacity, i.e. vitality, to an absorbing 

boundary representing death. Thus, the age-dependent increase in mortality results from 

the stochastic depletion of survival capacity. The model was first proposed half a century 

ago (Sacher 1956) and used to address some other applications (Chhikara and Folks 

1989). Anderson (Anderson 1992; Anderson 2000; Anderson, Gildea et al. 2008) was the 

first to apply the concept in organism survival incorporating with a vitality-independent 

random killing. This expresses mortality in terms of an intrinsic process (vitality) and an 

extrinsic process (vitality-independent). The intrinsic vitality-only part of the model was 

also independently proposed by Weitz and Frazer (2001) and Aalen and Gessing (2001). 

Its mathematical properties have been further developed by Steinsaltz and Evans (2004; 

Steinsaltz and Evans 2007) and Anderson et al. (2008). The recent advance is suggested 

by Li and Anderson (2009) to include the initial population heterogeneity. Under this 

framework, the mortality plateau is then represented as the genetic consequence of 

Markov process reaching a quasistationary distribution (Weitz and Fraser 2001; 

Steinsaltz and Evans 2004; Steinsaltz and Evans 2007; Li and Anderson 2009).  

        Although all the developments since the Gompertz  provide their own insights to 

the mortality process, none of them attempt to consider the pattern of human mortality 
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over the entire life span, i.e., to account for the exponential increase, or Gompertz rise, as 

well as the three primary anomalies (hook, elbow, plateau). Compared to the old age 

mortality “plateau”, the childhood “hook”, is deliberately avoided by many studies via 

left truncating mortality curves, whereas the middle age “elbow” is largely under-

addressed. The “hook” and “elbow” deserve explanations in their turn. It is argued that 

the early stage mortality is mainly caused by external force (Carnes, Holden et al. 2006), 

and thus carries less information regarding to the aging process. However, the mortality 

curve as a whole should consistently reflect the interaction between the internal and the 

external forces. The early death pattern plays an important role in differentiating effects 

from senescence and environmental insults which are often comingled. Moreover, 

information obtained from the truncated mortality curves is biased by excluding a 

significant portion of the lifespan where natural selection acts, i.e. in childhood. Since the 

individuals who die at early life stage may be internally frailer, the physiological 

properties, e.g. the degree of frailty of the population, summarized from the incomplete 

mortality curve may be biased. Last but not least, any shifts in the mortality patterns 

result from continuous changes at both physiological and non-physiological levels, such 

that simply truncating the curve disconnects the underlying associations.  

1.2 The Goal of the Work  

In general, it is necessary to search for a new framework that expresses mortality through 

biologically meaningful processes, consistently accounts for the patterns through the 

entire life period, and especially has logical explanations for all the features. The goal of 

this work is to develop such a model that helps better understand the process of aging and 

mortality. The new framework does not necessarily come out of the blue, but could be 
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developed from historical works, which have their essential merits from a certain 

perspective. In particular, the Markov killing process model with constant extrinsic 

mortality rate (vitality model) developed by Anderson (1992; 2000; 2008) and Li and 

Anderson (2009) not only explicitly expresses the intrinsic process, but also sets up a 

two-process view to look at the death dynamics. However, the reason that the model fails 

to capture the early-age hook and middle-age elbow is probably because its extrinsic 

killing process is too simple. Meanwhile, the SM theory, in spite of a simple and 

unrealistic intrinsic form, provides a logical connection between the intrinsic and 

extrinsic forces. Therefore, the idea of further developing the stochastic vitality model by 

including an extrinsic process of SM style emerges naturally. Nevertheless, it will not be 

simply a version of adding the two models together, but a multi-process view to 

understand and quantify mortality into two processes: the intrinsic vitality process and the 

extrinsic challenge process which work simultaneously to shape the population mortality 

trajectory. I designate this model the Intrinsic-Extrinsic-Vitality model (IEV). 

         The rest of the dissertation is organized by five chapters. Chapter II explicitly 

illustrates the construction of the IEV model and explores some of the model properties 

including the ability of explaining the primary characteristics of age-specific human 

mortality patterns. Chapter III further demonstrates two unique features of the model as 

well as their applications: the heterogeneity structure and the mortality partition. Chapter 

IV exhibits how the model parameters can be used to resolve the complexity of mortality 

and help explore the historical patterns of survival through biological meaningful 

perspectives. Chapter V compares the IEV model with other established mortality models 

such as the Siler model (Siler 1979), the Heligman-Pollard (HP) mortality law (Heligman 
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and Pollard 1980) and the Strheler-Mildvan (SM) general theory of mortality (Strehler 

and Mildvan 1960). Chapter IV explores the potential misspecifications of the model and 

assesses how that would affect the estimated parameter patterns. And the final chapter 

discusses the limitations, the potential extensions and the future directions of the model.  
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Chapter II: Model Construction and Model Properties  

2.1 The Concept of Vitality 

First of all, a fundamental term needs to be clarified. Both the SM theory and Markov 

killing models are constructed on an abstract concept, vitality, which is a single variable 

summarizing the actions of many mechanisms working together. It is an ensemble 

measure of the degenerative and rebuilding processes that occur with age and result 

ultimately in senescence and death (Anderson 2000). The assumption that vitality 

declines with age relies on ample biological evidences. Shock (1957) has made extensive 

cross-sectional studies on physiological functions of man at different ages (Shock 1957; 

Strehler and Mildvan 1960). These studies conclude that most of the functions decrease 

approximately linearly with age in a rate between 0.5 and 1.3 percent per year, including 

nerve cell velocity, basal metabolic rate, cardiac output, glomerular filtration rate, 

standard plasma flow of the kidney, and vital capacity and maximal breathing capacity of 

lung. With the advance of science, the aging related degradations were further examined 

at molecular level such as the accumulation of faulty cells due to the mistranscription of 

messenger RNA (Wiegel, Beier et al. 1973), free radicals that produce oxidative damage 

(Beckman and Ames 1998; Ashok and Ali 1999; Ungvari, Kaley et al. 2010), minute 

impairments to the immune and neuronal endocrine systems (Yin and Chen 2005), 

shortening of telomeres important for chromosome replication and protection (Passos, 

Saretzki et al. 2007), and activation of a gene controlling proliferation of stem cells 

involved with tissue repair and regeneration (Janzen, Forkert et al. 2006).  

         Representing the day-to-day damage accumulations as a single variable, i.e. 

vitality, has the advantage of not needing to explicitly consider the individual 
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mechanisms and how they affect senescence and death. Summarizing the aging related 

effects together makes the model mathematically tractable. Therefore, the introduction of 

the term vitality makes sense at both biological and modeling levels. Note another term 

usually used in the literature is frailty (Yashin and Iachine 1997; Fried, Tangen et al. 

2001; Mitnitski, Graham et al. 2002). In some ways this is a converse concept to the 

vitality and represents the “increasing loss of reserves and resilience, lack of energy and 

inability to function” (Crimmins, Kim et al. 2010). The two terms essentially represent 

the same processes in physiological system but in opposite directions. Here I adopt 

vitality because it sets up an absorption boundary that defines the intrinsic death. In 

contrast, frailty has no upper boundary for representing death.       

2.2 Intrinsic-Extrinsic Vitality Model 

A valuable model construction should represent in a plausible, but tractable manner, the 

underlining pathways leading to death. Since death has many causes, it is extremely 

difficult to find an appropriate but relatively simple way to separate the multitude of 

causes into reasonable categories that can be addressed in a single mathematical 

framework (Carnes, Olshansky et al. 1996; Carnes, Holden et al. 2006). However, taking 

a step back from the detail consideration helps us gain a broader vision that mortality is 

generally determined by the accumulated conditions up to the death moment (Aalen and 

Gjessing 2001) and the instantaneous conditions at the death moment. Therefore, it 

makes sense to quantify the contribution of mortality as coming from two sources, one of 

which is a cumulative process often involving natural aging and the other is an 

instantaneous process largely affected by environmental interventions. Following the 
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terminology of Carnes and Olshansky’s (1996), we refer to these as intrinsic and extrinsic 

processes respectively. 

2.2.1 Intrinsic Process 

In the terminology of Carnes et al. (2006), intrinsic mortality arises from inside an 

organism and is associated with senescence, but the exact processes are not specified. 

The Markov killing models, as introduced before, explicitly express a cumulative process 

as a diffusion process to a killing boundary. The concept that describes the stochastic rate 

of loss of survival capacity, vitality, to a killing boundary is heuristic enough to be used 

to approximate the intrinsic process. The biological sense of considering aging as day-to-

day damage accumulation, as discussed previously, is based on ample evidences, such as 

the age-dependent decreases in DNA repair, control of metabolic by-product generation, 

detoxication, protection from reactive oxygen and carbonyl species (Kirkwood and 

Austad 2000). Although the details of the aging processes are not specified, intrinsic 

death can be defined as the collapse of the physiological system resulting from the 

accumulation of natural damages to a critical point, such as organ failure or malfunction.   

        The intrinsic vitality process assumes each individual in a population starts with 

an initial amount of vitality, 0v′ , which then declines stochastically with age until intrinsic 

death occurs when the vitality reaches the zero boundary (Fig. 2.1) or when an extrinsic 

killing event occurs. The random trajectory of vitality, v′ , between 0v′  and 0 is described 

by the Wiener process: 

                                                          / xdv dx ρ σε′ = − +                                                       (2.1)                                  
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where x is age, ρ is the mean value of the rate of vitality loss, σ is the magnitude of the 

stochastic component and xε is a white noise rate process. To reflect the effects of the 

initial vitality, eq. (2.1) is scaled according to 0v′ : 

                                                              / xdv dx r sε= − +                                                  (2.2)  

In this case, 0/v v v′ ′=  is the normalized vitality with initial value equaling 1, 0/r vρ ′=  

indicates the fraction of vitality loss per unit time and 0s v′= σ represents the normalized 

spread rate. Noted that the normalized equation (eq. (2.2)) implies that each normalized 

vitality trajectory starts at v = 1, however, the differences in the actual initial values are 

reflected in the spread term s. To be specific, s demonstrates the averaged combined 

variation from both inherent (initial) and acquired (evolving) sources per unit time. I will 

discuss the issues about normalization in a separate section below.  

        Derivation of population mortality due to the absorption of vitality requires the 

probability distribution of the first arrival time of vitality to the zero-boundary, ( )f x , 

which is an inverse Gaussian distribution produced by a Wiener process (eq. (2.2)) (Cox 

and Miller 1965):  

                                       ( )2
2/3

2

11( ) exp
22

rx
f x x

s xs π
−

⎛ ⎞−
= −⎜ ⎟

⎜ ⎟
⎝ ⎠

                                             (2.3) 

By definition, the fraction of total population that has not died from intrinsic causes at 

age x, is equivalent to the probability that the individual’s vitality has not reached zero by 

x. The survival pattern resulting from the intrinsic process ( )il x  can be expressed as (Cox 

and Miller 1965)  
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                                     2
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i
rx r rxl x f x dx

ss x s x
− +⎛ ⎞ ⎛ ⎞⎛ ⎞= − = Φ − Φ −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠∫                (2.4) 

The intrinsic mortality rate is derived from eq. (2.3) and eq. (2.4): 

                               0

1 ( )
( )1 1 ( )( )

( ) ( ) ( )

x

i
i

i i i

d f t dt
dl x f xx

l x dx l x dx l x
μ

⎛ ⎞
−⎜ ⎟

⎝ ⎠= − = − =
∫

                  (2.5) 

  The intrinsic mortality is characterized by two parameters: the mean rate r which 

determines the fraction of vitality loss per unit time and the variance term s which 

determines the fraction of vitality spread per unit time. Both parameters are assumed to 

be constant with age or in another sense, represent the average decline and spread force at 

each time unit. Meanwhile, because the model is usually applied to population survival 

data, the two parameters characterize the average properties of the population, i.e., 

indicate the mean values of the measures across the population.   

        The conditional vitality distribution evolving with time can also be formulated 

analytically (Anderson, Gildea et al. 2008) 

                                      0 0
0

0
0

( | 1) ( | 1)( | 1)
( )

( | 1)

v x v x
v x

i
v x

p v v p v vf v v
l x

p v v dv
∞

= =
= = =

=∫
                        (2.6) 

where ( )il x  is eq. (2.4) the intrinsic survival rate at age x and v0 and vx are normalized 

vitality levels at ages 0 and x respectively and 

                         ( )2

0 2 22

1 1 2( | 1) exp 1 exp
22

x x
v x

v rx vp v v
xs xsxsπ

⎛ ⎞− + ⎡ ⎤⎛ ⎞= = − − −⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎝ ⎠⎣ ⎦⎝ ⎠
          (2.7) 
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is the absolute density function of the vitality which evolves from an initial Dirac 

distribution into a Gaussian distribution and then a quasistationary gamma-like 

distribution that is finally absorbed into the zero-vitality boundary (Anderson, Gildea et 

al. 2008).  

         Note that the SM model (Strehler and Mildvan 1960) uses a similar approach in 

that the senescence process reflects an intrinsic physiological decline, but there are 

important differences between vitality and the SM model. The SM model does not 

presume intrinsic killing while the vitality model defines intrinsic death from the 

absorption of the vitality trajectory (Anderson 1992). In addition, instead of a 

deterministic linear decrease, the vitality model includes randomness in the decline 

process and hence naturally builds in population heterogeneity. Despite the fact that the 

frailty model (Vaupel, Manton et al. 1979; Yashin and Iachine 1997) also includes 

variation in the survival capacity, it is at the expense of adding complexity to relate the 

rate of mortality to conditions that occurred prior to the time of the mortality event itself.   

Issues on vitality normalization  

Eq. (2.1) assumes that individuals in the population share a common ρ and σ. The 

trajectory for each organism is characterized by three values: the initial vitality, 0v′ , the 

rate of vitality loss ρ and the rate of vitality spread σ. However, if all individuals start 

from a single value of 0v′ , the distribution of first arrival time only depends on two of the 

three properties. Hence, from a statistical point of view, there are only two free 

parameters (Aalen and Gjessing 2001). We can use 0/r vρ ′=  and s = 0/ vσ ′  to represent 

the normalized rate of vitality loss and vitality spread. But in reality, individuals within a 
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population are endowed with different initial values of vitality as from genetic 

heterogeneity. To simplify this complexity first, postulate that 0v′  follows a normal 

distribution N (µ, τ). Then there are two ways to normalize the vitality trajectory.   

       The first method is to divide the vitality trajectory v′  by the mean value of 0v′  , 

which we call, µ. Therefore, the initial vitality distribution is rescaled to a new normal 

distribution with an initial mean value of 1 and an initial standard deviation u = τ/µ (Fig. 

2.1A). Under this scenario, the first arrival time to the zero-boundary is determined by 

three parameters 1 0( )r E vρ ρ μ′= = ,  1 0( )s E vσ σ μ′= =  and 1 0( )u E vτ τ μ′= = .  Eq. 

(2.1) becomes  1 1/ xdv dx r s ε= − +  where 0 /v v μ′= . Through this approach, the initial 

heterogeneity in the vitality distribution is maintained in the normalized parameter 

standard deviation, u, and the expected deviation of vitality trajectory from the mean at 

age x is equivalent to 1u s x+ . 

      The second method considers normalizing each vitality trajectory according to its 

own initial value 0v′ , such that the rescaled vitality trajectories all start from the same 

value 1 (Fig. 2.1B). Here let 0/ vρ ′  and 0/ vσ ′  denote the fraction of vitality loss and 

spread per unit time. But since these values are different for each individual, the 

aggregation of the individual values for population level parameters are approximated as 

( )2 01/r E vρ ′=  and ( )2 01/s E vσ ′=  respectively. Under this method, the expected 

deviation of vitality trajectory from the mean at a given age x is equivalent to 2s x .  

       Note, r2 and s2 are different than r1 and s1 in their exact meanings. The two 

definitions of parameters represent different sequences in averaging and normalization. 
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While r1 and s1 indicate the normalized mean rate of vitality loss and spread (average first 

and then rescale), r2 and s2 represent the mean fraction of vitality loss and spread per unit 

time (rescale first and then average). Sometimes we are more interested in the average 

fraction than the normalized rate and these values are also different for the two methods. 

Although 0v′  has a normal distribution, there is no analytical solution for the probability 

density function (pdf) of the reciprocal of normal distribution, i.e. ( )01/E v′ . Thus, the 

expectation of 1/ 0v′  cannot be determined through a closed form. However, by simulation 

we can still approximate ( )01/E v′ . Within the parameter range 0 / 0.4τ μ≤ ≤ , the ratio 

( ) ( )01/ / 1/E v μ′  is greater than 1 and increases as τ increases. Both r2 and s2 are larger 

than r1 and s1 by the ratio ( ) ( )01/ / 1/E v μ′  which carries the information of initial 

heterogeneity. Therefore, s2 reflects both initial and evolving heterogeneity in the 

population while s1 reflects only the evolving heterogeneity. Note the first method of 

normalization was implicitly used in the models of Anderson (1992; 2000), and Anderson 

et al. (2008). In Li and Anderson (2009), the first method was used and the initial 

distribution was defined explicitly with a normal distribution. 

       Studies suggest that only about 20% of the variation in human survival is 

heritable (Gavrilov and Gavrilova 1991; McGue, Vaupel et al. 1993; Herskind, McGue et 

al. 1996), which implies that the initial heterogeneity τ is relatively small for human 

beings. Therefore, the two approaches, even without an explicit initial distribution of 

heterogeneity, should yield very similar parameter estimates.   

       In general, the two normalization methods lead to slightly different models and 

explanations for the vitality parameters. The first method coupled with a normal 
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distribution of initial heterogeneity was successfully applied to ecological data to 

differentiate the effects of the initial and evolving heterogeneity on survival (Li and 

Anderson 2009). However, for the IEV model the first method of normalization fails to 

disentangle the two sources of heterogeneity because the extrinsic processes, which are 

developed below, confound the separation of initial and evolving heterogeneity.  

Therefore, the current IEV model normalizes the parameters using the second method in 

which the initial heterogeneity and the heterogeneity that evolves with age are combined...  

 

Figure 2.1: Individual vitality trajectories and population survival (eq. (2.4)) from two 
normalization schedules. A: vitality is normalized by the mean initial value. B: vitality is 
normalized by each individual’s initial value. Solid lines depict original vitality 
trajectories (eq. (2.1)); dashed lines depict scaled vitality trajectories (eq. (2.2)); bold line 
depicts the intrinsic survival function calculated from the proportion of non-absorbed 
vitality trajectories at age x. The survival function is the same for both cases because the 
death age distribution is the same in both cases.    

2.2.2 Extrinsic Process  

Extrinsic killing is usually considered as death that is “relatively preventable and 

treatable”, including “mortality mainly from infections and accidents” (Shryock, Siegel et 
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al. 1980). Makeham (1860) first suggested using the age-independence as the criterion to 

distinguish extrinsic mortality from intrinsic mortality. In Anderson’s first model (1992), 

extrinsic mortality was independent of the vitality process and constant with age. This 

model yields a good fit when applied to survival data from animals such as nematode, 

medfly, yellow perch and sheep (Anderson 1992; Anderson 2000; Anderson, Gildea et al. 

2008; Li and Anderson 2009), but does not fit well when applied to human mortality data. 

Human beings have a more complex life pattern than laboratory animals, such that the 

extrinsic mortality process is likely determined by both the dynamics of aging and 

environmental challenges. But how the intrinsic and extrinsic processes interact is 

complex, and no simple theoretical explanations seem forthcoming. However, evidence 

suggests that the extrinsic mortality has increasing probability with age, especially for 

human beings. For instance, the immune system declines in function with age 

(Makinodan and Adler 1975; Miller 1996; Grubeck-Loebenstein and Wick 2002), which 

weakens the organism’s capacity of resisting external stresses and thus leads to a higher 

extrinsic mortality with age. Carnes et al. (2006) partitioned U.S. 1996 mortality data into 

intrinsic and extrinsic categories according to their criterion. They found an age-

dependent increasing trend in extrinsic mortality which was defined as death not arising 

from within the organism. Finally, as developed below, including an age/vitality-

dependent extrinsic mortality results in a significant improvement in the goodness-of-fit 

to human data. 

        For the IEV model, let xY with 0x ≥ be a random point process with rate λ to 

represent the occurrence of instantaneous extrinsic challenges such as a natural disaster or 

infection. In essence, λ measures the frequency of extrinsic challenges. For each extrinsic 
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event, a magnitude variable xZ with a cumulative distribution function ( )zϕ denotes the 

intensity of the challenge. Assume that when the challenge magnitude xZ  exceeds the 

current vitality level xv′ , the challenge results in death, i.e. death occurs when ( )x xP Z v′≥ . 

We can also view xZ as an instantaneous and momentary drop in vitality and once 

experienced, the organism returns to its previous vitality level unless the drop results in 

zero or negative vitality and therefore death. Fig. 2.2 depicts the extrinsic process. This 

assumption couples the risk of death from external forces to the intrinsic age-dependent 

vitality level of the individual and insures that the effect of the extrinsic challenge 

changes with age. For instance, the outcome of twenty and eighty year-old persons falling 

down a stairs can be very different: the younger person might suffer a bruised hip and 

limp for a day, while the older person is more likely to break a hip which could lead to 

death. Assuming that xY is a history-independent Poisson process (Finkelstein 2007), the 

extrinsic mortality rate for each individual is  

                                                   ( ) Pr( ) (1 ( ))e x x xm x Z v vλ ϕ λ′ ′= ≥ = −                                  (2.8) 

Further assume that the magnitudes of the events are exponentially distributed such that 

most are small and the probability of large events declines relative to their magnitude. 

Then the cumulative distribution function is /( ) 1 z Dz eϕ −= − , where D is a scale parameter. 

Now the rate of extrinsic mortality for an individual with absolute vitality xv′  becomes 

                                                            / /( ) x xv D v
em x e e βλ λ′− −= =                                             (2.9) 
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Because we only know vitality relative to the initial vitality, we normalize vitality 

characterizing the extrinsic rate by the initial value giving, 0x xv v v′ ′= . Furthermore, the 

challenge magnitude scalar is normalized to the initial vitality as 0D vβ ′=  and thus 

characterizes the environmental deleteriousness relative to the initial condition of the 

organism. In essence, a larger β  implies that high magnitude challenges occur more 

frequently. Also, note that eq. (2.9) implies that the susceptibility to extrinsic death 

depends on an individual’s survival capacity and β is a scalar, which expresses the 

intuition that the effect of stressors varies with age and vitality.   

       The aggregated extrinsic mortality rate at the population level equals  

                                                               

/
0

0

( ) ( | =1)xv
e xx e f v v dvβμ λ

∞
− ′= ∫

                           
 (2.10) 

where  0( | 1)xf v v′ =  is the conditional vitality distribution at time x when starting with a 

normalized single value 1 at x = 0. Note that  it is different from eq. (2.7). Because the 

extrinsic process unequally eliminates individuals from the total population, it changes 

the original vitality distribution. In addition, the change in the vitality distribution will 

also influence the intrinsic mortality by altering the absorbing probability. 
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Figure 2.2: Extrinsic vitality challenges (dotted line) momentarily decrement intrinsic vitality 
(solid line) and cause death when the challenge magnitude exceeds the remaining vitality. 
Challenges do not affect the trajectory of vitality itself.        

Model approximation  

In making the extrinsic mortality dependent on vitality, the density distribution of vitality 

no longer has a closed analytical form, so we approximate vx in eq. (2.10).  The 

approximation has two steps.  First, assume the vx can be approximated by the mean 

vitality xv . Second, note that the mean vitality without extrinsic killing declines 

approximately linearly with age when the population variation term s is small (Anderson, 

Gildea et al. 2008) and can be approximated as 1xv rx≈ − . The extrinsic mortality rate 

then becomes  

                                                   (1 )/( ) rx
e x e βμ λ − −=                                         (2.11) 

For human mortality data, s is relatively small, which guarantees eq. (2.11) a good 

approximation over most of the life time. There are several advantages of eq. (2.11). 
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Firstly, it simplifies the equation and yields an approximately analytical solution for the 

mortality rate, which assures that the estimation algorithm rapidly converges to a solution. 

Secondly, since most classical models express mortality rates as a function of age, it 

provides a way to interpret the traditional results in terms of a vitality process. Finally, 

empirically 1 rx−  is a better approximation than xv  to the original eq. (2.10), which will 

be used later to simplify the model further.  

Childhood mortality 

High child death rate is consistently observed through all human age-specific mortality 

data. According to the statistics from United Nations Children’s Fund (UNICEF 2010), 

the leading cause of death for children is the infectious disease including acute 

respiratory infections, diarrhea, malaria and etc., which account about two-thirds of the 

total death under 5. Therefore, the deaths at childhood can be mostly classified as 

extrinsic mortality in the context of the IEV model. The shape of child mortality is 

conventionally represented as an exponential decreasing function with age, i.e., 

0
x

c e αμ μ −= , in some models, such as the Siler model (Siler 1979), which makes a 

reasonable approximation to the empirical data. The IEV model can add the same 

expression to account for the child mortality part, but the vitality framework is able to 

visualize how the exponential decreasing function can be derived from the intrinsic and 

extrinsic processes that alter the mortality schedules at childhood.  

      Firstly, we consider the influence from the extrinsic process. Many forms of age-

dependency in challenge frequency can be incorporated into the model to capture 

complex changes in extrinsic stresses with aging. For the purpose of modeling the overall 
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survival of a cohort, consider the challenge frequency more in the nature proposed by 

Yashin et al. (2002) which assumes that an organism is capable of modulating the 

frequency of stressful challenges by devoting a fraction, p, of its resources to protecting 

against environmental challenges. Assume this resource partitioning is age dependent and 

express the frequency of the challenges in a generic manner as ( ) *1 pλ λ= −  where p 

characterizes the efficiency of defensive mechanisms and the total challenge frequency 

from the environment is *λ . The age dependency of resource partitioning could have both 

physiological and behavioral components. In a physiological context, as an immune 

system develops it is expected that infant susceptibility to disease challenges decreases 

with age (Chandra 1997; Holt and Jones 2000). In a behavioral context, individuals learn 

through experimentation and experience to avoid accidents and again we expect the 

effective frequency of external challenges to decrease with age. Details how individuals 

avoid challenges is multifaceted and complex, but in principle it is reasonable to assume 

that the challenge frequency asymptotically decreases with age and can be expressed as 

an exponential function  

                                              ( )0( ) xx e θλ λ λ λ −= + −                                      (2.12) 

where 0λ is the challenge frequency at age zero, λ  is the frequency at adulthood and θ  is 

the rate of decline of challenge frequencies with age at childhood.  Secondly, the intrinsic 

process may also contribute to the high child mortality. For example, children could 

experience an increase in vitality as the development of their internal systems, which 

would affect their ability to recover from a challenge event. Additionally, variation in 

initial vitality at birth may be skewed such that a few newborns have very low initial 
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vitality due to low birth weight and congenital malformations. Mortality of such 

individuals would be expected to be high and we speculate that the extrinsic killing 

process at very beginning would remove more such individuals leaving the average 

vitality across the entire population increasing merely due to the selection effects. In both 

cases, the trajectory of mean vitality would not follow a monotonic decline, but could 

first increase over a short period (0, x0 ) and then decline (Fig. 2.3). We could introduce a 

function R(x) to indicate the proportion of reduction in mean vitality from its optimal 

trajectory (i.e., a monotonic decline). To reduce the complexity, R(x) can be assumed to 

be a step function 

                                               0 0

0

   
( )

1     
R x x

R x
x x

<⎧
= ⎨ ≥⎩

                                                      (2.13) 

such that the vitality is represented with an average reduction, R0 (R0<1), to the scheduled 

track previous to age x0 and back to its original track afterwards.  

 Thus, the extrinsic mortality rate incorporating both mechanisms from intrinsic 

and extrinsic processes at childhood can be expressed as            
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 (2. 14) 

However, in a short period (0, x0 ) 0(1 ) / (1 )/rx R rxe eβ βλ λ− − − −≈ , because λ is  small compared 

to λ0 - λ and a reduction in vitality would not induce more deaths. In addition, when x>x0, 

( ) (1 )/
0 0x rxe θ βλ λ − − −− ≈ . Hence eq. (2.14) can be further reduced: 
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                     (2.15) 

Eq. (2.15) has the general form for child mortality as proposed by the Siler model (1978), 

but it has a biological justification Nevertheless, the model is still inadequate to 

differentiate the contributions from the two processes, i.e., high challenge frequency and 

low recovery chance at childhood. As suggested by eq. (2.15), the child mortality 

function only possesses two free parameters. ( ) 0 /
0 0

Re βμ λ λ −= − indicates the additional 

child mortality rate at age 0 containing information from both intrinsic and extrinsic 

processes, while 0 /rRα θ β= − denotes the rate of decline in child mortality which is 

mainly determined by the rate of decline in challenge frequency with age, since rR0/β is 

small. 

       In general, we speculate that the high child mortality could result from the effects 

of high selection pressure (extrinsic force) on the low internal survival capacity (intrinsic 

force) due to the immaturity of the immune system and other physiologic functions. 

However, the real underlying mechanisms of the child mortality are very complex 

involving multifaceted processes. It is impossible to model everything in detail, but here 

we conceptually approximate some of the complexity in a mathematically tractable way 

through the vitality framework. Although the second component in eq. (2.15) cannot be 

used to disentangle the effects of high challenge frequency from the low recovery chance, 

it is the most parsimonious model that could fit the early age “hook”. Other empirical 

works such as the Siler model (Siler 1979) have long used the same shape to model child 
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mortality. 

 

Figure 2.3: (A). Vitality process of extrinsic mortality includes the schedule of high child 
mortality rate. Solid line: the hypothetic mean vitality path following a monotonic decline; dashed 
line: the true initial mean vitality path at childhood which merges to the hypothetic trajectory later 
and an approximation to the true path by a constant line (R0) dotted line: extrinsic challenges; 
dotted-dashed line: average mean challenge magnitude (β). (B). challenge frequency following an 
approximately exponential decrease with age.  

2.2.3 Complete model  

The final model presumes two sources of death: an extrinsic killing and an intrinsic 

killing expressed as a boundary absorption process. By approximating the extrinsic 
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mortality as a function of age with eq. (2.11) or eq. (2.15), the extrinsic hazards have a 

uniform killing force on the population at each age. To be specific, the extrinsic killing 

does not change the vitality distribution so that it does not affect the intrinsic mortality 

rate, i.e., the absorption rate to the zero-vitality boundary. Therefore, the total mortality 

rate is expressed as the sum of the two forces:  

                                                 ( ) ( ) ( )i ex x xμ μ μ= +                                                (2.16) 

The corresponding survival function is  

                                                ( )( )( ) ( ) ( ) exp ( ) ( )i e i el x l x l x x xμ μ= = − +                      (2.17) 

The generic form combining eq. (2.5) and eq. (2.11) has 4 parameters r, s, λ and β where 

the challenge frequency is constant with age. And the implicit form combining eq. (2.5) 

and eq. (2.15) expands the model to 6 parameters: r, s, λ, β , µ0 and α to include the child 

mortality schedule. In contrast to Gompertz-type model, the parameters are all process-

based and specify both the population vitality and mortality trajectories. 

          Note that the aging related process, which determines the intrinsic mortality, also 

reflects the influence from environment and behavior, e.g. nutrition level and smoking 

status, which have long-term effects in altering the vitality trajectory and thus modify the 

aging process. In that sense, the vitality parameters r and s, which characterize the 

intrinsic process, can also be modified by the extrinsic challenges. Furthermore, the 

extrinsic parameters λ and β do not measure the absolute environmental deleteriousness 

but reflect the external hazards relative to the physiological condition of the individuals 

as measured by vitality.  For instance, λ measures the frequency of challenges that can 
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get through the body defensive system and thus reveals the physiological robustness as to 

the environment, while β measures the average magnitude of challenges relative to the 

initial vitality level. In conclusion, both intrinsic and extrinsic mortality result from 

interactions between the force of aging and the interventions of environment. Thus, the 

parameters cannot be simply determined as influenced by internal or external factors but 

rather reflect chronic and acute effects that contribute to the mortality process. 

2.3 Parameter Estimation and Evaluating the Model Approximation        

2.3.1 Parameter Estimation       

The vitality parameters r, s, λ and β (or the expanded version r, s, λ, β, µ0 and α) are 

estimated from fitting to the age-specific survival fraction data. The method is similar to 

that used in Li and Anderson (2009). The estimation problem is cast as a maximum 

likelihood optimization, as developed by Salinger et al. (2003) to deal with interval-

censored data, in which mortalities are counted at the end of each time period rather than 

continuously. The likelihood function is constructed from the multinomial distribution 

based on the proportion of deaths in each time period.  

                                    ( )LogLik ln ( ) ln(1 )x x x x x
x

d q n d q= + − −∑                               (2.18)              

where dx is the number of deaths at age x, nx is the number of population at the beginning 

of age x, and qx is the probability of death at age x. The probability of death is derived 

from eq. (2.17) 1 ( 1) / ( )xq l x l x= − + . The algorithm estimates standard errors thorough 

the estimated variance matrix. Specifically, standard errors are obtained by taking the 
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square root of the diagonal elements in the inverse of the Hessian of the negative log-

likelihood, evaluated at the parameter estimates (Kendall, Stuart et al. 1977). 

2.3.2 Evaluating the Model Approximation 

The model assumes that the extrinsic mortality does not affect the distribution of vitality 

as determined by the intrinsic process, which is in fact not the case. The bias of this 

approximation was evaluated through simulation. Using a numerical form of the vitality 

model, survival curves were generated for a range of specified model parameters. The 

parameters were then estimated with the estimation algorithm described in section 2.3.1 

and the simulated (true) and estimated parameters were compared.   

Survival curve generation 

The survival curves were simulated from the vitality process. Each population member 

was assumed to have a vitality of 1 at time 0. The vitality for each individual was 

calculated for a single time step as 

                                              1x x a av v r s W−= − + ×       x=1, 2, 3…                                       (2.19) 

where W is the white noise calculated by selecting a random number from a normal 

distribution. Note that this generation uses a simplified random walk with drift to 

approximate the continuous process described in eq. (2.2). From eq. (2.19), 10,000 

vitality trajectories are generated to represent a population. At each time x, death from 

intrinsic and extrinsic process are recorded. The intrinsic mortality occurs when the 

individual vitality trajectory vx drops below zero. Mortality from extrinsic challenges are 

defined by a probability distribution where the probability of dying from extrinsic process 
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in age interval (x-1, x) equals 1
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−
− +

∫
− ≈ − . A binomial random 

variable is generated to determine whether the individual is killed from external forces 

according to the probability. When either intrinsic or extrinsic death occurs, the vitality 

trajectory is excluded from further calculation. Thus, survival curves are generated from 

the fraction of vitality trajectories left at each time point.   

Evaluation and correction 

To evaluate the model approximation, we use simulated survival curves as described 

above. Since the approximation procedure has limited influence on the child mortality 

parameters: µ0 and α, the 4-parameter model is used for simplicity. However, the 

parameter space still has too many dimensions, such that it is almost impossible to 

analytically track the change of one parameter under approximation based on the entire 

spaces of the other three parameters. Fortunately, we only need to determine the 

parameter values for human mortality data which follow certain patterns and change 

within relative small ranges. Preliminary studies (Table 2.1) revealed that r and β have 

little bias under approximation and s and λ are overestimated by less than 40% of their 

true values. To efficiently investigate the bias of parameters estimated from human 

mortality data, I conduct simulations based on parameters obtained from period mortality 

data of Swedish females (1800-2007) (HMD 2010) using the approximation. For each 

period year, a set of parameters (r, s, λ and β) were estimated from the mortality curve of 

Swedish female using the algorithm described in section 2.3.1. Thus, there are 208 

baseline parameter sets for simulation. 3 additional values are picked randomly for each s 

and λ separately within a range from 60% to 100% of their baseline values, which gives 
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in total 3328=208×4×4 true parameter sets. I generate 3328 curves from the underlining 

process and obtain 3328 estimated parameter sets from eq. (2.16) under approximation.  

       The simulation results are summarized in fig.2.4. The ratios of the estimated 

parameters over the true parameters are plotted against the estimated β̂ . Ratios of ˆ /β β  

are flat and close to 1, indicating that β is robust under approximation. ˆ /r r slightly 

increases with β̂ , and the ratio is near 0.95. Both ˆ /s s and ˆ /λ λ decline with β̂ , but the 

variance of ˆ /λ λ is relative large compared to the other ratios. The strong linear 

relationships between the estimated and true parameters can be used to correct the bias in 

the approximation. According to the fitting results in fig. 2.4, the true underlining 

parameters can be approximated as 
ˆ

ˆ0.94 0.094
rr

β
≈

+
, 

ˆ
ˆ1.39 1.03

ss
β

≈
−

, 

ˆ
ˆ1.57 1.55

λλ
β

≈
−

 and 
ˆ

1.02
ββ ≈ . Note that because uncertainties are introduced by the 

correction, variance for adjusted parameters is larger than that directly obtained from the 

maximum likelihood algorithm.  

       In conclusion, the model slightly underestimates r and overestimates s and λ, but a 

correction can be applied to those parameters according to the strong relationships 

between the true and estimated parameters. 
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Table 2.1: Results from the pioneer studies. Parameters are chosen to be close to the values 
estimated from the morality data of Swedish females (Human mortality database). 

 r s λ β 
true parameter 0.01200 0.01000 0.02500 0.50000 

estimated parameter 0.01183 0.01006 0.02516 0.50001 
s.e. 0.00001 0.00017 0.00113 0.01849 

true parameter 0.01200 0.01000 0.04000 0.40000 
estimated parameter 0.01170 0.01081 0.04287 0.39096 

s.e. 0.00004 0.00024 0.00199 0.01135 
true parameter 0.01200 0.00900 0.08000 0.20000 

estimated parameter 0.01145 0.01027 0.09606 0.19887 
s.e. 0.00006 0.00031 0.00634 0.00437 

true parameter 0.01200 0.00900 0.08000 0.15000 
estimated parameter 0.01144 0.01149 0.09982 0.14989 

s.e. 0.00001 0.00031 0.00968 0.00372 
true parameter 0.01100 0.01000 0.05000 0.30000 

estimated parameter 0.01065 0.01107 0.05302 0.30112 
s.e. 0.00005 0.00030 0.00300 0.00809 

true parameter 0.01100 0.01000 0.05000 0.20000 
estimated parameter 0.01046 0.01201 0.06419 0.19422 

s.e. 0.00007 0.00028 0.00556 0.00534 
true parameter 0.01100 0.00800 0.06000 0.20000 

estimated parameter 0.01064 0.00883 0.06990 0.19804 
s.e. 0.00004 0.00020 0.00409 0.00425 

true parameter 0.01100 0.00800 0.08000 0.15000 
estimated parameter 0.01037 0.01049 0.11773 0.14455 

s.e. 0.00008 0.00034 0.01241 0.00363 
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Figure 2.4: the ratio of estimated parameters over the true values against estimated β. 

Comparing xv  to 1-rx 

We next compare the effect of approximating xv  with 1 rx−  in eq. (2.10). As stated 

before, one reason to choose 1 rx− is because it yields a better overall fit than xv . To 

illustrate their differences, we begin with the vitality distribution changing with age. 
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Simulations show that although extrinsic killings affect the vitality distribution, within 

the parameter range for humans, the influence is small and 0( | 1)xf v v′ =  is similar to eq. 

(2.7). Therefore, at early ages 0( | 1)xf v v′ =  follows a Gaussian-like distribution (purple 

line in fig. 2.5) and xv , the same as the distribution mode, approximately equals 1-rx, 

while at old ages 0( | 1)xf v v′ =  has a gamma-like distribution (red line) and  xv  is located 

at the right of the distribution mode. Furthermore, the true aggregated extrinsic mortality 

rate at population level equals the exponential function of vitality integrating over the 

space of vitality distribution, i.e. /
0

0

( ) ( | 1)xv
e x xx e f v v dvβμ λ

∞
− ′= =∫ . Demonstrated in Fig. 

2.5, ( )e xμ  can be derived from the weighted value of the solid line (blue), where the 

weight functions are determined by the schedule of the dashed lines (red or purple). For 

early ages, ( )e xμ  can be well represented by point a. However, for old ages by taking xv , 

( )e xμ  is approximated by the value of point b, which obviously leads to an 

underestimation, since the blue line is a declining function within the calculation interval 

and the left part of point b takes more than 50% of the weights. The bias becomes more 

serious as the distribution of vitality gets more skewed toward zero-boundary at very old 

ages. At the same time, 1-rx is a good approximation for xv  for early ages, but tends to 

underestimate xv  at the very end. In effect, 1-rx shifts the dashed line to the left indicated 

in Fig. 2.5 and approximates ( )e xμ  by the value of point c and thus yields a better fitting.  
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Figure 2.5 An illustration of why 1 - rx yields a better fit than xv for ( )e xμ  at old ages. The upper 
plot demonstrates the vitality distribution at both early (x1) and old ages (x2) and the lower plot 
depicts the exponential decrease function of vx. 

2.4 Fitting to Human Mortality Data  

A good fit to data is a goal for any model and also an important way to validate the model 

structure. As discussed in the introduction, the Gompertz model cannot capture the early-

age “hook”, middle-age “elbow” and old-age “plateau” observed in all human mortality 

patterns. These respectively refer to the anomalously high infant death rate, the middle 

age acceleration of increase in death rate and old age leveling off in death rate (Carey, 

Liedo et al. 1992; Vaupel, Carey et al. 1998; Vaupel 2004). Neither the Gompertz nor the 

Gompertz-Makeham models fit all of these features, and consequently the classical 

models are typically applied to human mortality between the ages of 35 and 85. These 

discrepancies are well known, but because the classical models fit the majority of the 
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human lifespan, they are routinely applied and considered sufficient for many analyses. 

Alternatively, models have been applied to phases of the human mortality curve. For 

example, the Heligman-Pollard model (Heligman and Pollard 1980) schedules of 

mortality in three parts: the childhood, adulthood and old age, each of which is 

characterized by 2 or 3 parameters making a total parameter of 8. Milne (Milne 2010) 

divides the mortality curve into five phases and applies a model based on redundancy 

decay and interactive risk individually to each phase. The Milne model also has 8 

parameters which individually apply to specific age intervals. In contrast, the 6-parameter 

IEV model acts across the entire lifespan and so there is no ad hoc designations of stages. 

Moreover, the vitality parameters are process-driven and thus are biologically plausible. 

The next section discusses model characteristics and illustrates the model fit to survival 

data.  

        The IEV model is applied to mortality data from Swedish females (data source: 

human mortality database (HMD 2010)). Fig. 2.6 and 2.7 illustrate the model fit to period 

survival and mortality data for years 1820, 1890, 1960 and 2006. The model fits all the 

mortality data very well expect for the very old age (>85) at period years 1820 and 1890 

where the estimated trajectories fall below the data. The potential reasons for the 

underestimation are addressed further on. In essence, the primary features of mortality 

curves are well captured by the model.  

2.4.1 Mortality Plateaus 

The mortality plateau is a well-established phenomenon in populations from insects to 

humans (Carey, Liedo et al. 1992; Horiuchi and Wilmoth 1998; Vaupel, Carey et al. 

1998). While there has been debate on the processes responsible for the plateau (Rauser, 
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Mueller et al. 2006), I believe the most propitious explanation is based on hidden 

Markov-type models, of which the vitality model has been the most explored. A number 

of authors have noted that vitality-type models, in which death is represented by the 

absorption of the remaining survival capacity into a zero-vitality boundary produce 

mortality plateaus. Weitz and Evans (2001) proposed that a mortality plateau is a generic 

consequence of considering death in terms of first passage time processes undergoing a 

random walk with drift. Aalen and Gjessing (2001) explored these first passage time 

models and noted that such models develop a quasi-stable probability distribution in the 

vitality-like property in which the frail individuals die first leaving the more robust ones. 

Steinsaltz and Evans (2004; 2007), explored the property further noting that the 

convergence to a mortality plateau is, in fact, the natural property of a Markov-process 

model convergence to a quasistationary distribution where the shape of the probability 

mass is stable, and the level of distribution sinks proportionately at every location. 

Although explicit solutions would be difficult, Steinsaltz and Evans (2004) established a 

general case of Brownian motions including both extrinsic killing and boundary killing to 

approach a quasistationary distribution, which theoretically proved that the two-process 

vitality model, being a general Markov-process model, was able to capture the mortality 

plateau.  

2.4.2 Mortality Hook 

The early age “hook” has not been fully resolved previously except by piecing together 

independent mortality stages. The IEV model, though ends up with a similar additional 

component to produce the hook, has a mechanism to explain the emergence of hook in 

terms of the same processes that act across the entire lifespan. In contrast, other models 
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restrict the additional component to the childhood stage only. In the IEV model, we 

derive the hook from the combined effects of an age-dependent challenge frequency term 

λ(x) and a building process of vitality at early ages. To be specific, an exponentially 

decreasing function of λ(x) is used to denote the change of selection pressure and a lower 

value of R0 is used to approximate the average lower recovery ability caused by a lower 

mean vitality away from the hypothetic trajectory at the early stage of life. As discussed 

above, there is a biological sense under the assumption. We speculate that due to the 

immature of the internal defense system (Beisel 1996), children tend to have a much 

higher susceptibility rate to diseases in comparison with adults and because of the large 

variation in acquired initial vitality and the development of physiologic functions, 

children also possess an average low capacity of recovering from a challenge.  

2.4.3 Mortality Elbow 

The “elbow”, indicating an acceleration of the increase rate in log mortality with age 

occurs at the transition period from middle to old ages. This deviation from a linear 

increase is observed in almost all period and cohort data, over the past two centuries, 

though the up-bending trend becomes less prominent in recent years. As demonstrated in 

Fig. 2.7, the age at which the “elbow” occurs increases over time: in Swedish females 

ages 50, 55, 60 and 70 for period years 1820, 1890, 1960 and 2000.  

         Compared with the other features, the mortality “elbow” has not been thoroughly 

explored. Makeham (1860) attempted to account for the change in Gompertz slope by 

including a constant term in the exponential increase in mortality rate. The resulting 

Makeham-Gompertz model mortality function is ( ) bxx A aeμ = +  . Later models such as 

the Siler model (Siler 1979) and the Heligman-Pollard mortality law (Heligman and 
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Pollard 1980), include a Makeham-Gompertz model form with some additional complex 

structures, to fit the entire mortality curve. The Makeham term indeed increases the 

goodness of model fit, especially for data when the “elbow” occurs at relatively younger 

ages (e.g. year 1820 and 1890). Nevertheless, the explanation of the Makeham term has a 

questionable biological foundation (Carnes, Olshansky et al. 1996; Golubev 2004; Carnes, 

Holden et al. 2006; Golubev 2009). The initial interpretation, treating the constant term, 

A, as the accidental mortality independent of age and the Gompertz part as senescence 

related mortality (Makeham 1860), has been long considered inappropriate (Carnes, 

Holden et al. 2006). Besides the lack of a biological justification, the Makeham term does 

not sufficiently improve the fit for recent period year data, because it is unable to capture 

the “elbow” when it occurs at older ages (e.g. year 1960 and 2000).    

           In contrast, the IEV model provides a natural explanation to the “elbow” as the 

age at which the intrinsic mortality begins to have an important contribution to mortality 

schedule. The vitality model smoothly fits the change of mortality schedules, because it 

tracks intrinsic and extrinsic mortalities separately. Although the location of “elbow” 

cannot be analytically calculated, the change in the location through period or cohort 

years reflects improvements, i.e. delays, in the aging processes that lead to intrinsic death. 

Therefore, the vitality model not only fits data better, but also provides a biologically 

plausible interpretation to the elbow in the mortality rate curve. 

          In addition to capturing the early-age hook and the old-age plateau, the ability to 

capture the middle-age elbow further supports the model. Though fitting to mortality data 

is not the ultimate goal, it does provide support for the utility and biological basis of the 

model. 
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2.4.4 Mortality Hump 

Though not shown in Fig. 2.7, the young-adult mortality “hump” is classified as a 

secondary feature of the mortality curve. It is usually observed between ages 10 and 25 in 

many data sets, particularly for males. The 8-parameter Heligman-Pollard model 

(Heligman and Pollard 1980) has special design to fit the pattern and thus yields a better 

fit to data with a significant “hump”. It would be possible to capture the pattern in the 

IEV framework by including parameters to increase the challenge frequency during the 

late-child to young adult period. Plausible mechanisms for an increase in challenge 

frequency include war and immature risky behavior. The hump is not included in this 

dissertation because it does not exist in all the data sets and has significantly diminished 

in recent years. For instance, the curves for Swedish females shown in Fig. 2.7 do not 

exhibit prominent “humps”. The important point here is the IEV model provides a 

framework in which to consider transient mortality events that have specific causes.  
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Figure 2.6: vitality model fits to Swedish female survival curves at period year 1820, 1890, 1960 
and 2000 respectively. Circle: original data from human mortality database; solid line: fitted lines 
from the vitality model. 
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Figure 2.7: vitality model fits to Swedish female mortality rate in log scale at period year 1820, 
1890, 1960 and 2000 respectively (A-D) corresponding to the four survival curves in Fig. 2.6. 
Dot: original data from human mortality database; solid line: total mortality trajectory fitted from 
the vitality model; dashed line: extrinsic mortality trajectory; dotted line: intrinsic mortality 
trajectory. 
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2.5 Sensitive Analysis for IEV Parameters 

Although a structure has been established between the inputs, i.e. the vitality parameters, 

and the outputs, i.e. survival rate or mortality rate, the IEV model does not lead itself to a 

straightforward understanding of the relationship between the parameters and the output 

rates. To be specific, the aim is to know how the mortality trajectory behaves in response 

to changes respectively in vitality loss rate, population heterogeneity, challenge 

frequency and challenge magnitude. It is not only important for better understanding the 

model properties but also essential for validating the model structure. In this section, I 

numerically evaluate the shape of both intrinsic and extrinsic mortality under different 

parameter sets. Because the child mortality parameters µ0 and α only affect a short life 

period and their effects on mortality patterns are straightforward, here we only assess the 

other four parameters which control the post-childhood mortality. 

         The parameter sets are chosen within reasonable ranges for human mortality. Both 

intrinsic and extrinsic mortality rates are obtained from simulation as discussed in section 

2.3. That is, vitality trajectories are generated and extrinsic mortality is produced 

probabilistically when challenges exceed the vitality and intrinsic mortality is produced 

when vitality reaches zero. Intrinsic and extrinsic mortality rates can be calculated 

separately by recording the status of each vitality trajectory. Figs. 2.8 and 2.9 show the 

effects of individual parameters on the progression of intrinsic and extrinsic mortality 

rates with age. In each plot the other parameters are fixed.   

2.5.1 Fraction of Vitality Loss per Unit Time r 

The parameter r, measuring the fractional loss of vitality per unit time, affects both 

intrinsic and extrinsic mortality trajectories. Indicated by Fig. 2.8.A and Fig. 2.9.A, r 
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positions of intrinsic and extrinsic mortality rate curves with age but does not change 

their general shape. In effect, a decline in vitality loss rate, r, does not result in significant 

change in the mortality rate at young ages, but does decrease the mortality rate in older 

ages. Essentially, lowering r improves survival capacity in all age groups; however, the 

effect on mortality is not evident until old age 

2.5.2 Population Heterogeneity s 

In contrast to r, s which reflects the population heterogeneity has cross-over effects on 

both intrinsic and extrinsic population mortalities (Fig. 2.8B and Fig. 2.9B). The 

crossover indicates a phenomenon that two trajectories change their upper-down 

positions at certain time point. In this case, a lower value in s benefits population survival 

at early ages but leads to a higher average killing force at old ages. Given other IEV 

parameters, in particular r, fixed, a more heterogeneous cohort consists of a few more 

individuals with relatively low vitality trajectories and a few more individuals with 

relatively high vitality trajectories. Both intrinsic and extrinsic killings eliminate weaker 

individuals at early ages leaving the average vitality across the population higher than a 

uniform cohort at the same old age. Thus, the average survival chance for a less 

homogeneous cohort would be better later after a stronger selection process occurring 

early in the life period (Li and Anderson 2009).  

The phenomenon of crossovers is widely observed among the age-specific 

mortality trajectories of different sexes and races (Coale and Kisker 1986; Johnson 2000). 

For example, the observed mortality rates for blacks are higher than whites for middle 

and early old ages, but at very old ages blacks are observed to have favorable mortality 

risks compared with whites (Berkman, Singer et al. 1989). The population heterogeneity 
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in susceptibility to death is one primary hypothesis to explain the crossover (Coale and 

Kisker 1986; Johnson 2000). However, it is very difficult to test the hypothesis because 

seldom models are able to specifically address the variation among a population. The 

parameter s in the IEV model provides a way to further examine the phenomenon. In 

conclusion, the population heterogeneity is a fundamental component in shaping age-

specific population mortality curves, such that more and more attention should be paid to 

it in considering the mortality patterns.   

2.5.3 Environmental Parameters λ and β  

 λ and β mainly measure the acute effects on mortality from extrinsic challenges. As 

defined in previous sections, λ and β indicate challenge frequency and the average 

challenge magnitude respectively. Although these challenge parameters also affect the 

intrinsic absorption rate by changing the distribution of vitality, the influence is small and 

does not significantly change the shape of the intrinsic mortality process with age. 

Simulations show that within the parameter range for humans, the intrinsic mortality 

trajectories are almost indistinguishable under different challenge parameters. So I only 

display how the extrinsic mortality trajectories change according to λ and β.    

        Suggested by Fig. 2.9.C and D, λ and β shape the extrinsic mortality curve in 

different manners. A decline in the frequency term tends to benefit the old age group 

more than the early age group, whereas the advantage of lower average challenge 

magnitudes, as expressed by lower β, is diminished with age. It is not difficult to 

understand the distinct characteristics of the two parameters on mortality. In early life, 

when vitality is high, more frequent challenges do not cause a significant increase in the 

mortality rate because most challenges do not exceed the individual’s vitality. In contrast, 
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more frequent challenges promote the chance of death at later ages when vitality levels 

are low and low magnitude challenges can exceed the remaining vitality and thus result in 

death. Therefore, λ, which controls the frequency of challenges, is a key to determine the 

level of mortality rate in this case. Correspondingly, a high average challenge magnitude 

β has a notable impact on survival in early time but not at later ages since most 

challenges would exceed the remaining vitality and thus kill the individual no matter 

what the magnitude is.  

 In general, the IEV model provides a framework to make intuitive statements on 

mortality shape.  

2.5.4 Issues on the Identifiability of IEV Parameters 

The identifiability of parameters is of concern in model validation. The sensitivity 

analysis above demonstrates that the four adult parameters shape mortality trajectories 

differently, which, to a certain degree suggests that their effects on mortality are 

distinguishable. In empirical model fitting, the middle-age “elbow” provides key 

information for disentangling intrinsic and extrinsic mortality rates. Prior to the “elbow”, 

most death is from extrinsic process. Thus, the extrinsic mortality, which maintains an 

exponential increase with age across life is defined ( )exp (1 ) / exp( )rx a bxλ β− = , and a 

and b can be estimated from the linear portion of the log mortality curve prior to the 

mortality elbow (See Fig. 2.7).  The intrinsic mortality is then derived as the total 

mortality minus the extrinsic mortality. r and s are independently estimated from the 

intrinsic mortality trajectory and the estimated r is used to disentangle λ from β in the 

extrinsic part based on /r bβ =  and exp(1/ )aλ β= .      
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        However, the differentiability between λ and β relies on the assumption that the 

parameters are constant across life. To be specific, λ and β can be only accurately 

separated if they are completely independent of age. But in reality, both parameters are 

expected to have age structures, especially for the challenge frequency term λ. To fit data 

it is necessary to have a higher value of λ at childhood and young adulthood, therefore it 

is plausible that the frequency of challenges varies over other life stages. Also, λ could 

possibly increase with age suggesting a higher susceptible rate to challenge for very old 

ages. But the model would allocate all the age-dependent components to exponential part, 

i.e. ( )exp (1 ) /rx β− , and consequently change the estimated value of β. In other sense, 

the estimated λ would always represent the part that is non-monotonically changed with 

age. 

        Moreover, the model also has identifiability issues on mortality in the childhood 

stage when additional information of intrinsic survival is not available. While expressing 

child mortality as an exponentially decreasing mortality rate provides a reasonable fit to 

the data, it does not resolve the contributions of intrinsic and extrinsic processes.  

Irrespective of these issues, the assumption on λ yields a reasonably good fit to mortality 

data, and in particular for recent data.  
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Figure 2.8: age-specific intrinsic mortality rate under different IEV parameters. (A). r varies, 
while s, λ and β are fixed at 0.01, 0.05 and 0.2 respectively. (B). s varies, while r, λ and β are 
fixed at 0.011, 0.05 and 0.2 respectively.  
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Figure 2.9: age-specific extrinsic mortality rate under different IEV parameters. (A). r varies, 
while s, λ and β are fixed at 0.01, 0.05 and 0.2 respectively. (B). s varies, while r, λ and β are 
fixed at 0.011, 0.05 and 0.2 respectively. (C) λ varies, while r, s and β are fixed at 0.01, 0.01 and 
0.2 respectively. (D). β varies, while r, s and λ are fixed at 0.01, 0.01 and 0.2 respectively.
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Chapter III: Heterogeneity structure of the IEV model and Mortality 

Partition 

Compared to other models, the IEV framework has two prominent advantages in that it 

explicitly considers population heterogeneity and quantifies mortality from two sources. 

In this chapter, we further address these features and show how they can be used for 

understanding mortality patterns.   

3.1 Heterogeneity Structure of the IEV Model  

It is understood that individuals even within a population are different at birth and 

differentiate further over time because of their unique experiences and innate capabilities. 

These differences are generically attributed to heterogeneity, which is an important factor 

in determining features of population survival. These include the time to starvation, 

response to stress, expected life span etc. However, little attention was paid to the issue of 

heterogeneity in demography until the discovery of mortality plateaus: a widely observed 

tendency for the rate of mortality to level off at old ages (Carey, Liedo et al. 1992; 

Horiuchi and Wilmoth 1998; Vaupel, Carey et al. 1998) which was against the well-

accepted Gompertz law (Gompertz 1825). There are at least two possible explanations for 

the mysterious phenomenon: the heterogeneity hypothesis and the individual-risk 

hypothesis (Khazaeli, Xiu et al. 1995). According to the heterogeneity hypothesis, the 

deceleration in the mortality rate is a statistical effect of selection through the attrition of 

weak individuals at early ages while strong ones survive longer, finally leading to a 

decline or leveling off of mortality rate at old ages. Alternatively, the individual-risk 



56 

 

hypothesis postulates that because the age-related increase of mortality at individual level 

slows down at older ages, the mortality drops.   

        Based on the first hypothesis of heterogeneity, a few models and theories have 

invoked a demographic stochasticity in which variability in survival and reproduction 

rates are expressed as random events within population age classes (Vaupel, Manton et 

al. 1979; Fox and Kendall 2002; Engen, Lande et al. 2003; Boyce, Haridas et al. 2006). 

Heterogeneity is then formally admitted. In popular demographic heterogeneity theories, 

heterogeneity is explicitly expressed in the mortality rate of a Gompertz model, by either 

assuming the distribution of mortality coefficients (Vaupel, Manton et al. 1979; Service 

2000; Service 2004) or identifying the coefficients of subpopulations (Yashin, 

Ukraintseva et al. 2001). These models successfully explain the mortality plateau. In 

addition, Service (2000) used them to interpret the bell-shape of the age-specific patterns 

of variance in mortality rates. However, these heterogeneity models have been criticized 

from different aspects: Pletcher et al. (1998) first pointed out that in order to explain the 

mortality plateau, unrealistic variance in mortality rate parameters is required for these 

models and the deceleration is still observed even when great care is taken to reduce 

phenotypic variation. Then Mueller et al. (2003) questioned the results of Service (2000) 

and speculated that binomial sampling was sufficient to explain the bell shape of age-

specific variance instead of considering within-line demographic heterogeneity which 

was suggested by Service (2000). Although Service (2004) responded, the problem still 

exists that these models are unable to distinguish the true heterogeneity effect from the 

statistical sampling effect.      
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   If heterogeneity theories have value, to respond these criticisms mentioned above, 

a new way to model variation in population mortality is needed. Heterogeneity should be 

formulated more naturally and the model should also be able to show the heterogeneity 

effects without the disturbance of sampling effects. The IEV model proposed in this work 

can potentially solve the dilemma, since it has a biologically realistic form of 

heterogeneity. Moreover, the model explicitly considers the processes that produce 

heterogeneity which is not the case in many other heterogeneity models. For instance, the 

well-known frailty model, proposed by Vaupel et al. (1979; 1985) expresses an 

individual’s survival capacity in terms of the deviation of its mortality rate from a cohort 

baseline. The model provides insight into survival processes but somewhat at the expense 

of added complexity to relate the rate of mortality to conditions that occurred prior to the 

time of the mortality event itself.  In addition, it is unable to capture the change of 

population heterogeneity as time is evolving.  

    The previous chapter illustrates how the IEV model explains mortality plateaus. 

In this section, I will further explore the feature of mortality leveling off based on 

simulation results, with emphasis on demonstrating how the IEV model characterizes the 

bell shape of age-specific variance in mortality.  

3.1.1 Heterogeneity Structure  

Different from other heterogeneity models, the IEV model represents mortality variation 

in terms of the heterogeneity in vitality. Therefore, it is necessary to understand the 

variance structure of the vitality first. Similar to early version of the vitality models 

(Anderson 1992; Anderson 2000; Aalen and Gjessing 2001; Weitz and Fraser 2001; 

Anderson, Gildea et al. 2008), heterogeneity acts directly on vitality process in an 
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evolving manner which is manifested as a linear increase in the variance of the vitality 

distribution with time expressed as 2E s t= . In reality, the variance in vitality comes from 

two sources: an initial heterogeneity, which results from genetic and epigenetic 

differences in individuals, is constant through life, and an evolving heterogeneity, which 

is an acquired difference that increases with age (Li and Anderson 2009). As discussed in 

the section of vitality normalization (2.2.1), the IEV model summaries variances from 

both sources into a single variable, s, indicating the fraction of vitality spread per unit 

time. Because the contribution from genetic variation is relatively small (Gavrilov and 

Gavrilova 1991; McGue, Vaupel et al. 1993; Hacker 1997), using a single variable s to 

reflect the combined effects of the two kinds of variations averaged in each age interval 

still yields a good approximation, but in a parsimonious way.  

         One point that needs to be emphasized is that in the IEV model only the intrinsic 

vitality process produces heterogeneity in vitality, while both intrinsic and extrinsic 

mortality processes reduce the total variability by removing individuals from the 

population.  Intuitively, the variance in vitality starts to increase under the force of 

evolving heterogeneity and reaches the maximum value when the effect of killing process 

imposed on population surpasses that from the stochastic diffusion. Consequently, the 

age-specific variance in vitality has a natural bell-shape. Meanwhile, since extrinsic 

mortality has a monotonic relationship with vitality implied by eq. (2.7), the age-specific 

variance in mortality rate follows a similar shape. Mathematical statements will be 

presented to explain the age-specific patterns of heterogeneity in mortality rate.    
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3.1.2 Mortality Plateaus Revisit  

One of the most interesting phenomena in demographical studies is the mortality plateau 

which is believed to be critical for explaining the dynamics of senescence. The mortality 

plateau, as defined previously, is a fundamental problem that “the supposedly tenets of 

ageing, namely the exponential growth of mortality rates proposed by Gompertz 

(Gompertz 1825), may fail to describe the behavior of observed populations adequately” 

(Weitz and Fraser 2001). More specifically, studies using different animals and humans 

demonstrate that mortality rates tend to level off and even decease at later stages of life 

(Carey, Liedo et al. 1992; Horiuchi and Wilmoth 1998; Vaupel, Carey et al. 1998). As 

explicitly addressed in the previous chapter, the IEV model naturally achieves a mortality 

plateau as a consequence of Markov-process model convergence to a quasistationary 

distribution. From the perspective of heterogeneity, the variance structure in vitality 

ensures some individuals die early and some die late. The slowing down of the average 

rate of vitality loss leads to the leveling off of mortality. Compared to other heterogeneity 

theories, the Markov-type model produces variance following a natural random process 

and thus no artificial selection process is required.  

       Although an analytical solution for the mortality plateau is not available, we can 

still assess its properties through simulations, such as the time when the plateau is 

achieved and the asymptotic mortality rate at the plateau stage. Since the plateau is 

mostly determined by the intrinsic vitality process, the parameters r and s play a major 

role in shaping the plateau. In contrast, the extrinsic parameters λ and β have limited 

impact. Therefore, we can illustrate the two features of the plateau mentioned with 

respect to variations in r and s only, while fixing λ and β. The procedure of simulation 
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follows the method described in Chapter II. Each mortality curve is constructed from 

population vitality trajectories under a desired parameter set. Mortality curves in log scale 

are then plotted against age (Fig. 3.1).  

        Mortality plateaus result under all simulated parameter sets and both r and s 

influence the time and the height of the plateau. Increasing r leads to earlier, and higher  

plateaus (Fig. 3.1A), while increasing s results in lower plateaus but does not 

significantly change the time to reach them (Fig. 3.1B). It is interesting that the level at 

which mortality is stabilized is fully determined by the ratio of s to r as suggested by Fig. 

3.1C and D. In recent work, Vaupel (2010) displayed that the observed mortality rates at 

extremely old ages were very similar across years. This phenomenon could be explained 

under the IEV framework when r and s decline at a similar pace across all periods.   
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Figure 3.1: Log mortality against time (age). (A) r varies, while s is fixed at 0.02; (B) s varies, 
while r is fixed at 0.02; (C) s/r are fixed at 2; (D) s/r are fixed at 1. λ and β are fixed at 0.05 and 
0.2 for all plots. Each curve is obtained through a simulated population with desired parameter 
values.  

3.1.3 The Age-specific Patterns of Variance in Mortality Rate 

Although age-specific patterns of variance in mortality rate are not as visually evident or 

noticeable as mortality plateaus, the pattern in variance gives an opportunity to compare 
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different demographic theories, like heterogeneity theory, evolutionary theory and others. 

Promislow et al. (1996) and Pletcher et al. (1998) first examined this rate variance in 

Drosophila experiments. A bell shape was observed for the variance in logarithmic scale 

of mortality rate: it was high or increased in early and intermediate ages and declined in 

old ages. This pattern was not predicted by theory, until Service (2000) proposed that the 

within-line demographic variation from heterogeneity theories might be responsible. This 

conclusion was questioned by Mueller et al. (2003), who suggested that the sampling 

effects could explain the pattern in heterogeneity. In spite of a quick response from 

Service (2004), heterogeneity theories still have to face a severe challenge that the model 

cannot isolate the effects of heterogeneity from that of statistical sampling. In the 

previous models heterogeneity has been expressed in terms of a parametric distribution, 

such that variance in mortality rate can only be obtained by repeated sampling, whereas 

the IEV model treats mortality rate as a random variable, which allows us to theoretically 

assess its variance directly in terms of the analytically derived probability distribution of 

vitality.  

        The individual level mortality rate ( )m x has two parts: the intrinsic mortality 

expressed as the absorption rate of vitality and the extrinsic mortality related to the 

individual vitality level. At each age, the former is constant while the latter is a random 

variable. Therefore, the only source of age-specific variation is from the extrinsic part, 

i.e. /( ) ( ) xv
e e xm x m v e βλ −= = (eq. (2.7)). 

        The delta method can be applied to approximate the variation at age x: 
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(3.1) 

where the average vitality rate xv  and var( )xv  cannot simply be calculated from the 

Wiener Process, since vitality distribution is modified by the extrinsic death process. 

Although analytical forms for xv  and var( )xv  do not exist, numerical computations are 

possible.  Although simulation is still used to examine the age-specific variance patterns 

in mortality, the IEV model does not require repeat sampling to generate mortality 

curves, but only relies on an approximation of the vitality distribution. Thus, no statistical 

effects are introduced.  

       In articles mentioned above (Promislow, Tatar et al. 1996; Pletcher, Houle et al. 

1998; Service 2000; Service 2004) instead of mortality rate itself, the logarithmic scale is 

generally used. Also, in Service’s (2000) opinion, the choice of logarithmic form 

influences the shape of variance. So the variance in the logarithmic form needs to be 

considered explicitly. By the delta method:    

[ ] [ ]

2 2
1 1var log( ( )) var[ ( )] var[ ( )]
( ) ( ) ( )x e x e x

x e i

m v m v m v
E m v x xμ μ

⎛ ⎞ ⎛ ⎞
≈ =⎜ ⎟ ⎜ ⎟⎜ ⎟ +⎝ ⎠⎝ ⎠

             (3.2) 

where ( )e xμ  and ( )i xμ  indicate the extrinsic and intrinsic mortality at population level 

respectively and var[ ( )]e xm v  is derived from eq. (3.1). Therefore, we can assess the age-

specific shape of both variance of mortality in original and logarithmic scale through 

simulation. 

       Fig. 3.2 and 3.3 show the variance of mortality rates in normal and logarithmic 

form separately against age under different parameter sets. For the variance of mortality 
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itself, not all the parameter sets yield an obvious peak, but all of the curves tend to 

increase first and then decline. The plots illustrate that the bell-shape of age-specific 

variance in mortality can be explained by the vitality structure. The location and the 

height of the maximum variance are affected by all of the parameters. Under both scales 

in mortality, s, λ and β mainly influence the height of the maximum variance, where r 

determines both location and height. Intuitively, the larger the s term is, the higher the 

maximum variance is. A lower value in r imposes a smaller killing force, such that the 

time for the accumulation of variance is longer. Interestingly, λ and β have counteracting 

effects on the maximum variance. A larger λ increases maximum variance whereas a 

larger β reduces it.  

       Compared to the variance pattern in the normal mortality scale, the log 

transformation makes the bell shape more prominent, which corresponds to what 

observed in Promislow et al. (1996) and Pletcher et al. (1998)’s experiments. Hence, it 

supports the conclusion from Service (2000; 2004) that the reduction in variance of 

mortality rates at later ages is partially due to the choice of a logarithmic scale. 

Nevertheless, the bell shape essentially stems from the interaction between the stochastic 

aging process, which produces heterogeneity, and the death process including both 

boundary and extrinsic killing, which removes individuals from the population and thus 

reduces population variation.   
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Figure 3.2: Age-specific variance in mortality rates under different parameter sets. (A) only r 
varies while s = 0.02, λ = 0.05 and β = 0.2. (B) only s varies while r = 0.02, λ = 0.05 and β = 0.2. 
(C) only λ varies while r = 0.02, s = 0.02 and β = 0.2. (D) only β varies while r = 0.02, s = 0.02 
and λ = 0.05. 
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Figure 3.3: age-specific variance in logarithm mortality rates under different parameter sets which 
are chosen to be the same as figure 11. (A) only r varies while s = 0.02, λ = 0.05 and β = 0.2. (B) 
only s varies while r = 0.02, λ = 0.05 and β = 0.2. (C) only λ varies while r = 0.02, s = 0.02 and β 
= 0.2. (D) only β varies while r = 0.02, s = 0.02 and λ = 0.05. The bell-shape of variance has been 
remarked by the logarithmic transformation of the mortality rates. The curves yield significant 
peaks among for all parameter sets. 
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3.2 Mortality Partition 

Because death has many causes, most scientists focus on subsets of causes, i.e. disease, 

suicide, alcohol. In spite of the success in each subfield, focusing on a single death 

category usually blocks the view of understanding mortality as a consequence of 

senescence (Carnes, Holden et al. 2006).  

    As early as 200 years ago, scientists began thinking about an informative 

standardized way to partition mortality (Carnes, Olshansky et al. 1996). Although there is 

no consensus, it is generally agreed that mortality can be divided into a senescence 

relevant part identified as “actual death” and the accidental part identified as “avoidable 

death” (McGlnnis and Foege 1993). Following Carnes et al. (1996), we denote the former 

intrinsic mortality and the latter extrinsic mortality which together correspond to the two 

death processes of the IEV model. Exploring the senescence process is believed to be a 

useful focus for understanding questions of primary concern, such as why organisms 

grow old, whether there is a way to slow down senescence, and what the life limitation is 

for human beings. At the same time, “the focus on intrinsic mortality does not mean that 

the extrinsic mortality is unimportant or of no interest” (Carnes, Holden et al. 2006). To 

the contrary, the extrinsic process plays a central role in the evolutionary theories of 

senescence (Kirkwood and Holliday 1979) and also expresses the environment that 

population experiences. Thus, an intrinsic/extrinsic partition of mortality is meaningful 

and most important, biologically motivated. 

    A model based partition was first attempted by Makeham (1860) by adding an 

age-independent term to the traditional Gompertz model (1825). By doing this, the causes 

of death were actually partitioned into: 1) a subset responsible for the age-dependent 
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increases in mortality that characterized the “Gompertz law”, and 2) a subset ascribed to 

‘‘accidental circumstances’’ that do not depend on age. The problem with this approach 

is that since the method is based on the Gompertz law, which represents death as an 

instantaneous mortality, the concept is ambiguous. In other words, because of lacking a 

biologically meaningful process, the partition is usually unconvincing. For instance, 

Makeham has been criticized for using the age-independent part as the extrinsic 

mortality, as there is no visual evidence to indicate that the extrinsic mortality is constant 

with age (Carnes, Holden et al. 2006). 

        Due to the difficulties of formulating the partition mathematically, information 

on the causes of death has become more important. Non-model based approaches of 

partition have been widely adopted with increasing knowledge of disease mechanisms. 

Researchers, drawing on specific studies of mortality, have developed mortality 

partitions. For instance, Clarke et. al (1950) divided total mortality into anticipated deaths 

(“accident, disease or any other cause, which are anticipations of the natural termination 

of life”) and senescent deaths (principally “arteriosclerosis, cardiovascular diseases, renal 

diseases, bronchitis and bronchopneumonia, and senile decay”) and assumed that the 

proportion of total mortality attributable to senescent causes increased from 5% at age 20, 

to 100% above age 80. Benjamin (1959), on the other hand, classified all deaths before 

age 55 as accidental, and all deaths after age 76 as senescent. A recent classification 

criterion of intrinsic and extrinsic mortality established by Carnes et.al (2006) is based on 

whether the primary cause of death does, or does not, originate from within the organism. 

Through this standard, they conducted a mortality partition relying on the 6th, 9th and 

10th Revisions of the International Classification of Diseases (ICD) published by the 
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World Health Organization (WHO). Although these approaches used the knowledge 

available, a perfect partition could not be achieved for several reasons. Firstly, many 

diseases have unknown etiological mechanisms. Secondly, humans may die from 

multiple causes, which makes it difficult to classify the death. Thirdly, sometimes death 

from a particular disease may be categorized differently. For example, lung cancer can be 

naturally originated from within the organism but can also be raised due to the exposure 

to mutagens or carcinogens. According to the criterion of Carnes et. al. (2006), the former 

death is defined as intrinsic while the latter is considered as extrinsic. Even if errors are 

allowed in the partition, these methods are inadequate for examining mortality patterns 

and conducting survival prediction, because they highly depend on the death information 

from the data which is usually unavailable. 

The two-process model developed here provides a natural partition to the 

mortality into extrinsic and intrinsic parts without additional information on the exact 

cause of death and thus provides a judgment-free partition on which to base analyses of 

mortality patterns. In contrast to Makeham’s model and any later improvements, the IEV 

models takes the process point of view in which the two processes are built on a common 

concept of individual’s survival capacity, vitality. Since both intrinsic and extrinsic 

deaths are based upon meaningful processes, the method is biologically robust.  

3.2.1 Intrinsic Mortality 

The intrinsic mortality in the IEV model refers to death from vitality absorption into the 

zero boundary. It is the endpoint of aging process when the organism exhausts its 

survival capacity. According to the previous definition, each individual starts with certain 

amount of vitality that declines stochastically with age. Intrinsic death happens when the 
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vitality trajectory hits the zero-boundary as the consequence of aging. Although the real 

mechanisms for aging are highly complex, including fundamental changes in both 

physiologic functions and cells that are unable to be explicitly defined, the intrinsic death 

can be represented in a tractable way: the collapse of internal system when the natural 

damages are accumulated to a certain point such as organ failure or malfunction under the 

vitality framework. The parameters r and s are designed to characterize the intrinsic 

mortality, among which r is the mean fraction of vitality loss per unit time so 1/r 

measures the approximate average death time from the intrinsic mortality, and s is the 

heterogeneity parameter which stochastically spreads the vitality trajectories and 

ultimately shapes the population variance in intrinsic death time (Anderson 2000; 

Anderson, Gildea et al. 2008; Li and Anderson 2009). 

         Despite the fact that intrinsic mortality primarily reflects death originated from 

inside the body, it can be largely modified by external interventions. Harsh environmental 

conditions, bad nutrition supplies and unfavorable habits all might substantively raise the 

vitality loss rate and thus change the intrinsic mortality. On the contrary, a better living 

condition and healthy life style could extend life expectancy through slowing down the 

chronic vitality process. As suggested in chapter 2, the schedule of intrinsic death helps 

reveal the chronic survival conditions of organisms which can be affected by both 

internal and external factors.  

        Note that in a hypothetical environment where infectious diseases, aggression, fatal 

accidents, etc are totally removed, the population would theoretically achieve the average 

potential life span 1/r with variance expressed in s. In other words, 1/r defines the 

survival capacity under the average chronic conditions of the population. 
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3.2.2 Extrinsic Mortality 

Probably, an easier way to define the intrinsic mortality is through the extrinsic mortality, 

in the sense that intrinsic causes of death are those that remain after excluding the total 

extrinsic causes of death. On the other hand, the extrinsic mortality can be defined as 

deaths occurring through processes other than natural damage accumulation. Thus, 

whether originating from within organisms, or not, is not a satisfying definition of 

extrinsic mortality. In our opinion, extrinsic mortality is relatively avoidable, preventable 

and treatable including mortality mainly from infections, accidents and even internal 

pathological changes (challenges) that cause unnatural collapses of organism’s survival 

system. As stated before, the extrinsic mortality is not necessarily independent of age, on 

the contrary, it is highly likely to be associated with age, as suggested from previous 

discussion. Under the vitality framework, extrinsic mortality accounts for most of the 

early-age deaths whereas intrinsic deaths largely occur at old ages. It is difficult to 

determine whether a specific disease belongs to the intrinsic or extrinsic category, but 

expressing the partition through the statistical fit to data avoids problems involved with 

an artificial classification based on the assumed cause. Considering the previous example, 

the model would likely classify an early-age lung cancer death from smoking as an 

extrinsic event which is the consequence of exposure to carcinogens, while at old age, 

death from the same cancer would likely be classified as intrinsic which is probably 

caused from the malfunction of lung due to damage accumulation. 

      Extrinsic mortality is characterized by three factors: the frequency and average 

magnitude of challenges and the vitality level, but the extrinsic process only controls the 

first two. The extrinsic mortality is considered as an instantaneous event or process 
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occurring over a relatively short period. Compared to intrinsic parameters, the extrinsic 

parameters characterize the acute conditions of environment. In a generic form, both the 

frequency and the average magnitude of challenges can be modeled as constants across 

all age groups to represent the mean effects. However, more complexity can be added to 

capture the pattern of high child mortality. I model the challenge frequency as an 

exponentially declining function with age, implying that early ages have higher chances 

to encounter external strikes or pathological changes. It is understandable that the 

instability of a newborn’s system may induce high-frequency pathological changes that 

attack its own organism and lead to unnatural failures (Chandra 1997; Holt and Jones 

2000). The children may also have a lower recovery chance, indicated by a lower vitality 

as compared to young adult. I approximate the combined effects of increased frequency 

and reduced vitality in childhood by an exponentially decreasing function as mortality 

rate determined by death rate at age zero, µ0, and the rate of mortality decline α.  

    Essentially, the intrinsic-extrinsic partition easily deals with age-specific events, 

such as the ability of explaining the consistently observed mortality “elbow” as the large 

presence of intrinsic mortality. 

3.2.3 Mortality Partition Applied to Human Data 

With the intrinsic-extrinsic framework, mortality partitioning can be applied to human 

mortality data for examining the patterns of both chronic and acute deaths. All age-

specific mortality data are obtained from the Human mortality database (HMD 2010) 

with time interval of 1 year. Age-specific intrinsic and extrinsic mortality rate are 

abstracted from the IEV model fit to the empirical data. To be specific, I estimate the 
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parameters first and then portray the intrinsic and extrinsic mortality trajectories 

predicted by the estimated parameters.    

        Firstly, I compare US death rates classified by sex for period year 1945, 1970 and 

2000 to see if humans exhibit changes in partitioned death rates over that broad time 

periods. Across all the years, extrinsic mortality dominates before age 50 and intrinsic 

mortality becomes dominant after age 50. Indicated by Fig. 3.4A and B, females have 

consistent improvements in both intrinsic and extrinsic mortality over almost all the ages 

from year 1945 to 2000, although the differences among the three years diminish at the 

extreme old ages. As discussed in the section of mortality plateau, the asymptotic 

mortality rate at plateau is determined by the ratio of the fraction of vitality spread (s) to 

the fraction of vitality loss per age (r). Therefore, the convergence of intrinsic mortality at 

plateau is suggested by similar values of s over r among the three period years. For 

males, the patterns are more complicated. The age-specific intrinsic mortality rate is 

significantly lower in 2000 than in 1945 but for 1970 intrinsic mortality is higher than 

either 1945 or 2000 for individuals less than 65 year age. This anomalously high rate for 

1970 is mostly likely due to high death rates associated with a high incidence of smoking 

in the previous two decades (Preston and Wang 2006; Wang and Preston 2009). The 

lower intrinsic mortality rate in 1970 for males > 65  may be partially attributed to the 

larger selection effects imposed by smoking status at middle ages that remove frailer 

individuals. The male extrinsic mortality shows a consistently decline from 1945 to 2000 

for almost all the ages (except the very old ages). The ratios of s to r are more 

heterogeneous among the three years for males (1.12, 1.82, 0.93) than for the females 
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(1.04, 0.95, 0.87), and thus the male mortality trajectories are less likely to converge to a 

single value. 

       A general improvement in survival has been observed through the second half of 

the 20th century for both sexes in the U.S, but the partition between extrinsic and intrinsic 

mortality reveals useful insights into the mechanisms of change in mortality patterns. 
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Figure 3.4 A comparison of age-specific death rates for intrinsic (A. females C. males) and 
extrinsic (B. females and D. males) mortality among period year 1945, 1970 and 2000. 

        Besides understanding the separate trajectories of intrinsic and extrinsic mortality, 

it is also interesting to explore the ratio of intrinsic mortality over the total rate, in 

particular when both absolute rates keep declining.  

       The ratio of the intrinsic mortality rate to the total rate is depicted in Fig. 3.5 for 

Sweden, Japan and the U.S. from selected period years. All countries and sexes exhibit 
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the same general trend; the ratio of intrinsic rate is zero up to middle age > 50, rises to a 

peak in old age, ~ 80, and declines at extreme old age, > 90. The onset of intrinsic 

mortality, i.e. non-zero values, has steadily increased across years indicating that the 

onset of senescence related process is being delayed. The decline of ratios at extreme old 

age may be an artificial effect caused by approximation to the extrinsic mortality. 

According to the original model setting, both intrinsic and extrinsic mortality would 

reach a plateau at very old age, such that the ratio of intrinsic rate should also level off. 

However, the extrinsic mortality is approximated as an increasing function with age here 

and thus the pattern at very old age exhibits an artificial decline.   

For the patterns across different period years, there seems to be an increasing 

trend in the proportion of intrinsic deaths at very old ages through year 1800 to 1900 

(indicated by Swedish population) implying the overall improvement of extrinsic 

mortality exceeds the improvement from intrinsic, and thus more and more individuals 

survive to old ages and die from intrinsic causes during this period. However, the entire 

20th century shows an opposite trend with decreasing percentages of intrinsic mortality at 

old ages. The decline in the percentage (or the increase of proportion in extrinsic 

mortality) is likely to be the consequence of the large delay of extrinsic mortality to old 

ages and the simultaneous improvement in senescence-related rate (Fries 2005). The third 

period starts from year 2000 showing a reversal in the trend of intrinsic mortality 

percentage at old ages, although the onset time for intrinsic mortality has not changed too 

much especially for the Japanese population. It is not clear whether the recent trend is 

artificial or not. The patterns for the proportion of intrinsic mortality over the total one 

are complicated and involve many factors. We only conduct a preliminary examination 
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here and a thorough investigation needs further information regarding to the change of 

social, biological, environmental factors and so forth. 

        It is also possible to compare patterns among countries and genders. In contrast 

to Sweden and Japan, the U.S. has consistently lower proportion of intrinsic mortality 

through the entire lifetime uniformly across all the selected period years. In other words, 

extrinsic mortality always accounts for the major deaths even at very old ages for the 

U.S. With regard to the gender, males have a consistently high proportion of extrinsic 

mortality, suggesting they are more vulnerable to environmental challenges.  

  In summary, this cursory analysis suggests that the age-specific partition between 

intrinsic and extrinsic mortality rates reflects subtle changes in mortality processes across 

time, cultures and gender.  
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Figure 3.5: Proportion of intrinsic mortality rate in the total mortality rate against ages for 
Swedish, Japanese and the U.S. populations with selected period years.   
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Figure 3.5 (cont.): Proportion of intrinsic mortality rate in the total mortality rate against ages for 
Swedish, Japanese and the U.S. populations with selected period years.   

3.2.4 Interspecies Comparison of Intrinsic Mortality Patterns 

As suggested by Carnes et al. (1996; 2006) mortality partitions also should be useful in 

interspecies comparisons of mortality patterns. Comparing survival across different 

species is very difficult, not only because their average life spans are, varying from days 

for insects to decades for humans and some large mammals, but also life history 

strategies are highly diverse across species. Consequently the patterns of intrinsic and 

extrinsic mortality rates can be quite different across species. For instance, the IEV model 

developed here postulates that the human extrinsic mortality is approximately an 

exponentially decreasing function of age, whereas the previous vitality models with a 

constant extrinsic killing rate, the extrinsic rate fits survival data from laboratory animals 

very well (Anderson 1992; Anderson 2000; Anderson, Gildea et al. 2008; Li and 

Anderson 2009). Even within a species, animals living in the wild typically do not reach 

their potential life expectancy because of predation and accidents imposed by the harsh 
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surroundings. In contrast laboratory groups are likely to survive longer with abundant 

food supplies and protection from natural predators. The mortality partition provides a 

way to separate the intrinsic mortality from the complex interventions of environment 

and narrows the comparison within intrinsic schedules. Because scientists are largely 

interested in how similar senescence-related mortality profiles are among different 

species, in particular, whether the variable intrinsic mortality signatures of humans 

resemble those of other animals in the controlled environments.  Such comparisons are 

believed to be important for understanding the natural selection on population survival 

(Eakin and Witten 1995; Eakin and Witten 1995; Carnes, Olshansky et al. 1996; Carnes 

and Olshansky 1997; Carnes, Holden et al. 2006).   

       Carnes et al. (2006) compared the intrinsic mortality of human beings derived 

from their information-based partition with the mortality of laboratory mice and dogs. 

They scaled the survival curves by the median age at death to remove life-span effects 

and found that the intrinsic mortality patterns among different species had far more 

similarities than differences. They specifically introduced a statistic, the relative 

interquartile rate (%IQR), to measure the population variation in death time which was 

not affected by any proportional scaling of time and thus reflected the true differences in 

intrinsic mortality schedules among these populations. %IQR is computed as the 

difference between the 75th and 25th percentiles of the intrinsic survivorship distribution 

expressed as a percent of the median. A smaller %IQR means the survival curve is more 

compressed, in other words, the relative population heterogeneity is smaller. By 

comparing %IQR, Carnes et al. (2006) concluded that human beings and some laboratory 

animals share a similar relative variation in intrinsic death time.   
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       The whole analysis can be redone in the framework of the vitality model which 

proposes a biologically meaningful partition to mortality. This model-based 

classification, not relying on detailed information on cause of death and artificial 

criterions, is more robust for comparisons. The mean survival time implied by 1/r 

provides a more intuitive way to scale survival curves and s serves as the direct 

measurement of population variation in intrinsic death time. In addition, since the 

information of causes of death is usually not available for laboratory animals, Carnes et 

al. (2006) might have slightly overestimated the intrinsic mortality level for those groups 

without eliminating the possible extrinsic interventions. In contrast, the IEV model can 

also be applied to animal data and thus helps disentangle the pure effects of intrinsic and 

extrinsic mortalities for laboratory animals. 

         From the point of view of the IEV model, the similarity between human and other 

animals on scaled survival curve is not surprising at all, because the intrinsic death time 

always follows an inverse Gaussian distribution defined by the model. The inverse 

Gaussian distributions only differ in scaled variance parameter characterized by s/r for 

different populations. s/r is the measure of the relative variation (RV) analogous to the 

coefficient of variation (CV). As discussed previously, RV is an important variable to 

determine the magnitude of mortality in the plateau. 

      Fig. 3.6 illustrates the clustering of RV by species and includes Swedish females 

and males at selected period years (1800, 1900 and 2000) from (HMD 2010) and 

laboratory studies on survival in Drosophila (Min and Tatar 2006), medfly (Carey and 

Liedo 1995), nematode (Wu, Cypser et al. 2009) and mice (Sprott 1997). The figure 

illustrates that the heterogeneity in RV among species is larger than that within a species. 
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The laboratory mice have the lowest RV compared to others, while insects have higher 

RVs and human beings are in between.  

      This study suggests that different animals may have distinct signatures of intrinsic 

mortality even after survival curves are normalized to the same scale. In particular, the 

intrinsic variation structures indicated by RV vary from species to species. It is not clear 

whether the differences are caused by the laboratory environment or the natural 

characteristics of different species. This question is beyond the scope of the dissertation. 

The main point is that the IEV model provides a useful tool for mortality partitions that 

can be applied to a broad range of fields such as biology and ecology.        

      

Figure 3.6: The relative variation (RV) calculated from different laboratory species and human 
population (Swedish females and males). 95% Confidence interval (CI) for RV are marked as 
bars. Note that because the population size of human is very large compared to the other animal 
populations used here, the CI is very small for humans and not visible in this plot.  
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Chapter IV: Historical Exploration of Human Mortality Patterns 

through Vitality Parameters 

The health transition, which describes the reduction of mortality in the long run (Lerner 

1973; Frenk, Bobadilla et al. 1991), has many causes (Schofield, Reher et al. 1991; Riley 

2001). However, identifying the leading factors in different historical stages is very 

appealing to scholars from many disciplines (McKeown 1976; Kunitz 1986; Chesnais 

1992). One way to explore the problem is through understanding the mortality patterns 

over time. The parametric methods may provide a way to examine the patterns which 

have many advantages for describing mortality, including “smoothness, parsimony, 

interpolation, comparison, trends and forecasting and analytic manipulation” (Congdon 

1993; Dellaportas, Smith et al. 2001). Moreover, the longitudinal patterns in model 

parameters are likely to informatively reflect the health transition occurring over the past 

two centuries. These parameter patterns across years, in particular for developed 

countries, have been widely studied but based on different model specifications. For 

instance, Riggs and Millecchia (1992) explained mortality trends in industrialized 

countries using the Gompertz-Strehler model, Pireto et al. (Prieto, Llorca et al. 1996) 

analyzed Spanish adult mortality from both Gompertz and Weibull models, Heligman 

and Pollard (1980) tracked the Australian mortality over the 20th century based on the 

Heligman-Pollard model and Gage (1993) decomposed the mortality patterns of England 

of Wales by the Siler model (Siler 1979). Nevertheless, analyzing longitudinal data 

through the IEV model has advantages over these methods in its ability to succinctly 

summarize historical transitions in mortality dynamics through its biologically 

meaningful parameters. To be specific, the IEV model facilitates a time-series approach 
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in which the historical change in the pattern of human mortality can be decomposed into 

the longitudinal pattern of the vitality loss rate r, the heterogeneity term s, the challenge 

exposure rate λ and the average challenge magnitude β.  

4.1 Data Source and Method 

To illustrate the capability of the model to resolve mortality patterns, I first employ 

Swedish mortality data for both females and males from period year 1800 to 2007 (data 

source: Human mortality database (HMD 2010)) in section 4.2. Sweden, having the 

longest history of reliable records in mortality data, is also among those countries that are 

most advanced in extending lifespan. Besides, an abundance of studies on Swedish 

mortality patterns (Heckscher 1950; Wall, Rosen et al. 1985; Himes 1994; Hemström 

1999; Wilmoth, Deegan et al. 2000; Yashin, Begun et al. 2002; Curtis 2010) allows a 

thorough cross-validation and comparison of the model with other models. According to 

the maximum likelihood function eq. (2.14) used in the fitting algorithm, only age-

specific survival rates are needed for parameter estimation. The data are extensive from 

the human mortality database, with one-year increments from 0 to age 110 in period 

years between 1800 and 2007 stratified by sex.  

       For section 4.3, a cross-country comparison is conducted. Other than Sweden, I 

select period survival data of Switzerland (1900-2006), Japan (1946-2006) and Chile 

(1992-2005) from Human mortality database (HMD 2010) to represent different ethnic 

groups.  

Period Data vs. Cohort Data 

It needs to be further clarified that the IEV framework was originally built on a cohort 

population in which each individual has its own vitality trajectory simultaneously 
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projecting to future from their birth year. Under such a circumstance, the IEV parameters 

are derived from the average life experiences of the cohort population.  However, in this 

study instead of cohort data, I mainly use period data not only because they are available 

for longer longitudinal years and are more complete than cohort data (Preston, Heuveline 

et al. 2001), but also there is an essential difference in explaining the parameters 

estimated from period and cohort data which makes the model more appropriate to fit 

period data. For cohort data, the estimated parameters characterize the average properties 

of the population in successive years for both intrinsic and extrinsic conditions. Although 

it makes sense to represent the intrinsic chronic process by the mean, it is problematic to 

average the extrinsic acute process from several years especially when the external 

conditions vary from one year to another.  In contrast, for period data, the population is 

hypothetical as if they live their entire life according to the rates of a single period. While 

r and s are the synthetic measures of vitality process averaged from all individuals who 

die at the same year, λ and β characterize the extrinsic conditions which the hypothetic 

cohort experiences in a specific year. Since the period population is very likely to be 

subject to the same acute conditions at their death year, applying constant λ and β to 

period data seems more appropriate than to cohort data.   

       I fit these period survival data with the six-parameter version of the IEV model. 

Parameters are estimated with a maximal likelihood optimization as developed by 

Salinger et al. (2003) and adapted by Li and Anderson (Li and Anderson 2009). For every 

year, a set of the 6 parameters is obtained. Longitudinal patterns for Swedish population 

data are depicted in Fig. 4.1-4.3 and the cross country comparisons are illustrated in Fig. 

4.4. Corrections for the model approximations were applied to parameter r, s, λ and β 
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according to section 2.2.2, though the general trends in the parameters did not change 

after correction.  

4.2 Longitudinal Patterns in Vitality Parameters for Swedish Population 

4.2.1 Longitudinal Patterns 

Average fraction of vitality loss per year, r 

The parameter r, representing the average fraction of vitality loss per year, determines the 

rate of senescence-related degeneration. The reciprocal of r approximately indicates the 

average longevity in the absence of extrinsic mortality. The effects of vitality loss equally 

acts across the entire population, which means a change in r tends to shift the age of 

median survival but does not significantly change the general shape of the survival curve 

such that the survival curve slope about the median age is relatively constant (Li and 

Anderson 2009). Despite the fact that r mainly characterizes the intrinsic process, it is 

modifiable by behavior and extrinsic conditions, such as smoking status, nutrition level 

and physic activity which have accumulative effects on survival. In other words, changes 

in r reflect alterations in chronic processes that influence mortality.    

         Over history (1800-2007), the vitality loss rate consistently declined 

corresponding to an increasing longevity for both females and males (Fig. 4.1A). Prior to 

1950, the decline in the rate was relatively slow accompanied by some variation. This 

continuous improvement was likely the result of better nutrition and shelter conditions 

associated with the agrarian and industrial revolution in Sweden over the 19th and the 

early 20th centuries (Sundin and Willner 2007). Values of r are very similar between 

female and male implying small sex differentials in the intrinsic process. From the second 

half of 20th century, the rate of decrease in the vitality loss rate accelerates for both sexes. 
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However, females exhibit slightly lower r values which might reflect differences in 

lifestyle choices such as the levels of smoking and alcohol consumption between men 

and women (Agren and Romelsj 1992; Bongaarts 2006; Preston and Wang 2006). Both 

activities have cumulative effects on health and so they should affect the mean rate of 

vitality loss over the population lifespan. Although it is not clear whether there is a 

leading factor responsible for the decline in r during this period, strong economic growth, 

leading to a significant increase in the standard of living plus advancements in healthcare, 

improved diet and behavior, likely contributed to delaying the onset of the senescence-

related process (Sundin and Willner 2007).  

Variability in intrinsic process, s 

The parameter s characterizes variation in the rate of loss of vitality, i.e. it quantifies the 

stochastic variability in the intensity of the intrinsic process. Individuals are different at 

birth and differentiate further over time because of their unique experiences and innate 

physiology and genetics. These differences are generically referred to as population 

heterogeneity, which is an important factor in determining features of population survival. 

Once again note that the Gompertz model does not characterize heterogeneity in any 

form and extensions that have incorporated it are rather ad hoc. In the context of the IEV 

model, s has a crossover effect on survival in that lower value of s benefits population 

survival at early ages but is detrimental to survival at old age (Li and Anderson, 2009). 

That is to say, a more homogeneous population survives better at the beginning but dies 

out more quickly at the end.  

       The variability in the vitality process, s, incorporates both initial variation 

resulting from genetic heterogeneity and evolving variation acquired with age. However, 
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studies have shown that only about 20% of the variation in human survival is heritable 

(Gavrilov and Gavrilova 1991; McGue, Vaupel et al. 1993; Herskind, McGue et al. 1996) 

and human genetic variation is presumably stable over the study period (1800-2007). 

Therefore, historical changes in the pattern of s should largely be determined by historical 

changes in the rate of evolving heterogeneity. As demonstrated by Fig. 4.1B, s 

continuously decreases through the first half of the 20th century for both sexes. Plausible 

reasons for the decrease in heterogeneity include reductions in the inequalities in living 

standards due to the economic growth and the improved distribution in health resources 

associated with the development of public health (Sundin and Willner 2007). From the 

second half of the 20th century, the patterns of s significantly differentiate between males 

and females. While evolving heterogeneity in females continues to decline, the term 

increases in males between 1950 and 1980 and then declines about to the value for 

females. Several studies confirmed there was a trend of widening of social inequality in 

adult mortality among men but not among women from 1960s to the early 1980s 

(Diderichsen 1990; Vagero and Lundberg 1993; Diderichsen and Hallqvist 1997). These 

works investigated cohort mortality data stratified by occupation or social economic 

status and suggested that increasing class differences in smoking contributed to the 

increasing differentials in male adult mortality during this period. Compared to 

epidemiology studies that rely on detailed cohort data, the IEV model tracks trends in 

mortality heterogeneity from general population data. The model’s ability to capture 

detailed transitory life history events from essentially raw mortality data is somewhat 

surprising and illustrates the identifiability of processes through the vitality framework.    
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Figure 4.1: longitudinal patterns of vitality parameters for Swedish population (1800-2007): (A) 
fraction of vitality loss per unit time r and (B) variation of vitality spread s. Male and female 
patterns are depicted as solid and dash lines separately and the shade areas indicate 95% 
confidence interval. 

Extrinsic challenge parameters, λ and β 

The challenge frequency, λ, and the average challenge magnitude, β, generally reflect the 

acute extrinsic effects on post-adolescent mortality. Lower values in both parameters 

indicate a more favorable environment and consequently better survival. However, as 

discussed in chapter II, λ and β characterize the extrinsic mortality from two different 

aspects and shape mortality curve in distinct manners.  

       β quantifies the average magnitude in extrinsic challenges and primarily 

illustrates the period effects of environment on survival. Thus, it has close relationships 

with historical events, such as wars, famine and pandemics of infectious disease, which 

influence mortality of all age groups (Omran 1982). Meanwhile, the benefits from public 

health and the breakthroughs of medical technology that lead to overall mortality 

 s 
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reduction (Mason and Smith 1985; Frost 1995) are likely to be reflected in the change of 

β. The value of β is sensitive to the alteration of mortality at early and middle age, 

because the effects of challenge magnitude on survival are gradually diluted with ages. 

The underlying basis of this characteristic is intuitive. Larger β would impose notable 

impact on early age mortality but would not make a significant difference in older 

individuals when vitality level is low and any challenges can kill. Also note that β is a 

relative measure of environmental deleteriousness with respect to the society standards. 

For example, a disease like pulmonary tuberculosis was fatal about 100 years ago but is 

curable today because of medical technology. Although the absolute magnitude of the 

disease may not change, i.e. to what average degree it would damage the body, its 

relative detriments to human society has been greatly reduced corresponding to a large 

reduction in β.  

The historical pattern of β exhibits a gradual decline but with significant 

departures that demonstrate correlations with environmental and cultural stages (Fig. 

4.2A). Anomalously high values are associated with the Swedish-Finnish war in 1808 

and 1809 and the influenza pandemic between 1918 and 1919 (Sundin and Willner 2007).  

Outsides these anomalies, the pattern of β can be roughly divided into three stages. The 

entire 19th century corresponds to the first stage where β is large and variable. I speculate 

that this variability in the magnitude of extrinsic challenges was driven by variability in 

year-to-year variations in environmental conditions. The second period, covering the first 

half of the 20th century, exhibits a dramatic decline in β. Many studies (Ryder 1965; 

Omran 1982; Riley 2001) proposed that medical interventions eradicated many infectious 

diseases over this period and the hypothesis is supported by the decline in β. Essentially, 
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the model indicates that the magnitude of challenge from infectious diseases was 

diminished by medical advancements. The recent 50 years constitute the third period in 

which the average challenge magnitude declined to a low asymptotic level.  

         Compared to β, the pattern of λ, the adult challenge frequency, is rather 

perplexing. Instead of an anticipated decline, λ exhibits a significant increase around 

1950s for both sexes implying there are more challenges today than 100 years ago (Fig. 

4.2B). This puzzling phenomenon requires additional discussion. 

         One potential explanation is that the rise in λ reflects a physical and tangible 

increase in the frequency of environmental stressors associated with modernization such 

as increased environmental pollution and carcinogens (Public Health Service, 1979), 

increased car accidents (Crimmins 1981), and increased exposure to disease associated 

with public transportation, e.g. air and subway travel (Colizza, Barrat et al. 2006).  

        Another possible explanation considers fixed environment conditions but a 

decline in the efficiency of the immune system. The changes in human behaviors, such as 

smoking, alcohol addiction and obesity, weaken the body defenses and thus raise the 

exposure rate to challenges (Ryder 1965). In particular, the epidemic of smoking has 

proved to be an important factor that influenced mortality in the 1960s in industrialized 

countries (Bongaarts 2006; Preston and Wang 2006).  

Also, Yahsin et al.(2001; 2002) found a similar increase pattern in challenge 

frequency around 1950 using the Strehler and Mildvan general theory of mortality aging 

(Strehler and Mildvan 1960). Then they proposed a “theory of survival trade off” which 

suggests the organism can actively organize a defense against challenges balancing 
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between two different strategies: one is to refuse the stress and make the organism more 

robust and the other is to prompt the rate of damage repair. In our model, it implies that 

the increase in λ is because energy is allocated to reduce r.  

       The factors mentioned above may contribute to some increase of λ, but it is 

unlikely that they can fully account for the dramatic and simultaneous increase for both 

sexes within such a short period, i.e. between 1945 and 1951. Thus we also need to 

consider the possibility of model misspecification. As discussed in section 2.4.4, the 

estimation of λ would be biased when the model assumption cannot well describe the 

truly underlying processes. I will further explore the potential model misspecification and 

address this issue in Chapter VI.  
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Figure 4.2: longitudinal patterns of vitality parameters for Swedish population (1800-2007): (A) 
frequency of adult challenge λ and (B) average magnitude of challenge β. Male and female 
patterns are depicted as solid and dash lines separately and the shade areas indicate 95% 
confidence interval. 

Childhood mortality parameters, µ0 and α 

The childhood parameters µ0 and α represent the high extrinsic mortality rate at age zero 

and its rate of decline with age respectively. The historical patterns of µ0 and α for 

Swedish populations are straightforward (Fig. 4.3A-B).  µ0 has a general decreasing trend, 

but the decline is more rapid during two periods: the 19th century and the 1940s. In 

contrast, α is flat up through about 1875, increases steadily but to about 1950 and then 

increases over about 10 years to a high. The improvement in child mortality from the 

contributions of both components (µ0 and α) seems to reach a plateau in recent years. 

       Comparing the patterns between males and females, female children have a 

consistently lower value of initial mortality rate, i.e., µ0, whereas α in males and females 

λ β  

A B 
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are similar indicating the duration of susceptibility to childhood mortality factors is 

similar in the sexes. 

 

Figure 4.3: longitudinal patterns of vitality parameters for Swedish population (1800-2007): (A) 
initial mortality rate at age zero µ0 and (B) the rate of mortality decline at childhood α. Male and 
female patterns are depicted as solid and dash lines separately and the shade areas indicate 95% 
confidence interval. 

Summary        

The value of the IEV model largely lies in describing the historical trends in terms of its 

biologically meaningful parameters. In particular, the model provides a quantitative 

description of the contribution from intrinsic chronic process and extrinsic acute process. 

According to the parameter patterns, the health transition in Sweden between 1800 and 

2007 can be divided into three stages roughly corresponding to the division in 

epidemiological transition which is considered as one of the important theories in 

explaining the health transition (Omran 1977; Omran 1982; Fries 2005). The 

epidemiological transition depicts “the mortality declines as series of sea changes in the 
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leading causes of death, moving from an era of pandemic infectious diseases to an era in 

which chronic organ diseases dominate all causes of death” (Riley 2001). The first stage 

covering the entire 19th century is dominated by infectious diseases, famine and other 

extreme events. Thus, the survivorship largely depends on the natural environmental 

conditions characterized by high values of the average challenge magnitude β with large 

variation from year to year. Interestingly, there is essentially no change for β and only a 

slight decline for λ implying that the extrinsic acute effects on mortality haven’t been 

much improved, despite the introduction of sanitary and public health projects. 

Meanwhile, a consistent decline in the intrinsic parameter r and s suggests that 

improvements in the standard of living accounts for most of the mortality reduction in 

this period. This finding largely agrees with the well-known work from McKeown (1976) 

who argued that a rising standard of living, especially better nutrition, mattered most in 

extending life expectance during the 19th century. Intuitively, a change of nutrition level 

mainly contributes through a chronic process, such that, its effects are reflected in r and s.  

The second stage of the epidemiological transition corresponds to a progressive decline in 

β indicating a large decline of infectious diseases in the first half of the 20th century. The 

rate of decrease in r diminishes and thus the leading contribution to mortality reduction in 

this period is the change of extrinsic acute conditions which are thought to have resulted 

from medical intervention and improvements in curative medicine (Sundin and Willner 

2007) . The second stage is transitory, representing a change from an era dominated by 

infectious diseases to an era dominated by chronic diseases. In the third stage, 

corresponding to the last 50 years, both λ and β are gradually stabilized. The dominating 
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mortality factors in health transition switch back to the intrinsic ones as in the first period. 

However, at this stage the intrinsic processes are principally senescence-related diseases.       

       While each stage of the in health and epidemiological transition has been 

thoroughly studied (McKeown 1976; Omran 1977; Omran 1982; Kunitz 1986; Chesnais 

1992; Riley 2001), the vitality model offers the prospect of quantifying trends in terms of 

its biologically meaningful parameters. The model uses essentially raw mortality data, 

independent of additional information, to track the historical patterns in the intrinsic and 

extrinsic processes of mortality. In particular, the model reveals patterns that are not 

evident in other studies. For example, while the fraction of vitality loss per year (r) has 

continuously declined over two centuries, the decline accelerated, representing a 

significant improvement in population vitality, after WWII.  Meanwhile, in the last half 

century the extrinsic acute effects contributing to the increase of longevity reach a plateau; 

as denoted by stabilized λ and β. Finally, trends in population heterogeneity can be 

independently quantified through s. The decline in s tends to accelerate in recent years 

suggesting better sharing of health resources and technology.   

4.2.2 Sex Differentials in IEV Parameters for Swedish Population 

The ability to compare survival in terms of fundamental processes is also an advantage 

for the vitality model. The Swedish-female-and-male comparison reveals something 

interesting. Women and men have a similar intrinsic degenerative rate (r), but are 

different in other processes. The lower λ for women indicating a lower frequency in 

challenge events is possibly due to their physiologic robustness in resisting stresses, less 

reckless behaviors and less harsh working conditions (Wingard 1982; Waldron 1983; 

Nathanson 1984; Owens 2002; Crimmins and Finch 2006). However, both s and β exhibit 
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complicated patterns between the two sexes. Prior to the 20th century, female patterns 

indicate a higher degree of population heterogeneity and higher average challenge 

magnitude than males but the trends reverse in the recent 50 years. The high maternal 

mortality in 19th century may partially explain the larger value of β for females. Maternal 

mortality constituted about ten percent of all deaths among women in the 15-49 age 

group up until the latter stages of the 19th century (Sundin and Willner 2007). The 

dramatic fall in the risk of death during childbirth in the 20th century largely eliminated 

the survival differential between females and males. On the contrary, the increasing 

deaths from accidents caused by violence, alcohol consumption and so forth for men 

makes their average challenge magnitude surpass that of women after WWII. The larger 

variation among males in the second half of the 20th century has been explained 

previously as the wide differentials in smoking status among different occupation and 

social economic groups (Diderichsen 1990; Vagero and Lundberg 1993; Diderichsen and 

Hallqvist 1997). But the larger level of heterogeneity for females in 19th century is 

difficult to interpret. One potential explanation is that females were allocated less food 

than males when food resources were limited (Johansson 1984; Humphries 1991; Klasen 

1998).  Thus, the disparity in family economic status may have contributed to the model-

identified differential in heterogeneity between males and females.  

4.3 Mortality Comparison across Countries 

In the previous section, I focused on the historical mortality patterns for a single country 

and demonstrated that the IEV model was useful for understanding health transitions and 

changes of mortality dynamics across time. Here I compare model parameters from 

different countries. In addition to Sweden, period survival data from Switzerland (1900-
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2006), Japan (1946-2006) and Chile (1992-2005) are employed. The results are exhibited 

in Fig. 4.4, stratified by parameters and sexes. Only 4 adult parameters are shown.   

        The intrinsic parameter r and s for the three developed countries (Sweden, 

Switzerland, and Japan) are similar, but Japanese show some advantages in slowing down 

the rate of vitality loss in recent years (Fig.4.4A-B). Population heterogeneity increased 

around 1960s in Swedish and Swiss males (Fig. 4.4D), which is probably due to the 

effect of smoking as discussed in section 4.2.1. However, in the same period the 

influence of smoking is not evident in Japanese males. In comparison, Chile has higher 

values for both the rate of vitality loss and spread, but r starts to decline after 2000. The 

frequency of extrinsic challenge in males is similar across countries, but the patterns in 

females are different in the recent period (> 1980) (Fig. 4.4F). Chile females have the 

largest λ, females in Japan and Switzerland have the lowest values, and Swedish females 

have intermediate values (Fig. 4.4E). The average challenge magnitude, β, gradually 

converges for these countries, in particular for women (Fig. 4.4G-H). Again this suggests 

that modern medical technologies, which influence β, have become widespread.   

4.4 Conclusion 

In this chapter, the ability of the IEV model to track longitudinal mortality patterns was 

demonstrated in a descriptive manner. A more in depth analysis relating model 

parameters to quantitative measures of associated factors is highly feasible but is beyond 

the scope of this work.  For example, relating model parameters to independent variables 

such as the index of economic development, measures of public health resources and 

levels of environmental quality should yield important information on the contributions 

to patterns of mortality. In the literature when there is no better way to summarize the 
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survivorship of a population, the life expectancy is largely in use. Other factors are 

related to the life expectancy to determine whether they have significant impacts on 

population mortality (Preston 1975; Rodgers 2002; Soares 2007). Nevertheless, the 

mortality process is so complex that a single dimension is inadequate to represent the 

whole system. More or less, information is lost when efforts concentrate on analyzing the 

life expectancy alone. The IEV model is an appealing way to represent mortality in terms 

of multiple biologically meaningful dimensions and thus is of great value. 
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Figure 4.4: A cross-country comparison for the 4 adult parameters of the IEV model stratified by 
sex and parameters. Data are collected from Human Mortality Database (HMD 2010) including 
Sweden (1800-2007), Switzerland (1900-2006), Japan (1946-2006) and Chile (1992-2005). 
Approximated 95% confidence intervals are indicated by the shade areas. 
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Figure 4.4 (cont.): A cross-country comparison for the 4 adult parameters of the IEV model 
stratified by sex and parameters. Data are collected from Human Mortality Database (HMD 2010) 
including Sweden (1800-2007), Switzerland (1900-2006), Japan (1946-2006) and Chile (1992-
2005). Approximated 95% confidence intervals are indicated by the shade areas. 
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Chapter V: Comparison between the IEV and  

Other Mortality Models 

In this chapter, I discuss how the IEV model compares to other mortality models, to 

illustrate some of its advantages in regards to its ability to fit data and understand 

mortality processes. The comparisons are with the Siler model (Siler 1979), the 

Heligman-Pollard (HP) mortality law (Heligman and Pollard 1980) and the Strheler- 

Mildvan (SM) general theory of mortality (Strehler and Mildvan 1960).  

5.1 Comparing with the Siler model and the Heligman-Pollard (HP) mortality 

law 

5.1.1 The Siler and the HP model  

The Siler model (Siler 1979) and the HP mortality law (Heligman and Pollard 1980) 

represent a series of models that focus on fitting empirical age-specific mortality curves 

throughout the entire life span (Thiele 1872; Mode and Busby 1982; Mode and Jacobson 

1984; Gage and Mode 1993). The two models are chosen here, because they are 

intensively discussed in the literature.   

      The Siler model, also known as the competing risk mortality model, was first 

proposed by Siler to model animal survival (Siler 1979) and then intensively applied to 

human mortality data by Gage and colleagues (1988; 1989; 1990; 1991; 1993). It is a 

five-parameter three-component competing hazards model, specified by 

                                                     31
1 2 3

b xb x
x a e a a eμ −−= + +                                              (5.1)        

The first additive component accounts for the decline in mortality with age during 

childhood which has the same child mortality function used in the IEV model. The 
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second component is defined by a single parameter a2 corresponding to the Makeham’s 

constant to denote the age-independent mortality. The third component follows the 

Gompertz law representing the senescent mortality suggested by Siler (1979) and Gage 

and Mode (1993).  Finally, the total instantaneous mortality µx is defined as the additive 

effects of all three hazards.  

       The 8-parameter HP model also schedules mortality in terms of three competing 

parts: the child mortality, young adult mortality and the Gompertz-like component:  

                                     ( )2log( ) log( )( )

1
C

x
E x Fx B

x x

GHq A De
GH

− −+= + +
+

                              (5.2) 

However, instead of modeling instantaneous mortality rate, the HP model uses qx, the 

probability of dying within the interval. The mortality rate can be approximated from qx 

as 
1 0.5

x
x

x

q
q

μ =
−

 when mortality rates are assumed to be linear across each age category 

and µx ≈  qx under small values of qx (Preston, Heuveline et al. 2001). In the first 

component of the model, parameter A is nearly equal to q1, which is the probability of 

dying during the second year of life. It is also analogous to a1 in the Siler model and µ0 in 

the IEV model. C characterizes the rate of decline in mortality with age, similar to b1 and 

α in the Siler and IEV model respectively. The third parameter, B is an age displacement 

to account for mortality between age 0 and 1. The second component is designed to 

reflect the observed accident hump. This part contains three parameters, D, the intensity 

of young adult mortality, E, the spread of the accident hump and F, the location of the 

hump. Note that this component degenerates to Makeham’s constant when E is 0. Finally, 

G and H characterize the Gompertz-like component.  
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         The Siler and HP models are based on similar philosophies. Mortality results from 

three independent pieces in both models. They only differ in that HP has more parameters 

and thus yields better fits, in particular for child and young adult mortality. The 

arguments between the two models revolve around whether an accident hump is a 

universal feature of human mortality patterns (Heligman and Pollard 1980; Benjamin 

1989; Gage and Mode 1993), since, for either empirical or theoretical applications, “the 

ideal model is one that precisely captures the characteristic features common to all human 

mortality curves while ignoring the idiosyncratic features and measurement error 

incorporated in a particular mortality curve” (Gage and Mode 1993).    

Empirically, the mortality hump is indeed not universally observed through all 

data sets particularly for female mortality curves from industrialized countries, but this 

does not necessarily diminish the value of the HP model. When there is no significant 

hump, the second component in HP model is expected to converge to a Makeham’s 

constant as allowed by its flexible structure. Interestingly enough, in reality, the HP 

model “mistakenly” adapts the curvature at later age, which corresponds to the later age 

“elbow” in the IEV model, through its “hump” component under such a circumstance. 

This problem has already been illustrated in Heligman and Pollard’s original work (1980). 

They also found that a small amount of curvature at later age was consistently evident in 

other data they examined, such that they proposed two nine-parameter extensions to the 

original HP model from an empirical point of view, but they note these extended models 

are not biologically interpretable (Heligman and Pollard 1980; Gage and Mode 1993).  

         Gage (1993) compared model fits between the 8-parameter HP model and the 5-

parameter Siler model using Australian mortality data. The Siler model had similar fits to 
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the HP model for all but one data set in which the early-age accident hump of the HP 

model “mistakenly” peaks at about age 54. Surprisingly, the HP model fit better under 

this condition, which suggests that both models miss some essential features related to the 

curvature occurring at late middle or early old age.  

5.1.2 Comparing the IEV model to the HP and the Siler model 

Theoretical comparison 

Although the IEV model also assumes mortality results from competing forces, i.e. the 

intrinsic and extrinsic process, there are fundamental differences between the IEV model 

and the other two. Firstly, the two forces in IEV model are not completely independent 

from each other, but rely on common continuous processes acting across the entire life 

span. Secondly, the IEV model classifies mortality according to whether death occurs as 

a result of an instantaneous challenge or as a result of the exhaustion of survival capacity. 

In contrast, the other two models essentially partition mortality into age-dependent and -

independent part. Thirdly, despite the fact that the child mortality component from the 

IEV model is the same as that in the Siler model and similar to that in the HP model, the 

IEV model yields a biological explanation for the shape within the conceptual framework. 

Furthermore, the IEV model is able to interpret the accidental mortality hump easily and 

is flexible enough to incorporate more complicated structures into the mortality curve. 

Finally, but most importantly, all parameters from the IEV model are process driven and 

are hence biologically meaningful. In contrast, parameters in the other two models are 

empirical and provide little insight into the underlying processes that shape mortality 

curves.   
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Comparison of model fit 

Above I have discussed the theoretical advantages of the IEV model, but it is still 

necessary to compare the goodness of fit to empirical data among the three models. I 

follow Gage and Mode’s method (1993) to use the root mean square error (RMSE), 

which is commonly used to assess how well models describe data. It is convenient to fit 

the survival fraction data (lx), since both the algorithms of the IEV and Siler model are 

based on lx (Gage and Mode 1993) and for the HP model, qx can be easily transformed to 

lx. Then RMSE is defined as 

                                                  ( )2ˆx xy y
RMSE

n
−

= ∑                                               (5.3) 

where yx is lx, ˆxy  is the estimated survival fraction at age x from each of the three models 

and n is the number of data points. For a complete survival curve (0-110) from Human 

mortality database (HMD 2010) with 1-year age interval, n equals 111. To determine 

whether the additional parameters of a more complex model are statistically justifiable, I 

further compare the fit using an F test (Gallant 1987).  The test statistic is 

                                                  
( )

( )
/

/
r f

f

SSE SSE d
F

SSE n p
−

=
−

                                                  (5.4)   

where SSEr and SSEf  are the sums of the squared errors for the reduced (with less 

parameters) model and the full (more complex) model, respectively, n (= 111) is still the 

number of data points, p is the number of parameters in the full model, and d is the 

difference in the number of parameters between the two models. This procedure is similar 

to the F test commonly used to determine whether additional terms are justified in a 

linear regression model.  
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       Data sets are chosen from Swedish females and Japanese females for selected 

period years (HMD 2010). Most of Swedish female mortality trajectories do not display 

significant mortality humps, whereas the Japanese female curves do. Results are 

summarized in Table 5.1.  

Table 5.1 RMSEs for the 6-parameter IEV model, the 5-parameter Siler model and the 8-
parameter HP model applied to Swedish and Japanese female data. * indicates that the F test is 
significant at 5% level. When the HP model has the smallest RMSE, the F test is conducted 
between the HP model and the second best model; When the IEV model has the lowest RMSE, 
the F test is used to assess whether the differences between the IEV and the Siler model is 
statistically significant (HP model with one more parameter than the IEV model is out of 
competition in this case). The number in the parenthesis is the age when the mortality hump 
peaks in the HP model.  

 year IEV Siler HP (age at hump) 

Swedish 
female 

1830 0.0038  0.0042 0.0013* (37) 
1880 0.0045 0.0028 0.0006* (35) 
1930 0.0065 0.0042 0.0012* (30) 
1960 0.0027 0.0040 0.0025* (49) 
1970 0.0025* 0.0043 0.0032   (68) 
1980 0.0018* 0.0044 0.0024   (72) 
1990 0.0021* 0.0045 0.0034   (75) 
2000 0.0013* 0.0058 0.0035  (81) 

Japanese 
female 

1950 0.0059 0.0050 0.0011*(29) 
1980 0.0024* 0.0042 0.0027  (70) 
1990 0.0023* 0.0050 0.0025  (65) 
2000 0.0025* 0.0052 0.0032  (72) 

  

      Suggested by Table 5.1, the HP model fits early period data better, while the IEV 

model dominates all recent years. Compared to the other two, the Siler model does not 

stand out in any years and the F test does not indicates any advantages of having fewer 

parameters in the model. So I focus on comparing the HP and IEV model. In early period 

years, when the child and young adult mortality rate is high, the RMSE is more sensitive 

to the accuracy of model fits to early age. The HP model uses three parameters to capture 

the early age pattern of mortality compared to the two parameters used in the IEV model. 
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In addition, as discussed in chapters II and IV, the IEV model underestimates mortality at 

extremely old age for early period data. Therefore, the HP model gives better fits to the 

early period years. However, in recent years, when the early age mortality is low and 

more individuals survive to old ages, the RMSE is largely influenced by model 

performance at old ages. Since the IEV model has a better structure to characterize the 

early old age mortality elbow and the old age mortality plateau, there is no wonder that 

the IEV model performs better during these periods.  

        In Table 5.1, also contains the peak age of the HP model accident hump. The peak 

occurs at young and middle age up through 1960 but the model shifts the hump to old age 

for recent period data, which is against the original intent of representing risky behavior 

in early to middle adulthood.  Fig. 5.1 illustrates this issue. Essentially, the location of 

accident hump is controlled by two competing processes: 1) fitting the parabolic shape in 

young adult mortality and 2) fitting the middle to late age mortality elbow. As 

demonstrated in Fig. 5.1A, when the peak of the young-adult hump and the elbow are 

relatively close to each other, the HP model adapts both features and fits data well. 

However, when the elbow and hump are distant, the HP model has troubles in 

simultaneously capturing both features and hence yields a relatively poor fit (Fig. 5.1B). 

Because the old age mortality is more important under such a condition, the model tends 

to locate the hump at an old age. As discussed before, this suggests that the HP model 

structure has unstable properties making it inadequate to characterize the old age survival.  
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Figure 5.1: the 8-parameter HP model fits to mortality rate from Japanese females at period year 
1950 and 2004.                    

Cohort mortality data 

Note that the comparison in the previous section is based on period mortality data only. 

As discussed in chapter IV, the IEV model is more appropriately applied to period data, 

since individuals who die in the same year are more likely to be subject to the same 

extrinsic conditions characterized by constant λ and β. In contrast, the extrinsic process 

derived from a cohort population characterizes some weighted average of the extrinsic 

conditions across the cohort’s lifespan. However, in reality individuals in the cohort can 

experience very different extrinsic processes depending on their ages of death. Thus, it is 

problematic to represent the extrinsic process of a cohort with fixed extrinsic parameters. 

But it is still interesting to examine mortality patterns from cohort data, in particular, to 

look at how patterns of extrinsic mortality differ in period and cohort data. Fig. 5.2 

demonstrates two age-specific mortality curves from Swedish females for birth cohort 

year 1810 and 1905 separately. The shape of mortality curve in cohort year 1810 (Fig. 
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5.2A) is similar to that of most period data in a sense that the mortality rate in log scale 

between age 20 and 60 increases approximately linearly with age. Because the rate in this 

age interval is primarily controlled by the extrinsic processes, it indicates that the log 

extrinsic rate is linear over this segment. However, the pattern in cohort year 1905 is 

different (Fig. 5.2B). Except for a significant mortality hump in young adulthood, the 

extrinsic part seems constant with age, which raises a fundamental question whether the 

extrinsic death should be independent of age or not. This also illustrates the biggest 

difference between the IEV model and the other two models in defining the extrinsic 

mortality process.  

 Both the Siler and the HP models fit mortality curve from cohort year 1905 better 

than does the IEV model, because they require a constant extrinsic mortality rate, which 

matches the empirical pattern for cohort year 1905. In contrast, the IEV model requires 

an age-increasing trend in the extrinsic mortality. Albeit a poorer fit than the other two 

models, the IEV model could provide an essential way to examine the period effects of 

extrinsic detriments on cohort mortality. Note that the Swedish females from birth cohort 

1810 spend most of their lives in the 19th century when the extrinsic conditions are 

relatively stable according to my findings in Chapter IV. Thus, for this cohort the 

assumption of constant extrinsic parameters, λ and β, is realistic. The 1810 cohort 

mortality pattern mainly reflects the aging effects on extrinsic death as is the case with 

most of the period data. In contrast, for cohort year 1905, individuals experience the first 

half of 20th century when a dramatic improvement in extrinsic conditions occurred as 

indicated by a remarkable decline of β (Fig 4.2B). Therefore, the pattern of extrinsic 

mortality from the 1905 cohort also incorporates the period effects resulting from rapid 
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changes in the environment which invalidates the assumption of constant extrinsic 

parameters. In effect, the time varying extrinsic parameters confound the effects of aging 

which leads to a leveling off of the extrinsic mortality rate. Fig 5.3 illustrates this effect 

plotting the extrinsic rate components (lines) derived from fitting the model to different 

period years on the 1905 cohort mortality curve. The effective age-dependent extrinsic 

mortality rates at cohort ages 15, 30, 45, 60 and 75 correspond to extrinsic mortality rates 

derived from period mortality curves in years 1920, 1935, 1950, 1965 and 1980. Each of 

the dashed lines represents the extrinsic mortality trajectory at the specific period year. 

The lines all follow an increasing trend with age.  

Comparing the trajectories of period extrinsic mortality between year 1920 and 

1935 implies that if the environmental detriments of period year 1935 were the same as 

that of period year 1920, the cohort-mortality rate at age 30 would be significantly higher 

(point b) than the current observed mortality rate (point a) and vice versa. This suggests 

that the seemingly constant extrinsic mortality with age from cohort data results from 

combined effects of intrinsic aging and extrinsic environmental change. After year 1950, 

the period extrinsic trajectories converge indicating the environmental factors have 

stabilized and the extrinsic rate no longer significantly changes.  
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Figure 5.2: Age-specific mortality rate in log scale from cohort year 1810 and 1905 of Swedish 
female (data source: Human mortality database (HMD 2010)).   
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Figure 5.3: An illustration of period effects of extrinsic conditions on cohort mortality patterns.     

Conclusion 

There is no doubt that the 8-parameter HP model fits early age mortality better than the 6-

parameter IEV model, but the IEV model performs better in fitting old age mortality, in 

particular for recent years’ data. However, fitting to data is just one side of the story. One 

the other side, the IEV model is theoretically superior to the other two models in that it 

provides insight into why the model fits and when it doesn’t. Most of all, the IEV model 

provides biological insights into mortality processes that help understand the underlying 

mechanisms of death and aging. 
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5.2 Comparing with the Strehler-Mildvan (SM) general theory of mortality 

and aging 

5.2.1 The SM general theory of mortality and aging 

Strehler and Mildvan (1960) developed a significant explanation for the biological basis 

of the Gompertz law, known as the SM general theory of mortality and aging. The SM 

theory and IEV model are similar in many ways. Both build on the abstract term, 

“vitality”, to indicate the capacity or the energy reserves of an individual organism to stay 

alive. The SM theory borrows an idea from chemical kinetics (Golubev 2009) to explain 

that the increase in the age-specific mortality rate results from the interaction between the 

internal energy reserves of living beings, i.e. vitality, and the external energy demands 

from environmental insults. To be specific, vitality is assumed to linearly decline with 

age and death occurs when the energy demands from external challenges, which follow a 

Maxwell-Boltzmann distribution, exceed the vitality level. While SM theory uses 

concepts from physics and chemistry, in essence the killing process is the same as the 

extrinsic mortality in the IEV model. Therefore, the mortality rate of the SM model yields 

the same expression as the individual extrinsic mortality in the IEV model shown in eq. 

(2.9). But because the rate of vitality loss is deterministic in the SM theory, the vitality 

process is linearly transformed to the ageing process with no approximation involved. 

Then the SM mortality rate expressed in terms of the IEV model is  

                            / (1 )/ 1/ /( ) xv rx rx bx
SM x e e e e aeβ β β βμ λ λ λ− − − −= = = =                            (5.5) 

where r still indicates the fraction of vitality loss per unit time and λ and β again 

characterize the environmental challenge frequency and average challenge magnitude 
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respectively, and a and b are the standard Gompertz parameters. But since the SM theory 

does not include the intrinsic killing, the intrinsic parameter r cannot be directly 

disentangled from the environmental effect. In other words, eq. (5.5) only has two 

degrees of freedom and converges to the two-parameter Gompertz model. The Gompertz 

parameters, a and b, maintain a relationship with the IEV process parameters, r, λ, and β 

as below    

                                            
1/

log log /
/

a e
a b r

b r

βλ
λ

β

−⎧ =
⇒ = −⎨

=⎩
                                      (5.6) 

Eq. (5.6) demonstrates the well-known negative relationship between Gompertz 

coefficients that log a linearly declines with b under fixed values of r and λ. With a and b 

known, eq. (5.6) has two degrees of freedom, but there are three independent process 

parameters. Note that in the original paper (1960), SM parameters B, K, and Dε are used 

instead of r, λ and β, but they share the same biological meanings.  

        However, there are two fundamental differences between the SM theory and the 

IEV model: 1) the stochastic structure of the IEV model allows heterogeneity in mortality 

within a population; 2) the killing process demonstrated in the SM theory accounts for all 

the deaths whereas the similar extrinsic process in the IEV model is only responsible for 

part of the deaths. I believe these distinctions make the IEV model incrementally more 

realistic than the SM theory and thus provided a better explanation and fit of mortality 

data. A comparison of parameters between the two models is listed in Table 5.2. 
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Table 5.2 Comparison of parameters  

IEV 
parameters 

IEV 
expression 

representation note Equivalent SM 
expression 

r 0/ vβ ′  normalized fraction of 
vitality loss per unit 
time, or drift rate 

1/r approximately indicates the 
maximal life expectancy of the 
population 

0/B V  

s 0/ vσ ′  normalized variability 
in the rate of loss of 
vitality, or spread rate 

s measures the evolving variation 
of the vitality among a population 

none 

λ  challenge frequency characterize acute environmental 
condition 

K 

        β 
0/D vε ′  average challenge 

magnitude 
the rate of the extrinsic mortality 
increasing with the vitality; 
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5.2.2 Explaining the paradox in estimating fraction of vitality loss (r) in SM 

theory   

Because of the expanded model framework, the IEV model can directly estimate all the 

parameters while the SM theory can only estimate the process parameter r ,λ and β upon 

some assumptions. The fraction of vitality loss per unit time r is a focal term because 1/r 

is a measure of the expected life span or the age of expected zero vitality (Zheng, Yang et 

al. 2011). Without direct estimation in the SM theory, r can be estimated by two methods 

proposed by Strehler and Mildvan (1960). The first method sets λ = 1, such that eq. (5.6) 

becomes ln /a b r= − and r can be derived from / lnb a− (Strehler and Mildvan 1960). 

Zheng et al. (2011) recently calculate r from 42 countries following this method. 

Perplexingly, the analysis revealed that Central American and South-East Asian countries 

had lower r, i.e., higher age of expected zero vitality, than most developed countries. This 

begs the question, do presumably harsher environmental conditions of these countries 

produce advantages in survival, or is the assumption on λ unrealistic?  
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Rearranging eq. (5.6)  ln 1 lna
b r b

λ
− = −  and combining ˆ / lnr b a= − from the 

restricted estimation, yields   

                                                     1 1 ln
r̂ r b

λ
= −                                                    (5.7) 

The difference between the estimated age at zero vitality and the true age depends on the 

ratio of the challenge frequency term ln λ to the Gompertz coefficient b. Using 

simulations I accessed whether a bias exists or not. Survival curves were generated 

according to the IEV model death process, because the vitality structure is flexible 

enough to assign any values to each of the 4 parameters. The method for simulating 

survival trajectories is described in Chapter II. All the parameter values chosen for 

simulation were within a reasonable range for human mortality, i.e. 0.011<r<0.014, s = 

0.01, λ = 0.12, and 0.1< β<0.2. Note that in the simulation I did not include the childhood 

component, because the simple Gompertz model is only designed to capture the 

senescence-related part. The Gompertz model ( ( ) btt aeμ = ) was fitted to the entire 

simulation survival curves giving the estimated age at zero vitality from ˆˆ ˆ1/ ln /r a b= − . I 

also tried to fit the Gompertz model to the truncated simulation survival curves with 

varying starting ages, such as 30 and 40. It turns out the truncating age has little influence 

on the patterns of the estimated age at zero vitality against average challenge magnitude. 

So I only showed the results from fitting the entire survival curves in Fig. 5.4.  

       The plot depicts the estimated age at zero vitality against the challenge magnitude 

term β with fixed challenge frequency, λ. A pattern emerges where the estimated age of 

zero vitality ( ˆ1 r ) tends to be larger for populations with higher average challenge 
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magnitudes. However, in actuality all simulations represented in a single line (Fig. 5.4) 

were fixed with the same age of zero vitality (1 r ). Thus, it is likely that the Central 

American and South-East Asian countries do not have lower senescence rates, r, relative 

to developed countries. I therefore speculate that the estimated difference in age of zero 

vitality in the Central American countries reflects a higher level in environmental stresses, 

β. That is ˆ1 / r  is more exaggerated for the developing countries compared to developed 

countries as a result of harsher living conditions in developing countries. Although this 

analysis does not exclude possibilities that there were real genetic and physical 

advantages in the Central American and South-East Asian countries, the vitality 

framework provides a plausible explanation that the estimated longer life expectance may 

be a mathematic misrepresentation because of unrealistic restriction on parameters in SM 

theory.    
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Figure 5.4: Estimated age at zero vitality against average challenge magnitude under fixed 
challenge frequency λ = 0.12. Each line represents a single true vitality loss rate that was used for 
generating the survival curves. All curves have the same background variance structure in vitality: 
s = 0.01.  

5.2.3 Explaining SM correlation patterns 

Another method for estimating the fraction of vitality loss per year r from SM theory 

relies on the regular relationship of Gompertz coefficients expressed by eq. (5.6).  To 

estimate r from the Gompertz coefficients requires a linear relationship between ln a and 

b, in that the slope of the relationship is 1/r according to eq. (5.6). Thus, r actually 

represents the averaged fraction of vitality loss per year over a series of longitudinal 

survival curves constructed from a sequential series of years. The success of the method 

depends on a stable linear relationship, which would imply that eq. (5.6) is valid. Early 

studies confirm a stable pattern for adult mortality from the year 1900 to 1986 in the US 

(Riggs 1990) and other developed countries, including overall mortality trends in 
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industrialized countries (Riggs and Millecchia 1992; Prieto, Llorca et al. 1996). However, 

in recent period and cohort mortality data the stable linear relationship in the pattern is 

not evident in countries like France, Japan, Sweden and the US (Yashin, Iachine et al. 

2000; Yashin, Begun et al. 2001; Yashin, Begun et al. 2002; Yashin, Ukraintseva et al. 

2002). To be specific, for period data, “hooks” emerge in the ln a vs. b relationship for 

those countries in the second half of the 20th century. The approximately constant 

negative slopes (1859-1960) reverse sign and flatten for France, Sweden and the US 

starting around 1960 and for Japan round 1980. For cohort data, only Sweden exhibits a 

linear relationship over the length of data. The other countries have complex patterns in 

which the slope changes sign multiple times over the years of data. The important point 

here is that the SM theory assumptions break down for the years where the curves change 

slope and flatten (Fig. 5.5).    
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Figure 5.5: (A) period patterns of SM correlation for females in France (1861~2005), Sweden 
(1861~2005), Japan (1950~2000) and the US (1938~2005); (B) cohort patterns of SM correlation 
for females in France (1859~1917), Sweden (1821~1915) and the US (1883~1927). All mortality 
data are from the human mortality data base (Wilmoth and Shkolnikov 2010) and I use mortality 
for ages between 40 and 80. 

           The unstable patterns shake the root of the SM theory. As suggested by Yashin et 

al. (2001), new concepts need to be developed. In the following section I demonstrate 

that the IEV model readily provides an explanation for the variable patterns observed in 

Fig. 5.5.  The approach again is to first simulate survival curves with a numerical form of 

the vitality model (Chapter II) using typical parameter ranges: r = 0.01 to.014, s = 0.01, β 

= 0.111 to 0.20 and λ = 0.05 to 0.2. Next the Gompertz model is fit to the simulated data 

to estimate Gompertz coefficients a and b ( ( ) btt aeμ = ). The estimates of ln a  and b from 

the simulated survival curves are shown in Fig.5.6.A under a fixed challenge frequency λ 

with variations in r and β and Fig. 5.6.B under a fixed average challenge magnitude β 

with variations in r and λ. In both plots, points on each lines tending from upper left to 

lower right, are estimated ( ln a , b) pairs generated with fixed r. In plot A λ is fixed and β 
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decreases and in plot B β is fixed and λ decreases. Also in both plots, each of the 

horizontal line, tending right to left, illustrates changes in ln a and b for decreasing r and 

fixed values in λ and β  (plot A and B). Together these plots illustrate how ln a and b 

change as r, λ and β change. As r decreases, b decreases but ln a is relatively unchanged, 

while as either β or λ decrease, b increases and ln a becomes more negative. Now 

consider the patterns in Fig. 5.5 in terms of these relationships.  

 A stable negative linear pattern of the Gompertz coefficients from about 1860 to 

1960 (Fig. 5.5) can be interpreted in terms of changes in the extrinsic parameters λ or β 

dominating changes in r. Correspondingly, a reversal and flattening in the ln a vs. b curve 

reflects the intrinsic parameter, r, dominating the extrinsic parameters λ or β. Thus in 

terms of the IEV model, over the first half of the 20th century, improvements in the 

developed countries period survival were the result of improvements in the environment, 

either through reducing the challenge frequency or average magnitude or both. The break 

in the linear trend about 1960 and the subsequent bending backwards of the pattern can 

be interpreted as the result of a gradual shift to the dominance of intrinsic chronic 

improvements, over environmental acute improvements. 

       Theoretically, the SM theory fails to explain the correlation patterns because it 

attributes all deaths to one killing process. Although it tries to connect death with an 

intrinsic process, artificial restrictions on parameters are required. Thus, it lacks power to 

resolve the differences between improvement in chronic aging-related process and 

improvement in the environmental acute process. From this aspect, including two death 

processes is of great necessity.  
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Figure 5.6: Simulated SM correlation patterns: (A) Survival curves are all simulated under fixed 
challenge frequency term  λ = 0.12; (B) Survival curves are all simulated under fixed average 
challenge magnitude term  β = 0.125. For both (A) and (B), curves all have the same background 
variance structure in vitality: s = 0.01.  
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       This chapter helps further clarify the IEV framework through comparing the 

model with other established models including the Siler model, the HP mortality law and 

the SM general theory of aging and mortality. The comparison focuses on two 

perspectives, the model fit and the biological explanation of mortality patterns. Although 

the IEV model does not provide consistently better fit, it is much more biologically 

interpretable than any of the previous models.  
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Chapter VI: Exploration of Model Misspecifications  

6.1 Potential Model Misspecifications 

The basic IEV model relies on several rigorous assumptions on the underlying mortality 

processes, such as: 1) all vitality trajectories follow the Wiener Process with a linear 

decline in mean vitality; 2) the occurrence of extrinsic challenges follows a Poisson 

process; 3) the challenge magnitude has an exponential distribution; and 4) all parameters 

(r, s, λ and β) that characterize the processes are assumed to be constant through the 

entire adulthood. It is well expected that the real process is much more complex and all of 

the assumptions are violated to some degree. If the misspecification is manageable, the 

basic IEV model still captures the mortality patterns through representing the average 

effects of the processes. For instance, the vitality process can go up and down or have a 

non-linear trend, but a linear approximation to the process works well when fluctuations 

are relatively small. While all of the four parameters can vary with age, their general 

effects can still be approximated through their mean values across the entire life span. 

However, in other situations, the model’s misspecifications to the underlying processes 

can have notable impacts on the mortality patterns, i.e., the predicted mortalities from the 

model deviate from the true mortality curves or the estimated model parameters from real 

data have irregular patterns that are not well explained.  

Although the IEV model captures the important features in age-specific mortality 

patterns, it has two weak points as discussed in previous chapters. First, in Swedish 

populations the IEV model slightly underestimates the old age mortality rate for period 

data previous to year 1945 (Fig. 2.7A-B). Secondly, the longitudinal patterns for the 

challenge frequency, λ, exhibit a dramatic increase between period year 1945 and 1951 
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(Fig. 4.2A). These two anomalous phenomena may point to the same potential 

misspecification of the model. That is, the assumption of the exponential distributed 

challenge magnitudes may fail for early period years. In this chapter, I will mainly 

discuss this potential misspecification in the extrinsic process and assess how this would 

possibly affect the mortality patterns and the estimated parameter values.  

6.2 The Extrinsic Challenge Space 

As defined in Chapter II, the extrinsic process, describing the dynamic of challenge 

events, is characterized by two essential elements: the occurrence rate and the magnitude 

of a challenge. To illustrate the process, we introduce a plot in challenge space (Fig. 6.1) 

which simultaneously depicts the occurrence time and the magnitude for each event.  

Each dot in Fig. 6.1A represents a single challenge event with x-coordinate 

indicating the occurrence age and y-coordinate indicating the challenge magnitude. This 

plot fully determines the challenge space and consequently determines the extrinsic 

process that leads to acute mortality. In theory, the distribution of events in the challenge 

space can be random, but the regularity of overall mortality suggests it follows certain 

patterns that have persisted across decades. However, these patterns can be very complex 

since they are determined by the combined effects from age, cohort and period. The IEV 

model makes relatively simple assumptions to characterize the patterns in two marginal 

spaces: the distribution of challenge magnitude (Fig 6.1B) and the age-specific pattern of 

challenge frequency (Fig 6.1C), but at the expense of potentially mis-specifying the 

underlying structures at certain degree.   
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Figure 6.1: Plots of challenge space. A: each dot represents a single challenge event with y-axis 
indicating the magnitude and x-axis indicating the age of occurrence; B: the distribution of 
challenge magnitude; C: the age-specific shape of challenge frequency.   

6.2.1 The Age-specific Pattern of Challenge Frequency 

The IEV model assumes a constant challenge frequency for adults and adds an 

exponential shape to capture the high mortality at childhood (dashed line in Fig 6.1C), 

which potentially misses the high frequency for young adults and other fluctuations 

caused by age effects. Also, the shape of the age-specific challenge frequency is assumed 

to be maintained over all the period years. To be specific, only the values of parameters 

change with period years but the age patterns of frequency, i.e. an exponential decrease 

for children and a constant for adults, is kept stable. In reality, both period and cohort 

effects would have notable impact on the period shape. For instance, cohorts 

experiencing tobacco epidemics would be more susceptible to extrinsic challenges and 
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consequently have higher λ. This effect would result in a hump in challenge frequency at 

middle or late ages for corresponding period years when deaths largely happen in these 

cohorts. However, it is extremely difficult to disentangle the effects among age, period 

and cohort on the shape of challenge frequency which varies from one year to another. In 

this sense, as long as the deviation from a constant event frequency does not dominate in 

a long age span, a single λ should be a stable representation of adult frequency across 

years, and most importantly should not bias other processes in the model, which is in fact 

suggested by simulations. I also tested that no matter how the simulated age-specific 

shape of λ varied over period years, a dramatic increase in estimated λ as observed in Fig. 

4.2A could not be achieved without artificially increasing the mean λ over these years. In 

other words, if the environment does not generate more challenges for recent years, the 

irregular increase in the estimated λ should not be attributed to the misspecification of the 

shape of λ. While including a complex pattern of event in frequency, such as a high 

challenge frequency to capture the mortality hump for young adults is possible, but 

adding such structures should done cautiously; otherwise the additional component can 

introduce artificial effects that become confound with other parameters. In conclusion, 

the assumption in the IEV model is conservative, but in many cases it reasonably 

represents the challenge event frequency pattern across years.  

6.2.2 The Distribution of Challenge Magnitude 

The IEV model uses an exponential distribution to approximate the challenge magnitude 

following the convention from the Strehler and Mildvan general theory of aging and 

mortality (1960). In the original SM theory, the distribution is derived from the Maxwell-

Boltzmann distribution. It is analogous to energies among molecule in a sense that the 
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higher the energy needs, the less likely the event occurs. This distribution is assumed to 

be invariant to both age and period years. For age effects, there is no strong evidence that 

the distribution significantly varies with age, and therefore the model characterizes a 

representative distribution of challenge magnitude across the lifespan. For period data, 

the model assumes that only the scale parameter, i.e. the average challenge magnitude β, 

changes across years while the exponential shape of the magnitude distribution is 

maintained. However, whether this assumption is valid over all the time period is 

doubtful.         

For data from the 19th and early 20th centuries, it is possible that the proportion of 

challenges with high magnitude (e.g. β > 1) were much greater than what was predicted 

from an exponential distribution. A century ago, a harsh environment with recurrent 

famines and diseases would be expected to produce a larger proportion of extreme events 

that resulted in greater levels of extrinsic death than can be represented by an exponential 

distribution. An example is demonstrated in Fig. 6.1B. If the real distribution of challenge 

magnitude (solid line) has a significant hump representing large magnitude challenges, 

the model’s exponential distribution (dashed line) adjusts its scale to capture the high 

proportion of the extreme challenges and consequently overestimates the occurrence of 

the intermediate ones. To compensate for the artificially high proportion of intermediate 

challenges, the model has to decrease the estimated challenge frequency λ. Advancement 

in disease and other extreme events control in the 20th century effectively reduces large 

magnitude challenges resulting in a more exponential-like distribution in challenge 

magnitude. (see Chapter IV). In essence, this argument contends that improved living 

conditions and advanced medical technologies not only reduced the average challenge 
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magnitude, but also mediated the distribution of challenge magnitude. Furthermore, 

because health science first directed its efforts to the most fatal diseases, the health 

programs in effect selectively reduced higher magnitude challenges while ignoring the 

low and intermediate challenges that produce mortality mainly in the very old ages. 

Therefore, in the later 20th century the distribution of challenge magnitude becomes more 

analogous to an exponential distribution and the estimated λ and β more accurately reflect 

the underlying process. 

Simulations were conducted to investigate the above hypothesis that changes in 

magnitude distribution affect the schedules of estimated parameters in the IEV model and 

in particular λ. Simulated survival curves were generated from the method described in 

section 2.3.2 except that an additional proportion of extreme events were added. A 

variable p, varying varies from 0 to 0.5%, quantifies the extra proportion of extreme 

challenges while the other parameters, r = 0.011, s = 0.006, λ = 0.2 and β = 0.12 were 

kept stable. All the values were within a reasonable range for generating survival curves 

similar to those characteristics of human beings. Note that in this simulation β still 

characterizes the standard exponential distribution, but does not represent the average 

magnitude which also needs to account for the extra extreme challenges expressed by p. 

The results are depicted in Fig. 6.2 where the estimated parameters from the IEV model 

over their true values are plotted against p. As suggested by the figure, the extra 

proportion of challenge magnitude does not significantly influence r and s, although r 

declines a little as the extreme challenges are reduced. In other words, the intrinsic 

parameters are relatively robust under the IEV model. In contrast, λ approaches its true 

value as the contribution of extreme challenges decrease. The pattern of λ matches our 
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speculation that the IEV model underestimates λ when the exponential distribution does 

not capture the challenge magnitude distribution which has an anomalous pattern of 

extreme challenges. The simulated pattern for estimated β also supports the hypothesis. 

The estimated β represents the mean magnitude averaging both the standard exponential 

distribution and extra extreme challenges. As the contribution of extra high magnitude 

challenges decline, β converges to the mean that represents for standard exponential 

distribution. 

This simulation analysis suggests that a reduction in the harshness of the 

environment between 1945 and 1951 decreased the high magnitude challenges, which the 

IEV model was expressed as an increase in λ (Fig. 4.2A) and a decrease in β.  

Consequently the post 1950 estimates of λ and β should be relatively unbiased while the 

pre-1945 years of λ and should be underestimated. Also for early period years (1800-

1945), underestimated λ results in the model under predicting mortality rate at very old 

ages because old age mortality is sensitive to λ (see Fig. 2.8C). In other words, since the 

fitting algorithm is more influenced by younger age fitting errors for early period years, 

the algorithm takes less care of fitting old age mortality. In conclusion, we show that the 

misspecification of the distribution of challenge magnitude has significant impact on the 

extrinsic parameters but not on the intrinsic ones. The two phenomena that cannot be well 

predicted by the basic IEV model, i.e., an underestimation of extremely old age mortality 

for early period years and a dramatic increase in λ, are then reasonably explained as the 

results of the underestimation of large magnitude challenges for early period years.     
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Figure 6.2: Estimated parameters from IEV model over their true values against the extra 
proportion of extreme challenges in additional to a standard exponential distribution (scale 
parameter β = 0.12). 

6.2.3 Methods for Correction and Their Problems 

A simple extension of the IEV model can be developed to correct the underestimation of 

extrinsic killing from high magnitude challenges, especially for early period years. The 

challenges with extremely high magnitude are usually non-recoverable in a sense that as 

long as they occur, individuals cannot survival irrespective of their vitality level. In other 
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words, the killing rate of such challenges is independent of age but only relies on the 

occurrence rate of the events. We could add a constant frequency term to account for the 

additional high proportion of such challenges, such that the magnitude of remaining 

challenges could be better approximated by a standard exponential distribution. An age-

independent mortality component has been added to the mortality equations since the 

Makeham model (1861) and it also long exists in the 3-parameter vitality model 

developed by Anderson (1992, 2000, 2008), but here we reintroduce the term with a 

different philosophy. In this new extension of the model, this constant term more stands 

for the additional proportion (or frequency) of extreme challenges that are not captured 

by the exponential distribution. In essence, in the IEV model no mortality event is 

independent of age but some challenge events are so large that they result in mortality 

independent of the amount of vitality the individual possesses. Consequently these events 

can be represented by an age-independent term. 

 The extended model with one extra term indeed improves the data fit for all 

period years. However, the new term also introduces potential confounding effects with 

other model parameters in particular for recent period years when the exponential 

distribution for challenge magnitude is adequate to represent the underlying process. The 

parameter r becomes unstable and drops to very low values for many period years and the 

across year patterns of other parameters are also affected. These irregular patterns may be 

caused by model over-parameterization. Of course, more complex models can represent 

the challenge space, but they all face the same problem that data sets have limited power 

to distinguish model parameters.  As such, more complex models may fit mortality data 

well but they may do so with a nearly random allocation of parameter values. To resolve 
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this problem additional information is essential. We could either take confident 

information from other sources in determining the critical properties of challenge and 

vitality spaces or apply prior information on the processes in a Bayesian estimation 

framework.  

6.3 Conclusion 

This Chapter mainly explores potential misspecifications of the IEV model in its 

challenge space. With manageable fluctuations in the shape of age-specific challenge 

frequency, the parameters estimated in the IEV model are relatively robust, while a poor 

approximation to the underlying distribution of magnitude causes estimation bias in 

extrinsic parameters. Introducing a more complex structure to describe the challenge 

space is possible but the estimation algorithm may become unstable.  So what have we 

learned from this chapter? 

Firstly, since the real underlying process of mortality has many dimensions, it is 

almost impossible to thoroughly capture all the perspectives and represent them through a 

model with manageable complexity. The IEV model presented in this dissertation makes 

relatively simple assumptions on both the intrinsic vitality and extrinsic challenge spaces. 

Although these assumptions are more or less violated in the real world, the model still 

provides a parsimonious, yet relatively stable, representation of the processes and 

maintains the major characteristics found in patterns of human mortality across centuries. 

In particular, the model seems to describe relatively well period data for recent years, 

possibly because the distribution of events in the challenge space is reasonably 

characterized by the model. Also, all the properties of the model discussed in previous 

chapters, such as the interpretations of features in mortality pattern (Chapter II), the 



135 

 

variance structure, the mortality partition (Chapter III) and the explanation of SM 

coefficient (Chapter V) still hold, in spite of the potential misspecification in challenge 

space. Thus, the IEV model is still of great value for both fitting data and providing a 

conceptually intuitive framework (vitality and challenge spaces) in which to view the 

complex mortality processes.  

Secondly, it is well understood in the society of mathematics and statistics that 

“All statistical models are wrong, but some are useful”1. Achieving a balance between a 

better representation of the data and over-parameterization is essential. The goodness of 

fit is very important to assess a model, however, when the ultimate goal is to explore the 

underlying dynamics, the primary criterion, is whether the model provides consistent 

interpretations for both the data and the parameter patterns. Instead of pursuing perfect fit 

for mortality data, we are more concerned about developing a consistent mechanism that 

explains general patterns. A strong mechanistic foundation is also critical for projecting 

future patterns of mortality and longevity. Reliable projections should be based on 

biologically meaningful mechanisms, not merely on a good-fit model whose parameters 

may not be consistent across years. 

Finally, the IEV model is a specific construction within the two-process 

framework that provides an efficient way to investigate the mortality system through 

intrinsic vitality and extrinsic challenge spaces. The concept that mortality patterns are 

determined by the shape and interaction of these two spaces is unique and allows great 

flexibility for exploring the underlying mechanisms of mortality.    
                                                 

1 Quote from George E. P. Box, Emeritus Professor of statistics, University of Wisconsin at Madison 
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Chapter VII: Discussion and Future Directions 

7.1 Conclusion 

Over life, the accumulation of small day-to-day processes associated with behavior, 

nutrition, health care, stress and other events contribute, in sum, to mortality. A biology-

motivated mathematical framework is developed to quantify these contributions through 

two stochastic processes: an intrinsic process, defining the survival capacity (i.e. vitality) 

of an organism, declines stochastically to a zero-boundary and an extrinsic process 

representing the occurrence of external stresses and how the stresses alter the intrinsic 

vitality trajectory. This vitality based model is designed to reflect both the biological and 

external processes that result in mortality or disease, and consequently differentiates 1) 

cumulative effects resulting from behavior, health care, nutrition and other environmental 

factors and 2) acute, short-duration challenges presented by disease, accidents and 

comparatively brief periods of extreme stress. Both of these components are represented 

parsimoniously using relationships that strongly reflect the general mechanisms 

underlying the killing processes.  

 This model is based on a stochastic process point-of-view which has been 

developed by a few scholars over the past 50 years. As early as 1956, Sacher and Trucco 

(1956; 1962) first used the Wiener process to characterize the internal physiological 

deterioration subject to random fluctuations. The temporal shape of mortality was derived 

from the presumed distribution of time (i.e., inverse Gaussian) when the internal 

physiological conditions (vitality) reach a threshold. Chhikara and Folks (1989) 

thoroughly explored the inverse Gaussian distribution as well as the associated stochastic 

process and applied this framework to some other studies such as the duration of strikes 
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and the frequency of using a word. Anderson (1992; 2000; Anderson, Gildea et al. 2008) 

was the first to propose a two-process model version in which a constant extrinsic killing 

process was added to the original intrinsic diffusion process to characterize organism 

survival. The intrinsic-part-only model was independently addressed by Aalen and 

Gessing (2001) along with other Markov process models in explaining survival patterns. 

Its mathematical properties, in particular the quasi-stationary distribution in capturing the 

old age plateaus were intensely studied by Weitz and Frazer (2001) and Steinsaltz and 

Evans (2004; 2007). A recent advance was suggested by Li and Anderson (2009) to 

include the initial population heterogeneity in the simple two-process model. The efforts 

made by these scholars propose a fundamental way to look at the underlying mechanisms 

of mortality and set up a good foundation of this work. The contribution of this 

dissertation is to develop a more sophisticated two-process model by including a vitality-

dependent extrinsic process, such that the model realistically captures human mortality 

patterns and explain the regarding phenomena in death and aging. 

        This new framework demonstrates several essential merits over existing models. 

First of all, it fits mortality data over entire human lifespan and provides biologically 

meaningful explanations for the age-specific mortality patterns, in particular for the 

observed anomalies from the classic Gompertz law. The ability to investigate mortality 

under a consistent framework is an important contribution, because death is more likely 

to result from continuous processes than piecewise forces. Secondly, the model has an 

inventory structure to incorporate population heterogeneity. The effects of heterogeneity 

on population survival have been long underrepresented. In spite of an explicit 

consideration in the frailty model (Vaupel, Manton et al. 1979), population variation only 
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fits in through an ad hoc manner, i.e. additional coefficients have to be added to the 

mortality rate. In contrast, the IEV model admits variation through a stochastic process of 

vitality diffusion and thus in a more natural way. The variation structure proves to be 

critical in explaining the old age plateau and mortality curve crossover. Thirdly, all the 

model parameters are process-driven, such that age-specific mortality curves can be 

elegantly summarized in a low dimension parameter space. Each dimension represents a 

single biologically-meaningful element that contributes to the death process. Hence, the 

model provides a convenient and insightful approach for describing mortality trends, 

comparing survival and making forecast.    

       The mortality process is so complex that it involves many different factors driving 

the system in distinctive manners from both inside and outside of the body. The IEV 

model helps resolve the complexity of death from a process point of view. It links the 

macro observation of population mortality rate to a micro biology-motivated process 

through a parsimony structure. Despite a relatively low dimension of parameter space, the 

model provides a flexible structure to account for complexities. For instance, age-

dependent functions can be assigned to the challenge frequency term, λ, to justify the 

high level of child mortality and the mortality hump at young adulthood. Nevertheless, 

adding flexible structures to the model parameters only demonstrates one perspective of 

how the framework can be extended. The next section will discuss two major potential 

extensions to the model: 1) to adopt different schedules of vitality trajectories and 

challenge spaces and 2) to apply the stochastic structure to new contexts other than 

mortality. 



139 

 

7.2 Potential Model Extensions 

7.2.1 Different schedules of vitality trajectories 

The model developed in this work is restricted to a relatively simple and fixed structure 

in a sense that not only the basic parameters are presumably constant across the entire 

lifespan, but also the vitality process is assumed to stick to a general linear declining 

trend with small random deviation. In fact, the vitality trajectories can have different 

schedules upon various physiologic stages and life experiences. For example, human 

beings would be likely to experience a building process in vitality, i.e. having vitality 

increase, at the early stage of life as the development of immune system and other 

physical functions. This can be applied to partially explain the early-age high mortality 

rate, which has been briefly illustrated in Chapter II.  

        Interventions would also cause a significant deviation of vitality trajectory from 

the linear decline trend. Although death does not happen, interventions would either 

induce long-term damages or chronic benefits to the system such that the vitality 

trajectory would not return to its original track. Understanding how early time 

interventions affect later time survival through altering the vitality trajectories has huge 

implications.  

        One ongoing project, with Professor James Anderson and one of his Ph. D. 

students, Jennifer Gosselin, at University of Washington, is to model the effects of 

intermittent heat shock on longevity using studies on C. elegans (Wu, Rea et al. 2006; 

Wu, Cypser et al. 2009) and fish (Gosseling 2010). This work is an expansion of the 

model to characterize effects of time-varying intrinsic vitality on cross-life survival 
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patterns. The individual animal would either die fast because of the damage caused by the 

thermal stress, or become adapted and gain an extended life span because of the 

generated heat shock proteins helping repair damages and prevent further deterioration 

(Cypser, Tedesco et al. 2006). The vitality framework provides an approach to examine 

both detrimental and beneficial effects through explicitly modeling the changes of vitality 

trajectories under both situations. Thus, it is able to explain the observed stepped-like 

survival curves as the mix effects of debilitation and hormesis introduced by the 

intervention (Yashin, Cypser et al. 2001; Cypser, Tedesco et al. 2006; Olsen, Vantipalli et 

al. 2006; Wu, Rea et al. 2006).  

       Another prominent perspective of applying the vitality framework with 

interventions lies in disease modeling, in particular for studying HIV (this project is 

currently collaborated with Professor James Anderson, Professor Samuel Clark and a 

Ph.D. student Gregor Passolt at University of Washington). The immune-deficient 

disease, i.e. HIV, would not result in mortality directly, but make the patients much more 

susceptible to secondary infections that usually lead to death. The vitality framework has 

the advantages to represent a disease’s effect on reducing either the challenge threshold 

or the recovering capacity through lowering the vitality trajectory. Moreover, the 

framework can also be used to evaluate the effects of treatment on reversing the decline 

of vitality caused by disease progression.   

 As discussed in Chapter VI, the challenge space is also complex and can vary 

from years to years. We could introduce different schedules of the challenge space to 

better capture the underlying processes among different years. 
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        In general, the framework is flexible enough to account for different survival 

conditions. It is not necessary to bring all the complexity together at all the time, but to 

adopt different versions of the model according to the data sets and the specific questions 

that need to be addressed.    

7.2.2 New Application Context 

Death is the primary outcome of the vitality process, but the framework can be applied to 

a different context where the occurrence of an event other than death serves as the 

endpoint. Modeling the incidence rate of aging-related diseases using a similar stochastic 

structure would be one promising application in which disease is the primary outcome.  

      Among all the chronic diseases, cancer is in particular of interest. Although it has 

been long recognized that cancer occurs predominantly among older persons, the 

relationship between cancer and aging is still vague at both biologic and demographic 

perspectives (Cohen 2007). The similarity in age patterns between the overall cancer 

incidence rate and the all-cause mortality rate for human beings, i.e. a peak during early 

childhood, an exponential increase trend during adolescence and deceleration at old ages 

(Arbeev, Ukraintseva et al. 2005), strongly suggests a consistent framework that accounts 

for the mechanisms of both all-cause mortality and cancer progression. Especially, the 

aging process needs to be incorporated into cancer progression beyond the epidemic 

consideration. The two-process structure with aging-disease interaction can be well 

applied to model the cancer incidence trajectory. Under such a circumstance, the intrinsic 

process could still represent the aging-related deterioration of the survival system, while 

the extrinsic process is designed to indicate the multistage carcinogenesis. Cancer then 

results when the intrinsic survival capacity is inadequate to suppress the progression to 
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malignancy. A preliminary study (Li and Anderson 2010)(draft available) has shown that 

the model fits the entire all-cancer incidence trajectory well. More important, it provides 

a tool for exploring the differences in cancer patterns among the two sexes and varying 

regions with regard to the impact of genetic, physical, social and environmental factors 

on aging and carcinogenesis process.  

       Essentially, all the flexibilities of the model framework are based on a process 

point of view of the whole system which is a much more fundamental approach to 

explore different dynamics including mortality, aging and disease. I believe this approach 

will play an increasingly important role on the study of health and mortality in the near 

future. 

7.3 Limitations and Future Directions 

The IEV model established in this work does have several limitations.  

      First of all, to achieve an analytic solution of mortality function, an approximation 

to the extrinsic killing has to be involved. Although a correction can be applied to the 

estimated parameters via simulations, it weakens the model assumption with regard to the 

heterogeneity of extrinsic mortality. A future step would be to develop a fitting algorithm 

that does not require a closed form of the mortality function, such that the estimated 

parameters would directly reflect the underlying process. However, great efforts on 

mathematical and computational development are needed. 

       Secondly, there is a potential issue on parameter identifiability. As discussed in 

chapter IV and VI, when the underlying processes are not correctly specified, the model 

parameters may interact among each other, which makes it difficult to accurately 
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disentangle their effects. In addition, without extra information on intrinsic survival, the 

effects of internal and external factors on high child mortality cannot be fully resolved. A 

possible way out of this problem of resolving the pattern of model parameters is through 

additional biological information such as the trajectory of biomarkers indicating the 

aging-related intrinsic process or the efficiency of the immune system. It is possible to 

develop a two-stage model in the near future with one stage explicitly modeling the age-

specific trajectory of biomarkers and the other stage characterizing the mortality or 

disease outcomes at a macro level. An underlying stochastic process is still the key to 

connect the two stages.     

        Thirdly, the IEV model only has a single parameter, s, to indicate the population 

heterogeneity. It represents the combined effects of genetic (initial) and acquired 

(evolving) variation, the former of which usually refers to the population differences in 

pre-existing conditions associated with genetics and prenatal care, whereas the later one 

denotes the differences gained through varying life experiences and living environments. 

Differentiating the two sources of variation has huge implications, in particular for 

understanding the role of genetic factors and the force of natural selection on later life 

mortality. However, the IEV model fails to accurately disentangle the two types of 

variation by adding one more parameter as previously conducted in the simple two-

process vitality model (Li and Anderson 2009). It is likely that the IEV model has too 

many perspectives to characterize, such that it has limited power left in clarifying the 

heterogeneity structure. A solution to the problem also relies on gaining additional 

information on the biological processes. Auxiliary data may help identify the effects of 
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different factors on mortality and thus makes it possible to further clarify the model 

structure and disentangle the parameters.    

        The IEV model, in many ways, is an idealized construction subsuming various 

mechanisms into a single abstract measurement. With limited dimensions obtained from 

overall mortality data only, it cannot solve all the mysteries in the mortality and aging 

process, but it helps to break the complexity down. This dissertation work focuses on 

building the model concept, exploring the model properties and illustrating some 

preliminary applications, but there are much more to do with the vitality framework in 

the future.  

       Future directions might primarily cover five areas: 1) mathematical development 

to overcome some of the model limitations and further illustrate the model properties 

such as how to disentangle the cohort and period effects on mortality; 2) studies to 

explore how environmental, genetic, behavioral and social-economic factors affect the 

mortality process through the model parameters; 3) studies on the effects of early-age 

interventions on later-age survival with an extended model; 4) studies to model different 

disease processes, such as HIV and cancer; and 5) studies incorporating  biological 

measurements for a more complex multi-stage process model. Overall, I believe the idea 

of looking at morbidity, mortality and aging through a process point of view has a 

brilliant future yet more theoretical developments are needed.  
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Appendix A: R ® Code for Model Parameter Estimation (6-parameter 

version) 

Based on the code of Salinger et al. 2006 for the 3- parameter model of Anderson (2000) 

#======function for data preparation================================= 
 
dataPrep<-function(time,sdata,datatype,rc.data) 
#   
#  Function to deal with NAs, right truncated data and datatype cumulative survival or 
#  incremental motality.  
{ 
          #check for and remove NAs from data 
           if (any(is.na(time))) { 
            naT=is.na(time) 
  time  =time[!naT] 
  sdata =sdata[!naT] 
  warning(message="WARNING:  NAs found in data and removed.") 
 } 
 if (any(is.na(sdata))) { 
                          naT=is.na(sdata) 
  time   =time[!naT] 
  sdata =sdata[!naT] 
  warning(message="WARNING:  NAs found in data and removed.") 
 } 
  
 if(length(time) < 5) {  
                          stop(message="ERROR:  not enough data.")  
             } 
  
 if(!all(0<=sdata) || !all(sdata<=1)) { 
  stop("ERROR:  survival fraction data outside range.") 
 } 
# end data checking  
    maxx2 <-max(time)  #for right-censored data and for plotting  
# === check data type (CUMulative or INCremental.  If CUM, create INC === 
if (datatype == "CUM") { 
 #====== survival assumed =1 at time 0 === 
 if (time[1] > 0) { 
  time <-c(0,time) 
  sdata <-c(1,sdata) 
 } 
 else { 
  if (sdata[1] < 1) { 
   sdata<-sdata/sdata[1] 
   warning(message="Initial survival < 1.  Data scaled so that initial   
                                                      survival =1.")    
  } 
 } 
 
 #------------------------ 
 sfract <-sdata 
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 len<-length(time) 
 #  ...set up data for MLE fitting of incremental survivorship...  
  
 # --------- right censored data? 
 if (rc.data != T) { 
  if (rc.data == F) { 
   #check if final sdata indicates full mort 
   if (sfract[len] != 0) { 
    warning("WARNING: Survival data may be right censored...") 
    rc.data<-"TF" 
   } 
   else { 
    #standard setup 
    x1 <-c(time[1:(len-1)],0) 
    x2 <-c(time[2:len],0) 
    sfract1 <-c(sfract[1:(len-1)],0) 
    sfract2 <-c(sfract[2:len],0) 
   } 
  } 
  if (rc.data == "TF") { 
   #setup: add zero sruv and short time step  ("TF" option) 
   x1 <-time 
   x2 <-c(time[2:len],2*time[len]-time[len-1]) 
   sfract1 <-sfract 
   sfract2 <-c(sfract[2:len],0) 
  } 
   
 } 
 else {                      #if rc.data == T 
  x1 <-time 
  x2 <-c(time[2:len],10*maxx2)         #testing... 
  sfract1 <-sfract 
  sfract2 <-c(sfract[2:len],0) 
 } 
 # -----------------  end of dealing with right censored data options 
  
 Ni <-sfract1-sfract2     #incrimental survival fraction 
  
 #  ...end conversion of cumulative survivorship to incremental mortality 
 
}  
 
else { 
 if (datatype == "INC") { 
  lent<-length(time) 
  #should be no t=0 data.  Eliminate if necessary. 
  if(time[1] == 0) { 
   time  <-time[2:lent] 
   sdata <-sdata[2:lent] 
   lent  <-length(time) 
  } 
  #check for right censored data 
  if (rc.data != T) { 
   if (rc.data == F) { 
    if(sum(sdata) < 1) { 
     rc.data <-"TF" 
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     warning("WARNING: Survival data may be right  
                                                                                censored...") 
    } 
    else {   
     #standard setup 
     Ni <-sdata 
     x1 <-c(0,time)[1:lent] 
     x2 <-time 
    } 
   } 
   if (rc.data == "TF") { 
      #setup: add zero sruv and short time step  ("TF" option) 
      Ni <-c(sdata,1-sum(sdata)) 
      x1 <-c(0,time) 
      x2 <-c(time,2*time[lent]-time[lent-1])   
                                                      #final time interval assumed same as prev. 
        } 
    
  } 
  else {       #if rc.data == T 
   Ni <-c(sdata,1-sum(sdata)) 
   x1 <-c(0,time) 
   x2 <-c(time,10*maxx2)    #final time interval large 
  } 
   
  # Build cumulative data  
              sfract<-NULL 
    for (i in 1:length(Ni)) { 
   sfract <-c(sfract,1-sum(Ni[1:i])) 
    } 
  
            time<-c(0,time) 
        len<-length(time)   #check  
       print(c(length(sfract),length(time),length(Ni),length(x1),length(x2),lent)) 
  
 } 
      else { 
  stop("ERROR:  bad datatype specification") 
 } 
} 
 
      return(data.frame(time,sfract,x1,x2,Ni,rc.data)) 
} 
 
#=============survival function  ( ) ( ) ( )i el x l x l x=  ========================= 
SurvFn.2p<-function(xx,r,s,lambda,beta,mu0,alpha)  
 #  The cumulative survival distribution function. 
{ 
 yy<-s^2*xx 
 # pnorm is: cumulative prob for the Normal Dist. 
 tmp1 <- sqrt(1/yy) * (1 - xx * r)    #  xx=0 is ok.  pnorm(+-Inf) is defined 
 tmp2 <- sqrt(1/yy) * (1 + xx * r) 
 
 # --safeguard if exponent gets too large.--- 
 tmp3 <- 2*r/(s*s) 
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 if (tmp3 >250) {    
  q <-tmp3/250  
  if (tmp3 >1500) { 
   q <-tmp3/500 
  }  
  valueFF <-(1.-(pnorm(-tmp1) + (exp(tmp3/q) *pnorm(-tmp2)^(1/q))^(q)))*exp(- 
                                             lambda*exp(-1/beta)/(r/beta)*(exp(r*xx/beta)-1) +mu0/alpha*(exp(- 
                                             alpha*xx)-1)) 
 }       
 else { 
  valueFF <-(1.-(pnorm(-tmp1) + exp(tmp3) *pnorm(-tmp2)))*exp(-lambda*exp(- 
                                             1/beta)/(r/beta)*(exp(r*xx/beta)-1)+ mu0/alpha*(exp(-alpha*xx)-1))  
 } 
 if ( all(is.infinite(valueFF)) ) { 
  warning(message="Inelegant exit caused by overflow in evaluation of survival  
                                         function. Check for right-censored data. Try other initial values.") 
 } 
  
 return(valueFF)  
} 
 
#=============incremental survival probability============================== 
survProbInc.2p<-function(r,s,lambda,beta,mu0,alpha,xx1,xx2)       
# calculates incremental survival probability 
{ 
 value.iSP <--(SurvFn.2p(xx2,r,s,lambda,beta,mu0,alpha) –  
                                    SurvFn.2p(xx1,r,s,lambda,beta,mu0,alpha)) 
 value.iSP[value.iSP < 1e-18] <-1e-18   # safeguards against taking Log(0) 
 value.iSP 
} 
 
#=============likelihood function ======================================= 
logLikelihood.2p<- 
function(par,xx1,xx2,NNi) 
{ 
 #returns the log likelihood 
 # --calculate incremental survival probability--- (safeguraded >1e-18 to prevent log(0)) 
 iSP <-  survProbInc.2p(par[1],par[2],par[3],par[4],par[5],par[6],xx1,xx2) 
   loglklhd <--NNi*log(iSP)  
   return(sum(loglklhd)) 
} 
 
#==========Newton-Ralphson method for MLE========================= 
fit.nlm.2p<-nlminb(vector of initial parameter values, obj=logLikelihood.2p,lower=c(0,-1, 0, 0, 0, 
0),upper=c(100,50,100,1000,10,10),xx1=x1,xx2=x2,NNi=Ni) 
 
#==========Example============================================ 
#==========Data=============================================== 
age<-(0:110)               #age from 0 to 110 with time interval equal 1 
sdata<-c(1.000,  0.995, 0.994, 0.994, 0.994, 0.994, 0.994, 0.994, 0.993, 0.993, 0.993, 0.993,   
               0.993, 0.993, 0.993, 0.992, 0.992, 0.992, 0.992, 0.991, 0.991, 0.991, 0.990, 0.990, 0.990,  
               0.989, 0.989, 0.988, 0.988, 0.988, 0.987, 0.987, 0.986, 0.986, 0.985, 0.985, 0.984,  
               0.983, 0.983, 0.982, 0.981, 0.980, 0.979, 0.978, 0.976, 0.975, 0.973, 0.971, 0.969, 0.967,  
               0.965, 0.962, 0.959, 0.957, 0.954, 0.951, 0.946, 0.943, 0.938, 0.932, 0.927, 0.921, 0.915,  
               0.909, 0.901, 0.894, 0.885, 0.876, 0.865, 0.853, 0.842, 0.828, 0.812, 0.796, 0.778, 0.758,  
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               0.736, 0.712, 0.686, 0.657, 0.624, 0.589, 0.554, 0.514, 0.475, 0.433, 0.391, 0.347, 0.306,  
               0.263, 0.221, 0.184, 0.149, 0.118, 0.091, 0.068, 0.050, 0.035, 0.024, 0.016, 0.010, 0.006,  
               0.004, 0.002, 0.001, 0.001, 0.000, 0.000, 0.000, 0.000, 0.000) 
               #survival rate data, fraction of survival at each age 
 
#==========Data preparation========================================= 
rc.data<-F              #if survival data are censored rc.data<-T, otherwise rc.data<-F 
datatype="CUM"  #"CUM" means data are survival fraction data   
 
dTmp<-dataPrep(age,sdata,datatype,rc.data)   
#use data preparation function to obtain clean data-frame dTmp 
time<-dTmp$time 
sfract<-dTmp$sfract 
x1<-dTmp$x1 
x2<-dTmp$x2 
Ni<-dTmp$Ni 
rc.data<-dTmp$rc.data 
          
fit.nlm.2p<-nlminb(c(0.01,0.01,0.1,0.2,0.01,0.1), obj=logLikelihood.2p,lower=c(0,-1, 0, 0, 0, 
0),upper=c(100,50,100,1000,10,10),xx1=x1,xx2=x2,NNi=Ni) 
 
fit.nlm.2p$par    #gives the parameter estimation  
 
#compare model fit with original data from plot 
par(cex=1.8,lwd=1.8,mar=c(4.5,4,2,1))  
plot(time,sfract,main=paste("Survival curve"),type="n",ylab="Survival rate",xlab="age") 
points(time,sfract,cex=0.7,pch=20) 
lines(time,SurvFn.2p(time,fit.nlm.2p$par[1],fit.nlm.s2p$par[2],fit.nlm.2p$par[3],fit.nlm.2p$par[4],fit.nlm.2
p$par[5],fit.nlm.2p$par[6]),col=2,lwd=2) 
 
 
 
Note: 
1.  Choosing appropriate initial values for parameters is critical to obtain reliable parameter estimations. If 
the initial parameters are far from the real values, the likelihood estimation would probably get stuck in 
local minimum or even not converge. If nlminb report errors, in most case it means the MLE does not 
converge. Choose another set of initial values and try again. 
 
2. If sdata is incremental mortality (rather than cumulative survival), set datatype=”INC”. 
 
3. Choosing time scale for the original data should be careful. If the time scale is too small (eg. days for the 
population which can survival over 60 years), the estimated r and s would be too tiny to be precise. 
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Appendix B: R ® Code for Conducting Simulations 

#=========generate survival curves from simulated vitality trajectories=============== 
#function for generating single vitality trajectory from the Wiener process 
gen<-function(r,s,T){ 
         i=1 
         v0<-rnorm(1,1,0)      #generate initial vitality, in this case all individuals start from value 1 
         vt<-rep(0,T) 
         vt[1]<-v0 
         w.t<-rnorm(T,0,1)    #generate white noise for each step 
         while(vt[i]>0&i<T){ 
               vt[i+1]<-vt[i]-r+s*w.t[i]    #update vitality for each age according to Wiener process 
               i=i+1      
        } 
        return(vt) 
}   
 
#function for generating survival curves 
genSurvFn<-function(rr, ss, alpha, beta, TT, L, pplot=F){  
       v1<-sapply(1:L,function(r,s,T)  gen(rr,ss,TT)) 
       #generate vitality trajectories for a population of L with r = rr, s = ss and age from 0 to TT-1 
       r.temp2<-rep(1,L) 
       sum.temp1<-rep(L,100) 
       for(t in 2:TT){    
             r.temp1<-rbinom(n=L,size=1,exp(-alpha/2*(exp((-v1[t,])/beta)+exp((-v1[t- 
                             1,])/beta))))*r.temp2                #extrinsic killings  
             r.temp2<-r.temp1*(v1[t,]>0) 
             sum.temp1[t]<-sum(r.temp2) 
        } 
       time<-(0:(TT-1))  
       sfract<- sum.temp1/L 
       if(pplot==T){ 
             plot(time,sfract, xlab=”time”, ylab=”survival fraction”, main=”generated survival curve”) 
      } 
       return(data.frame(time,sfract)) 
} 
 
#====================example================================== 
set.seed(1982)            #set a random seed 
data.surv<-genSurvFn(0.012,0.012,0.1,0.2,100,10000,pplot=T) 
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