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The downstream migration of juvenile salmon is a critical phase of salmon life history.

Individuals are susceptible to mortality from a variety of sources, and in the Columbia

River system, hydroelectric dams are a further source of mortality. Models that describe the

spatial and temporal distribution of populations of fish can aid in the understanding of

juvenile salmon behavior and can be used as management tools. This dissertation presents

several models of the distribution of migrating juvenile salmonids. The models are derived

from diffusion equations and are expressed as probablity density functions. Likelihood

functions are formulated from the probability densities and data, and parameter estimation

and alternative model comparison are based on the likelihoods.

A two parameter travel time model is effective at describing the arrival time

distributions of run-of-the-river, yearling chinook. One of the parameters determines the

rate of downstream migration; the other parameter determines the rate of population

spreading. After model parameters are related to date of release and river flow in a nonlinear

regression equation, the model is used predictively. With subyearling chinook, a delay term,

which represents delay in the initiation of migration, substantially improves the travel time

model. In addition, fish length is determined to be important in modeling sockeye and

subyearling chinook travel time. The vertical distribution of juvenile salmonids in the

forebay is modeled based on a chemotaxis equation, where the fish cue on light intensity.

The correspondence between the model and data is good.
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1. Introduction

Salmon populations in the Columbia River system have declined dramati

in the past century. A century ago, an estimated 8 - 16 million adult salmon

steelhead returned to the Columbia River each year (Chapman, 1986; NPPC, 

A current estimate of adult returns is 2.5 million, and many of these returnee

hatchery stock (NPPC, 1992). In addition to reduction in numbers, the elimin

of runs associated with particular tributaries has resulted in a loss of ge

diversity. This alarming reduction in salmon runs prompted Congress to pas

Pacific Northwest Electric Power Planning and Conservation Act in 1980, w

dictates that a certain percentage of revenues generated from hydroelectric

directed to restoring salmon populations. In addition, in 1991 Snake River soc

were listed under the Endangered Species Act, and Snake River chinook we

listed as threatened in 1992. Currently, other stocks are being considered fo

status.

The Columbia Basin is an extensive region extending into the state

Washington, Oregon, Idaho, and Montana, and the province of British Colu

(Figure 1.1). In addition to the Columbia River and its major tributary, the Sn

River, many tributaries, including the Yakima, Wenatchee, Methow, Clearwate

Salmon Rivers, comprise the Columbia River system. Several specie

anadromous1 salmonids2 inhabit the Columbia River system – socke

(Oncorhynchus nerka), coho (O. kisutch), chinook (O. tshawytscha), and steelhead

1. Anadromous fish are reared in freshwater habits, migrate to saltwater habitats, and retu
as adults to freshwater habitats to spawn.
2. Salmonids are salmon and their close relatives, including trout.
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Figure 1.1 A map showing the major features of the Columbia River Basin in Washington, Oreg
and Idaho.
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Anadromous salmonids spend the first part of their lives in rivers or lakes and

migrate downstream to saltwater as juveniles. After an extended period of grow

saltwater, they return to a freshwater environment to spawn. Because of their mig

nature, they encounter a variety of habitats and thus are exposed to several different 

of mortality. The accumulation of these effects has greatly reduced their numbers 

Columbia River system. Spawning and rearing habitat has been degraded d

development, irrigation, and logging practices. Also, some dams, such as the Grand C

are impassable to fish, and rearing habitat has been entirely lost upstream from the d

a result, over fifty percent of spawning habitat has been eliminated above McNary

(Raymond, 1988). In the ocean, harvest of adults by sport and commercial fisherie

additional source of mortality.

The downstream migration of juvenile salmon is a particularly critical stage of

salmon life history (NPPC, 1992), but migratory behavior is not well understood. S

species of salmon migrate for hundreds of miles as juveniles and in doing so incur 

mortality due to factors such as predation and disease. In addition, during outmig

juvenile salmon undergo smoltification, a series of physiological, behavioral 

biochemical changes preparing them for a saltwater habitat (Hoar, 1976). Since arr

the estuary is coordinated with smoltification (Folmar and Dickhoff, 1980), the timin

outmigration is important to ensure that the smolts reach saltwater when the

physiologically ready.

In the Columbia River system, the downstream migrants are exposed to further h

due to the presence of dams – some runs must pass nine dams during their migra

addition to being a direct source of mortality, dams complicate the migration proce

creating large reservoirs in which river velocity is significantly reduced (Raymond, 19



7

her

ng in

 not

crucial

ting

atural

ement

 is a

plying

odels

imate

dels are

 which

e the

 and

odels

ures I

l of the

ses of

del are

effort

ly the
potentially disrupting the timing of migration. Also, the reservoirs have hig

temperatures and less turbidity compared to free flowing rivers, potentially resulti

greater susceptibility to predation and disease (Park, 1969). In light of this, it is

surprising that mitigation efforts have targeted the downstream migration phase as 

in terms of revitalizing salmon populations in the Columbia River system.

In this thesis, I develop spatial and temporal models of distributions of migra

juvenile salmonids. Model building and testing can be an important component in n

resource management. Models allow for the examination of various long term manag

scenarios without conducting costly experiments. The predictive ability of models

useful tool in day to day operations. Also, the process of developing models and ap

them to data enhances the understanding of the animal’s behavior.

In all cases, the models I develop have practical applications, so comparing the m

to data is important. In analyzing data, I have several objectives. First of all, I est

parameters and construct confidence intervals. Secondly, I assess whether the mo

consistent with the data; this involves goodness-of-fit tests. In some cases I evaluate

factors – biotic and abiotic – are important to the models. Finally, I attempt to us

models as predictive tools with independent data.

For the remainder of this chapter, I provide a brief overview of salmon biology

behavior relevant to modeling migrating populations. Chapter 2 reviews the use of m

to describe dispersing animal populations. Chapter 3 covers the statistical proced

follow and discusses the data used in the applications. Chapter 4 presents a mode

travel time of juveniles through a reservoir and includes applications to group relea

migrating chinook salmon and steelhead. Several extensions to the travel time mo

presented in chapter 5 – time dependent mortality, delay in migration, a migrational 

component, and time variable parameters. In chapter 6, I develop methods to app
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travel time model to individuals, and in the process, assess which individual covariat

important to the model. In chapter 7, I develop models of the movement patter

individuals and apply the models to radio-tracking data. Chapter 8 contains a model

vertical distribution of fish in the water column in relation to environmental gradients

All computational algorithms are written in the C programming language (Kernig

and Ritchie, 1978) and run on a Sun Sparcstation 2. Plots were constructed and som

statistical analyses performed using the S-plus statistical/graphical software pa

(Becker, et al., 1988).

1.1. Anadromous salmonid biology

overview of anadromous salmonid life history

Although quite variabile in their life histories (within and among species), anadrom

salmonids share the following traits. Adult fish spawn in freshwater streams or l

usually in late summer or fall (Groot and Margolis, 1991). Their large yolky eggs are b

in the substrate, and embryonic development occurs here (Thorpe, 1984). The juv

emerge from the substrate the following spring as “fry” and are dependent on externa

sources upon emerging (Thorpe, 1984). The life histories of the various species dive

this point, with some species migrating to the estuary at this stage and other s

delaying their migration for months or years (Northcote, 1984). After passing throug

estuary, the fish carry out most of the growth in the ocean. Depending on the spec

stock, the fish spend between one and seven years in the ocean (Groot and Margolis

Adults then return to their natal streams or lakes (although some straying is com

(Quinn, 1984)) and die shortly after spawning.

chinook salmon

Chinook salmon are divided into two “races” (or subspecies, depending

nomenclature), both of which inhabit the Columbia River system. “Ocean-type” chin
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return as adults in the late summer or fall and spawn almost immediately after reach

natal stream (Healy, 1991). The juveniles migrate as subyearlings, usually several m

after emerging as fry, although timing of emigration is quite variable (Reimers and Lo

1967). This group is also referred to as “chinook 0’s” or as fall chinook. Ocean-

chinook are generally found in the southern part of the species’ range. “Stream

chinook return as adults in the spring and delay spawning for several months. The juv

migrate as yearlings after overwintering in the river environment. These fish, also re

to as “chinook 1’s” or as spring chinook, are generally found in the northern part o

species’ range. Although the two types of chinook may occupy the same streams

appear to be genetically distinct (Carl and Healy, 1984) and show heritable beha

differences (Taylor and Larkin, 1986; Taylor, 1988). Stream-type juveniles display h

levels of antagonistic behavior and stronger positive current response, consisten

defending territory and extended residence in streams.

sockeye

The life history of sockeye salmon is the most variable of all the Pacific salmon, w

wide variety of adaptations for specialized conditions (Burgner, 1991). In addition t

anadromous form, there is a landlocked form commonly referred to as kok

Anadromous sockeye usually spawn in the tributaries of lakes (Groot, 1982). 

emergence, the fry migrate to a nursery lake where they may spend 1 to 3 year

sockeye smolts then migrate downstream to the ocean. Ocean residence for soc

variable, ranging from 1 to 4 years (Burgner, 1991).

steelhead trout

Steelhead trout (Oncorhynchus mykiss) is the same species as rainbow trout, w

steelhead a migratory form and rainbows a landlocked form. Steelhead, until recently

classified asSalmo gairdneri, partially reflecting their morphological and behavior
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similarities to Atlantic salmon (Salmo salar) (Netboy, 1980). The change of nomenclatu

is based on the Pacific coast origin of the species and an alignment with Pacific s

(Light, et al., 1989). The Columbia River Basin is the world’s largest producer of stee

(Netboy, 1980; Light, 1987). Steelhead are generally split into two races: “win

steelhead return as adults between November and April; and “summer” steelhead re

adults from May to October (Withler, 1966). In the Columbia Basin, winter-run steel

are found exclusively west of the Cascades, while summer-run steelhead are found i

western tributaries and are the only steelhead found in the Snake and upper Co

Rivers and their tributaries (Pevin, 1990). Smolts usually migrate in the spring of 

second year, but there is variability in the duration of freshwater residence (Withler, 1

The majority of steelheads spend 2 years in the ocean before returning as adults 

1990). Unlike Pacific salmon, steelhead don’t always die after spawning (Childerhous

Trim, 1979). A small percentage return to the ocean after spawning and then return b

freshwater the following year to spawn again.

coho

In Washington and Oregon, coho are found primarily in coastal streams and tribu

of the Lower Columbia (Sandercock, 1991). The freshwater residence of coho is

variable, and they have the most extended stream residence of Pacific salmon (Tay

Larkin, 1986). Because few wild populations of coho undergo extensive migrations 

Columbia River or its tributaries, I do not analyze any coho data in this thesis.

smoltification

The initiation of migration is preceded by the parr-smolt transformation (smoltificat

(Folmar and Dickhoff 1980), in which the juveniles transform from a stage in their

history adapted for stream inhabitation to a stage adapted for downstream migratio

eventually saltwater inhabitation. Smoltification is a series of morpholog
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physiological, and behavioral changes. A discussion of smoltification is important fo

reasons. First, the morphological, physiological and behavioral changes are all relate

thus understanding how each operates can help elucidate the behavioral changes im

to modeling. Also, it is clear that the timing associated with smoltification is critical,

this lends importance to the travel time studies.

 Behaviorally, the fish undergo several changes. Prior to smoltification, the fish e

positive rheotaxis (Thorpe and Morgan, 1978), and maintain their position in the riv

lake. They are also territorial bottom dwellers. Upon smoltification, fish are less pro

hold position against the current, and thus downstream movement becomes initia

addition, they become less territorial and more surface oriented.

Morphological changes that occur during smoltification are a silvering in body c

and a decrease in weight per unit length (commonly referred to as condition fa

(Wedemeyer, et al. 1980), resulting in a more slender and streamlined fish. Some ev

exists for a threshold size that may be important in the timing of seaward migration (F

and Dickhoff, 1980).

Physiologically, several changes occur during smoltification. First, there is heigh

hypoosmotic regulatory capability that increases salinity tolerance and prefer

Endocrine activity increases, notably in greater levels of thyroxine, and according to

(1965), the endocrine system forms a chemical link between the organism an

environment. The higher hormonal levels may also induce a behavioral response; G

al. (1974) demonstrated that artificially increasing thyroxine levels in Atlantic sal

smolts leads to increased migratory behavior. Also, an increase in gill Na+-K+ ATPase

activity is typical of fishes existing in saltwater environments. In fact gill Na+-K+ ATPase

is often sampled to assess the level of smoltification in juveniles (Zaugg, 1982).
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Clearly, smoltification is a complex process, and events are coordinated such th

are ready to enter saltwater at the appropriate time. Flagg and Smith (1982) determin

juvenile coho with visuals signs of smoltification suffered no loss of swimming stam

when transferred from freshwater to a seawater, while juveniles without these sign

suffer a loss in swimming stamina. Fish that weren’t transferred from fresh water t

water at the proper time appeared sluggish, potentially increasing their susceptibi

predation. Flagg and Smith (1982) also determined that mortality associated with salt

stress was is inversely related to levels of thyroxine and Na+, K+ ATPase, which are

indicators of degree of smoltification. Observations also show that some spec

salmonids revert back to a freshwater adapted state if they don’t reach saltwater w

certain time frame (Hoar, 1976). It appears that a species and stock specific optimal

for reaching saltwater exists that maximizes survival of the fish. Thus, modeling

temporal aspects of migratory behavior can be beneficial in coordinating migratio

hatchery stocks and in determining deleterious effects of delaying the migration of

stocks.

juvenile salmon migratory behavior

Clearly, many facets of juvenile salmon migratory behavior are not well unders

Behavior patterns are quite variable among species, and in some cases, among s

possible to generalize some types of behavior across species, but with other ty

behavior it is important to note differences. In many cases where a group of wo

establishes a behavior pattern for a particular species, another group offers a c

example

In this section, I present some questions pertaining to salmon migratory behavio

results of studies examining these issues. While my focus is on the behavior of stee

chinook, sockeye, and coho, I will also present results based on other spec
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anadromous salmonids, including Atlantic salmon (Salmo salar) and sea trout (Salmo

trutta).

• What cues the initiation of migration?

A combination of endogenous and exogenous factors cue the initiation of migratio

Groot (1982) stated, “environmental factors interact with endogenous rhythms to m

the organism morphologically, physiologically, and behaviorally to a state of migra

readiness, or migration disposition.” The physical and physiological changes ment

above prepare the fish for migration, but exogenous cues may actually trigger the o

migration. Several people have demonstrated the importance of photoperiod (Hoar,

Giorgi, et al., 1990). Also, a study by Holtby et al. (1989) indicated that a combinatio

seasonal timing (perhaps cued by photoperiod) and temperature are important in det

when coho smolts initiate downstream migration. High flows or “freshets” may also in

the juveniles to move downstream.

• Is migration active or passive?

Some dispute exists as to the degree of active migration undertaken by juveniles 

downstream migration. Some people argue that active migration would unneces

expend energy reserves (Thorpe, 1982) when downstream migration could be achie

an entirely passive process. Others argue that active migration decreases the tim

migrating and thus minimizes exposure to predators (Neave, 1955). As with 

behavioral traits in salmonids, the degree of active migration probably varies a

species. Thorpe (1982) speculates that pink, chum and sockeye salmon undergo

migration while coho, chinook and Atlantic salmon partake in passive migration. M

studies are consistent with this speculation. Johnson and Groot (1963) conclude

sockeye smolts migrated actively through the Babine Lake system in British Columbia
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Groot (1965) observed active migration in sockeye smolts, where the fish migrated a

to their maximum sustained speed. Also, Bax (1982) concluded that chum salmon

Hood Canal in Washington actively migrated downstream. On the other hand, s

radio-tracking studies of Atlantic salmon (Fried, et al. (1978), LaBar et al (1978),

McCleave et al. (1978) in a Maine estuary; Thorpe, et al. (1981), Tytler, et al. (1978

Scottish estuary) lend support to passive migration in this species.

Also consistent with passive migration in coho and Atlantic salmon are stu

determining that some smolts exhibit a loss of swimming proficiency as compared t

in the parr stage. Smith (1982), Flagg and Smith (1982) and Glova and McInerney (

observed this with coho, and Thorpe and Morgan (1978) determined sustained swim

velocities of Atlantic salmon juveniles decreased substantially during the period of

downstream migration. It is not clear, though, whether this loss of swimming “proficie

is due to a physical change or, as Thorpe and Morgan (1978) speculate, “a beh

refusal to undergo sustained swimming.”

• Do migrating juvenile salmonids have distinct diel patterns?

Hoar (1953, 1956) attributed nocturnal displacement to a loss of visual orienta

Hansen and Jonnson (1985) tested this with Atlantic salmon in the River Imsa, No

They trapped significantly more fish during the dark than during the light and conc

that light inhibited displacement. Other studies concluded that Atlantic salmon mi

almost exclusively at night early in the season but lose this tendency as the s

progresses (Osterdahl, 1969; Thorpe and Morgan, 1978). Mains and Smith (

demonstrated that the majority of ocean-type chinook migration occurs at night i

Columbia and Snake Rivers. There might be less of a tendency for nocturnal migra

stream-type chinook, though (Healy, 1991). Bell (1958) actually observed more mig

during the daylight hours. A study by Meehan and Siniff (1969) in the Taku River in Al
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demonstrated that chum and coho preferred to migrate at night, while sockeye show

preference between day and night.

• Do fish school as they migrate?

According to Hoar (1976), sockeye, chum and pink salmon actively school du

migration, and the others are strongly territorial, occasionally forming loose aggrega

• What factors influence migration rate?

Several factors influence downstream migration rate in juvenile salmonids. R

velocity is the most obvious factor, and several studies have related migration rate t

velocity or river flow. Berggren and Filardo (1993) demonstrated that river flow is

important factor in predicting migration rates for yearling and sub-yearling chinook

steelhead in the Columbia and Snake Rivers. Bax (1982) correlated downstream mig

rate of chum salmon with wind speed in the direction of the migration path, which h

effect on surface currents. Johnson and Groot (1963) determined that migrating so

had increased migration rates later in the season. They attributed this to inc

“migration drive.” In addition, Washington (1982) provides evidence for a posi

relationship between migration rate and fish length with coho smolts.

• What is the spatial distribution of fish in the river?

Bax (1982) determined that juvenile salmonids in the Hood Canal migrate close 

shore early in the season and further offshore later in the season. Mains and Smith

determined that a large proportion of juvenile chinook in the mid-Columbia and S

Rivers migrated near shore but fish were also found mid-river. In the Hanford reach 

mid-Columbia, Dauble et al. (1989) found that subyearling chinook preferred shallow 

shore locations, and yearling chinook and sockeye smolts preferred deeper mid-c

locations.
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2. Overview of models of dispersing animals

2.1. Introduction

In this chapter, I review some models of animal dispersal, focusing on models that

develop in later chapters.

Models of animal dispersal date back to the early part of this century. Pearso

Blakeman (1908) and Brownlee (1911) are credited with developing the first mode

animal dispersal, using random walk models to describe movement patterns. Two lan

works of the middle of the century are Dobzhansky and Wright’s (1943), which mod

the dispersal of fruit flies, and Skellam’s (1951), which modeled the range expans

small mammals. Also during this period, Patlak (1953a; 1953b) developed a fairly com

random walk based model of dispersal that was overlooked at the time but has re

attention lately. In 1969, two papers marked the beginning of the computer era for dis

models: Rohlf and Davenport (1969) simulated random walk models to mimic va

dispersal behaviors, and Siniff and Jensen (1969) conducted simulations of the mov

of foxes and hares in their home ranges. The past two decades have seen many refi

in the models and in methods of applying the models to data.

Models based on the movements of individuals are referred to as “microscopic” m

(Aronson, 1985). For these models, the spatial and temporal scales are relatively fin

more detail can be included in the model. Models based on group dynamics are l

“macroscopic” models. These models are usually concerned with gross patterns on b

temporal and spatial scales. It is interesting to note that each microscopic model

corresponding macroscopic model, andvice versa. Also, it is not always clear whether 

model should be classified as microscopic or macroscopic since there is a gra
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2.2. Models of individual movements

random walk models

Simple random walks have formed the basis of several animal movement m

Except in unusual circumstances, however, simple random walks cannot adeq

describe the movements of individuals; the random walk represents too much

simplification. On the other hand, if step size is adequately small and the numb

individuals is sufficiently large, the spatial dynamics of a group of random walkers s

many similarities with observed population patterns.

The simple random walk model can be presented as follows. First, assume t

individual moves a distance∆x (in one dimension) during each time interval∆t. Assume

that the individual moves to the right with probabilityα and to the left with probabilityβ,

with . When  the random walk is termed isotropic, and when  

random walk is anisotropic or biased. Aftern moves, letnr be the number of moves to th

right andnl be the number to the left. The position of the individual in units of movem

aftern steps is

. (2.1)

The probability of individual occurring at positionm aftern steps is

; (2.2)

that is,p(m, n) follows a binomial distribution.p(m, n) can also be expressed as forwa

Chapman-Kolmogorov equation (Okubo, 1980):

. (2.3)

α β+ 1= α β= α β≠

m nr nl–=

p m n,( ) n!
nr!nl!
-------------αnr βnl=

p m n,( ) α p m 1 n 1–,–( )⋅ β p m 1+ n 1–,( )⋅+=
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The random walk model is easily expanded to two or three spatial dimensions.

Jones (1977) successfully applied a simple random walk on a grid to des

population patterns of cabbage butterflies (Pieris rapae L.). An added advantage of random

walk models is that behaviors such as taxis, kinesis and density dependence can b

added to a random walk model, as demonstrated by Rohlf and Davenport (1969).

Several workers have extended the simple random walk model on a regular g

include movements of various lengths in any direction and correlation in the directi

movements (e.g., Siniff and Jensen, 1969; Skellam, 1973; Kitching and Zalucki, 

Kareiva and Shigesada, 1983). In these models, for each movement increment, a len

an angle are drawn from distributions, with the new angle of movement based o

previous angle. Othmer, et al. (1988) provide many modifications to random walk

dispersal models.

Individual movement in continuous time and space

In continuous time and space, the position of an individual can be denoted byX(t), with

, n = 1, 2 or 3, andt > 0. For ease of notation, I will assume . The change

position of an individual with respect to time can be described by a stochastic differ

equation (SDE) (Gardiner, 1983):

. (2.4)

W(t) is white noise and has the following properties:

<W(t)> = 0,

<W(t), W(t + τ)> = δ(τ),

whereδ(t) is the Dirac distribution. Ito calculus is assumed. If the parametersr andσ are

X Rn∈ X R1∈

td
dX

r X t,( ) σ X t,( ) W t( )⋅+=
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constants andW(t) is Gaussian white noise, thenX(t) is the Weiner drift process. The

Wiener drift process has the following properties (Ross, 1985):

1) X(0) = 0;

2) for t > 0,X(t) is normally distributed with meanrt and varianceσ2t;

3) each disjoint segment of an individual path is independent.

In chapter 7, I apply this process to movement of migrating juvenile salmon.

2.3. Group movements

introduction

The diffusion equation has formed the cornerstone of many models of animal dis

(Okubo, 1980). While simple passive diffusion is appropriate in some cases, diffus

often combined with other terms such as population drift or attraction to partic

environmental conditions. Also, the simple diffusion equation may be modified to acc

for factors such as density dependence or variable diffusivity based on environm

conditions.

basic diffusion equation

Ordinary (Fickian) diffusion is a process where the fluxJ of particles is from high to

low concentrations and is proportional to the gradient of concentration. Ifp(x,t) is

concentration (or density), one-dimensional flux is expressed as

, (2.5)

with D determining the diffusivity of the particles. Based on equation (2.5), the chan

population density through time is

J D
x∂

∂p
–=
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In order to solve equation (2.6) forp(x,t), boundary conditions and initial condition

must be specified. The simplest case is to have natural boundaries whereX can take on

values from  to , and a point release att = 0 andX = x0. Formally, this is stated as:

,

.

In this case, the uniquep(x,t) that satisfies equation (2.6), assumingx0 = 0 and assuming

the parameterD is a constant, is:

(2.7)

(Goel and Richter-Dyn 1974, Gardiner 1983). This solution is a normal distribution 

respect tox for fixed t, with mean 0 and variance2Dt; note that the variance increase

linearly with time.

Both equations (2.6) and (2.7) can be derived from a simple random walk. In th

case, the random walk is expressed as a forward Chapman-Kolmogorov equation wi

length∆x and time step∆t. This is then expanded in a Taylor series, higher order terms

ignored, and the diffusion limit is taken, resulting in equation (2.6) (Okubo, 1980). In

second case, the probability of a particle occupying themth position aftern steps,p(m,n),

is expressed as a binomial distribution. Using Stirling’s formula,p(m,n) is approximated

with a normal distribution. The step length and time step are then allowed to be

arbitrarily small, and equation (2.7) is obtained (Murray, 1989).

In a classic experiment, Dobzhansky and Wright (1943) released mutant 

t∂
∂

p x t,( ) D
x2

2

∂
∂ p

=

∞– ∞

p ∞ t,–( ) p ∞ t,( ) 0= =

p x 0,( ) δ x x– 0( )=

p x t,( )
1

4πDt
-----------------exp

x2–
4Dt
--------- 

  ∞ x ∞< <–
0 t ∞< < 

 =
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(Drosophila pseudoobscura)with orange eyes (to distinguish them from the wild flie

from a point, and then recaptured the individuals along linear transects emanating fro

release point. They then compared the observed distribution of flies to equation 

Kareiva (1983) gathered data from mark recapture experiments of 12 speci

herbivorous insects, and compared the data to a passive diffusion model. He conclud

in 8 out of 12 cases, a passive diffusion model is consistent with the data.

advection-diffusion

The advection-diffusion equation is appropriate when a population is not 

spreading but also “drifting” in a particular direction. This equation can be formulate

one dimension as

, (2.8)

wherer determines the rate of drifting. With a point release atx = 0 and natural boundaries

the solution of equation (2.8) is:

. (2.9)

For fixedt this is a normal distribution with meanrt and variance2Dt. These two equations

are derived in a similar manner to the corresponding ordinary diffusion equation

starting with a biased random walk – a random walk where the probability of moving t

right is not equal to the probability of moving to the left.

The advection-diffusion equation has been used most commonly as a mod

migration. Wilkinson (1952) used this as a basis of a model of bird migration. Saila

Shappy (1963) present a model migration based on a random walk with a dir

movement component and apply the model to migrating adult salmon. They conclude

t∂
∂p

r
x∂

∂p
– D

x2

2

∂
∂ p

+=

p x t,( ) 1

4πDt
-----------------exp

x rt–( )2–
4Dt

----------------------- 
 =
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very little oriented movement is necessary to achieve the observed migratory pa

Recently Hiramatsu and Ishida (1989) modified Saila and Shappy’s model in terms 

advection-diffusion equation

, (2.10)

where thex axis is aligned in the direction of orientation, andrx is the drift in that direction.

The advection-diffusion equation forms the basis of the travel time models used in ch

4-6.

spatial heterogeneity

As mentioned in the previous section, environmental heterogeneity can affec

dispersal behavior of animals. There are several ways to incorporate this into a mode

way is to assume that the diffusion coefficient,D, is related to some environmental fact

and thus varies spatially.

When there is spatial heterogeneity in the diffusion coefficient, it is importan

categorize the response to the heterogeneity as “attractive”, “neutral”, or “repul

(Skellam, 1973; Aronson, 1985; Okubo, 1986). In other words, is the diffusiveness 

individual determined by conditions of the current location (repulsive), conditions a

location of the next move (attractive), or an average of both these (neutral)? As sho

Skellam (1973) and Okubo (1986), these distinctions have a drastic effect on the re

distribution. If we letD = D(x), the following equations describe a repulsive system

neutral system and an attractive system, respectively:

(2.11)

(2.12)

t∂
∂p

r x x∂
∂p

– D
x2

2

∂
∂ p

y2

2

∂
∂ p+

 
 
 

+=

t∂
∂p

x2

2

∂
∂

Dp( )=

t∂
∂p

x∂
∂

D
x∂

∂p
 
 =
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In a closed system (i.e., a system with reflecting boundaries), equation (2.11) res

, equation (2.12) results in , and equation (2.13) results

, where C is a constant determined by the system (Skellam, 1973).

Returning to the site of Dobzhansky and Wright’s (1943) original experim

Dobzhansky et al. (1979) examine the effect of habitat heterogeneity on the dispe

Drosophila spp. They found that a dispersal model with diffusion coefficients related

habitat type was better able to describe observed patterns than one with co

coefficients.

models of chemotaxis

Originally developed to describe the response of cells to a chemical gradient (Kelle

Segel, 1971), the chemotaxis model is an alternative way to describe an orga

response to environmental heterogeneity. In chemotaxis, variability in the concentrat

a critical chemical produces an advection velocity in the direction of the gradie

concentration. The equation for chemotaxis is of the form:

, (2.14)

whereU is the concentration of the chemical andχ is the chemotactic coefficient. In

ecological applications,U(x) can be viewed as an environmental potential funct

(Teramato and Seno, 1988). Equation (2.14) can be rewritten as:

. (2.15)

Thus the effect as the environmental potential is to induce an advective veloc

x∂
∂p

x∂
∂

D2
x∂

∂ p
D
---- 

 
 
 =

p x t,( ) C D⁄→ p x t,( ) C→

p x t,( ) CD=

t∂
∂p

D
x2

2

∂
∂ p χ

x∂
∂

p
x∂

∂U
 
 +=

t∂
∂p

D
x2

2

∂
∂ p χ

x∂
∂

U'p( )+=



24

 data,

n. In

 an

en

and,

dom

g the

ent

and

en

orous

s there

t

with m

.

cult
magnitude . Few studies have actually attempted to apply these models to field

perhaps because of the difficulty in defining the environmental potential functio

chapter 8, I apply this type of model to the vertical distribution of fish along

environmental gradient.

density dependence

The standard form of the diffusion equation with density dependence is:

(2.16)

(Gurney and Nisbet, 1975; Gurtin and MacCamy, 1977). If  for , th

equation (2.16) models interference among individuals (Alt, 1985). If, on the other h

 for , then equation (2.16) models attraction among individuals. Ran

movement can be included in addition to density dependent movement by formulatin

diffusion term as:

(2.17)

similar to Shigesada, et al. (1979). Hereα is a constant and represents density independ

diffusion, andβ(u) represents density dependent diffusion. WhenD(u) is of the form

, equation (2.16) is called the porous medium equation (Gurtin 

MacCamy, 1977; Murray, 1989), and an analytical solution is available. Note that whm

= 0, the porous medium equation reduces to simple diffusion. A feature of the p

medium equation is that the population disperses as a front – there is no infinite tail a

is in the simple diffusion equation. This is becauseD(u) = 0 whenu = 0, as is the case jus

beyond the dispersing front. Shigesada (1980) applied the porous medium equation 

= 1 to dispersing ant lions. Included in her model is a settling phase of the organism

Density dependent diffusion involving attraction among individuals is more diffi

U'

t∂
∂u

D0 x∂
∂

D u( )
x∂

∂u
 
 =

D' u( ) 0> u 0>

D' u( ) 0< u 0>

D u( ) α β u( )+=

D u( ) u u0⁄( )m=
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mathematically. Since the diffusion term is negative, the problem is not well posed

1985; Aronson, 1985). A problem is well posed if there is a unique solution that v

continuously with the initial conditions (Haberman, 1987). Slight perturbations resu

only slight changes in the unique solution. Because of the compound effect of h

densities attracting more density, spikes of density form, and the position of these sp

highly sensitive to the initial conditions. This a case, however, where the under

discrete model is well posed and can be used to simulate density dependence with at

among individuals.

2.4. Waiting time, Poisson process

We are often interested in the waiting time distributionf(t) of the time to an event or

similarly, the probability of an individual surviving to a particular time. In applications

following chapters, I am interested in the amount of time it takes a fish to pass a dam

it has reached it, and I consider the effect of adding mortality to the travel time mode

Waiting time distributions (or survival curves) are often formulated in terms of a ha

function,λ(t), which is the instantaneous failure rate at timet given survival throught. More

precisely,

(2.18)

(Kalbfleisch and Prentiss, 1980). If we define  as  (where  is 

cumulative distribution function (cdf) of ), then

(2.19)

(Ross, 1983). The hazard function uniquely determines :

. (2.20)

λ t( )
P t T t ∆t+ T t≥<≤( )

∆t
-------------------------------------------------------

∆t 0→
lim=

F t( ) 1 F– t( ) F t( )

f t( )

λ t( ) f t( )
F t( )
----------=

F t( )

F t( ) 1 e– xp λ u( )du
0
t∫–( )=
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. (2.21)

The simplest case is when the hazard function is a constant, i.e. , and the w

time probability density function is an exponential distribution

. (2.22)

This is equivalent to stating that a Poisson process with rateλ governs the waiting time to

the next event (Ross, 1993).

The case where  is not a constant is referred to as a nonhomogeneous P

process (Ross, 1993). Define the mean value function as

, (2.23)

and it can be shown that

, (2.24)

and

. (2.25)

f t( ) λ t( )exp λ u( )du
0
t∫–( )=

λ t( ) λ=

f t( ) λe λt–=

λ t( )

m t( ) λ u( )du
0
t∫=

F t( ) e m t( )–=

f t( ) λ t( )e m t( )–=



resent

aring

fidence

ta, and

resent

tween

length

ed as

umber

ime

en

ate of

, the

ual
3. General statistical treatment of spatio-temporal models

3. 1. Introduction

Since the statistical approaches I use are common to several applications, I will p

a general statistical overview that will be drawn upon in later chapters. In comp

models to data, my primary concern is to estimate parameters and construct con

intervals around the estimates, determine the goodness-of-fit of the model to the da

compare alternative models and select the most appropriate one.

3. 2.  Forms of data

The data used in my analyses come in several forms, and in this section I briefly p

the different data types. Data of fish travel times – the time taken for a fish to travel be

two points – is obviously temporal in nature, with the spatial component set as the 

of the river reach. Travel time data vary depending on whether fish are releas

individuals or groups. In group releases, a common mark identifies the fish, and the n

of fish, {nt: t = 1,2,3,...,k}, sampled at the downstream collection site during discrete t

intervals is observed. Clearly,nt is integer valued. Each time interval is∆t in duration

(usually 1 day), and the final time interval,k, is an interval after the last fish has be

observed. Also,  is the total number of fish. Group covariates – such as d

release and river flow – may be associated with the cohort.

Alternatively, a unique marking may distinguish individuals in a cohort. In this case

data are of individual travel times, {ti: i = 1,2,3,...,n}, where n is the total number of

individuals observed.ti is positive valued; it can be continuous or discrete. Each individ

N nt
t 1=

k

∑=
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may also be characterized by covariates such as river flow, date of release, and fish 

In radio-tracking data, an individual’s position is followed through time. The data

continuous in both time and space and can be denoted as {X(t): }. The vectorX can

be 1, 2, or 3 dimensional and can take on both positive and negative values. It w

bounded by the system in which the fish are observed. In practice, the position 

individual is noted at successive points in time so that time is discrete, and the pos

vector can be denoted as {Xt: t = 0,1,2,...,n-1}, with n the number of observations. Ideally

the time intervals are equal in duration, but this is not always the case. It is often

practical to work with displacements,Yt = Xt - Xt-1.

Hydroacoustic instruments observe the distribution of depths of fish in the w

column at a fixed location during a period of time. The data are usually discrete, {Zi: i =

1,2,3,...,n}, with Zi being the number of individuals observed in theith equally spaced

interval of the water column.

3. 3. Forms of the models

In all the models developed below, I start with a probability density function,f(x,t), of

individuals through space and time. If the data are continuous in both time and spac

radio-tracking data), then the model can be applied directly to the data in this 

Otherwise, the model needs to be modified to be consistent with the data. For instan

model can be converted to a spatial distribution,f(x), of individuals at a particular point in

time, or a temporal distribution,g(t), at a particular point in space. Also, the data are of

discrete – for example the number of fish collected at a dam during a discrete time in

The model can be converted into a discrete form by integrating. For example:

t 0≥
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describes the probability of a fish occurring in the discrete spatial interval (x, x +∆x) at time

t0. If a total ofN organisms are observed, then

(3.2)

is the predicted number of individuals occurring in theith interval. In this form, the ’s

follow a multinomial distribution.

3. 4. Parameter estimation

Consider a vector of random variables,X = (X1,X2,...,Xn), representing any of the type

of data described above. Assume thatX is drawn from some distribution whose form 

known but parameters unknown –  ifX is continuous,  ifX is discrete.

Parameter estimation is the process of choosing a set of parameters, , such that th

is as consistent as possible with a vector of observations of the random variablex =

(x1,x2,...,xn). While a wide variety of methods exist for estimating parameters, I h

employed two techniques: generalized least squares, and maximum likelihood estim

generalized least squares

Least squares parameter estimation is commonly used in regression analyses (

and Smith, 1981; Neter, et al. 1985; Seber and Wild, 1989). I have also used

applications where the model is applied to frequency data. The model takes the form

, (3.3)

where  is the observed number of individuals in theith class,N is the total number

observed in all classes,  is the probability (under the model) of an individual falling i

pi f x' t0,( )dx'

xi

xi ∆x+

∫=

n̂i N pi⋅=

n̂i

f x θ
˜

;( ) p x θ
˜

;( )

θ̂
˜

ni N pi x θ̂
˜

;( ) εi+⋅ n̂i εi+= =

ni

pi
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ith class, andε is the error term. Generalized least squares is often used when the

unequal variances among the error terms (Draper and Smith, 1981; Seber and Wild,

With generalized least squares, the following equation is minimized with respect t

parameter vector, :

, (3.4)

wherek is the number of classes, andwi is the weight associated with that class. To acco

for unequal variances, the weighting functionwi = 1/vi is often used, wherevi is the variance

of theith class.

maximum likelihood

Maximum likelihood estimation proceeds by maximizing the likelihood functi

, with respect to the parameters.X can be either continuous or discrete. T

likelihood function is defined as (Mood, et al., 1974; Bickel and Doksum, 1977):

(3.5)

for continuous functions. For discrete models, is substituted for

Maximum likelihood estimation involves selecting the parameter vector, , which is “m

likely” to have produced the data. In other words,

. (3.6)

If  is differentiable with respect to theθi’s, then it can be maximized by setting

, (3.7)

θ
˜

S θ
˜

x;( ) wi n̂i ni–( )2

i 1=

k

∑=

L θ
˜

x;( )

L θ
˜

x;( ) f xi θ
˜

;( )
i 1=

k

∏=

p xi θ
˜

;( ) f xi θ
˜

;( )

θ̂
˜

L θ̂
˜

x;( ) sup L θ
˜

x;( )( )=

L θ
˜

x;( )

θi∂
∂L

i 1=

p

∑ 0=
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where p is the number of parameters being estimated. Otherwise,  ca

maximized numerically.

It is generally easier to work with the log of the likelihood function,

. (3.8)

With discrete data, based on the multinomial distribution  becomes:

, (3.9)

wherec is a combinatorial constant that is unaffected by the choice of parameters.

performance of parameter estimates

In comparing competing parameter estimation methods, the most commonly

criteria for assessing the performance are the bias and the precision of the par

estimates (Bickel and Doksum, 1977). Bias is defined as , where  is the

value of the parameter and  is the estimated value. Obviously, as small a bias as p

is desirable. A common definition of precision is the mean squared error (MSE), given by

. MSE is equal to the variance of the parameter estimate plus the bias sq

(Bickel and Doksum, 1977), so if the estimate is unbiased,MSE is equal to the variance. In

many cases, it is possible to determine these values directly; in cases where this

possible, simulations can be used. In the last section of this chapter, I discuss sim

procedures.

3. 5. Confidence intervals

Confidence intervals are useful to reveal the variability associated with the para

L θ
˜

x;( )

l θ
˜

x;( ) L θ
˜

x;( )log f xi θ
˜

;( )log
i 1=

k

∑= =

l θ
˜

( )

l θ
˜

( ) c ni p̂ilog
i 1=

k

∑+=

E θ̂ θ∗–[ ] θ∗

θ̂

E θ̂ θ∗–[ ]2
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estimates and can be used for statistical inference. In some cases, theoretical con

intervals based on asymptotic assumptions are available. In other cases, appro

confidence intervals can be constructed using bootstrap methods (Efron, 1982; Efr

Tibshirani, 1986).

I use the following procedure to construct 95 percent bootstrap confidence interva

each cohort of sizeN, the individuals are sampled with replacementN times to produce a

new cohort. For each cohort, I then estimate the parameters following the same proc

as with the parameter estimates of the original data. This is repeated 10,000 times, 

each iteration, the parameter estimates are retained. For each parameter, the 

estimates are sorted, and the estimates that fall at the 2.5th and the 97.5th percen

used to construct a 95 per cent confidence interval.

3. 6. Goodness-of-fit

Goodness-of-fit tests are used to determine how well a proposed model fits a par

data set. The procedure is to first compute a test statistic based on the deviation of t

from the model (with the parameter estimates) and then compare it to a theoret

empirical distribution based on the assumption that the model is true. A rough proba

of observing the particular data set, given the model is true, can then be determined

probability of observing the data is too low, the model is rejected. I should note that

goodness-of-fit tests to get a rough idea of a model’s performance – there is no thr

value below which a model is deemed not to work. In most cases I apply models to a

of data sets, and consistently lowp-values is evidence that model is not appropriate. T

main purpose of the tests is to assess whether a model is useful in describing obse

and hence useful for predictive purposes.

Two types of goodness-of-fit tests have been commonly employed: chi-square typ

and tests based on the empirical distribution function (EDF), although other classes o
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have been used (D’agostino and Stephens, 1986). Chi-square tests are used when

grouped into discrete classes, and observed frequencies are compared to e

frequencies based on a model. Although Pearson’sX2 test is the most familiar, other test

fall into this category, such as theG test, Tukey’s test and the Rao-Robson test (Moo

1986). In all cases the test statistic is formulated such that it follows a chi-sq

distribution, and because of this, these test are usually convenient to use. Tests base

EDF are used most often with continuous data. An empirical density functio

constructed by ranking the data, and this is compared to the model’s cumulative distri

function (CDF). The test statistic is based on the deviation of theEDF from theCDF, and

its distribution is obtained by Monte-Carlo simulations. The most familiar test of this 

is the Kolmogorov test (Conover, 1980).

chi-squared goodness-of-fit test

The most commonly used chi-squared test is Pearson’sX2 test (Pearson, 1900), which

compares expected frequencies to observed frequencies in discrete cells. If the m

fully specified (i.e., no parameters are estimated from the data), then the cell proba

can be obtained by integrating over the cell width,wi:

. (3.10)

The expected frequency in celli is then computed as

, (3.11)

whereN is the total sample size. Pearson showed that the test statistic

(3.12)

pi f x( )dx
wi

∫=

E ni( ) N pi⋅=

X2
E ni( ) ni–( )2

E ni( )
-------------------------------

i 1=

k 1+

∑=
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discrete class data

These tests are particularly useful when the data are the form of the frequen

individuals falling into discrete classes. An issue with both these tests is how to lum

classes. If the ’s are too small, the tests are not valid (Cochran, 1952; Rosco

Byars, 1971). In all cases, I lump the data such that  > 1.0 for alli’s.

using chi-squared tests with continuous data

Using chi-squared tests in situations where the data are continuous involves a tra

the tests are flexible and easy to use, but because the data must be placed into 

classes, information is lost and the tests are not as powerful as some alternatives (

1986). One advantage of using these tests with continuous data, though, is that it is p

to have equiprobable cells, improving the efficiency of the test (Mann and Wald, 1

Cohen and Sackrowitz, 1975). Mann and Wald (1942) recommended the follo

equation for choosing the number of cells,k, at significant levelα:

, (3.13)

wherec(α) is the (1-α)th quantile of the standard normal distribution. Other people (e

Schorr, 1974) have argued that fewer cells than this are optimal, and in light of this, M

(1986) recommends using a value fork that is between that given by equation (3.13) a

half that. I will use equation (3.13) withα = 0.05; since equation (3.13) decreases w

decreasingα, this practice will cover the range ofα= 0.05 and lower values.

using chi-squared tests when parameters are estimated in the model

At first glance it appears that chi-squared tests can readily accommodate mode

E ni( )

E ni( )

k 4
2N2

c α( )2
-------------- 

 =
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have parameters estimated from the data. The standard approach is to subtract one

of freedom for each parameter estimated. As Fisher (1924) showed, however, the 

estimation procedure used affects the outcome of the goodness-of-fit test. The appr

parameter estimation method to use is the minimum chi-squared criterion. This inv

minimizing theX2 statistic with respect to the parameters and is achieved by solvin

following equation:

, p = 1, 2, ...,r, (3.14)

wherer is the number of parameters estimated. This method has several drawbacks

this equation is difficult to solve – analytical solutions are rarely available, and the res

surface is not smooth. Second, chi-square estimation procedure is rarely used, and

the parameter estimates used in the goodness-of-fit tests are those obtained fr

parameter estimation part of the data analysis. Fortunately, using parameter estimat

other methods (such as maximum likelihood) results in tests that are conservative

they reject the model too often. Thus there are three choices: 1) use the minimu

squared criterion and accept its downfalls, 2) use another estimation method and

conservative test, or 3) use a test that includes a correction factor, such as the Rao-

test (Rao and Robson, 1974).

tests using the empirical density function

When data are continuous and the model is fully specified, tests involving theEDF are

easy to use and generally more powerful than chi-squared tests. In cases where par

are estimated from the data, these tests become more difficult to implement, and the

is not as well developed (Stephens, 1986).

As stated previously, these tests are based on the deviation of theEDF from theCDF

ni

pi θ( )
------------- 

 
θp∂
∂

pi θ( )
i 1=

k

∑ 0=
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of the model distribution. The empirical density function is constructed by ranking

observations and then computing

(# of observations≤ x), n = 0, 1, ..., N. (3.15)

This results in a step function that increases 1/N in height at each observation. This 

compared to the modelCDF, F(X). The most commonly used statistic isD, first introduced

by Kolmogorov (1933):

, (3.16)

which is the largest vertical distance betweenFn(X) andF(X). Other statistics have bee

proposed that involve the squared difference betweenFn(X) andF(X) integrated over the

entire range ofx.

In some cases it is more convenient to work with data after they have been transf

such that

, . (3.17)

If the model is trueZ will be uniformly distributed on [0,1]. Ifz(i) is the ith-ranked

transformed data point, then

. (3.18)

The basic goodness-of-fit test is as follows. We would like to test the hypothesis 

random sample,x1, x2, ...,xN, came from a fully specified distribution,F(X). In other words,

H0: the random sample is fromF(X).

HA: the random sample is not fromF(X).

The procedures are followed as outlined above, and the resulting test statistic is com

Fn X( ) 1
N
----=

D supx Fn X( ) F X( )–=

Z F X( )= 0 z 1≤ ≤

D maxi
i
n
--- z i( )– z i( )

i 1–( )
n

---------------–,
 
 
 

=



 37

n is

e

g., the

eter

s, and

 cases

ns), the

o on

 way to

ns as

jective

 or non-

 from a

plex

 of the

lection

hesis.

omes

ble are
to its tabulated distribution. A value falling in the upper extreme of the distributio

evidence against the null hypothesis.

EDF tests with estimated parameters

When parameters are estimated from the data,EDF tests become less general. If th

parameters are location (e.g., the mean of a normal distribution) and/or scale (e.

variance of a normal distribution) parameters, the distribution of theEDF statistic is

dependent on the family of distribution in question but not on the particular param

values. This is the case with the normal and exponential distributions, among other

these distributions of test statistics for many of these families have been tabulated. In

where a shape parameter is estimated (e.g., Gamma and Inverse Gaussian distributio

distribution of test statistics is dependent not only on the family of distribution but als

the true parameter values, making the use of these tests quite cumbersome. One

overcome this is to create the distribution of test statistics with Monte-Carlo simulatio

they are needed.

3. 7. Model discrimination, model selection, generalized likelihood ratio test

Several alternative models are often proposed to explain the same data, and ob

criteria are needed to choose among models. The alternative models may be nested

nested. Nested models are constructed such that a simpler model can be obtained

more complex model by eliminating one or more parameters from the more com

model. Thus choosing among models reduces to determining the appropriateness

additional parameters. Non-nested models are not related in this way, and model se

must be based on some other criteria. I will not deal with non-nested models in my t

While adding features to a model is often desirable, the increased complexity c

with a cost. In general, the more parameters contained in a model, the less relia
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parameter estimates. Criteria to select among models must weigh the trade-off be

increased information and decreased reliability. I present three methods, all of whic

with the likelihood function, and because of this, model discrimination is relate

parameter estimation. I begin with a discussion of nested models and then show h

three methods choose among models.

Beginning with the simplest case, a null model , specified by the param

vector , is compared to an alternative model , which sha

the k parameters of the null model but also contains an additional parameter,

comparing the null to the alternative hypothesis, we are determining the appropriaten

adding the additional parameter to the null model. In other words, we are testin

following hypotheses:

H0: θk+1 = 0, versus

HA: .

This is a two-sided test because the null hypothesis is rejected if  is determined

significantly greater or less than 0 (or another pre-determined value). This can be ex

to comparisons of models that differ by more than 1 parameter, with the alternative 

having parameter space .

The likelihood function is based on parameter values and the data. As with para

estimation, parameters vectors  and  are chosen to maximize the likelihood fun

In other words,

. (3.19)

f X
˜

θ
˜ 0;( )

θ
˜ 0 θ1 θ2 … θk, , ,( )= f X

˜
θ
˜ A;( )

θk 1+

θk 1+ 0≠

θk 1+

θ
˜ A θ1 θ2 … θk θk 1+ … θk r+, , , , , ,( )=

θ̂
˜ 0 θ̂

˜ A

L θ̂
˜ 0 x;( ) supL θ

˜ 0 x;( )=

L θ̂
˜ A x;( ) supL θ

˜ A x;( )=
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The three model comparison methods compare these two likelihoods.

generalized likelihood ratio test

The generalized likelihood ratio test (GLRT) (Mood, et al., 1974; Bickel and Doks

1977; Hogg and Tannis, 1983), as its name implies, is based on the ratio of the likelih

Define a random variableΛ with realizations,λ(x), based on the data,x:

, (3.20)

whereL is the likelihood function as in equation (3.8). Note that . This

because the null hypothesis (based on ) is nested within the broader hypothesis

on ), andλ will always be <= 1.0. Also, supL will always be >= 0, soλ >= 0. In general,

λ << 1.0 is grounds for rejecting the null hypothesis.

The likelihood ratio is useful because of the following result (Bickel and Doks

1977). First, assume thatx = x1, x2,x3,...,xn is a sample from the probability density functio

or discrete density function  with  ak+1 dimensional parameter vector th

takes on values unrestricted inRk+1. Also assume that:

1) The map  is smooth inθ for eachx;

2) The maximum likelihood estimate  is consistent (i.e., the estimate

becomes arbitrarily close to the true value asn gets large).

Then, withλ formulated as above, ifθk+1 = 0 (the null hypothesis is true), the asympto

distribution of  is approximatelyχ2 with 1 degree of freedom (Mood, et al., 197

Bickel and Doksum, 1977). Thus a test of sizeα is

RejectH0 if -2logΛ > ,

λ x( )
supL θ

˜ 0 x;( )
supL θ

˜ A x;( )
----------------------------=

0 λ 1.0≤ ≤

θ
˜ 0

θ
˜

f X
˜

θ
˜ A;( ) θ

˜ A

θ f x θ
˜

;( )→

θ̂
˜

θ̂
˜

2 Λlog–

χ1 α–
2 1( )
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where  is the (1-α)th quantile of the chi-square distribution with 1 degree 

freedom. This test can be extended to the case where the difference between the dim

of the null and alternative models is greater than 1. If the test is formulated as abov

the same assumptions are met, then  is approximatelyχ2 with r degrees of freedom,

wherer is the difference in dimension between the two models.

Akaike’s information criterion

The other two methods operate under the premise of parsimony – simpler mode

favored over more complex ones. The first is called Akaike’s information criterion (A

(Akaike, 1973). For each alternative model proposed to describe data,

, (3.21)

wherek + ri is the number of unspecified parameters in theith model. In a sequence o

nested models, the model with the largest AICi value is chosen. Compared to the GLR

method, the AIC method assigns proportionately more penalty for models of incre

complexity.

Bayesian information criterion

Both the GLRT and the AIC method have a similar drawback – as the sample

increases there is an increasing tendency to accept the more complex model (R

1986). The Bayesian information criterion (Schwarz, 1978) takes sample size into ac

Although the BIC method was developed from a Bayesian standpoint, the res

insensitive to the prior distribution for adequate sample size.Thus a prior distribution

not be specified (Schwarz, 1978; Raftery, 1986), which simplifies the method. For

model, The BIC is calculated as

, (3.22)

χ1 α–
2 1( )

2 Λlog–

AICi 2 Llog θ̂
˜ i x;( ) 2– k ri+( )=

BICi 2 Llog θ̂
˜ i x;( ) k ri+( )– n( )log=
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wheren is the sample size. As with the previous method, the model is chosen wit

largest BIC. If just two alternative models are being compared, the BIC from the sim

model can be subtracted from the BIC from the more complex model. A positive 

indicates that the more complex model should be favored, while a negative value fav

simpler model.

3. 8. Statistical simulations

Simulations are a means to answer some of the questions raised about the st

procedures outlined in the above sections of this chapter. The general procedures

statistical simulations is:

1) specify the model  and choose parameter values, ;

2) draw a random sample, , of sizen from the specified

distribution;

3) perform the statistical procedure – estimate parameters, compute test

statistics;

4) repeat steps 2 and 3 many times to generate distributions of parameter

estimates and test statistics;

5) use these distributions to compute bias or mean squared error (MSE) of

parameter estimates or to compare the distribution of test statistics to the

theoretical distribution.

Simulations can be performed under a variety of conditions, e.g. different sample si

parameter values.

After n simulations are run, the bias of a parameter estimate can be formulated a

. (3.23)

 is the parameter estimate from theith simulation, and  is the true value of th

f x θ
˜

;( ) θ
˜
∗

x1 x2 … xn, , ,( )

E θ̂ θ∗–( ) 1
n
--- θ̂i θ∗–[ ]

i 1=

n

∑=

θ̂i θ∗
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parameter. TheMSE of the parameter estimate can be computed as

. (3.24)

After a distribution of test statistics is generated, it can be compared directly t

theoretical distribution. In doing so, the consistency of the two distributions ca

determined.

3. 9. Types of data

In this section I briefly discuss the methods used to mark and track juvenile salm

and the type of information available from each.

freeze-brand

Freeze branding is an efficient way to mark a large group of fish with the s

identification code (Mighell, 1969). A metal branding tool is cooled with liquid nitrog

and the fish are pressed against the tool. This method does not distinguish 

individuals, but release groups can be distinguished. This allows for the determinat

release site and release time of recaptured fish. In general, the data acquired from

brand fish are the number of fish collected during discrete collection periods.

PIT tag

PIT (passive integrated transponder) tags are used to monitor individual fish. Th

12 mm long, is inserted in the fish’s body cavity and contains a microchip th

programmed to contain individual fish identification codes (Prentice, et al., 1990

monitoring sites the tag emits a signal in response to excitation from an interrog

system. The signal is decoded to yield information about instantaneous passage ti

individuals. The tags do not seem to adversely affect the fish in terms of surviv

MSE
1
n
--- θ̂i θ∗–[ ]2

i 1=

n

∑=
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swimming performance (Prentice, et al. 1990).

radio-tracking

Radio-tracking has been used successfully in the past to monitor movemen

migrating juvenile salmon. Atlantic salmon (Salmo salar) have been radio-tagged an

monitored in the northeastern United States (Stasko, 1975), Canada (Brawn, 

Norway (Holm, et al., 1982) and Scotland (Tytler, et al., 1978). Several studies hav

been performed on juvenile salmonids in the Columbia River Basin (Giorgi et al., 1

Stuehrenberg et al., 1986). Two qualitatively different types of studies have 

performed. In the first type (e.g., Giorgi et al., 1985), individual fish are followed with t

position being noted at relatively frequent time increments to create a radio track

allows one to analyze individual behavior on a relatively fine scale. The other type of 

(e.g., Stuehrenberg et al., 1986) involves releasing a group of fish and recording the

time of individuals at receivers located at fixed sites downstream. Many more fish c

included in this type of study, with information about the distributions of groups of 

being obtained.

The question of whether internal radio tags affect the migratory behavior of juv

salmon has been addressed in at least two studies (McCleave and Stred, 1975; Stueh

et al., 1986). Both studies determined that there is no effect of internal radio tags 

swimming stamina of juvenile salmon, although buoyancy may be affected. Also, the

study made qualitative observations of swimming behavior and concluded that ther

no difference in the behavior of fish with dummy tags and control fish.

hydroacoustics

Several studies have employed fixed location hydroacoustic transducers to moni

abundance of juvenile salmonids (Johnson, et al., 1985; Dawson, et al., 1984b



 44

ugh the

rating

mong
procedure is to attach transducers at the base of a dam and to point it upward thro

forebay. The instruments yield an estimate of the density of juvenile salmonids mig

at specific depths (Dawson, et al., 1984a). The equipment cannot distinguish a

species.
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4. Basic travel time model

4.1. Introduction

The amount of time juveniles spend migrating downstream in rivers has se

implications for salmon populations. From a behavioral standpoint, the timing of migr

has evolved for individual stocks to take advantage of river currents while avoiding ha

such as predation. Also the migration timing is coordinated with the smoltification pro

so that the fish reach the saltwater environment when they are physiologically pre

(Folmar and Dickhoff, 1980).

From a management standpoint, understanding and modeling juvenile salmonid

time is important for several reasons. The ability to predict the arrival times of popula

of fish at dams will aid in directing river and dam operations to enhance fish surviva

instance, spilling fish over the top of dams is considered to be a safer passage rou

through the turbines. However spilling water for fish passage involves a cost o

electricity generation, so predicting the abundance of fish in front of dams can help to

this process as efficient as possible. Also, there is the question of whether it is poss

speed up migration rate. Since river currents are thought to be a primary sou

downstream movement (Smith, 1982), the reduced river velocity created by dam

potentially greatly increase the travel times of the juveniles. In fact, Raymond (1

estimated that the construction of dams may have doubled the travel times of some

in low flow years. A proposal that is receiving serious consideration is reservoir drawd

This involves lowering reservoir levels to try to enhance river velocities. Understan

how fish respond to these conditions will be crucial.

In this chapter, I develop a basic travel time model where migration rate is consi
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to be constant, and all members of a cohort behave identically. In the next cha

incorporate behavioral components into the travel time model, such as travel time r

mortality, migrational delay, and diel variation in migration rate. In chapter 6, I allow

population heterogeneity, with the migration rate of individuals being determine

factors such as fish length.

4.2. Development of basic model

overview of modeling downstream migration

Most travel time experiments involve collecting a group of fish, marking them wi

tag and then releasing them as a group from a single release point. The fish then 

downstream and are collected at a downstream collection site, often a dam (see Figu

release
point

collection
site

river flow

X = 0 X = L

Figure 4.1 A schematic diagram of the travel time problem.
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The river is treated as 1-dimensional.

The modeling effort is directed at determiningg(t), which is the probability density

function for the distribution of arrival times at the downstream collection site. Als

interest is the position of an individual through time. This is denoted by the random va

X(t) with  andt > 0. X is usually further restricted by the physical domain of t

system being studied. With a release point atX= 0, and a collection site atX = L (as in

Figure 4.1), it is assumed that . Also of interest isp(x,t), which is the density

function for an individual occurring at positionx at timet. If there areN individuals in a

cohort, then  is the population density. Because individuals leave the river 

.

The travel time of fish through a reach can be thought of in two ways, both of w

yield equivalent results. In terms of the processX(t), the travel timeT is modeled as the firs

passage ofX(t) from the release point to the collection point. In other words,

(4.1)

(Sacerdote, 1988). In terms of the density functionp(x,t), the passage of fish through a rea

is modeled in terms of the loss of density at an absorbing boundary. In other wor

absorbing boundary is imposed atX = L, and thus

. (4.2)

The theory of boundary crossing has been extensively developed in the mathem

and statistical literature (e.g., Sacerdote, (1988)), where there has been an effort to

generalizations about a variety of processes crossing different classes of bounda

major application in the statistical literature has been the development of sequ

analysis (Siegmund, 1985), where rejecting a hypothesis is related to the probabilit

X R1∈

∞ X L< <–

N p x t,( )⋅

p x t,( )dx 1.0≤
X∫

T inf t:X t( ) L X t0( ) x= 0<{ }=

p L t,( ) 0=
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process crossing a boundary. In the biomedical literature, there has been a great 

activity in applying first passage problems to models of neuronal firing (Lanska, 1

Boundary crossing models have a lot of potential for ecological applications, where 

processes are phenological in nature. There have been a few applications in thi

including applications to the timing of instar development in insects (Kemp, et al., 1

and population extinction (Dennis, et al., 1991).

In the following section I present some general results for first passage problems.

focus on the specific case where the parameters are constants. The remainder of the

is devoted to statistical methods and applications to data.

assumptions

Several assumptions must be made in order to apply the basic travel time model d

in the following section. In later chapters, I expand the model so that these assumptio

not necessary. The first assumption is that the population of fish is independ

identically distributed. Second, the migration process is time homogeneous – there

diel or seasonal variation in the migratory behavior. Third, each individual has an 

probability of being sampled at the downstream collection site. This means that su

probabilities are identical among the individuals, and the probability of recapture is

identical.

model development

The travel time model begins with the assumption that the spatial distribution o

through time is described by an advection-diffusion equation. Several people 

suggested using this equation to describe the migration of fish (Saila and Flowers,

DeAngelis and Yeh, 1984; Anderson and Schumaker, 1988; Hiramatsu and Ishida, 

Since the available data is of the distribution of fish passing through dams (or collec
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fish passing a fixed point through time. In this temporal form, the model can be com

to data to determine the validity of the model and estimate parameters.

The advection-diffusion equation is expressed as:

. (4.3)

The parameterr determines the rate of downstream movement, andσ determines the rate

of population spreading. As shown in the Chapter 2, with natural boundaries and a

release atx0 = 0, the unique solution of equation (4.3) is

. (4.4)

It is not realistic, however, to assume unrestricted boundaries in natural systems.

case of the Columbia River, dams form delineations, and fish populations are samp

they pass through dams. To account for this, an absorbing boundary is imposed at 

of a dam. As fish in the population pass a dam, they are “absorbed” from the reservo

passed through the dam. In terms of the model, we assume that fish are released X = 0

and are collected atX = L. The boundary conditions are now

.

Note that there still is a natural boundary upstream from the collection point. This a

fish to move upstream from their point of release. With these boundary conditions a

same initial conditions as above, the solution to equation (4.3) is now:

t∂
∂p

r
x∂

∂p
–

σ2

2
------

x2

2

∂
∂ p

+=

p x t,( )
1

2πσ2t
-------------------exp

x rt–( )2–
σ2t

----------------------- 
 =

p ∞ t,–( ) p L t,( ) 0= =
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(Goel, Richter-Dyn, 1974). Note that this is similar to equation (4.4) but with an added

that accounts for the loss of density at X = L. An example of this distribution is presente

in Figure 4.2 with L = 100. Notice thatp(x,t)= 0 beyondX = 100, and that ast increases

the area underp(x,t)decreases corresponding to the “loss of probability” atX = 100.

Since the loss of density at the absorbing boundary corresponds to fish passag

dam, we can use equation (4.5) to derive an arrival time distribution. The first step

determine the probability of remaining in the river, , at a given point in time. T

is achieved by integrating equation (4.5):

p x t,( )
1

2πσ2
t

------------------- exp
x rt–( )–

2

2σ2
t

----------------------- exp
2Lr

σ2
--------- x 2L– rt–( )2

2σ2
t

---------------------------------–
 
 
 

–
 
 
 

=

distance

f(
x,

t)

-20 0 20 40 60 80 100

0
5

10
15

20
25

30 t = 5
t = 10
t = 15
t = 20
t = 25
t = 30

Figure 4.2 Plot of equation (4.5) for various values oft. The parametersr andσ are set at 5 and
8, respectively, andL is set at 100.

P L t,( )
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. (4.6)

Φ is the cumulative distribution of the standard normal distribution. To derive a contin

time pdf for the arrival time distribution atX = L for a group of fish released atX = 0,

equation (4.6) is differentiated to determine the rate of loss of density:

,

(4.7)

(Cox and Miller, 1965). Plots of this distribution for various values ofr andσ are contained

in Figure 4.3. Withσ andL held constant, asr decreases the mode of the distribution mov

to the right, and the distribution flattens out. Withr andL held constant, increasingσ has

the effect of moving the mode to the left and flattening the distribution. To determin

probability of arrival atX = L during a discrete time interval one integrates equation (4

. (4.8)

Further complexity can be added to the model by allowing the parametersr andσ to vary

with time in response to such factors as flow conditions and fish maturity.

It is common to reparameterize equation (4.7) withµ = L/r and λ = L2/σ2. This

parameterization eliminates reach length,L, from the equation. Equation (4.7) the

P L t,( ) p x t,( )dx

∞–

L

∫=

Φ L rt–

σ t
------------- 

  exp
2Lr
σ2

--------- 
 Φ L– rt–

σ t
------------------ 

 –=

g t( )
td

d
P L t,( )–=

L

2πσ2t3
----------------------exp

L rt–( )2–
2σ2t

------------------------ 
 =

p t2 t1,( ) g t( )dt

t1

t2

∫ Φ L rt–

σ t
------------- 

  exp
2Lr
σ2

--------- 
 Φ L– rt–

σ t
------------------ 

 ––
t1

t2

= =



 52
Figure 4.3 Equation (4.7) with various parameter values. In the top
figure,σ is set at 25, andr is varied. In the bottom plot,r is set at 25, andσ
is varied. In both plots,L = 120.
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becomes:

(4.9)

in the continuous form, and

(4.10)

in the discrete form. With this parameterization, equation (4.9) has been called the “in

Gaussian” distribution (Tweedie, 1957a, 1957b; Folks and Chhikara, 1978).

In the appendix to this chapter, I present some useful derivations related to first p

models. In appendix 3.a, I show how to derive first passage distributions with the “m

of images,” an intuitive approach that produces useful results. In appendix 3.b, I show

to derive the passage pdf (equation (4.7)) using a Laplace transform method. In ap

3.c, I develop a numerical approximation for the discrete version of the passag

(equation (4.8)) that overcomes the “exponential overflow” problem involved in compu

the equation. In appendix 3.d, I demonstrate a method for generating inverse Ga

variates, a method I use in the simulations in the following section.

4.3. Statistical methods

parameter estimation and confidence intervals

The parameter estimation methods vary depending on whether the data are disc

continuous. Also, for both cases, alternative methods are available, so I will pr

alternatives for each.

• continuous case

g t µ λ,;( ) λ
2πt3
-----------exp

λ t µ–( )2–
2µ2t

------------------------- 
 =

p t2 t1 µ λ,;,( ) Φ 1 µt–

λt
-------------- 

  exp
2µ
λ

------ 
 Φ 1– µt–

λt
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 ––
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t2
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The maximum likelihood estimators (mles) for the two parametersr andσ were first

worked out by Shroödinger (1915). They are:

(4.11)

, (4.12)

whereti is the observed arrival time of theith individual,  is the average arrival time of th

group, andN is the number of individuals in the cohort. The maximum likeliho

estimators of these two parameters are independent (Chhikara and Folks, 1989), an

of the statistical inference involving the inverse Gaussian distribution parallels that o

normal distribution. Notice that the mle forr is the average migration rate and the mle f

σ involves the difference between the harmonic mean and reciprocal of the arithmetic

of the travel time. While the mle forr is unbiased, the mle ofσ is biased. An (uniform

minimum variance) unbiased estimator forσ is

(4.13)

(Folks and Chhikara, 1978).

From equations (4.12) and (4.13), the bias of  can easily be shown to be

. (4.14)

Plots of this equation for several values ofσ are contained in Figure 4.4. The slopes of the

curves are very steep for small sample sizes but flatten out for larger sample sizes.

For the continuous version of the travel time model, theoretical confidence interva

r̂
L
t
---=
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N
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---– 

 

i 1=

N

∑=

t

σ̃ L
1

N 1–
------------- 1

ti
--- 1

t
---– 

 

i 1=

N

∑=

σ̂

bias σ̂( ) σ N 1–
N

------------- 1– 
 =



 55

978;

n,

te-
the parametersr andσ are available (Tweedie, 1957a, 1957b; Folks and Chhikara, 1

Chhikara and Folks, 1989).To construct confidence intervals forr, we begin by noting that

the statistic

(4.15)

follows a Student’st distribution withN-1 degrees of freedom. Based on this informatio

we can determine

. (4.16)

Because Student’st distribution is symmetric, . Thus, a (uniformly most accura

unbiased) 100(1-α) percent confidence interval is

N
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Figure 4.4 Plots of the bias of the parameter estimator  versus sample size for
several values ofσ.
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if , and

otherwise.

For the confidence interval ofσ, we first note that

(4.18)

(Tweedie (1957a)). Equation (4.18) is then used to determine valuesa andb such that

.

A 100(1-α) percent confidence interval forσ can then be constructed as:

. (4.19)

Notice that the confidence interval forr is determined by the estimates ofr andσ, but

the confidence interval forσ is determined only by the estimate ofσ. Also, as expected, the

confidence intervals ofr andσ are dependent on sample size, with the confidence inter

decreasing asN increases.

In Figure 4.5, I use equations (4.17) and (4.19) to construct plots of the length of 

percent confidence intervals ofr andσ versus sample size for a variety of parameter valu
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Figure 4.5 Plots of expected 95 percent confidence interval lengths versus sample size for
parameters. In all plotsL = 100. The first two plots are based on confidence intervals forr, and the last
on σ. In the first plotσ = 10.0, andr is varied. In the last two plots,r = 10.0, andσ is varied.
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In these plots, I use the expected values of  and , so the confidence intervals 

thought of as “expected” confidence intervals. In all cases, I setL = 100. Since the

confidence interval forr is affected by the values of bothr andσ, I made two plots. In the

first plot, I setσ = 10.0 and varyr; in the second plot I setr = 10.0 and varyσ. Since the

confidence interval ofσ is unaffected byr, I made a single plot in whichσ is varied. The

behavior of the plots is quite similar in all the cases. For small sample sizes, the sl

the curve is steep and negative. ByN = 50 or so, the curve has substantially flattened. T

information is useful in determining appropriate sample sizes for the data analysis.

• discrete case

When data are discrete time observations, closed form solutions of the mles a

available. The mles can be determined, however, by numerically maximizing the likeli

function. With the discrete form of the model (equation (4.8)), the log likelihood func

can be formulated based on a multinomial distribution:

, (4.20)

where the indexi refers to the time interval,k is the total number of time intervals,ni is the

number of observed individuals in theith interval,pi is taken from equation (4.8), andc is

a combinatorial constant unaffected by the choice of parameters. To estimat

parameters, I minimize equation (4.20) with respect to the parameters using a do

simplex technique (Nelder and Mead, 1965; Press et al. 1988).

Another approach for estimating parameters when the data are discrete is gene

least squares or weighted least squares. Based on the multinomial distribution, the v

of theith class is

r̂ σ̂

l r σ n1 n2 … nk, , ,;,( ) c ni pilog
i 1=

k

∑+=
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and to account for unequal variances, the weighting function iswi = 1/vi. Thus to estimate

the parameters, the following equation is minimized with respect tor andσ:

. (4.22)

Later in this chapter I compare these two estimation methods using simulations.

When the data are discrete, parametric confidence intervals are not available. 

case, approximate confidence intervals can be constructed using the bootstrap me

described in chapter 3.

4.4. Simulations

Simulations are often useful in analyzing statistical procedures (Ross, 1990). In 

cases, the statistical properties of a distribution can not be or have not been worked o

is true of the discrete time form of the travel time model and the more complex contin

travel time models developed in later chapters. In these cases, simulations can de

some of the statistical properties. The results of the simulations are useful for cho

among alternative statistical procedures and in determining sample sizes.

A convenient method for generating inverse Gaussian variates has been dev

(Michael, et al., 1976) and is quite useful for simulating the basic travel time m

equation (4.7). The details of the procedure are presented in appendix 3d. A g

simulation procedure is to generateN individuals in a cohort and then perform statistic

procedures such as parameter estimation or a goodness-of-fit test on the cohort. Th

repeatedn times to determine properties associated with the parameter estimation m

or the appropriateness of the goodness-of-fit test.

vi N pi 1 pi–( )=

S r σ n1 n2 … nk, , ,;,( )
Npi ni–( )2

N pi 1 pi–( )
----------------------------

i 1=

k

∑=
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Since many of the properties associated with the continuous travel time mod

available in analytical forms, simulations are not required to determine properti

parameter estimation. A questions remains, however, about theX2 goodness-of-fit test. This

test, used with maximum likelihood parameter estimates, is biased, particularly for 

sample sizes (Moore, 1986). It will be helpful to determine the extent of this bias and

it varies with sample size.

Before continuing discussion of the simulation procedure, though, I should no

artifact of using theX2 test with continuous data. Since the width of the bins (i.e., the va

of the ei’s) is predetermined by sample size, not by the model or particular param

estimates, the test statisticX2 takes on discrete values. This is further exacerbated

choosing all theei’s to be the same and is particularly noticeable at small sample s

Figure 4.6 demonstrates this effect forN = 20. In this plot I treat the parameters as know

so the test should be unbiased. The problem that arises is that it is difficult to determ

a test is biased becausep-values will also be discrete and will be influenced by where t

fall in terms of the discrete jumps. To alleviate this, I develop the following procedu

smooth out the jumps. The first step is to generaten1 cohorts of sizeN, and for each cohort

determine a test statistic,X2
i (i = 1, 2, ...,n1). These test statistics are then ranked to g

X2
r’s (r = 1, 2, ...,n1). This entire procedure is repeatedn2 times, and an averageX2

r for

each of then1 ranks, , is calculated. These ’s are continuous and should more cl

follow the theoretical distribution. Figure 4.7 demonstrates the output of this procedu

the same sample size and parameter values in Figure 4.6. Notice that the distribution

test statistic more closely follows the theoretical distribution.

X2
r X2

r



 61

 If the

same

meters.

to be

n

To determine if a test is biased, one approach is to begin by choosing anα or several

α’s ( ). If the test is unbiased, then thep-values associated with the

th ranked should equal (1.0 -α). If this value is greater than (1.0 -α),

the test is considered to be liberal; that is, it does not reject the model enough.

opposite is true, the model is considered to be conservative.

Figure 4.8 contains the results of simulations of the travel time model. I follow the 

procedure as above, except the goodness-of-fit test is performed with estimated para

I vary the cohort size from 10 to 200 in increments of 10, withn1 = n2 = 1000. In the top

graph,α = 0.05, andα = 0.10 in the bottom graph. In both cases, the test appears 
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Figure 4.6 A plot of the cumulative distribution of theX2 statistic versus theX2 statistic withL =
100,r = 10.0,σ = 10.0 andN = 20. The dotted line is the theoretical curve. The solid line is based o
simulations withn = 1000.
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discrete data

In this section, I work with the inverse Gaussian distribution (equations (4.9)

(4.10)), the reparameterized version of the basic travel time model. This distributio

two parameters,µ andλ (recall thatµ = L/r andλ = L2/σ2), and for these simulations I hav

chosenµ = 10.0 andλ = 100.0, roughly corresponding to observed values. The sample

n, is varied from 25 to 500 in increments of 25. The procedure is as follows. First, cre

sample population by selectingn individuals at random from the inverse Gaussi

distribution. I use the procedure described by Michael, et al. (1976) to generate va

These individuals are put into discrete classes (1 day intervals), and model parame
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Figure 4.7 Same plot as previous, but with averagedX2 values from the simulations. For this
simulation,n1 = 1000 andn2 = 1000.
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Figure 4.8 Plots of thep-value associated with the (1.0 -α) •n1th ranked  value (see text) versus
sample size. In the top plot,α = 0.05, and in the bottom plot,α = 0.10. For both plots,L = 100,r = 10.0,
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estimated based on the sample population. This procedure is then repeated 10,000 

that distributions of parameter estimates can be generated.

parameter estimation

In the simulations, I compare the weighted least squares and the maximum like

estimation methods. The two methods appear to be very similar in terms of the 

squared errors (MSE) of the parameter estimates (Figure 4.9). In both cases, there 

inverse relationship betweenMSE and sample size, withMSE increasing substantially a

sample sizes below 100. There does appear to be substantial differences in the bia

two parameter estimation methods. The weighted least squares method gives biased

for estimates forµ, while the maximum likelihood appears to be unbiased, even at

sample sizes (Figure 4.10). Both methods yield biased estimates ofλ for smaller sample

sizes. It looks as though the maximum likelihood method is tending toward unb

estimates as n is gets large, but even at a sample size of 500, the weighted least sq

estimates ofλ are still substantially biased. Based on these simulations, the maxi

likelihood is a more efficient method of parameter estimation. It should be noted, th

that these simulations were performed with particular parameter values. Addit

simulations are needed to show that the results are general.

4.5. Application to discrete time data

introduction

As a first example of the application of the travel time model to data, I will apply

model to data of the travel time of fish through a single reservoir. The reservoir is the

Day Pool, the reservoir between McNary and John Day Dams, and the fish observe

are yearling chinook salmon. This data set has several desirable features. First, the 

traveling through a single relatively homogeneous reach – there are no intervening d
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Figure 4.9 Plots ofMSE versus sample size for the parametersµ and λ for the weighted least
squares and maximum likelihood parameter estimation methods.

Figure 4.10 Plots of bias versus sample size for the parametersµ and λ for the weighted least
squares and maximum likelihood parameter estimation methods.
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major tributaries. Also, the study was repeated over four years, and in each year, r

occurred over many days, providing migration characteristics in a variety of condit

Finally, the fish are active migrants collected from the river. Fish that are raise

hatcheries and then released usually undergo a period of delay before initiating 

migration; this adds further complications to the travel time model. Essentially, this da

is a test of whether the simple travel time model can form a basis on to which fu

complexity can be added as needed.

data

The data consist of yearling chinook salmon collected at McNary Dam, freeze bra

with a unique brand (on a daily basis) and then released back into the river below th

Approximately 1,000 fish were marked and released per day. Marked fish were samp

they passed John Day Dam, 122.9 km downstream from the release point. Data

collected over five week periods in 1989, 1990, and 1991; in 1992, six weeks of data

collected. Fish collected and released for 5 days each week (Monday through Friday

lumped together into weekly cohorts to achieve adequate sample sizes. Cohorts be

in sample size were excluded from the analysis. Week 1 of 1990 was excluded bec

fire at John Day Dam precluded data collection, and week 5 of 1990 was excluded b

the collection facilities were shut down before the groups of this cohort completely p

the dam. A total of sixteen cohorts over the four years were analyzed (Table 4.1). Th

two years of the data set have been analyzed statistically by Stevenson and Olson 

and they provide a fuller description of the experimental design.

methods

In this application, I apply the discrete time, two parameter, travel time model, equ

(4.8), to these data. Parameters are estimated numerically using maximum likelihood

on the multinomial distribution and a downhill simplex fitting routine (Press, et al., 19
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Nonparametric 95 per cent confidence intervals are constructed using the boo

methods described in chapter 3. Model performance is assessed using Pearso2

statistic.

results

Plots of the data with the best fit model show that the model captures the g

behavior of the observed travel time distributions (Figure 4.12). Parameter estimate

• •
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•
•

•
WASHINGTON

OREGON John Day Dam

McNary Dam

The Dalles Dam Columbia River

Snake River

Priest Rapids Dam

Ice

Dam

Mid Columbia
release point

Harbor

Figure 4.11A map showing the mid and lower Columbia River release and recapture sites. For
freeze branded chinook, fish were captured, branded, and released at McNary Dam and recaptu
John Day Dam. For the PIT tagged fall chinook analyzed in the next chapter, fish were collected, tag
and released at the mid-Columbia release point and recaptured at McNary Dam.
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Table 4.1 Descriptive information for the 16 cohorts used in the data analysis. The date
release is for the first release group of the cohort. See text for the procedure used to calcu
average flows for the cohorts.

cohort release information number
sampled

ave. flow
(kcfs)# year - week date (Julian date)

1 1989 - 1 May 01 (121) 27 263.5

2 1989 - 2 May 08 (128) 57 283.2

3 1989 - 3 May 15 (135) 48 258.9

4 1989 - 4 May 22 (142) 32 228.3

5 1990 - 2 April 30 (120) 36 233.9

6 1990 - 3 May 07 (127) 32 231.3

7 1990 - 4 May 14 (134) 24 196.3

8 1991 - 1 April 22 (112) 38 250.0

9 1991 - 2 April 29 (119) 20 236.7

10 1991 - 3 May 06 (126) 24 249.4

11 1992 - 1 April 20 (111) 85 178.3

12 1992 - 2 April 27 (118) 88 195.4

13 1992 - 3 May 04 (125) 88 206.4

14 1992 - 4 May 11 (132) 86 205.2

15 1992 - 5 May 18 (139) 119 202.7

16 1992 - 6 May 25 (146) 80 195.0
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Figure 4.12 Plots of the fitted arrival time model (solid line) versus the data (points) for the sixte
cohorts. The model parameters and results of the goodness-of-fit tests are provided in Table 4.2
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confidence intervals are provided in Table 4.2. Estimates ofr range from 11.4 to 32.2 km

day, with 95 per cent confidence intervals ranging in width from 4.6 to 17.5 km

Estimates ofσ ranged from 15.7 to 39.4 km/day1/2 with 95 per cent confidence interval

ranging in width from 7.3 to 40.6 km/day1/2. In three cases the model is rejected at theα =

0.05 level; for four additional cases, the model is rejected at theα = 0.10 level.

discussion

The two parameter arrival time model derived from an advection-diffusion equa

works well in describing the downstream movement of actively migrating juvenile sa

under the range of conditions observed in John Day reservoir. In the three out of s

cases that the model is rejected (at theα = 0.05 level) the data are highly variable, and it

unlikely that any two parameter model would fit.

The difficulty in implementing the model will arise in choosing appropriate param

values. Table 4.2 reveals variability among cohorts in estimates ofr andσ. In the next

chapter I will attempt to relate the variability in parameter estimates to observable fa

such as river flow and temperature. Variability also arises from sampling erro

demonstrated by the broad confidence intervals obtained in the bootstrap analysis

studies with larger sample sizes would decrease this uncertainty.

4.6. Application to continuous data

In this section, I apply the basic travel time model (equation (4.7)) to continuous

I analyze data representing several groups (steelhead, spring and fall chinook) f

variety of release points over several years. All the fish in this analysis were collecte

river, marked with a PIT tag, released and then recaptured at a downstream collectio
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Table 4.2 Parameter estimates, confidence intervals and goodness-of-fit results for the sixteen c
The units forr are km/day, and the units forσ are km/day1/2. For the goodness-of-fit test results, df refers
the degrees of freedom. The model is rejected for smallp-values, e.g.,p > α, with α often chosen as 0.05.

cohort parameter estimation goodness-of-fit

# year - week (95% C.I.) (95% C.I.) χ2 df p

1 1989 - 1 25.5 (18.3,28.8) 15.7  (10.9,26.8) 1.87  3  0.600

2 1989 - 2 28.1 (24.2,32.8) 35.1 (26.6,42.7) 4.97  6  0.548

3 1989 - 3 32.2  (26.6,37.5) 25.1 (18.7,31.3) 6.20  3  0.112

4 1989 - 4 26.3 (20.6,38.1) 39.4 (11.7,52.3) 8.63  4 0.071

5 1990 - 2 23.2  (16.8, 26.5) 19.7  (15.4,28.7)  5.47  6  0.486

6 1990 - 3 19.3 (15.6,29.5) 28.4 (13.9,32.4) 4.99  5 0.417

7 1990 - 4 20.2 (16.5,25.9) 27.5 (20.4,32.1)  9.22  4 0.056

8 1991 - 1 17.8  (14.6,23.5) 29.3 (21.6,34.2) 6.54  7 0.479

9 1991 - 2 21.0  (17.4, 26.2) 25.4 (18.6,30.2)  3.59  4  0.464

10 1991 - 3 25.9 (22.3,30.4) 22.1 (16.9,26.0)  5.01  3  0.171

11 1992 - 1 11.4 (9.8,13.8) 20.7 (15.3,23.9) 14.16  15  0.514

12 1992 - 2 16.2  (11.0, 22.4) 28.0 (20.2, 33.7) 51.21  16  0.000

13 1992 - 3 12.5 (10.7,15.3) 34.2 (30.3, 37.6)  25.28  17 0.089

14 1992 - 4 17.6  (13.0, 20.3) 22.1 (18.2,28.1) 31.52  12  0.002

15 1992 - 5 24.9  (20.8,27.5) 18.8 (14.2,25.2) 42.61  10 0.000

16 1992 - 6 22.3  (18.8,30.9) 39.6 (28.7,45.4) 16.61  10 0.084

r̂ σ̂
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To avoid confusion, I have adopted the following terminology in referring to the PIT

data.

• individual– each individual fish has a unique code, and thus individual trave

times can be distinguished.

• release group – a group of individuals that was tagged and released from the

same point at the same time; all the fish in a release group have the same

release identification code in the PIT tag database.

• cohort – one to several release groups lumped together to achieve an adequ

sample size; cohorts are the unit of analysis for the travel time studies.

• cohort set – a group of cohorts that are composed of fish with similar

characteristics and released from the same point over several years.

Based on the results of the simulations and the plots of the confidence intervals an

I use a target cohort sample size of 50 fish (that is, the number of fish observed

downstream collection site), with a minimum sample size of 40. Release groups are lu

together (if necessary) from up to 3 consecutive days of release to achieve these 

sizes. Once a cohort reaches 50 fish, I do not add any further release groups to

minimum sample size of 40 could not be obtained from release groups over a thre

period, these groups are excluded from the analysis.

I use several criteria to decide which cohort sets to include in the analysis in thi

later chapters in addition to the sample size criteria mentioned above. The ideal coh

has:

• releases over several years and a number of cohorts per year;

• stocks of known origin (hatchery versus wild) and preferably wild;

• migration routes along relative homogeneous river reaches with no interven

dams.
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All of the cohort sets did not meet all of these, and I included sets that expanded the

of the study.

In Appendix 1, I provide the release group identification numbers for all the PIT

data used in this and subsequent chapters. This appendix also shows how I lumped

groups to form cohorts.

I chose 3 cohort sets to analyze in this section. The first two are fish that were cap

tagged, and released at the Snake River trap and recaptured at Lower Granite Dam,

the Snake river (Figure 4.13). The reach length is 52 kilometers. One of the coho

• •

OREGON

WASHINGTON

IDAHO

Salmon River

Clearwater River

Snake River Snake Trap
(release point)

Lower Granite Dam
(recapture point)

Little Goose Dam

Figure 4.13 Map showing the release and recapture sites for the Snake River chinook and steelh
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consists of chinook salmon of unknown origin (hatchery versus wild), often referred

“run-of-the-river” fish. Although the run type (spring or yearling versus fall or subyearl

of these fish is not determined, it is likely that the vast majority of these fish are s

chinooks based on the distribution of lengths (most fish longer than 110 millimeters

the timing of migration (early spring). Also, I excluded groups released after Ma

because after this date average fish length and migration rate began declining, indic

possible presence of fall chinook. I refer to these fish as “spring” chinook, but acknow

that a small percentage of the fish may actually be fall chinook. This is consistent with

treatments of this group of fish (e.g., Fish Passage Center, 1991). Groups were re

from early March through mid May. 101 cohorts were analyzed over the 5 year p

1989-1993. Beginning in 1992, hatchery stocks were distinguished at release time, an

stocks were distinguished in 1992 and 1993. I lump these groups together, though

consistent with earlier years.

The other Snake River cohort set is composed of wild steelhead. 101 coho

steelhead were analyzed over the same 5 year period. Groups were released fro

April through early June.

The third set of fish included in this analysis are wild, fall chinook captured, tagged

released in the Hanford reach of the mid-Columbia River (see Figure 4.11). Re

occurred during the three years 1991-1993 in early to mid June. They were recaptu

McNary Dam, which is 121 kilometers downstream.

data analysis

The basic travel time model (equation (4.7)) is applied to each cohort. Maxim

likelihood estimates (equations (4.11) and (4.12) are calculated forr andσ, with 95 percent

confidence intervals (based on equations (4.17) and (4.19)) constructed around
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estimates. Also,X2 goodness-of-fit test for continuous data (as described in Chapter

performed for each cohort. The computer code used to perform these algorithms is pr

in appendix 3.

results

Table 4.4 - Table 4.6 (in the appendix of this chapter) contains parameter estim

confidence intervals, and the results of the goodness-of-fit tests for each cohort. Sinc

is a large amount of information in these tables, I have condensed the results into su

statistics and plots.

It is clear from Table 4.4 - Table 4.6 that there is a great deal of variability in

parameter estimates within cohort sets. In particular, it appears thatr increases through the

season in some cases. I will analyze this variability in greater detail in the follo

chapters. In this chapter, I will present the means and standard errors of the cohorts f

of the cohort sets for qualitative comparisons (Table 4.3).

From Table 4.3 it can be seen that the Snake River steelhead migrate at a subst

greater rate (approximately twice as fast) than the Snake River chinook, while the 

River chinook migrate at a greater rate than the mid-Columbia fall chinook. 

comparison between the Snake River steelhead and chinook is particularly relevant b

they migrated in the same river reach during the same time period. The estimates ofσ were

slightly higher for the steelhead than the spring chinook and fall chinook, which 

similar to each other.

One way to graphically demonstrate the results of a number of goodness-of-fit t

to plot the cumulative distribution of thep-values. If the model and data are in perfe

accordance, thep-values will be distributed uniformly on (0,1) and should roughly fall 

a straight line through the origin and the point (1.0, 1.0). Departures between the mod
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the data can be qualitatively assessed by inspecting this plot.

Figure 4.14 is a plot of the goodness-of-fit test results for the Snake River chi

While none of the years fall on the 45 degree line, some of the years have quite fav

results. The cohorts from 1989 perform the best overall, with cohorts from 1990, 199

Table 4.3 Summary statistics of the parameter estimates averaged on a
yearly basis for each of the three cohort sets.

year
number

of
cohorts

mean value (standard error)

r σ

Snake River spring chinook

1989  38 5.79 ( 1.41) 8.44 ( 2.00)

1990  13 6.71 ( 2.78)  8.86  ( 3.64)

1991  17 4.85  ( 1.82) 6.38  ( 2.36)

1992  6 4.50 ( 2.87) 7.04 ( 4.50)

1993  27 8.23  ( 2.37) 7.81  ( 2.22)

Snake River steelhead

1989  16 18.11  ( 6.68) 15.57 ( 5.73)

1990  27 12.97 ( 3.66) 10.66  ( 3.01)

1991  20 14.67 ( 4.84)  11.02 ( 3.62)

1992  18 10.86  ( 3.78)  10.36  ( 3.62)

1993  20 16.80 ( 5.50) 13.66  ( 4.48)

mid Columbia fall chinook

1991  2 3.33  ( 4.71)  9.62 ( 13.65)

1992  5  3.58  ( 2.53)  6.93  ( 4.91)

1993  6 3.79  ( 2.40) 7.50 ( 4.76)
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1993 also having the vast majority ofp-values above 0.01. The cohorts from 199

performed poorly relative to the others. 1992 was an extremely low flow year, and thi

have affected the behavior of the fish.

The results of the goodness-of-fit tests for the Snake River steelhead (Figure 4.1

not as favorable as with the chinook. In all years, at least 50 percent of the cohorts hp-

values less than 0.01.The results from the mid Columbia fall chinook are also not favo

with 8 out of 13 cohorts havingp-values less than 0.001. This indicates that the mode

not fully capturing the behavior of these two groups of fish.

Figure 4.16 contains plots of cumulative distribution functions from the fitted mo

Figure 4.14 Cumulative plots of the goodness-of-fitp-values for the Snake River chinook.
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for the Snake River chinook. The data are included in these plots. These example p

from cohorts with a variety ofp-values to demonstrate the range of model performanc

is clear from these plots that the model does well in describing the data. Even in th

wherep = 0.001, there is not a wide departure between the model and the data. Figu

and Figure 4.18 contain similar plots for the steelhead and fall chinook. In these 

cohorts withp-values below 0.001 were chosen to examine why the model failed. In

case of the steelhead, approximately 75 percent of the fish arrived during a very

period, with the remaining fish trickling in over a more extended period. The model c

not capture this behavior. In the case of the fall chinook, it appears that most of th

delayed migration (or migrated extremely slowly) for over 20 days and then started ar

at the dam. Again, the model could not capture this behavior.

Figure 4.15 Cumulative plots of the goodness-of-fitp-values for the Snake River steelhead.

p

cu
m

(p
)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1989
1990
1991
1992
1993



 79

he
t

F
(t

)

0 5 10 15 20 25

0.
0

0.
4

0.
8

•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
•• •••••

• • • •• •• •

p = 0.001

t

F
(t

)

0 10 20 30

0.
0

0.
4

0.
8

••••••
••••••
••••••
••••••
••••••
••••••
••••••
••••••
•••••••••••

••••••
•

p = 0.046

t

F
(t

)

0 5 10 15 20 25

0.
0

0.
4

0.
8

•••••
•••••

•••••
•••••
•••••
•••••
•••••

•••••
•• ••• ••• ••• ••

p = 0.199

t

F
(t

)
0 10 20 30

0.
0

0.
4

0.
8

• •••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••

•••••
• •••••

• • ••

p = 0.374

t

F
(t

)

0 10 20 30 40

0.
0

0.
4

0.
8

•• ••••
••••
••••

••••
••••

••••••
••••
•••••

•• ••••
••• ••

p = 0.478

t

F
(t

)

0 10 20 30 40 50

0.
0

0.
4

0.
8

• ••••
••••
••••
••••
••••

••••
••••
••••
••••

•• •• •• • •

p = 0.663

t

F
(t

)

0 10 20 30

0.
0

0.
4

0.
8

•••••
•••••
•••••
•••••
•••••
•••••
•••••

•••••
•••• •• •• ••• ••• •

p = 0.812

t

F
(t

)

0 10 20 30 40 50

0.
0

0.
4

0.
8

•••••••
•••••••
•••••••
•••••••
•••••••
•••••••
•••••••
•••••••
•••••••

•••••• •••••••
• •

p = 0.976

Figure 4.16 Plots of the cumulative travel times for the Snake River chinook. The solid line is t
best fit model, and the points are the data. Thep-value is from the goodness-of-fit test.
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Figure 4.17 Plots of the cumulative travel times for the Snake River steelhead. The solid line is 
best fit model, and the points are the data. Thep-value is from the goodness-of-fit test.
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Figure 4.18 Plots of the cumulative travel times for the mid-Columbia fall chinook. The solid lin
is the best fit model, and the points are the data. Thep-value is from the goodness-of-fit test.
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The two parameter, continuous time, travel time model is effective at describin

arrival time distributions of the Snake River spring chinook. For the vast majorit

cohorts, the model would not be rejected based on the goodness-of-fit tests. Also

when the model has lowp-values from the goodness-of-fit test, the plots show that th

may still be good correspondence between the model and data. As with the lower Co

chinook analyzed in the previous section, the cohorts from 1992 did not perform as w

those from the other years, which may be due to the extremely low flows that year.

The model does not work as well for the fall chinook and steelhead. The mod

probably too simple for these groups; additional components are needed to captu

more complex behavior of these fish.

Besides positive goodness-of-fit results (at least for the spring chinook), the mod

other desirable features. It is easy to apply to data, with parameter estimates and con

intervals easily computed. The two parameters are intuitive and are biolog

meaningful:r is the average downstream migration rate, andσ is the rate of population

spreading. Also, since both the parameters are rates, they can be compared among

even when the river reaches are different lengths.

4.7. Appendices

appendix 4.a

The method of images is an intuitively appealing approach to boundary cro

problems. It involves the placement of a source term on one side of a boundary and

term on the other side (Daniels, 1982). The sink term has the effect of drawing off d

from the source term as it reaches the boundary. The approach produces som

generalities about boundary crossing problems.
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With natural boundary conditions, it was shown previously in this chapter tha

solution to the advection-diffusion equation with constant coefficie

, is

(4.23)

with initial conditions . An absorbing boundary atx = L can be achieved

by placing a sink term with weightκ atx = 2L (Daniels, 1982).f(x, t) can then be expresse

as

. (4.24)

Sincef(x, t) vanishes atx = L, κ can be solved for by settingf(L, t) = 0 in equation (4.24).

 is obtained by completing the square in the second term.

appendix 4.b

In this appendix, I will discuss a method involving Laplace transforms for determi

first passage distributions (Riccardia, 1977). I will develop the general approach an

show it can be used in the case of the Wiener drift process with a simple bound

produce equation (4.7). I have based the derivation on several references: Darlin

Siegert (1953), Prabhu (1965), Riccardia (1977), and Chhikara and Folks (1989).

This method takes advantage of the following theorem (due to Siegert (1951)). Fir

X(t) be a homogeneous Markov process with continuous sample paths. D

 as the conditional probability density function for  given th

. Also, define  as the probability density function for the timeT

t∂
∂ f
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x∂

∂ f σ2

2
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∂
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whenX first reaches the stateL, L > x0. The random variableT can be expressed as:

. (4.25)

Also, letf*  denote the Laplace transform off. In other words,

. (4.26)

Similarly, letg*  be the Laplace transform ofg.

The following theorem Siegert (1951) is useful in determiningg from f andL.

Theorem 4.1

If x0 < L < x, then

. (4.27)

proof:

The proof follows by considering paths that lie atx > L at timet. Paths that are beyond

L at timet must have first reachedL at some times with s < t. Thus, we can write the

conditional probability distribution forx in terms of possible paths fromx0 to x:

. (4.28)

Applying the convolution theorem for Laplace transforms to equation (4.28) yields:

. (4.29)

Rearranging terms results in equation (4.27).

This theorem is useful in cases where the Laplace transform is known forf. The Laplace

T inf t X t( ) L≥{ }=

f ∗ x x0 λ,( ) e λt– f x t x0 t0,,( )dt
0
∞∫=

g∗ L x0 λ,( )
f ∗ x x0 λ,( )
f ∗ x L λ,( )

----------------------------=

f x t x0 t0,,( ) g t L t0 x0,,( ) f x t L t s–,,( )ds
0
t∫=

f ∗ x x0 λ,( )
g∗ L x0 λ,( )
f ∗ x L λ,( )

----------------------------=
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transform forg can then be determined from equation (4.27). If the inverse Lap

transform is known forg* , theng can be obtained. In many cases, this is not practica

some cases, such as the Wiener process and Weiner process with drift, the pertinent 

transforms and inverse Laplace transforms are known, and equation (4.27) can be 

determine the first passage distributions.

In the case of the Wiener Process with drift,

. (4.30)

After combining the exponents, completing the square, and rearranging terms, we e

with:

. (4.31)

Integrating (4.31) by parts yields:

. (4.32)

SubstitutingL for x0 in equation (4.32) and plugging this into equation (4.27) yields:

. (4.33)

f ∗ x x0 λ,( ) 1

2πσ2t
-------------------exp

x x0 r– t–( )2–

σ2t
--------------------------------- 

 e λt– dt
0
∞∫=

f ∗ x x0 λ,( ) 1
x x0–
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x x0–

σ2
-------------- r 2 2σ2λ– r–( ) 

 –=

t
x x0–

2πσ2t
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x x0 r– t+–( )2–

σ2t
--------------------------------------- 

 dt
0
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Making use of the fact that  (Haberman, 1987), w

arrive at:

. (4.34)

An alternative approach for determining the Laplace transform of the arrival 

distribution is as follows. This approach begins by considering equation (4.5)

probability density forX(t) = x given that the process hasn’t reached the barrier by timt.

This can be written as  forx < L, t < T (recall from above thatT is defined as

the time of absorption at the boundary). Also define

, (4.35)

and note that  = prob( ).P satisfies the backward Chapman-Kolmogor

equation (Cox and Miller, 1965); in other words,P satisfies

. (4.36)

Also, P can be related to the arrival time distribution by the relation

. (4.37)

Plugging equation (4.37) into equation (4.36) and taking the Laplace transform of

sides yields

. (4.38)
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This is a second order linear ordinary differential equation and can be solved directl

general form of the solution is

. (4.39)

α1andα2 are the roots of the characteristic equation . Thus

,

andα1 is positive (and real) andα2 is negative. The particular solution can be obtained fr

the following information. First,g*  is bounded forλ > 0:

. (4.40)

Thus the coefficientB = 0, or else the second term of the general solution would bec

unbounded as . The coefficientA can be determined by noting that whenx0 = L,

absorption is immediate, and . This yields , and

. (4.41)

This is the same as equation (4.33) and is inverted in the same manner to giveg(t).

appendix 4.c

In computing equation (4.8) an exponential overflow problem can be encountered

equation involves multiplying an exponential that is large (sometimes larger tha

machine can handle) by a standard normal probability that is very small. Dennis 

(1991) present a method for combining these two terms in a numerical approximati

g∗ Aex0α1 Bex0α2+=

1
2
---α2 rα+ λ=

α1 α2, r– r 2 2λσ2+±
σ2

------------------------------------------=

g∗ t λ( ) e λt– g t( )dt
0
∞∫ g t( )dt 1≤

0
∞∫≤=

x0 ∞–→

g∗ t λ( ) 1= A e L–=

g∗ exp x0 L–( ) r– r 2 2λσ2++
σ2

------------------------------------------ 
 =
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equation (4.8). Since I use this approximation extensively in computations, I will pre

the details.

The cumulative distribution function for the inverse Gaussian is

, (4.42)

whereΦ is the cdf of the standard normal distribution. Problems may arise in evalu

the above equation because the second term involves multiplying a large number, 

by a very small number,Φ(•). For certain combinations ofr, σ, L and t either of these

numbers may be beyond the precision of the computer used. Dennis, et al. (1991) 

a method that circumvents this problem by combining the two components of the s

term. The following has been modified from their approach.

First, making use of the relation , rewrite equation (4.42) as

, (4.43)

with

.

Now denote the pdf of the standard normal distribution asφ. It is easy to show that

, (4.44)

and thus

G t r σ L, ,;( ) 1 Φ L rt–

σ t
------------- 

  exp
2Lr
σ2

--------- 
 Φ L– rt–

σ t
------------------ 

 ––=

Φ x( ) 1 Φ x–( )–=

G t( ) Φ y( ) exp
2Lr
σ2
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 Φ z–( )+=

y
rt L–

σ t
-------------=

z
rt L+

σ t
--------------=

φ y( ) exp
2Lr
σ2
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 φ z( )=



 88
. (4.45)

It follows that

. (4.46)

This can be evaluated using the following approximations forΦ (Abramowitz and Stegun,

1965). Ifx < 4,

, (4.47)

where qy = 1/(1+d0), d0 = 0.2316419,d1 = 0.319381530,d2 = -0.356563782,d3 =

1.781477937,d4 = -1.821255978, andd5 = 1.330274429. For

, .(4.48)

Therefore, forz< 4, using equations (4.46) and (4.47),

. (4.49)

And for , using equations (4.46) and (4.48),

. (4.50)

The code to evaluateG(t) using the above procedure is contained in Appendix 3.
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Several of the simulations I perform require the generation of inverse Gaussian ra

variates. A standard procedure for generating random variates,x, from a probability density

function, f(x), is to use the inverse of the cumulative distribution function,F(x). The

procedure involves generating a uniform random variate on the range (0,1) and us

transformation  to generate the random variate. To perform this a closed

solution of  is required, but this is not known for the inverse Gaussian distribution

Another approach utilizes a known relationship , with the random variatv,

coming from an easily generated distribution. This procedure becomes a bit 

complicated when there is more than one root,xi, for a given observation,v0, and it must be

determined how to chose one of the roots.

Michael, et al. (1976) present a procedure for generating inverse Gaussian ra

variates using a transformation that yields two roots. One of the roots is selected w

assigned probability. The inverse Gaussian can be written as

, . (4.51)

The parameter , and . With the transformation

, (4.52)

V is distributed asχ2 with one degree of freedom. Theχ2 variates,v, are easily generated

as squares of standard normal random variates. For a particular observation,v0, equation

(4.52) has two roots:

x F 1– x( )=

F 1–

v g x( )=

f x µ λ,;( ) λ
2πx3
------------exp

λ x µ–( )2–
2µ2x

--------------------------= x 0 µ 0 λ 0>,>,>

µ L r⁄= λ L2 σ2⁄=

V g X( ) λ x µ–( )2

µ2x
-----------------------= =
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(4.7))
. (4.53)

Michael, et al. (1976) show that the rootx1 should be chosen with probability

. (4.54)

Thus a general procedure for generating inverse Gaussian random variates is as f

First, generate a random variate from a standard normal distribution and squar

generate an observation from ,v0. Next, use equation (4.53) to calculate the rootsx1

andx2. Finally, perform a Bernoulli trial with equation (4.54) to select the appropriate r

The computer code to perform this procedure is provided in Appendix 3.

appendix 4.e

The results of the application of the two parameter travel time model (equation 

to continuous PIT tag data are contained in Table 4.4 through Table 4.6.

x1 µ
µ2v0

2λ
-----------

µ
2λ
------ 4µλv0 µ2v0

2––+=

x2 µ2 x1⁄=

p1 v0( ) µ
µ x1+
---------------=

χ2
1( )
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Table 4.4  Results of the application of the two parameter, travel time model to S
River, spring chinook PIT tag data. The cohort number corresponds to the numb
Appendix 1. The methods for estimating parameters, constructing confidence inte
and conducting goodness-of-fit tests are provided in chapter 4.6.

species: chinook run type: unknown rearing type: unknown release site: Snaketrap

group
#

# of
fish

release
date

parameter est. (95% confidence int.) goodness-of-fit

r (km/day) σ (km/day1/2) X2 df p

1989

 1  48 03/24/89  2.69 ( 2.33, 3.06)  5.46 ( 4.60, 6.91)  13.63  14  0.478

 2  61 03/27/89  2.94 ( 2.62, 3.26)  5.22 ( 4.46, 6.40)  16.56  16  0.415

 3  57 03/28/89  2.74 ( 2.40, 3.07)  5.42 ( 4.62, 6.71)  15.32  15  0.429

 4  55 03/29/89  2.85 ( 2.56, 3.13)  4.42 ( 3.76, 5.50)  23.87  15  0.067

 5  45 03/30/89  2.79 ( 2.39, 3.19)  5.69 ( 4.76, 7.27)  11.29  14  0.663

 6  57 03/31/89  2.77 ( 2.33,  3.22)  7.25 ( 6.18, 8.98)  22.26  15  0.101

 7  54 04/01/89  3.25 ( 2.81, 3.70)  6.48 ( 5.50, 8.08)  24.00  15  0.065

 8  57 04/02/89  3.04 ( 2.59, 3.50)  7.04 ( 6.00, 8.72)  24.16  15  0.062

 9  47 04/03/89  2.95 ( 2.49, 3.41)  6.57 ( 5.52, 8.34)  30.77  14  0.006

 10  52 04/04/89  3.31 ( 2.89, 3.72)  5.87 ( 4.96, 7.35)  10.31  15  0.800

 11  78 04/05/89  3.36 ( 2.97, 3.76)  6.80  5.91, 8.12)  8.15  18  0.976

 12  77 04/07/89  3.70 ( 3.34, 4.05)  5.84 ( 5.07, 6.98)  13.27  18  0.775

 13  54 04/09/89  3.30 ( 2.88, 3.71)  6.02 ( 5.11, 7.50)  9.33  15  0.859

 14  43 04/10/89  3.16 ( 2.58, 3.74)  7.58 ( 6.32, 9.74)  15.42  13  0.282

 15  55 04/11/89  4.04 ( 3.49, 4.60)  7.29 ( 6.19, 9.06)  10.13  15  0.812

 16  48 04/12/89  4.93 ( 4.31, 5.56)  6.95 ( 5.85, 8.80)  10.79  14  0.702

 17  53 04/13/89  5.14 ( 4.44, 5.85)  8.07 ( 6.84, 10.08)  19.34  15  0.199

 18  66 04/14/89  5.81 ( 5.19, 6.43)  7.50 ( 6.45,  9.12)  22.48  17  0.167

 19  51 04/15/89  5.09 ( 4.39,  5.80)  7.94 ( 6.71, 9.97)  20.65  15  0.148

 20  68 04/16/89  7.24 ( 6.33, 8.15)  9.99 ( 8.61, 12.12)  25.53  17  0.083

 21  64 04/17/89  7.49 ( 6.52, 8.46)  10.13 ( 8.70, 12.37)  22.69  16  0.122

 22  66 04/18/89  8.01 ( 6.90, 9.11)  11.40 ( 9.81, 13.87)  39.45  17  0.002

 23  63 04/19/89  8.64 ( 7.41, 9.87)  11.89 (10.20, 14.54)  15.71  16  0.473

 24  59 04/20/89  8.97 ( 7.66, 10.27)  11.94 (10.19, 4.71)  18.61  16  0.289

 25  62 04/21/89  9.16 ( 7.87, 10.45)  12.01 (10.29, 14.71)  25.03  16  0.069

 26  60 04/22/89  7.80 ( 6.86, 8.75)  9.34 ( 7.98, 11.49)  38.17  16  0.001

 27  69 04/23/89  8.15 ( 7.34, 8.97)  8.51 ( 7.34, 10.30)  21.72  17  0.196

 28  61 04/24/89  6.51 ( 5.38,  7.64)  12.40 (10.61, 15.22)  17.18  16  0.374

 29  70 04/25/89  6.84 ( 6.09, 7.60)  8.68 ( 7.49, 10.49)  14.00  17  0.667

 30  66 04/26/89  7.47 ( 6.74, 8.20)  7.79 ( 6.70,  9.47)  13.39  17  0.709

 31  66 04/27/89  6.93 ( 6.13, 7.73)  8.85 ( 7.62, 10.77)  27.94  17  0.046

 32  71 04/28/89  8.57 ( 7.71,  9.43)  8.88 ( 7.68, 10.71)  17.17  17  0.443

 33  41 04/30/89  10.26 ( 9.07, 11.44)  8.34 ( 6.93, 10.81)  13.24  13  0.429

 34  64 05/09/89  11.53 ( 9.74, 13.31)  15.05 (12.92, 18.38)  35.16  16  0.004

 35  62 05/10/89  7.75 ( 6.61,  8.89)  11.54 ( 9.88, 14.14)  17.06  16  0.381
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 36  64 05/11/89  7.55 ( 6.46,  8.64)  11.35 ( 9.74,d13.85)  16.16  16  0.442

 37  61 05/12/89  6.95 ( 5.98, 7.91)  10.24 ( 8.76, 12.57)  8.46  16  0.934

 38  84 05/13/89  6.29 ( 5.62, 6.96)  8.83 ( 7.71, 10.47)  25.48  19  0.145

1990

 1  59 04/09/90  5.30 ( 4.67,  5.94)  7.55 ( 6.44,  9.30)  27.63  16  0.035

 2  60 04/17/90  8.50 ( 7.70, 9.30)  7.61 ( 6.50,  9.36)  20.43  16  0.201

 3  52 04/17/90  8.13 ( 7.12,  9.14)  9.11 ( 7.71, 11.40)  43.54  15  0.000

 4  54 04/19/90  8.85 ( 7.92, 9.77)  8.14 ( 6.91, 10.14)  17.33  15  0.299

 5  59 04/20/90  6.34 ( 5.28, 7.40)  11.55 ( 9.86, 14.24)  23.76  16  0.095

 6  59 04/21/90  6.27 ( 5.38, 7.17)  9.83 ( 8.39, 12.12)  32.14  16  0.010

 7  66 04/22/90  6.21 ( 5.31, 7.11)  10.51 ( 9.04, 12.79)  21.27  17  0.214

 8  62 04/23/90  5.55 ( 4.74, 6.37)  9.72 ( 8.33, 11.91)  26.87  16  0.043

 9  70 04/24/90  5.16 ( 4.42, 5.89)  9.78 ( 8.44, 11.81)  15.14  17  0.585

 10  80 04/25/90  4.54 ( 3.95, 5.13)  8.88 ( 7.74, 10.59)  23.43  18  0.175

 11  52 04/27/90  6.29 ( 5.70, 6.88)  6.03 ( 5.10,  7.55)  8.23  15  0.914

 12  41 04/30/90  5.75 ( 5.00,  6.50)  7.06 ( 5.87, 9.14)  10.90  13  0.619

 13  54 05/07/90  10.34 ( 9.18, 11.51)  9.47 ( 8.04, 11.81)  17.33  15  0.299

1991

 1  55 04/08/91  2.94 ( 2.63,  3.25)  4.83 ( 4.10,  6.01)  24.53  15  0.057

 2  42 04/09/91  3.28 ( 2.95,  3.61)  4.11 ( 3.42, 5.30)  18.19  13  0.150

 3  63 04/10/91  3.38 ( 3.07, 3.69)  4.72 ( 4.05,  5.77)  48.89  16  0.000

 4  84 04/12/91  3.59 ( 3.31, 3.87)  4.82 ( 4.21,  5.71)  27.05  19  0.104

 5  69 04/15/91  3.05 ( 2.74,  3.36)  5.33 ( 4.60, 6.46)  20.57  17  0.246

 6  66 04/17/91  4.04 ( 3.61,  4.46)  6.16 ( 5.30,  7.49)  50.97  17  0.000

 7  47 04/18/91  4.39 ( 3.92, 4.86)  5.44 ( 4.57,  6.91)  24.98  14  0.035

 8  55 04/19/91  3.62 ( 3.18, 4.06)  6.08 ( 5.16, 7.56)  44.16  15  0.000

 9  65 04/22/91  4.89 ( 4.25, 5.53)  8.34 ( 7.17, 10.16)  30.00  16  0.018

 10  62 04/23/91  5.11 ( 4.46, 5.76)  8.06 ( 6.90,  9.87)  18.90  16  0.274

 11  90 04/25/91  6.63 ( 5.70, 7.57)  12.43 (10.90, 14.65)  17.07  19  0.585

 12  63 04/26/91  6.29 ( 5.59, 6.98)  7.91 ( 6.78,  9.67)  21.14  16  0.173

 13  81 04/27/91  5.49 ( 5.01, 5.97)  6.69 ( 5.83, 7.97)  31.26  18  0.027

 14  53 04/29/91  5.62 ( 5.07, 6.17)  6.00 ( 5.09, 7.50)  23.42  15  0.076

 15  51 04/30/91  6.09 ( 5.28,  6.91)  8.35 ( 7.05, 10.48)  19.24  15  0.203

 16  63 05/10/91  9.92 ( 8.68, 11.15)  11.14 ( 9.56, 13.63)  65.17  16  0.000

 17  53 05/11/91  10.33 ( 9.52, 11.15)  6.59 ( 5.59, 8.23)  9.83  15  0.830

1992

 1  50 04/07/92  3.94 ( 3.49,  4.38)  5.61 ( 4.74,  7.07)  25.48  14  0.030

 2  57 04/08/92  3.73 ( 3.26, 4.20)  6.53 ( 5.56,  8.08)  29.84  15  0.013

Table 4.4   (Continued) Results of the application of the two parameter, travel 
model to Snake River, spring chinook PIT tag data. The cohort number correspo
the numbers in Appendix 1. The methods for estimating parameters, constru
confidence intervals, and conducting goodness-of-fit tests are provided in chapte

species: chinook run type: unknown rearing type: unknown release site: Snaketrap

group
#

# of
fish

release
date

parameter est. (95% confidence int.) goodness-of-fit

r (km/day) σ (km/day1/2) X2 df p
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 3  84 04/14/92  3.95 ( 3.55, 4.34)  6.57 ( 5.74, 7.79)  63.71  19  0.000

 4  52 04/20/92  4.59 ( 3.98, 5.20)  7.35 ( 6.22,  9.20)  20.69  15  0.147

 5  45 04/23/92  5.45 ( 4.84, 6.06)  6.21 ( 5.20, 7.93)  24.89  14  0.036

 6  46 05/01/92  5.36 ( 4.40, 6.32)  9.96 ( 8.35, 12.68)  33.83  14  0.002

1993

 1  47 04/09/93  3.65 ( 3.13, 4.17)  6.57 ( 5.52,  8.34)  20.64  14  0.111

 2  71 04/10/93  3.76 ( 3.43, 4.09)  5.14 ( 4.44, 6.20)  17.73  17  0.406

 3  60 04/11/93  3.57 ( 3.21, 3.92)  5.22 ( 4.46, 6.42)  11.57  16  0.773

 4  59 04/12/93  3.48 ( 3.12, 3.84)  5.31 ( 4.53,  6.54)  14.75  16  0.543

 5  44 04/13/93  3.61 ( 3.27, 3.95)  4.20 ( 3.51,  5.38)  9.32  14  0.810

 6  46 04/15/93  4.38 ( 3.95, 4.81)  4.91 ( 4.12, 6.25)  10.17  14  0.749

 7  59 04/18/93  5.59 ( 5.00, 6.17)  6.75 ( 5.77, 8.32)  19.25  16  0.256

 8  43 04/21/93  5.48 ( 4.83,  6.12)  6.40 ( 5.34,  8.23)  19.14  13  0.119

 9  47 04/22/93  6.27 ( 5.52, 7.02)  7.25 ( 6.09,  9.21)  14.13  14  0.440

 10  82 04/23/93  7.14 ( 6.61, 7.68)  6.52 ( 5.69, 7.76)  9.17  18  0.956

 11  47 04/25/93  7.47 ( 6.68, 8.27)  7.10 ( 5.96,  9.01)  21.36  14  0.093

 12  51 04/26/93  8.37 ( 7.59,  9.15)  6.84 ( 5.78,  8.59)  10.06  15  0.816

 13  64 04/27/93  8.09 ( 7.39, 8.79)  7.07 ( 6.07, 8.63)  15.56  16  0.484

 14  43 04/28/93  8.29 ( 7.37, 9.21)  7.42 ( 6.19, 9.54)  22.12  13  0.054

 15  58 04/29/93  9.71 ( 8.77, 10.64)  8.16 ( 6.96, 10.08)  35.03  16  0.004

 16  60 04/30/93  10.34 ( 9.34, 11.35)  8.67 ( 7.41, 10.66)  24.87  16  0.072

 17  53 05/01/93  10.83 (10.08, 11.58)  5.91 ( 5.01, 7.38)  9.83  15  0.830

 18  57 05/02/93  11.41 (10.48, 12.33)  7.41 ( 6.31,  9.17)  28.58  15  0.018

 19  56 05/03/93  13.55 (12.45, 14.64)  7.94 ( 6.76, 9.85)  12.79  15  0.619

 20  98 05/04/93  12.97 (11.73, 14.20)  12.31 (10.85, 14.40)  56.90  20  0.000

 21  69 05/05/93  11.08 ( 9.96, 12.20)  10.02 ( 8.64, 12.13)  29.84  17  0.028

 22  72 05/06/93  10.65 ( 9.57, 11.73)  10.10 ( 8.74, 12.17)  29.67  17  0.029

 23  79 05/07/93  9.16 ( 8.16, 10.16)  10.54 ( 9.18, 12.58)  24.94  18  0.127

 24  67 05/08/93  9.20 ( 8.33, 10.06)  8.36 ( 7.20, 10.16)  22.85  17  0.154

 25  96 05/09/93  9.67 ( 9.03, 10.30)  7.24 ( 6.37,  8.48)  40.56  20  0.004

 26  84 05/11/93  12.21 (11.01, 13.41)  11.35 ( 9.91, 13.46)  30.19  19  0.049

 27  74 05/13/93  12.40 (10.55, 14.24)  16.21 (14.05, 19.47)  65.05  18  0.000

Table 4.4   (Continued) Results of the application of the two parameter, travel 
model to Snake River, spring chinook PIT tag data. The cohort number correspo
the numbers in Appendix 1. The methods for estimating parameters, constru
confidence intervals, and conducting goodness-of-fit tests are provided in chapte

species: chinook run type: unknown rearing type: unknown release site: Snaketrap

group
#

# of
fish

release
date

parameter est. (95% confidence int.) goodness-of-fit

r (km/day) σ (km/day1/2) X2 df p
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Table 4.5  Results of the application of the two parameter, travel time model to m
Columbia, fall chinook, PIT tag data. The cohort number corresponds to the num
in Appendix 1. The methods for estimating the parameters, constructing confid
intervals, and conducting goodness-of-fit tests are provided in chapter 4.6.

species: chinook run type: fall r earing type: wild release site: Mid Columbia

group
#

# of
fish

release
date

parameter est. (95% confidence int.) goodness-of-fit

r (km/day) σ (km/day1/2) X2 df p

1991

 1 154 06/07/91  3.35  ( 3.07, 3.64)  10.75 ( 9.70, 12.15)  147.82  25  0.000

 2  97 06/07/91  3.30 ( 3.02,  3.59)  8.49 ( 7.48, 9.94)  120.43  20  0.000

1992

 1  75 06/03/92  3.57  ( 3.26,  3.87)  7.74 ( 6.72,  9.29)  53.52  18  0.000

 2  73 06/03/92  3.53 ( 3.27,  3.79)  6.53 ( 5.65,  7.86)  56.04  17  0.000

 3  68 06/04/92  3.77  ( 3.47,  4.06)  6.78 ( 5.85,  8.22)  105.53  17  0.000

 4  63 06/04/92  3.28  ( 3.02, 3.54)  6.24 ( 5.35,  7.63)  39.84  16  0.001

 5  60 06/04/92  3.75 ( 3.41, 4.09)  7.37 ( 6.30,  9.06)  54.00  16  0.000

1993

 1  61 06/07/93  4.26 ( 3.84, 4.67)  8.57 ( 7.33, 10.52)  35.25  16  0.004

 2  81 06/08/93  3.62 ( 3.30, 3.94)  8.30 ( 7.24,  9.89)  35.93  18  0.007

 3 115 06/08/93  3.78  ( 3.55, 4.01)  7.12 ( 6.33,  8.21)  43.04  22  0.005

 4  75 06/09/93  3.76  ( 3.49, 4.02)  6.47 ( 5.61,  7.76)  49.04  18  0.000

 5 118 06/09/93  3.74  ( 3.47, 4.01)  8.34 ( 7.42,  9.60)  70.14  22  0.000

 6 120 06/15/93  3.61  ( 3.41,  3.80)  6.24 ( 5.56, 7.17)  40.83  22  0.009

Table 4.6  Results of the application of the two parameter, travel time model to S
River, steelhead PIT tag data. The cohort number corresponds to the numb
Appendix 1. The methods for estimating the parameters, constructing confid
intervals, and conducting goodness-of-fit tests are provided in chapter 4.6.

species: steelhead rearing type: wild release site: Snake Trap

group
#

# of
fish

release
date

parameter est. (95% confidence int.) goodness-of-fit

r (km/day) σ (km/day1/2) X2 df p

1989

1  64 04/16/89  12.99 (11.10, 14.88)  15.01 (12.88, 18.32)  26.84  16  0.043

 2  43 04/19/89  17.83 (15.06, 20.61)  15.23 (12.71, 19.59)  31.05  13  0.003

 3  66 04/20/89  16.93 (14.30, 19.56)  18.62 (16.01, 22.64)  50.97  17  0.000

 4  45 04/22/89  16.04 (12.23, 19.85)  22.59 (18.92, 28.86)  24.89  14  0.036

 5  64 04/23/89  20.07 (18.06, 22.08)  12.83 (11.01, 15.66)  23.28  16  0.106

 6  63 04/25/89  18.77 (17.10, 20.45)  10.98 ( 9.42, 13.43)  38.63  16  0.001
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 7  49 04/27/89  14.29 (12.29, 16.30)  13.15 (11.08, 16.60)  42.94  14  0.000

 8  48 04/30/89  14.53 (12.53, 16.53)  12.88 (10.83, 16.30)  26.37  14  0.023

 9  63 05/02/89  16.06 (13.91, 18.22)  15.29 (13.11, 18.70)  30.79  16  0.014

 10  79 05/04/89  18.71 (16.37, 21.05)  17.30 (15.05, 20.65)  88.73  18  0.000

 11  79 05/06/89  21.78 (19.71, 23.84)  14.15 (12.32, 16.89)  32.91  18  0.017

 12 117 05/07/89  23.81 (22.08, 25.54)  13.91 (12.38, 16.03)  82.79  22  0.000

 13  80 05/09/89  26.36 (23.83, 28.88)  15.86 (13.81, 18.90)  82.23  18  0.000

 14  87 05/10/89  20.51 (17.95, 23.06)  19.00 (16.64, 22.47)  103.92  19  0.000

 15  62 05/11/89  18.06 (15.54, 20.57)  16.68 (14.29, 20.43)  26.87  16  0.043

 16  47 05/13/89  13.09 (10.76, 15.42)  15.65 (13.14, 19.87)  38.00  14  0.001

1990

 1  61 04/17/90  13.68 (12.36, 15.00)  9.95 ( 8.51, 12.21)  34.00  16  0.005

 2  51 04/19/90  13.53 (12.30, 14.77)  8.53 ( 7.21, 10.71)  24.88  15  0.052

 3  69 04/21/90  14.90 (13.53, 16.26)  10.54 ( 9.09, 12.76)  52.45  17  0.000

 4  72 04/22/90  16.81 (15.41, 18.22)  10.43 ( 9.02, 12.56)  28.56  17  0.039

 5  52 04/23/90  14.77 (13.14, 16.41)  10.90 ( 9.23, 13.65)  20.69  15  0.147

 6 111 04/24/90  12.98 (12.24, 13.72)  7.88 ( 6.99,  9.12)  85.11  21  0.000

 7  86 04/25/90  12.04 (11.30, 12.79)  7.17 ( 6.27, 8.48)  60.84  19  0.000

 8  95 04/26/90  12.01 (11.20, 12.82)  8.26 ( 7.27, 9.69)  51.96  20  0.000

 9  66 04/28/90  11.07 (10.14, 12.00)  8.14 ( 7.00, 9.90)  53.39  17  0.000

 10  55 04/29/90  11.04 (10.17, 11.91)  6.91 ( 5.87,  8.59)  32.38  15  0.006

 11  50 04/30/90  10.31 ( 9.28, 11.35)  8.11 ( 6.84, 10.21)  29.56  14  0.009

 12  76 05/01/90  10.79 ( 9.79, 11.78)  9.49 ( 8.24, 11.37)  59.95  18  0.000

 13  72 05/03/90  12.00 (10.87, 13.12)  9.90 ( 8.56, 11.92)  44.67  17  0.000

 14  53 05/05/90  12.04 (10.54, 13.54)  11.22 ( 9.51, 14.02)  28.17  15  0.021

 15  80 05/06/90  12.91 (11.46, 14.35)  12.95 (11.28, 15.43)  69.10  18  0.000

 16 146 05/07/90  11.90 (10.96, 12.85)  12.04 (10.84, 13.65)  102.18  24  0.000

 17  87 05/08/90  12.94 (11.74, 14.14)  11.21 ( 9.81, 13.25)  48.79  19  0.000

 18  55 05/09/90  13.26 (11.10, 15.42)  15.69 (13.33, 19.50)  38.27  15  0.001

 19  52 05/10/90  10.03 ( 8.03, 12.03)  16.18 (13.69, 20.26)  73.31  15  0.000

 20  68 05/12/90  8.97 ( 7.55, 10.39)  14.00 (12.07, 16.97)  26.71  17  0.063

 21  50 05/14/90  8.14 ( 7.11, 9.16)  9.04 ( 7.63, 11.39)  19.36  14  0.152

 22  44 05/15/90  8.85 ( 7.85,  9.85)  7.90 ( 6.60, 10.13)  22.45  14  0.070

 23  61 05/17/90  9.05 ( 8.16,  9.94)  8.24 ( 7.05, 10.11)  21.54  16  0.159

 24  60 05/25/90  14.40 (13.26, 15.54)  8.31 ( 7.11, 10.22)  19.80  16  0.229

 25  57 05/28/90  20.04 (17.88, 22.20)  13.01 (11.09, 16.11)  33.63  15  0.004

 26  62 05/30/90  23.56 (20.36, 26.76)  18.56 (15.90, 22.74)  59.97  16  0.000

 27  58 06/01/90  18.16 (16.09, 20.24)  13.24 (11.29, 16.35)  40.28  16  0.001

Table 4.6    (Continued) Results of the application of the two parameter, travel 
model to Snake River, steelhead PIT tag data. The cohort number corresponds
numbers in Appendix 1. The methods for estimating the parameters, constru
confidence intervals, and conducting goodness-of-fit tests are provided in chapte

species: steelhead rearing type: wild release site: Snake Trap

group
#

# of
fish

release
date

parameter est. (95% confidence int.) goodness-of-fit

r (km/day) σ (km/day1/2) X2 df p
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1991

 1  57 04/26/91  8.74 ( 7.59, 9.90)  10.51 ( 8.95, 13.01)  12.16  15  0.667

 2  50 04/27/91  10.38 ( 9.46, 11.30)  7.19 ( 6.07,  9.05)  17.32  14  0.240

 3  49 04/28/91  9.10 ( 7.91, 10.28)  9.76 ( 8.23, 12.33)  60.98  14  0.000

 4  60 04/29/91  8.86 ( 7.70, 10.01)  10.75 ( 9.19, 13.22)  24.87  16  0.072

 5  54 05/05/91  11.93 (10.91, 12.96)  7.79 ( 6.61,  9.70)  35.33  15  0.002

 6  68 05/08/91  13.80 (12.56, 15.03)  9.83 ( 8.47, 11.92)  40.24  17  0.001

 7 359 05/10/91  12.54 (12.07, 13.01)  9.18 ( 8.56, 9.92)  262.94  36  0.000

 8 188 05/11/91  15.14 (13.98, 16.31)  14.92 (13.59, 16.65)  53.60  27  0.002

 9 113 05/12/91  13.97 (13.05, 14.88)  9.47 ( 8.41, 10.94)  136.98  21  0.000

 10 126 05/12/91  14.94 (13.92, 15.96)  10.76 ( 9.61, 12.33)  162.48  23  0.000

 11  59 05/13/91  14.64 (13.27, 16.02)  9.85 ( 8.41, 12.14)  37.29  16  0.002

 12  84 05/14/91  14.27 (13.22, 15.32)  9.16 ( 8.00, 10.87)  66.86  19  0.000

 13  56 05/15/91  13.13 (11.85, 14.41)  9.45 ( 8.04, 11.72)  23.07  15  0.083

 14  85 05/17/91  17.52 (16.24, 18.80)  10.16 ( 8.88, 12.04)  69.00  19  0.000

 15 152 05/18/91  21.18 (19.80, 22.56)  13.44 (12.12, 15.20)  123.95  25  0.000

 16 339 05/19/91  21.68 (20.65, 22.71)  14.93 (13.90, 16.17)  330.99  35  0.000

 17  51 05/20/91  19.80 (17.55, 22.04)  12.83 (10.84, 16.10)  28.41  15  0.019

 18  58 05/23/91  17.14 (14.70, 19.57)  16.01 (13.65, 19.77)  40.93  16  0.001

 19  55 05/25/91  18.47 (16.14, 20.80)  14.33 (12.17, 17.81)  29.11  15  0.016

 20  56 05/26/91  16.24 (14.70, 17.77)  10.17 ( 8.65, 12.61)  19.21  15  0.204

1992

 1  61 04/18/92  8.33 ( 7.48, 9.18)  8.22 ( 7.03, 10.09)  28.39  16  0.028

 2  58 04/21/92  8.60 ( 7.65, 9.54)  8.76 ( 7.47, 10.82)  40.93  16  0.001

 3  64 04/22/92  8.94 ( 8.31,  9.57)  6.07 ( 5.21, 7.41)  26.25  16  0.051

 4  67 04/25/92  10.23 ( 9.53, 10.92)  6.41 ( 5.52, 7.79)  41.36  17  0.001

 5  64 04/28/92  12.51 (11.34, 13.68)  9.49 ( 8.14, 11.58)  27.44  16  0.037

 6  72 04/30/92  13.69 (11.72, 15.66)  16.22 (14.04, 19.55)  56.33  17  0.000

 7 180 05/01/92  12.59 (12.02, 13.17)  7.89 ( 7.17, 8.82)  201.00  27  0.000

 8 154 05/02/92  14.51 (13.65, 15.38)  10.24 ( 9.24, 11.57)  132.55  25  0.000

 9  69 05/03/92  12.99 (11.68, 14.31)  10.85 ( 9.36, 13.14)  40.86  17  0.001

 10  44 05/04/92  12.79 (11.46, 14.13)  8.76 ( 7.32, 11.23)  22.45  14  0.070

 11  44 05/05/92  15.02 (13.34, 16.70)  10.18 ( 8.51, 13.05)  31.73  14  0.004

 12  54 05/06/92  13.59 (12.49, 14.68)  7.79 ( 6.61, 9.71)  19.33  15  0.199

 13  40 05/07/92  12.34 (10.79, 13.88)  9.77 ( 8.10, 12.70)  16.80  13  0.209

 14  61 05/08/92  6.85 ( 5.36, 8.34)  15.92 (13.62, 19.54)  42.10  16  0.000

 15  88 05/09/92  10.46 ( 9.31, 11.61)  12.02 (10.53, 14.20)  22.50  19  0.260

 16  90 05/10/92  7.43 ( 6.62, 8.25)  10.26 ( 9.00, 12.09)  115.82  19  0.000

Table 4.6    (Continued) Results of the application of the two parameter, travel 
model to Snake River, steelhead PIT tag data. The cohort number corresponds
numbers in Appendix 1. The methods for estimating the parameters, constru
confidence intervals, and conducting goodness-of-fit tests are provided in chapte

species: steelhead rearing type: wild release site: Snake Trap

group
#

# of
fish

release
date

parameter est. (95% confidence int.) goodness-of-fit

r (km/day) σ (km/day1/2) X2 df p
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 17  60 05/11/92  7.15 ( 5.97, 8.34)  12.26 (10.48, 15.08)  58.43  16  0.000

 18  42 05/12/92  7.39 ( 5.57, 9.22)  15.34 (12.78, 19.80)  25.81  13  0.018

1993

 1  38 04/20/93  11.04( 9.40, 12.67)  10.63 ( 8.78, 13.94)  26.84  13  0.013

 2  51 04/24/93  10.97( 9.17, 12.76)  13.77 (11.64, 17.29)  28.41  15  0.019

 3  62 04/26/93  14.29 (12.96, 15.61)  9.85 ( 8.44, 12.07)  63.03  16  0.000

 4  50 04/28/93  13.16 (11.58, 14.74)  10.94 ( 9.23, 13.77)  36.36  14  0.001

 5  57 04/29/93  14.65 (13.07, 16.22)  11.08 ( 9.44, 13.71)  31.11  15  0.009

 6  50 04/30/93  14.52 (12.65, 16.39)  12.32 (10.39, 15.50)  20.04  14  0.129

 7  87 05/01/93  16.58 (15.34, 17.82)  10.27 ( 8.99, 12.15)  35.14  19  0.013

 8  85 05/02/93  15.45 (14.07, 16.83)  11.66 (10.20, 13.82)  92.81  19  0.000

 9  72 05/03/93  17.98 (15.93, 20.02)  14.70 (12.71, 17.71)  46.33  17  0.000

 10 217 05/04/93  19.14 (18.06, 20.23)  13.37 (12.25, 14.80)  181.01  29  0.000

 11  97 05/05/93  18.46 (16.42, 20.50)  16.91 (14.89, 19.79)  130.39  20  0.000

 12 253 05/05/93  16.74 (15.52, 17.96)  17.37 (16.01, 19.07)  222.33  31  0.000

 13  59 05/06/93  18.08 (15.17, 20.99)  18.76 (16.02, 23.12)  69.49  16  0.000

 14 236 05/07/93  19.80 (18.55, 21.05)  15.76 (14.49, 17.37)  182.93  30  0.000

 15  93 05/08/93  15.67 (13.96, 17.39)  15.07 (13.24, 17.71)  47.23  20  0.001

 16  40 05/09/93  15.89 (13.70, 18.08)  12.22 (10.14, 15.90)  12.80  13  0.463

 17  66 05/10/93  17.47 (15.91, 19.03)  10.87 ( 9.35, 13.22)  34.61  17  0.007

 18  85 05/11/93  19.19 (17.42, 20.96)  13.42 (11.73, 15.90)  32.76  19  0.026

 19  84 05/13/93  24.79 (22.02, 27.57)  18.39 (16.07, 21.82)  60.05  19  0.000

 20  61 05/13/93  22.13 (19.46, 24.81)  15.85 (13.57, 19.46)  56.43  16  0.000

Table 4.6    (Continued) Results of the application of the two parameter, travel 
model to Snake River, steelhead PIT tag data. The cohort number corresponds
numbers in Appendix 1. The methods for estimating the parameters, constru
confidence intervals, and conducting goodness-of-fit tests are provided in chapte

species: steelhead rearing type: wild release site: Snake Trap

group
#

# of
fish

release
date

parameter est. (95% confidence int.) goodness-of-fit

r (km/day) σ (km/day1/2) X2 df p
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5. Extensions of the travel time model

5.1. Introduction

In the previous chapter, I developed the basic two parameter travel time m

(equations (4.7) and (4.8)) and applied it to several data sets. In some cases it worke

well, in others not so well. In general, though, the model has desirable properties a

form the basis of models that include more complex behavior.

In this chapter I expand the model to make it more realistic. In section 5.2 morta

no longer considered to be equal within the cohorts but is dependent upon the amo

time spent in the river. In section 5.3 I incorporate migrational delay into the model. I

last section of this chapter, section 5.e, I explore factors related to migration rat

attempt to use these factors to predict model parameters. In addition, in chapter 6 

for population heterogeneity and attempt to determine how various factors affect mig

behavior.

I use some of the travel time data from the previous chapter to test fo

appropriateness of the added features. Since I do not want to use the same data in

treatments (to avoid multiple comparisons), I have divided the Snake River trap ch

and steelhead data into treatment groups. To randomly place the cohorts into 5 tre

groups, I used the following procedure. I started by dividing the cohorts in a yea

blocks of 5 or 6 in a chronological sequence; the blocks with 6 members were ran

assigned so that all the extra cohorts didn’t come at the end of the season. From 

these blocks, 5 cohorts were randomly assigned to each of the treatment group

ensured that cohorts were randomly assigned to the treatment groups and that the

chronological sequence of cohorts was represented in each treatment group. For th
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Columbia fall chinook, I assigned cohorts into two treatment groups because of the s

number of cohorts.

5.2. Time dependent mortality

Previously, I assumed equal survival probabilities among the individuals in a coh

fish during the migration period. With this assumption, mortality will decrease the num

of the cohort but will not affect the shape of the arrival time distribution. If, on the o

hand, mortality is related to the amount of time spent in the river, then it will affect the s

of the arrival time distribution, with slower fish being more susceptible to mortality.

If the reservoir mortality rate isα(t), then as shown in equation (2.24), the probabil

of surviving through timet is

. (5.1)

This mortality can be incorporated into the migration model as follows:

. (5.2)

Solutions of equation (5.2) have the form

. (5.3)

Referring to this density as  and using equation (4.5) for , we have:

. (5.4)
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Carrying out the same procedure as before, that is, integrating from  toA with respect

to x and differentiating with respect tot, we end up with:

, (5.5)

where  represents the loss from the reservoir (due to both dam passage and mo

and  is equation (4.7), the basic arrival time distribution. The first term in the right

of equation (5.5) is loss due to fish leaving the reservoir, and the second term is loss

mortality. This makes intuitive sense becauseg(t) is the pdf for dam passage in the absen

of mortality, and  represents the probability of surviving through timet. In the

second part of equation (5.5), the term in brackets represents the fish remaining

reservoir, and  is the survival probability density function. To obtai

probability density function, , for the arrival time given time dependent in-ri

mortality, the passage portion of equation (5.5) must be normalized:

. (5.6)

The simplest case is whenα is constant, and Figure 5.1 contains plots of equation (5

for various values of constant α. Note that asα increases, the mode of the distribution shi

to the left, and the right tail becomes thinner. Anα of 0.02 corresponds roughly to 18 pe

cent mortality after 10 days. At this and higher levels of mortality, including mortality

little effect on the shape of the arrival time distribution.
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The model discrimination methods described in chapter 3 can determine the abi

the model to detect travel time dependent mortality. In this case, the null model is the

arrival time distribution, equation (4.7). The alternative model is the arrival distribu

described by equation (5.6). I should emphasize that this will test for the ability o

model to detect travel time dependent mortality in the river. Accepting the null hypot

does not necessarily mean the effect does not exist.

results

The results of the data analysis for the Snake River trap chinook and steelhe

contained in Table 5.1 and Table 5.2. Each line in the table represents the results 

single cohort. The cohorts are identified by year and cohort number, so these results

directly compared to those found in Table 4.4 and Table 4.6 (basic travel time m

Figure 5.1 Plots of equation (5.6) for various values ofα. Bothr andσ are set at 10.0;L is set
at 100.
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Table 5.1 Results from the application of the travel time dependent mortality model to Sna
River chinook PIT tag data. Each row is a cohort. A negative value for BIC lends support to
null model. See text for further details of the analysis.

co
ho

rt # of
fish

parameter estimates likelihoods

r σ α l0 lA ratio BIC

1989

 1  48  2.55  5.46  0.012 -166.88 -166.88  0.00  -3.87

 7  54  2.96  6.48  0.022 -180.04 -180.04  0.00  -3.99

 13  54  3.09  6.02  0.018 -176.02 -176.02  0.00  -3.99

 18  66  5.70  7.49  0.011 -174.07 -174.07  -0.00  -4.19

 24  59  8.85  11.94  0.008 -139.46 -139.46  -0.00  -4.08

 32  71  8.38  7.30  0.015 -159.62 -157.80  3.64  -0.62

 37  61  6.70  10.25  0.016 -159.96 -159.96  -0.00  -4.11

1990

 1  59  5.10  7.55  0.019 -162.63 -162.63  -0.00  -4.08

 9  70  4.93  9.78  0.012 -207.84 -207.84  0.00  -4.25

 12  41  5.64  7.06  0.013 -106.59 -106.59  0.00  -3.71

1991

 5  69  2.91  5.33  0.014 -225.63 -225.63  0.00  -4.23

 8  55  3.49  6.08  0.012 -172.85 -172.85  0.00  -4.01

 17  53  10.32  6.59  0.003  -91.08  -91.08  0.00  -3.97

1992

 6  46  5.08  9.96  0.015 -133.54 -133.54  0.00  -3.83

1993

 1  47  3.51  6.57  0.011 -149.96 -149.96  0.00  -3.85

 8  43  5.42  6.40  0.007 -111.69 -111.69  0.00  -3.76

 16  60  10.25  8.67  0.013 -116.58 -116.58  0.00  -4.09

 17  53  11.11  4.93  0.031  -82.08  -81.05  2.07  -1.90

 24  67  9.10  8.36  0.003 -139.99 -139.65  0.68  -3.53
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Table 5.2 Results from the application of the travel time dependent mortality model to Snake

River steelhead PIT tag data. Each row is a cohort. A negative value for BIC lends support to t
null model. See text for further details of the analysis.

co
ho

rt # of
fish

parameter estimates likelihoods

r σ α l0 lA ratio BIC

1989

 3  66  16.83  18.61  0.0052 -117.72 -117.72  -0.00  -4.19

 6  63  17.75  12.71  0.0000 -108.89 -104.11  9.57  5.42

 13  80  26.33  15.85  0.0034  -87.89  -87.89  0.00  -4.38

1990

 5  52  14.77  10.91  0.0000  -85.12  -85.12  -0.00  -3.95

 10  55  11.35  5.61  0.0581  -91.19  -87.94  6.49  2.49

 14  53  13.27  8.32  0.0187 -100.79  -91.91  17.75  13.78

 21  50  7.64  9.05  0.0483 -115.68 -115.68  -0.00  -3.91

 25  57  20.04  13.01  0.0000  -75.97  -75.97  0.00  -4.04

1991

 1  57  8.27  10.51  0.0370 -131.50 -131.50  -0.00  -4.04

 9 113  13.87  9.47  0.0145 -179.38 -179.38  0.00  -4.73

 12  84  14.17  9.16  0.0167 -128.96 -128.96  0.00  -4.43

 18  58  17.14  16.01  0.0000  -97.93  -97.93  -0.00  -4.06

1992

 3  64  8.73  6.08  0.0505 -118.79 -118.79  -0.00  -4.16

 7 180  13.23  6.12  0.0050 -278.24 -262.08  32.32  27.12

 18  42  7.23  15.34  0.0050 -112.78 -112.78  0.00  -3.74

1993

 5  57  14.65  11.08  0.0000  -93.72  -93.72  0.00  -4.04

 10 217  19.58  12.67  0.0000 -305.57 -301.26  8.64  3.26

 15  93  15.67  15.07  0.0000 -164.82 -164.82  -0.00  -4.53

 19  84  24.75  18.39  0.0032 -108.48 -108.48  -0.00  -4.43
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results) and release information can be found in Appendix I. These tables also c

parameter estimates for the travel time model with mortality, likelihoods for the null

alternative models, and the likelihood ratios and BIC values. The BIC value in these 

is the difference between the BIC values for the alternative and null models. A ne

value lends support to the null model, and positive one lends support to the alter

model.

Little support exists for including travel time dependent mortality in the model for

Snake River chinook (Table 5.1). 16 out of the 19 cohorts had likelihood ratios less

0.01, and for none of the cohorts would the null model be rejected based on a like

ratio test or based on the BIC values. This is not to say that travel time dependent m

is not occurring for these groups, but this model cannot detect it with these data. Othe

of data are necessary to observe this effect. On a positive note, the fact that this 

mortality seems to have little effect on the arrival time distribution makes modeling a

times less complex.

The results from the steelhead cohorts are a bit perplexing. As with the chinoo

majority of cohorts (14 out of 19) had likelihood ratios less than 0.01. But the remain

cohorts all had fairly large ratios, and for all these cohorts the null hypothesis wou

rejected based on a likelihood ratio test or BIC values. The estimates of the mortality

α, for these groups is quite variable, ranging from less than 0.0001 to 0.058. This lea

to believe that these results are spurious – the added term allows for a better fit of the

to the data but not in a biologically meaningful way.

5.3. Delay in migration

introduction

In the previous chapter, I assumed that fish migrate at a constant rate during the
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migration period. In some cases, however, fish may delay their migration. In this sec

examine two types of delay – delay in front of a dam before passage and delay bef

fish initiate downstream migration. In both these cases, the delay may be substanti

incorporating a delay term in the travel time model may be worthwhile.

There is some evidence that fish delay their passage as they encounter a dam

produce turbulence and a significant amount of noise that may deter fish from passin

dam passing often involves extreme changes in pressure, which the fish resist. 

examine the dam delay process by analyzing some chinook radio-tracking data at Jo

and Lower Granite Dams. I then incorporate the delay model into the basic trave

model and apply this to PIT tag data.

Sometimes fish are tagged and released before they are ready to initiate migratio

may be the case when hatchery fish are released before they are fully smolted or wh

fish are collected in their rearing habitat, tagged, and then released back in the rive

mid-Columbia fall chinook examined in the previous chapter may be an example o

latter case. These fish were beach seined, and most of the fish were less than 75

length, probably too small to initiate migration. For these fish I incorporate a migra

delay term into the travel time model.

formulation of the model

If the delay probability density function isd(t), and d(t) is independent of the arriva

distribution, then we can express the passage distribution incorporating delay

convolution integral (Mood, et al. 1974):

. (5.7)

g(t) is the arrival distribution without delay (equation (4.7)) andgD(t) is the arrival

gD t( ) d t τ–( )g τ( )dτ
0

t

∫=
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distribution with delay included. Note that it does not matter whether the delay o

before or after the migratory period; the general equation remains the same.

Although the waiting time process is likely to be complex, a reasonable simplific

is a waiting time process with instantaneous passage rateα(t). This yields a delay pdf of

. (5.8)

Assuming a constantα equation (5.7) becomes

, (5.9)

and the average delay is 1/α. Figure 5.2 represents the components of equation (

graphically. The delay term (top plot) and reservoir travel time term (middle plot) are

incorporated into the arrival time with delay equation (bottom plot). Assuming the b

travel time distribution (equation (4.7)) forg(t), plots of equation (5.9) are presented 

Figure 5.3 for several values of constantα. As average delay increases (i.e., asα decreases),

the mode of the distribution shifts to the right, and the curve flattens out.

application of the delay model to radio-tracking data

It is clear from Figure 5.3 that delay at a dam can produce substantial effects o

arrival distributions. With most arrival time data, where fish are sampled as they pass 

separating river travel time from dam delay is difficult. Fortunately there is some

available where dam delay can be observed directly. These data are from radio tag 

where groups of fish are released upstream from a dam. The time when an individu

reaches the forebay in front of the dam is recorded as well as when the fish passes 

the dam. The difference between these two times is dam delay. A distribution of these

is obtained from a group of individuals released at the same time.

d t( ) α t( )e
α s( )ds

0

t

∫–
=

gD t( ) αe α t τ–( )⋅– g τ( )dτ
0

t

∫=
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Figure 5.2 A graphical representation of the arrival time distribution with a delay term
added. The top graph is exponential delay with constantα. The middle graph is the two
parameter travel time model (equation (4.7)). The bottom graph represents equation (5.9),
the arrival time distribution with the delay term incorporated.
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Applying delay models to independent data sets has several advantages. Since 

being observed directly, more accurate parameter estimates can be obtained.

parameter estimates can then either be applied directly to the travel time model with

(equation (5.7)), or the parameter estimates can be compared to those obtained by a

equation (5.7) to travel time data. Also, these data will allow for a more direct asses

of model performance and for comparison among alternative models.

I will examine three alternative models for delay. The first is a simple model w

delay is determined by a constant passage rate. The second model introduces diel b

with separate passage rates for daytime and nighttime periods. The third model se

the fish into two types: those who pass quickly and those who pass more slowly.

Two radio-tag studies have been performed on juvenile salmonids in the Colu

t

g(
t)

0 5 10 15 20 25 30

0.
0

0.
05

0.
10

0.
15

0.
20

alpha = 0.2
alpha = 0.5
alpha = 1.0
alpha = 2.0

Figure 5.3 Plots of equation (5.9) for various values ofα. Bothr andσ are set at 10.0;L is set
at 100.
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River system: one at John Day Dam in 1984 (Giorgi et al., 1985) and the other at L

Granite Dam in 1985 (Stuehrenberg et al., 1986). In these studies fish were fitte

miniature radio-tags and released upstream from the dam. Several receivers were s

at the dam and were able to detect when they first arrived at the front of the dam and

they passed the dam. The difference between these two times is the delay.

In the John Day study, fish were released on 4 days. On the first three days (May 

10, and May 14), 28 fish were released; half were released in the morning and ha

released in the afternoon. On the fourth release day, only 11 fish were released, an

not include these fish in the analysis. The fish were collected from the John Day Da

released 6.3 km. upstream from the dam. In the Lower Granite study, 4 grou

approximately 100 fish were released 4.8 km. upstream from the dam. These fish

collected at the bypass facilities of Lower Granite and McNary Dams. The first group

not analyzed because of technical difficulties encountered at the dam. The last three

were released on April 17, April 24 and May 1.

Stuehrenberg et al., (1986) also performed behavioral test to determine the imp

the tags on the fish. They determined that the radio-tags did not significantly affect 

swimming velocity or mortality but that the tags may affect the buoyancy of the 

Because of this problem, these data are not ideal. They are, however, the only data

dam delay is directly observed. For this reason I have chosen to analyze these data t

rough parameter estimates and some qualitative results. In addition, the methodo

present will be applicable in the future if better data become available.

To analyze the data I use the following procedure. First I estimate the parameters

maximum likelihood. If numerical solutions are required, I use the downhill simp

method (Nelder and Mead, 1965; Press, et al., 1988). Also, log likelihoods are com

for comparisons among models within a data set. In addition, I perform anX2 goodness-of-
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fit test, following the procedure for continuous data outlined in chapter 3.

The first model is the waiting time model with constantα. The pdf for delay is

. (5.10)

The maximum likelihood estimate forα is

, (5.11)

whereN is the number of fish in the cohort,ti is the waiting time of theith individual and

is the average waiting time for the group.

The second model includes a different passage rate for daytime and nighttime,αd and

αn respectively. The delay pdf for passage during the day is

. (5.12)

In this notationtd is the time spent waiting during the day, andtn is time spent waiting

during the night period. The pdf for passage occurring during the night period is the

as equation (5.12) but withαn substituted forαd in front of the exponential term on the righ

side. Note that since individual fish arrive at the dam at different times of the day, eac

will have a different waiting time pdf. The mle’s of the two parametersαn andαd are

determined numerically.

A third model is a double exponential model. The model essentially divides

population into two groups: those that pass the dam quickly and those that pass

slowly. The model is expressed as

. (5.13)

d t( ) αe αt–=

α̂ N ti
i 1=

N

∑⁄ 1
t
---= =

t

d t( ) αde αdtd αntn+[ ]–=

d t( ) wt α f e
α f t– 1.0 wt–( ) αse

αst–⋅+⋅=



111

s are

ranite

 tables,

r the
αf corresponds to the fast passage rate,αs is the slow passage rate, andwt assigns a weight

to the two types of passage, with . Again, the mle’s of the parameter

determined numerically, and a log likelihood is computed.

results

The parameter estimates, likelihoods and goodness-of-fit results for the Lower G

data are contained in table Table 5.3, and for the John Day data in Table 5.4. In these

α1= α for the simple model,α1 = αn andα2 = αd for the diel-delay model, andα1 = αf and

α2 = αs for the double-exponential model. The BIC values reported are those fo

0 wt 1.0≤≤

Table 5.3 Delay model results from the Lower Granite data. For the simple model,α1 =
α. For the diel delay model,α1= αn, andα2= αd. For the double exponential model,α1=αf
andα2= αs. Based on BIC values, the “best” model has the largest value.

model α1 α2 wt lik ratio BICi X2 p

Release data: April 17; n = 61

simple  1.13 -247.19 -498.50 105.64 < 0.001

diel  1.42  0.91 -245.70  3.00 -499.61 106.26 < 0.001

2 exp  66.87  0.85  0.26 -224.14  46.10 -460.62 32.13 0.010

Release date: April 24; n = 65

simple  3.48 -190.45 -385.08 123.54 < 0.001

diel  6.29  1.33 -173.83  33.24 -356.02 100.15 < 0.001

2 exp  113.70  2.07  0.41 -151.30  78.31 -315.12 14.22 0.58

Release date: May 1; n = 70

simple  2.91 -217.68 -439.61 272.86 < 0.001

diel  7.01  0.70 -181.43  72.51 -371.35 152.86 < 0.001

2 exp  70.65  1.21  0.59 -148.06 139.24 -308.87 27.71 0.048
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individual models (not comparisons between models as in the last application). Acco

to this criterion, the most desirable model is the one with the largest BIC value.

Figures 5.4 and 5.5 contain plots of the fitted models versus the data. In these plo

percentiles of the data are plotted against the percentiles predicted by the model. A s

line through the origin and the point (1.0, 1.0) would signify an exact correspond

between the two.   The columns of plots represent the three models, and the rows re

the three data sets.

For the Lower Granite data, the average waiting time (1/α) is approximately 20 hours

for the first group and approximately 8 hours for the second and third groups. In all

Table 5.4 Delay model results from the John Day data. For the simple model,α1 = α. For
the diel delay model,α1 = αn, andα2 = αd. For the double exponential model,α1 = αf and
α2 = αs. Based on BIC values, the “best” model has the largest value.

model α1 α2 wt lik ratio BICi X2 p

Release data: May 1; n = 19

simple  6.53  -43.74  -90.42 30.89 < 0.001

diel  8.78  5.07  -43.03  1.42  -91.94 30.89 < 0.001

2 exp  71.67  2.59  0.63  -30.93  25.62  -70.69 4.37 0.89

Release date: May 10; n = 25

simple  13.38  -39.60  -82.42 25.44 0.008

diel  29.86  4.18  -29.39  20.43  -65.21 24.40 0.007

2 exp  101.59  7.87  0.45  -33.98  11.24  -77.62 12.96 0.23

Release date: May 14; n = 23

simple  13.51  -36.22  -75.58 27.30 0.004

diel  38.61  4.04  -23.34  25.76  -52.95 19.39 0.036

2 exp  473.63  9.88 0.27  -29.25  13.93  -67.91 17.13 0.072
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Figure 5.4 Plots of the percentiles of the data versus percentiles of the delay models for the Lo
Granite radio-tracking data. The solid line represents perfect correspondence between the mode
data.
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Figure 5.5 Plots of the percentiles of the data versus percentiles of the delay models for the J
Day radio-tracking data. The solid line represents perfect correspondence between the mode
data.
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cases, the plots (Figure 5.4) show that the simple waiting time model cannot adeq

describe the data. The model under predicts early fish passage and overpredicts l

passage. The results of the goodness-of-fit tests (allp-values below 0.001) confirm this.

Comparing the likelihood ratios and BIC values from second model to the first s

that this model is a marked improvement in the last two data sets, but the first model

be selected for the first data set. In all three cases, the fish are more inclined to pass

the nighttime hours, with a tenfold difference between nighttime and daytime passag

in the last data set. These results are consistent with diel behavior and a tendency

nighttime passage. However, the plots show that this model still does not adeq

describe the data and suffers from the same shortcomings as the first model.

The third model was partly motivated by the shortcomings of the first two. Base

likelihood ratios and BIC values, this model is a substantial improvement over the firs

Also, the plots show that this model does a reasonable job of describing the data. A

the three data sets, the estimates ofαf andαs are roughly of the same order of magnitud

with αf fifty to one hundred times larger thanαs. For example, in the first group of fish

average waiting time for the fast fish is on the order of 20 minutes, while the slow g

waits for more than a day, on average, before passing the dam. There is a not

difference among the three data sets in the estimates of the parameterwt (the proportion of

fish in the fast group), which increases with release date, ranging from 0.257 in the e

release to 0.594 in the latest release. This is consistent with the fish being more e

migrate later in the season.

For the John Day data, the average waiting time is under 4 hours for the first grou

under 2 hours for the last two groups. As with the Lower Granite data, the simple m

cannot adequately describe the data based on the plots (Figure 5.5). Based on BIC

the diel delay model would be selected over the simple model in 2 out of 3 cases, b
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plots indicate that this model is inadequate for the John Day data. The double expo

model is a clear improvement over the simple model, based on the BIC values. Als

plots and the goodness-of-fit results indicate that this model represents the data we

Some general conclusions from this analysis are the following. Fish passed Joh

more rapidly than they passed Lower Granite, and fish passed more rapidly later 

season at both dams. The simple waiting time model could not adequately describe th

The diel passage model is an improvement but still did not adequately describe th

The double exponential model did an excellent job of describing the data.

application to travel time data

In this section, I apply the travel time/delay model equation (5.9) to pit tag data. In

application, I use treatment groups from the Snake River spring chinook and steelhe

the mid-Columbia fall chinook. The cohorts are identified by year and cohort numb

these results can be directly compared to those found in Table 4.4 through Table 4.6

travel time model results) and release information can be found in Appendix I. For

cohort, I numerically calculate maximum likelihood estimates ofr, σ andα. I also report

the likelihoods for the travel time/delay model and the null model, which is the basic t

time model (equation (4.7)). I also report the ratios of these likelihoods and the BIC v

The BIC value reported is the difference between the value for time/delay model an

null model. A negative value lends support to the null model.

For the spring chinook, all but one of the cohorts had slightly higher likelihoods fo

model with the delay component (Table 5.5). For none of the cohorts, though, wou

delay model be selected over the basic travel time model based on BIC criterion. Als

maximum likelihood estimates ofα varied substantially ranging fromα =.202

(corresponding to an average waiting time of ~ 5 days) toα = 6.81 (average waiting time

under 4 hours). On the other hand, many of theα’s were in the 3-4 range, which is
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Table 5.5 Results from the application of the travel time/delay model to Snake River, sp
chinook, PIT tag data. Each row is a cohort. A negative BIC value lends support to the null mod
text for further details of the analysis.

co
ho

rt # of
fish

parameter estimates likelihoods

r σ α l0 lA ratio BIC

1989

 3  57  3.70  6.68  0.202 -196.66 -195.56  2.19  -1.86

 10  52  4.48  7.18  0.243 -168.49 -168.00  0.96  -2.99

 15  55  6.58  9.02  0.202 -171.46 -171.46  0.00  -4.01

 17  53  5.32  8.53  3.012 -151.52 -151.48  0.09  -3.88

 26  60  8.21  10.12  3.011 -143.13 -142.85  0.55  -3.54

 33  41  12.90  9.50  0.963  -79.23  -79.22  0.03  -3.69

 34  64  12.39  17.07  3.171 -138.73 -138.15  1.16 -3.00

1990

 3  52  8.56  9.86  3.123 -119.82 -119.48  0.70  -3.25

 8  62  5.88  10.74  1.921 -177.67 -177.34  0.65  -3.47

 10  80  4.79  9.73  1.670 -246.49 -246.30  0.38  -4.00

1991

 4  84  3.80  5.19  1.265 -248.59 -248.53  0.11  -4.33

 10  62  5.27  8.48  3.303 -177.90 -177.89  0.04  -4.09

 16  63  10.32  11.91  4.889 -137.90 -137.63  0.54  -3.60

1992

 2  57  3.91  7.03  1.581 -178.31 -178.01  0.61  -3.44

1993

 4  59  4.43  6.22  0.311 -182.60 -181.88  1.43  -2.65

 9  47  6.45  7.59  4.305 -117.86 -117.83  0.06  -3.79

 15  58  10.49  7.32  6.797 -114.68 -113.49  2.38  -1.68

 21  69  11.68  10.82  4.158 -135.66 -135.57  0.19  -4.04

 26  84  12.96  12.41  4.074 -160.80 -160.35  0.90  -3.53
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consistent with the results from the radio-tracking data.

I was not able to successfully apply the more complex models (diel delay and d

exponential delay) to these data. There are probably too many parameters to be fit.

The results from the steelhead are somewhat perplexing. On the one hand, for 13

19 cohorts, we would select the model with the delay component based on the BIC cr

(Table 5.6). The parameter estimates, however, have a great deal of variability with

unrealistically high values forr and unrealistically low values forσ. I would be very

hesitant to use these results. The added component seems to make up for som

deficiency of the null model for this data but in a biologically unrealistic and inconsi

manner.

The results for the fall chinook are contained in Table 5.7. The results appear

positive – 5 out of the 6 cohorts had positive BIC values, some of which were quite

Also there is a fair degree of consistency among parameter estimates, which is de

Most of the values ofα are close to 0.1, resulting in an average waiting time of 10 d

The 1992 results are not as positive as the 1991 and 1993 results. 1992 was an ex

low flow year, and the behavior of the fish may have been affected by this.

 Figure 5.6 contains plots of the cumulative of the best fit model compared t

cumulative travel times for the six cohorts. The plots of the cohorts from 1991 and 

(the first three plots) indicate some inconsistency between the model and data. The p

the 1993 cohorts, on the other hand, show a great deal of consistency between the

and data. Clearly more years of data will help to elucidate these differences.

5.4. Predicting model parameters and travel times

The application of the two parameter, travel time model (equations (4.7) and (4.

brand and PIT tag data in the previous chapter revealed quite a bit of variabil
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Table 5.6 Results from the application of the travel time/delay model to Snake River steelhe
PIT tag data. Each row is a cohort. A negative BIC value lends support to the null model. See tex
further details of the analysis

co
ho

rt # of
fish

parameter estimates likelihoods

r σ α l0 lA ratio BIC

1989

 4  45  44.49  3.93  0.869  -83.59  -75.15  16.88  13.08

 6  63  29.93  4.48  0.968  -81.60  -75.04  13.11  8.97

 11  79  41.33  0.10  0.885  -101.52  -88.74  25.57  21.20

1990

 2  51  20.43  5.25  0.771  -79.07  -77.15  3.84  -0.09

 7  86  17.14  3.01  0.779 -134.72 -124.82  19.80  15.34

 15  80  23.72  1.94  0.712 -152.68 -133.65  38.06  33.67

 18  55  14.58  18.35  2.822 -109.54 -108.75  1.60  -2.41

 24  60  23.45  0.20  0.761  -86.53  -80.06  12.93  8.83

1991

 3  49  9.61  10.63  3.297 -107.54 -107.10  0.88  -3.01

 6  68  21.22  6.62  0.758 -111.19 -106.90  8.58  4.36

 14  85  24.91  4.13  1.318 -112.02  -94.14  35.76  31.31

 16  339  23.70  14.98  8.373  -445.62  -440.32  10.60  4.77

1992

 6  72  26.24  7.99  0.911 -131.02 -110.83  40.39  36.11

 9  69  22.26  0.69  0.600 -123.11 -105.97  34.28  30.04

 13  40  12.85  10.38  5.954  -71.46  -71.28  0.35  -3.34

1993

 2  51  11.80  15.63  2.954 -110.26 -109.50  1.52  -2.41

 9  72  18.92  15.95  6.944 -113.12 -112.68  0.89  -3.39

 11  97  36.90  0.82  0.711 -156.05 -131.73  48.63  44.06

 20  61  41.29  2.40  0.917  -81.87  -69.57  24.61  20.50
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parameter estimates among cohorts (see Table 4.2, Table 4.4, Table 4.5, and Table

order to use the model in a predictive mode, parameter values must be selecteda priori.

Thus it would be desirable to relate some of this variability to external factors, ma

parameter selection more efficient. In this section, I relate parameter estimates fro

travel time model to the factors date of release and average river flow in regression m

I apply the regression models to two data sets. The first is the Snake River trap run-

river chinook that have been analyzed previously. The second group are run-of-the

spring chinook that were captured and released at the Clearwater River trap and rec

at Lower Granite Dam, 61 kilometers downstream. Both of these groups were tagge

year from 1989-1993. The parameter estimates and covariates associated with the 

for these two groups are provided in Appendix 2 in Table A2.1 and Table A2.2. Afte

Table 5.7 Results from the application of the travel time dependent mortality model to mid-
Columbia fall chinook PIT tag data. Each row is a cohort. A negative BIC value lends support t
the null model. See text for further details of the analysis

co
ho

rt # of
fish

parameter estimates likelihoods

r σ α l0 lA ratio BIC

1991

 1 154  4.60  11.95  0.098 -655.93 -642.39  27.07  22.03

1992

 2  73  4.76  6.23  0.113 -272.21 -271.75  0.91  -3.38

 3  68  4.14  5.74  0.306 -250.37 -244.51  11.72  7.50

19933

 2  81  5.65  3.83  0.081 -316.33 -309.19  14.27  9.88

 4  75  5.74  1.90  0.090 -272.00 -264.44  15.13  10.82

 5 118  5.36  3.39  0.100 -446.97 -426.93  40.08  35.31
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Figure 5.6 Plots of the cumulative travel times for the mid-Columbia Fall chinook. The solid line
represents model predictions, and the points are the data.
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initial analysis of these data, I use the results of the regressions to predict arrival time

involves fitting the regression equations to four years of data and then applying the re

regression coefficients to a fifth year.

My procedure for applying the regression models is as follows. First, using migr

rate (r) as a response variable, I construct a sequence of regression equations. The fi

are a sequence that increases in complexity; the last two result from dropping a coe

from the most complex of the first four equations. I then apply these regression equ

to the estimated migration rates on a yearly basis. For both of the data sets, th

variability in the number of cohorts for each year, and I chose to analyze years that h

least 20 cohorts. For the Snake River groups, 1989 and 1993 have 20 or more coho

the Clearwater Trap groups, 1991 and 1992 have 20 or more cohorts.

regression equations for migration rate

Migration rate (r) will be predicted using the following six regression models:

model 1) The null model assumes thatr is unaffected by the two factors and has avera

valueβ0:

. (5.14)

Variation about the average rate is expressed byεi.

model 2) This model assumes a linear relationship between migration rate and fl

. (5.15)

River velocity is assumed to be proportional to river flow. The intercept term (β0) is a

combination of directed movement independent of flow and a potential non-zero inte

from the river velocity/river flow relationship.

r i β0 εi+=

r i β0 β1Fi εi+ +=
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model 3) The linear flow and date model assumes that fish migrate more actively

in the season, by migrating in the higher flow regions of the river and/or by spend

greater proportion of the day in the river flow versus holding up along the shore The 

assumes a linear increase in migration tendency with date as expressed by the coe

β2:

. (5.16)

model 4) A more realistic model of migration tendency would have fish migrating 

minimum rate early in the season and reach a a maximum rate later in the season. A

a number of models can produce this behavior, I have chosen to use

. (5.17)

The term in the brackets is theCDF of the logistic distribution. Early in the season fis

migrate at a rate ofrmin, and later migrate at a threshold rate ofrmin + rmax. T0 determines

when the migrate changes from low to high, andα determines the rate of this change. 

sample plot of equation (5.17) is provided in figure 5.7. Thus, the regression equatio

be formulated as a regression model

. (5.18)

model 5) This model eliminatesβ1 from model 4:

. (5.19)

model 6) This model is created by removingβ0 from model 4:

r i β0 β1 β2Di+( )Fi εi+ +=

r t( ) rmin rmax
1

1 exp α t T0–( )–( )+
-------------------------------------------------+=

r i β0 β1Fi β2Fi
1

1 exp α t T0–( )–( )+
------------------------------------------------- εi++ +=

r i β0 β2Fi
1

1 exp α t T0–( )–( )+
------------------------------------------------- εi++=
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solely
. (5.20)

regression equations forσ

To predict values ofσ I used the following two models.

model 1) The null hypothesis assumes thatσ is a constant plus error:

. (5.21)

model 2) This assumes that the “rate of spreading” is linearly related to migration

In this formulation, I use  determined from the previous regressions, which is based 

on river flow and date of release. The equation is:

t

r(
t)

80 90 100 110 120 130 140

0
5

10
15

T0rmin

rmin+ rmax

Figure 5.7 A plot of equation (5.17) withrmin = 2.0,rmax = 8.,α = 0.2, and T0 = 110.

r i β1Fi β2Fi
1

1 exp α t T0–( )–( )+
------------------------------------------------- εi++=

σi β0 εi+=

r̃
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I will select one of the six regression equations to determine  in this equation.

Least-squares regression was used to fit each of the six models forr and two models for

σ to the data from individual years. For all regressions, the parameter estimate

standard errors, deviance, and coefficient of multiple determination are reported. Sin

residuals are not necessarily normally distributed, I will not conductF-tests for levels of

significance.

results of the regression analyses

The results of this regression analysis for migration rate of the Snake River chino

contained in Table 5.8 and for the Clearwater Trap chinook in Table 5.9. These result

that some of the variability in migration rate can be related to the factors river flow and

of release. For all 4 years of data analyzed, the multipleR2 values are greater than .736 fo

model 3 through 6. The linear equation (model 3) works well; in three of the four cas

R2 values are close to those of the nonlinear models. Although model 4 yields consis

high R2 values, the standard errors are high, diminishing its predictive capabilities, a

one case (Clearwater trap, 1992) the regression results are unrealistic. Model 5 of

improvement over model 4. TheR2 values are the same as or close to those of model 4

the standard errors are small. Model 6 does not work as well as model 5, and in on

(Snake trap, 1993), it yields unrealistic results. Models 3 and 5 are the best candida

predicting migration rates. The advantage of model 3 is that is has one fewer parame

the threshold time relationship contained in model 5 might be more realistic and can

reasonably handle dates outside those observed in this analysis. A plot of regression

5 for r is contained in Figure 5.8. Note that if Julian date is held constant, there is a 

relationship betweenr and date. Also, if flow is held constant, the nonlinear relations

σi β0 β1r̃ i εi+ +=

r̃
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T x.

mo
resid.

ss
mult.
R2

mod 109.30

mod 53.17 0.514

mod 14.50 0.867

mod 21.0) 10.95 0.900

mod (4.1) 10.99 0.900

mod 2400.0) 26.84 0.754

mod 231.10

mod 86.95 0.624

mod 61.08  0.736

mod  (1.9) 23.08 0.900

mod (1.5) 33.60 0.855

mod  (2.4) 44.09 0.809
able 5.8 Regression results for the Snake River spring chinook. For models 4, 5, and 6β1 = rmin, andβ2 = rma

del
parameter estimates (standard error)

β0 β1 β2 α T0

1989 n = 23

el 1 6.90 (0.46)

el 2 -13.69 (4.39) 0.22 (0.046)

el 3 -5.51 (2.60) -0.085 (0.048) 0.0020 (0.00027)

el 4 -4.86 (2.94) 0.052 (0.16) 0.11 (0.15) 0.11 (0.12) 101.6 (

el 5 -4.49 (2.29) 0.16 (0.029) 0.089 (0.030) 95.0

el 6  -4.07(8342.00) 4.23(8346.00)  0.015  (1.26) -143.6 (15

1993 n = 25

el 1 7.91  (0.62)

el 2 -3.50  (1.89)  0.14  (0.023)

el 3 11.26  (5.10)  -0.56  (0.23) 0.0044 (0.0014)

el 4 21.80  (14.54)  -0.28  (0.23) 0.18  (0.10) 0.34  (0.11) 116.3

el 5 3.89  (0.55) 0.069  (0.0071) 0.50  (0.29) 112.3  

el 6 0.057  (0.011) 0.052  (0.012) 0.58  (0.69) 110.3
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T rmax.

mo
resid.

ss
mult.
R2

mod 60.54

mod 13.83  0.772

mod 3.70 0.939

mod  (1.8) 3.28 0.946

mod  (1.3) 3.32 0.945

mod  (1.1) 3.55 0.941

mod 120.00

mod 97.31 0.189

mod  10.34 0.914

mod 50000.3) 10.64 0.911

mod (5.6) 10.64 0.911

mod  (3.6) 15.21 0.873
able 5.9 Regression results for the Clearwater Trap spring chinook. For models 4, 5, and 6β1 = rmin, andβ2 =

del
parameter estimates (standard error)

β0 β1 β2 α T0

1991 n = 25

el 1 3.92  (0.32)

el 2 -8.06  (1.37) 0.19  (0.021)

el 3 6.49  (2.01) -0.30  (0.064) 0.0024 (0.00031)

el 4 3.55  (4.81) -0.026  (0.11) 0.078  (0.065) 0.14  (0.15) 112.2

el 5 2.26  (0.30)  0.065  (0.0067)  0.18  (0.048) 112.0

el 6 0.042  (0.0037) 0.048  (0.0054) 0.25  (0.077) 111.5

1992 n=35

el 1 4.14  (0.32)

el 2 1.02  (1.16)  0.067  0.024

el 3 5.21  (0.46) -0.28  (0.023) 0.0023 (0.00014)

el 4 4.02  (3.54)  -2.15 (600.95) 2.33 (601.00) 0.0080 (0.41)  -200.9 (

el 5 2.84  (0.20) 0.13  (0.027) 0.10  (0.03) 131.7  

el 6 0.072  (0.0031) 0.096  (0.011) 0.26  (0.12) 133.8
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Figure 5.8 A plot of regression model 5 forr (equation (5.19)). For this plot,β0 = 2.0,β2 = α
= 0.1, andT0 = 118.
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Based on the results of the previous regressions, I used model 5 to determine  

σ regressions. The results of these regressions are contained in Table 5.9. In all four cases

there is a positive linear relationship betweenσ and  (R2 = .589 - .845).

predicting travel times

The goal of the regression analysis is to determine model parameters bas

predicting factors. These in turn will be used to predict the arrival distribution of fish

r̃

Table 5.10 Regression results using estimates ofσ as the response variable.

model
parameter estimates (stand. error)resid.

ss
mult.
R2

β0 β1

Snake trap 1989

model 1 9.23 (0.48) 115.60

model 2 3.03 (0.95) 0.90 (0.13) 36.12 0.688

Snake trap 1993

model 1 7.33 (0.38) 87.75

model 2 3.29 (0.75) 0.51 (0.089) 36.06 0.589

Clearwater trap 1991

model 1 6.27 (0.35) 73.38

model 2 2.67 (0.58) 0.92 (0.14) 25.16 0.657

Clearwater trap 1992

model 1 7.17 (0.51) 307.00

model 2 0.80 (0.52) 1.54 (0.12) 47.70 0.845

r̃
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downstream site based on the passage distribution at an upstream site. In this se

demonstrate this procedure by using the results from regressions to try to predict the

times of the 1993 Snake trap chinook cohorts and the 1992 Clearwater trap chinook

the 1993 sample size is small) at Lower Granite Dam. In this analysis, I apply th

parameter travel time model with parameters predicted for each cohort to dete

predicted arrival time distributions at Lower Granite Dam. I then pool together

predicted arrival distributions for the cohorts to yield an arrival distribution for all the

through the year. This distribution is compared to the data and the sum of the sq

deviations is reported.

For comparison purposes, I use three approaches to determine model parameter

first approach, I pool together the cohorts from the four other years, apply regression

5 for r and model 2 forσ, and determine regression coefficients for these data. 

regression coefficients along with the covariates date of release and river flow are the

to determine model parameters for the fifth year’s cohorts. This approach uses indep

data from four years to predict arrival time distributions for the fifth and is the stan

method for using the travel time model predictively.

In the second approach, instead of using independent data to determine reg

coefficients, I use the “in-year” regression coefficients to predict model parameters. In

words, I take the regression coefficients from the 1993 analysis (reported in Table 5.

use the 1993 covariates to determine model parameters for the 1993 cohorts. Agai

model 5 forr and model 2 forσ. This is a bit circular but represents the best that th

regression equations can do if we have perfect knowledge of the regression coefficie

The third approach uses the maximum likelihood estimates (mle’s) of the m

parameters for each of the cohorts. This represents the best that travel the model ca

predict arrival times if we have perfect knowledge of the individual cohorts.
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The regression results for the four years pooled data are contained in Table 5.11

are the coefficients to be applied to the fifth year’s data with the first method outlined a

Even with the pooled data, the regressions forr are reasonable (R2 = .681 and .840). Forσ,

the Clearwater trap regressions had a very lowR2 value, indicating that this model offer

little improvement over the null model of constantσ.

Plots of the predicted arrival distributions and the actual observations are sho

Figure 5.9 (Snake trap) and Figure 5.9 (Clearwater trap). For the Snake trap spring ch

the predicted arrival distribution based on independent data (top plot) captures the g

shape of the data but misses some of the details. The predicted arrival distribution ba

the “in-year” regression (middle plot) reduces the sum-of-squares by 18 per cent and 

to capture some of the bimodality of the data. The predicted curve based on the m

sharply two-peaked (bottom plot) and confers an additional 46 per cent reduction 

Table 5.11 Results from the application of regression model 5 forr and model 2 forσ
to the Snake trap and Clearwater trap spring chinook four year composite data.

model

parameter estimates
(standard error) resid.

ss
mult.
R2

β0 β2 α T0

Snake trap chinook 1989-1992

model 5
for r

1.53
(0.69)

0.099
(0.019)

0.099
(0.036)

105.8
(3.9)

81.20  0.681

model 2
for σ

2.50
(0.31)

0.95
(0.12)

145.90 0.519

Clearwater trap chinook 1989-1991, 1993

model 5
for r

2.61
(0.39)

0.14
(0.030)

0.096
(0.028)

129.3
(4.8)

61.97 0.840

model 2
for σ

6.04
(0.54)

0.21
(0.11)

222.6 0.060
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Figure 5.9 Plots of predicted arrival times (solid line) and observed arrival times (points) for the
Snake River trap chinook. In the top plot, the predicted curve is based on independent data. In 
middle plot, the predicted curve is based on an “in-year” regression to determine travel tim
parameters. In the bottom plot, the predicted curve is obtained after estimating travel tim
parameters for each cohort. Also, the sum of the squared deviations between model and dat
reported for each plot.
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Figure 5.10 Plots of predicted arrival times (solid line) and observed arrival times (points) for
the Clearwater trap chinook. In the top plot, the predicted curve is based on independent data. In
middle plot, the predicted curve is based on an “in-year” regression to determine travel tim
parameters. In the bottom plot, the predicted curve is obtained after estimating travel tim
parameters for each cohort. Also, the sum of the squared deviations between model and dat
reported for each plot.
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sum-of-squares, a substantial improvement over the previous two. It is interesting t

that while the “in-year” regression for migration rate had anR2 of .855 and .589 forσ, using

the actual mle’s reduced the sum-of-squares of the arrival distribution by over 50 pe

(that is, comparing the middle and bottom plots).

For the Clearwater trap fish (Figure 5.9), the “in-year” regression based a

distribution reduces the sum-of-squares by 10 per cent, and the mle based distribu

an additional 15 per cent over the arrival distribution based on independent data. 

case, the arrival distribution based on independent data performs well when compa

the “in-year” arrival distribution.

For both these two data sets, the arrival distribution based on independent data c

the general shape of the observations. While comparisons to the plots based on “in

regressions and on mle’s indicate that improvements could be made, these improv

may not necessarily enhance the utility of the model. The types of management a

based on these plots (such as increased spill or augmented flows) would probably

tuned to fine scale variability but would be based on the gross features captured by 

plots.
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6. Travel time model with individual covariates

6.1. Introduction

The models developed in the preceding chapters have all assumed that cohorts

released at the same time have identical behavior, an assumption that makes the

more tractable. In reality, the cohorts are probably heterogeneous, and variability ma

in characteristics that affect individuals’ behavior and ultimately their travel time. In

chapter, I develop procedures for incorporating individual variability into the travel 

model. Individuals can be distinguished by biotic and abiotic factors, and rel

variability in travel times to variability in individual covariates will enhance the predic

capabilities of the models.

The biotic trait that I incorporate into the model is fish length. The lengths of all

tagged fish are measured at the time of release, and the effects of this covariate

determined for single release groups. The abiotic factors I examine at the individua

are average river flow, dates of release, and river temperature. Since fish release

same time encounter similar levels of these factors, series of releases from the sam

are required to examine the effects of these covariates.

In the next section of this chapter, I develop the models that include indivi

covariates and statistical procedures to analyze them. In the following sections, I app

technique to several data sets. I first apply the model with only the length covariate

this covariate is commonly available and varies within single release groups. This mo

applied to several releases of spring and fall chinook and steelhead. I then expand the

to incorporate date of release, river flow, and river temperature and apply this to a se

releases of fall chinook in the Snake River in the years 1991-1993 and sockeye rele
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6.2. Development of model and statistical technique

I assume that each fish has an arrival distribution based on equation (4.7), 

migration rate (determined by the parameterr) is uniquely determined based on a covaria

vector X i. In other words, the arrival distribution of theith individual is ,

determined by the parameter vector , which is common to the group, and the cov

vectorX i, which is unique to the individual. The parameter vector is defined as

, (6.1)

and in the simplest case,ri is determined by a multiple linear function of the covariates a

β’s:

. (6.2)

Alternatively, the covariates andβ’s may be incorporated in mechanistic function

motivated by salmon biology.

If ti is the observed arrival time of theith individual, the likelihood function is:

. (6.3)

The parameters can be determined by maximizing the log likelihood function,

, (6.4)

with respect to . This is performed numerically using the downhill simplex met

(Nelder and Mead, 1965; Press, et al., 1988).

gi t θ
˜

X i,;( )

θ
˜

θ
˜

β0 β1 β2 … β, p σ, , , ,( )=

r i β0 β1Xi1 β2Xi2 … βpXip+ + + +=

L θ
˜

X i,( ) gi ti X i θ
˜

,;( )
i 1=

n

∏=

l θ
˜

( ) L θ
˜

( )log gi ti X iθ˜
;( )log

i 1=

n

∑= =

θ
˜



137

models

odel

 model,

ditional

g the

tudies

 more

te than

t

.

e

 of the

e null

han

BIC

tive
To analyze the importance of each covariate, I construct a sequence of nested 

beginning with the simplest model that contains only the intercept term to the fullest m

with all the covariates. The covariates are added one at a time. For each alternative

parameters are estimated, and likelihoods are computed. The importance of each ad

covariate (in the form that it is included in the model) is assessed by comparin

likelihoods and BIC values of alternative models.

6.3. Applications with length covariate

The importance of fish length to migration rate has been analyzed in several s

(Brett, Hollands, and Alderdice, 1958; Washington, 1982). Longer fish are generally

mature (in terms of age and smoltification) and are expected to migrate at a faster ra

shorter fish. As a first application of the procedure, I compare the null hypothesis thari is

constant within a cohort to the alternative hypothesis thatri is linearly related to fish length

In other words,

H0:

HA: .

For each cohort, likelihoods,l0 and lA, are computed for the null and alternativ

hypotheses respectively. Comparing these two likelihoods yields an assessment

performance of the two models relative to each other. With a likelihood ratio test, th

hypothesis is rejected at the 0.05 level if the ratio is greater thanχ2
1(0.05) = 3.84. Using

Akaike’s information criterion (AIC) the null model is rejected if the ratio is greater t

2.0. Using the Bayesian information criterion (BIC), the null model is rejected if the 

for the length model (BICl) is greater than the BIC for the null model (BIC0), and I report

the valueBICl - BIC0. I will use these values as a rough measures of the rela

r i β0=

r i β0 β1 lengthi⋅+=
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Three sets of cohorts are analyzed in this section. The first two sets are Snake

spring chinook and steelhead analyzed in previous chapters. The third set is the

Columbia fall chinook.

results

The results of the analysis of the 3 data sets are contained in Table 6.1 - Table 6.5

tables provide averages and standard deviations of length for each release grou

contained in the tables are parameter estimates for the length model as well 

likelihoods for the null and alternative models, the ratios between the two, and the

values.

There is some support for the length model in the Snake River chinook cohorts (

6.1 and Table 6.2). Nine out of the 18 cohorts had likelihood ratios greater than 2.0, 

is the AIC value at which the null hypothesis is rejected, but the null model is only rej

for five out of 18 cases based on the BIC values. The parameter estimate resu

somewhat contrary to what I expected, however. In 14 out of 18 cohorts,  is neg

indicating that the model predicts increasing migration rate for decreasing fish lengths

is also true for 8 out of the 9 cohorts that had likelihoods ratios greater than 2.0.

The results for the steelhead (Table 6.3 and Table 6.4) are similar to the Snake

chinook results. Five out of the 19 cohorts had likelihood ratios greater than 2.0, and

out 19 has positive BIC values, supporting the null model in most cases. Also, eight 

19 had negative values for .

Although the length covariate appears to have some importance in the travel time 

for these two groups, it would be difficult to implement the length model based on 

β̂1

β̂1
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 0.15  -3.86

 0.46  -3.58

 3.60  -0.16

 2.06  -2.10

 2.70  -1.53

 0.59  -3.60

 1.04  -3.12

 4.17  0.18

 5.58  1.39

 2.29  -1.66
Table 6.1 Results from the application of the individual covariate travel time model with leng
Snake River “run-of-the-river” chinook. Note that a negative BIC value lends support to the null m
without the length covariate).

cohort
#

# of
fish

length parameter estimates likelihoods

mean s.d. β0 β1 σ l0 lA rat

1989

1  55 128.25  9.28  3.61  -0.006  4.42 -177.51 -177.44

2  57 128.18  10.51  4.99  -0.015  7.02 -199.30 -199.07

3  43 128.21  12.47  10.42  -0.056  7.26 -148.90 -147.10

4  64 134.77  12.06  15.49  -0.059  9.97 -159.53 -158.50

5  69 126.26  18.92  12.81  -0.036  8.34 -156.14 -154.79

6  66 124.61  18.06  9.53  -0.016  7.75 -152.75 -152.46

7  64 115.88  17.39  4.16  0.030  11.26 -164.28 -163.75

1990

1  54 115.07  13.02  16.86  -0.069  7.83 -114.29 -112.20

2  66 118.95  14.24  15.49  -0.077  10.07 -182.78 -179.99

3  52 117.13  15.14  9.54  -0.028  5.90 -122.53 -121.38
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BIC

0.33  -3.67

2.97  -1.22

0.01  -3.92

1.82  -2.10

0.79  -3.31

 7.18  3.35

2.68  -1.48

0.04  -4.00

0.27  5.97
Table 6.2 Results from the application of the individual covariate travel time model with leng
Snake River “run-of-the-river” chinook. Note that a negative BIC value lends support to the nu
without the length covariate).

cohort
#

# of
fish

length parameter estimates likelihoods

mean s.d. β0 β1 σ l0 lA ratio

1991

 1  55 124.22  12.06  4.00  -0.009  4.82 -178.31 -178.14  

 2  66 128.32  9.84  9.03  -0.039  6.02 -197.19 -195.71  

 3  51 127.88  10.16  5.61  0.004  8.35 -135.23 -135.22  

1992

 1  50 130.00  9.32  8.14  -0.032  5.51 -147.50 -146.59  

1993

 1  60 127.08  10.77  1.67  0.015  5.18 -182.64 -182.25  

 2  46 123.72  11.22  10.29  -0.047  4.54 -124.04 -120.45

 3  64 120.33  13.07  3.21  0.041  6.92 -135.87 -134.53  

 4  57 122.02  10.87  12.48  -0.009  7.41 -95.49 -95.47  

 5  74 121.14  18.26  -4.94  0.148  15.13 -154.11 -148.98  1
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 2.20  -1.96

 0.97  -3.40

 0.11  -3.74

 0.17  -3.94

 8.76  4.21

 0.50  -4.49

 0.11  -4.10

 0.35  -3.76
Table 6.3 Results from the application of the individual covariate travel time model with leng
of Snake River steelhead. Note that a negative BIC value lends support to the null model (that 
length covariate).

cohort
#

# of
fish

length parameter estimates likelihoods

mean s.d. β0 β1 σ l0 lA rati

1989

 1  64 185.89  29.98  27.94  -0.042  12.62 -84.61 -83.51

 2  79 182.48  20.62  8.13  0.058  17.19 -126.17 -125.68

 3  47 168.94  17.28  18.66  -0.019  11.69 -90.22 -90.16

1990

 1  61 182.57  23.54  15.63  -0.011  9.93 -101.38 -101.30

 2  95 176.74  14.80  0.67  0.067  6.84 -158.91 -154.53

 3 146 171.97  16.02  8.33  0.021  12.01 -287.36 -287.11

 4  68 173.94  16.79  6.42  0.015  13.98 -168.08 -168.02

 5  61 169.43  17.40  11.38  -0.014  8.22 -128.11 -127.93
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 0.64  -3.27

 3.15  -1.69

 0.02  -4.01

 0.54  -3.39

 0.31  -3.89

 0.36  -4.68

 3.15  -1.35

 0.88  -3.03

 14.66  10.19

 5.66  1.59

 0.26  -3.43
Table 6.4 Results from the application of the individual covariate travel time model with leng
Snake River steelhead. Note that a negative BIC value lends support to the null model (that is, 
covariate).

cohort
#

# of
fish

length parameter estimates likelihoods

mean s.d. β0 β1 σ l0 lA rat

1991

 1  50 181.12  16.12  6.17  0.023  7.15 -89.39 -89.07

 2 126 178.67  15.29  24.78  -0.055  10.62 -201.54 -199.96

 3  56 173.95  16.23  13.99  -0.005  9.45 -94.36 -94.35

 4  51 165.82  17.33  11.55  0.050  12.75 -68.50 -68.23

1992

 1  67 181.40  17.63  8.21  0.011  6.40 -114.00 -113.84

 2 154 176.60  17.70  17.05  -0.014  10.23 -245.01 -244.83

 3  90 171.41  14.71  15.14  -0.038  7.34 -214.97 -213.39

1993

 1  50 178.28  21.30  7.47  0.032  10.85 -88.79 -88.35

 2  87 177.00  20.10  -3.21  0.114  9.44 -123.06 -115.73

 3  59 173.93  19.03 -13.20  0.183  17.88 -100.69 -97.86

 4  40 175.38  16.32  10.32  0.032  12.18 -64.90 -64.77
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data because of the variability in parameter estimates. More information will be requi

understand why the relationship between migration rate and fish length is some

positive and sometimes negative.

The results for the mid-Columbia fall chinook (Table 6.5) strongly support the inclu

of the length covariate in the travel time model. All the BIC values are positive, with 4

5 values greater than 10.0. Also there is consistency in the values of  and , with

estimates of  in the 3.0 - 5.0 range and most estimates of  in the 0.10 to 0.14 

Thus, including length information in the travel time model for these fish would be q

useful.

6.4. Multiple covariate model

In this section I will extend the individual covariate model to include several covari

This approach is useful when fish are released over an extended period of time so th

is not only variability in population traits but also in river conditions. It is also useful w

sample sizes for individual release groups are small, and cohorts of adequate sam

cannot be formed from fish released over a short period of time. I apply this model t

groups: fall chinook tagged in the Snake River above Lower Granite Dam during the

1991-1993, and wild sockeye tagged at Rock Island dam on the mid-Columbia durin

years 1992 and 1993 and recaptured at McNary Dam.

In addition to the length covariate, I also incorporate the covariates date of release

temperature at release, and average river flow during the individual’s migration perio

this analysis I add the covariates one at a time in sequential linear models. I chose to

for the sake of simplicity, but the covariates could be incorporated in nonlinear m

based on salmon behavior. Since the covariates are being added one at a tim

importance of adding the new covariate to the previous model is observed. I ad

β̂0 β̂1

β0 β1
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ratio BIC

 5.33  0.76

 49.11  44.79

 38.57  34.43

 53.21  49.10

 42.24  37.50
Table 6.5 Results from the application of the individual covariate travel time model with l
of mid Columbia fall chinook. Note that a negative BIC value lends support to the null mode
the length covariate).

cohort
#

# of
fish

length parameter estimates likelihoo

mean s.d. β0 β1 σ l0 lA

1991

 2  97  63.32  4.38  -0.60  0.062  6.86 -393.05 -390.38

1992

 1  75  71.37  7.16  -5.11  0.125  5.58 -288.71 -264.16

 4  63  69.00  7.21  -3.64  0.102  4.60 -239.05 -219.76

1993

 1  61  66.80  6.49  -5.36  0.145  3.99 -222.15 -195.54

 3 115  66.20  5.46  -4.96  0.134  5.92 -425.60 -404.48
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covariates as a multiple linear model in the following nested sequence:

H0:

H1:

H2:

H3:

H4.: ,

where

X1 = fish length (in mm),

X2 = average river flow during the migration period (kcfs),

X3 = Julian date of release, and

X4 = river temperature (degrees centigrade) at time of release.

Other sequences could also have been used.

I apply this sequence of models to each year of data from both data sets. I es

parameters (β’s andσ) and report likelihoods for each model. The effect of added covari

can be assessed by computing likelihood ratios between successive models a

comparing BIC values. Note that in this case, I report BIC values for the individual mo

so that any of the two models can be compared directly, with the simpler model (that 

one with fewer parameters) being rejected if it has a lower BIC value.

r i β0=

r i β0 β1 X1i⋅+=

r i β0 β1 Xi1 β2 X2i⋅+⋅+=

r i β0 β1 Xi1 β2 X2i β3 X3i⋅+⋅+⋅+=

r i β0 β1 Xi1 β2 X2i β3 X3i β4 X4i⋅+⋅+⋅+⋅+=
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The results for the Snake River fall chinook are contained in Table 6.6. The cov

date of release is extremely important in all three years, with likelihood ratio values ra

from 22.86 to 104.28 larger than the next smaller model nested within (i.e., comparin

model with length flow and date to the one with length and flow). On the other han

temperature covariate is never important, with likelihood ratio values ranging from 0

0.79 larger than those of the model nested within. Length and flow both appear

important covariates, but the results are not as strong as with the date covariate, part

in the 1992 data. For all three years, it appears that the best model is the one with 

flow, and date (model 3).

The results for the sockeye are contained in Table 6.6. The length covariate app

be the most important with large increases in the likelihoods relative to the null model.

is also important, with large increases in the likelihoods associated with adding

covariate to the model. Also, date appears to be an important covariate but not as im

as the previous two. In both years, temperature had little effect on the model. The o

inclusion may have some importance on the relative importance of the covariates,

appears that the best model should incorporate length, flow, and date, as with t

chinook.

log likelihood versus log sigma

An interesting result is observed by plotting log likelihood versus log sigma for t

alternative models in each of the three years (Figure 6.1). In each year the relati

between these two variables is almost perfectly linear. The inverse relationship ind

that some of the variability in arrival times that was attributed to random movement 

null model is actually the result of population heterogeneity. Thus the more rel

information about the individuals available, the more precise the predictions about a
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Table 6.6 Results of the application of the individual covariate model to Snake River fall chinoo
Note that the BIC values are reported for each of the hypotheses. When two hypotheses are com
the simpler model is not rejected if it has a larger BIC value than the more complex model.

hy
po

th
es

is parameter estimates likelihoods

β0
(int.)

β1
(len.)

β2
(flow)

β3
(date)

β4
(temp)

σ lik. ratio BIC i

1991 n = 32

0  1.41  4.91 -142.04 -291.01

1  -1.56  0.044  4.18 -136.90  10.27 -284.20

2  -3.41  0.050  0.028  3.74 -133.31  17.45 -280.48

3 -17.07 -0.019  0.072  0.099  2.61 -121.88  40.31 -261.09

4 -16.79 -0.018 0.072 0.097 -0.0137 2.61 -121.86 40.34 -264.51

1992 n = 40

0  3.03  11.27 -164.59 -336.56

1  -2.25  0.069  10.58 -162.07  5.05 -335.20

2  -5.66  0.074  0.074  10.20 -160.61  7.96 -335.98

3 -43.91  0.004  0.343  0.234  5.95 -139.04  51.10 -296.52

4 -42.78 0.010 0.331 0.215 0.1082 5.89  -138.65 51.89 -299.43

1993 n = 251

0  1.42  6.89 -1174.27 -2359.59

1  -1.07  0.034  6.05 -1156.74  35.07 -2330.06

2  -3.39  0.043  0.023  4.90 -1119.92 108.70 -2217.74

3 -15.43  0.014  0.053  0.076  3.73 -1067.78 212.98 -2163.19

4 -15.43  0.014  0.053  0.075  0.0002  3.73 -1067.78 212.98 -2168.71
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Table 6.7 Results of the application of the individual covariate model to mid-Columbia sockey
Note that the BIC values are reported for each of the hypotheses. When two hypotheses are com
the simpler model is not rejected if it has a larger BIC value than the more complex model.

hy
po

th
es

is parameter estimates likelihoods

β0
(int.)

β1
(len.)

β2
(flow)

β3
(date)

β4
(temp)

σ lik. ratio BIC i

1992 n = 148

0  16.37  35.11 -495.68 -1001.35

1 -14.50  0.265  29.63 -470.42  50.53 -955.83

2 -46.60  0.292  0.504  26.58 -454.35  82.67 -928.69

3 -63.34  0.266  0.459  0.192  25.95 -451.00  89.37 -926.99

4 -63.62  0.267  0.461  0.193  0.0015  25.99 -451.00  89.37 -931.98

1993 n = 521

0  21.24  40.83 -1627.24 -3266.99

1 -33.85  0.612  31.24 -1499.07 256.35 -3016.91

2 -34.55  0.497  0.099  30.59 -1477.03 300.43 -2979.08

3 -22.91  0.609  0.142 -0.213  30.07 -1470.02 314.45 -2971.31

4 -23.15  0.610  0.143 -0.212  0.0002  30.17 -1470.00 314.47 -2977.54
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Figure 6.1Plots of log likelihood versus logσ for the 5 alternative models.
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7. Movements of individuals

7.1. Introduction and motivation

In constructing models of the dispersal of organisms, one of the basic choic

whether to focus on individuals or populations. This choice is often dictated by

objective of the model. For instance, models of the spread of populations on the time

of generations needn’t be concerned with individual movements. On the other hand

population dispersal models do make assumptions about the movements of indiv

and, particularly if the model operates on relatively short time scales, it is often inform

to determine the validity of the assumptions. Analyzing data of individual movement

means of doing this.

One of the assumptions of the travel time model described previously (equations

and (4.8)) is that the movements of individuals follow a Wiener drift process. A restri

property of this process is that disjoint movement increments are independent, no 

how fine the time scale. Clearly this property is limiting in describing the moveme

animals. In the short term, an animal moving at a particular velocity will likely continu

that velocity. In the longer term, however, independent increments may be realistic.

Analyzing group release travel time data, as I have done in previous chapters, 

confirm the Wiener drift process assumption. With this type of data, information a

individual movements is lost, and several different movement processes could pr

similar arrival distributions. To overcome these limitations, I analyze the movemen

juvenile salmonids observed in radio-tracking experiments. I compare these data 

models: the Wiener process and a model based on the Ornstein-Uhlenbeck proces

latter model has the following two properties: 1) In the short term, disjoint increment
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correlated; and 2) as the time increment gets large, the process becomes indistingu

from the Wiener process. In addition, the models are nested; as the correlation param

the O-U based model gets large, the behavior of the two models approaches each o

In analyzing the radio-tracking data, I will address the following questions: 1) Is

distribution of movements consistent with the models, and if so, which model is 

appropriate; and 2) is the correlation among movements important at the time scale

data.

7.2. Models

Wiener process

The Wiener process (or Brownian motion) is the continuous analog to the sta

random walk (Ross, 1985). The Wiener process with drift can be derived from a b

random walk, a random walk in which the probabilities of moving to the right and to

left are not equal (but are constant). The processX(t) is said to be the Wiener drift proces

if it has the following properties (Ross, 1985):

1) X(0) = 0;

2) for t > 0,X(t) is normally distributed with meanrt and varianceσ2t;

3) each disjoint segment of an individual path is independent.

As stated above, the major drawback of this process for modeling movements of orga

is property 3.

telegrapher’s equation

A natural extension of this model that incorporates correlation among moveme

based on a correlated random walk. The correlated random walk is presented as f

Let Xt be a discrete time, discrete space process with  andt = 0, 1, 2, ... . Thex integers∈
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transition probabilities ofX are defined as follows:

p = Pr(particle moves one unit in the same direction as the previous moveme

q = Pr(particle moves one unit in the opposite direction of the last step)

p + q = 1. (7.1)

The standard initial conditions are that x0 = 0, and for the first step, the probability o

moving to the right = the probability of moving to the left = 1/2.

Following the approach of Goldstein (1951), it is possible to derive a limi

continuous distribution based on this process called the telegrapher’s equation:

. (7.2)

The same result can be obtained by beginning with the continuous (in time and 

analog to the correlated random walk. In this process, a particle moves in one directio

a constant speedγ until it reverses direction and then moves in the opposite direction 

the same speed. The direction reversing process is governed by a Poisson proce

parameterλ.

The first two moments of the displacement process defined by the telegraph eq

are easily obtained and are quite tractable:

(7.3)

. (7.4)

For smallt

(7.5)

t2

2

∂
∂

p x t,( ) 2λ
t∂

∂
p x t,( )+ γ 2

x2

2

∂
∂

p x t,( )=

E X( ) 0=

Var X( ) γ 2 t
λ
---

1
2λ2
--------- 1 e 2λt––( )–=

Var X( ) γ 2t2≈
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which is characteristic of wave equations. Also whent is large

(7.6)

which is similar to that of the Wiener process with diffusion coefficient .

Equation (7.2) can be solved forp(x,t) with initial conditions p(x,0) = 0 and

(7.7)

, (7.8)

whereIoandI1are modified Bessel functions andδ is the Dirac distribution. Unfortunately

the pdf derived from this equation is rather complex and is probably not practical as a 

of animal movement at the level of the individual, although it has been applie

population patterns (Holmes, 1993).

O-U based model

An alternative model of correlated movement is based on the Ornstein-Uhlenbec

U) process (Uhlenbeck and Ornstein, 1930). The O-U process was first presented

alternative model for Brownian motion and was developed to describe the velociti

particles. The model operates under the assumption that as a particle travels with 

velocity, it is increasingly likely to contact another particle and meet resistance. Thus,

is a tendency for particles to be brought back to zero velocity, and with the O-U pro

the strength of this tendency is linearly related to the magnitude of the velocity. Th

correlation between movements occurring over short periods of time and a tende

return to zero velocity. This type of process resembles, in some cases, the mov

Var X( ) γ 2

λ
-----t≈

D γ 2 2λ⁄=

p x x 0,( )∂⁄∂ 0=

p x t,( ) e λt–

2
--------- δ x γt–( ) δ x γt+( ) λ

γ
--- I 0 Λ( ) λt

Λ
----- I 1 Λ( )+ 

 + +=

Λ λ t2 x2 γ 2⁄–=
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patterns of animals on a short time scale. From this velocity based model, the distri

of displacements can be obtained, which is compatible with individual movement da

To begin, letX(t) be the position of a particle at timet. DefineV(t) as the velocity at time

t. Since the O-U process applies to particles with zero mean velocity, the mean m

subtracted off. Denote

. (7.9)

If U(t) follows an Ornstein-Uhlenbeck process, then:

. (7.10)

The parameterσ characterizes the spread of the particles, and the parameterβ characterizes

the propensity of the particle to return to its mean velocity. The conditional distribu

, t > s, is a Gaussian distribution with

(7.11)

. (7.12)

In contrast to the Wiener process, the variance of the O-U process stabilizes ast gets large.

The displacements predicted by the process can be obtained by integrating:

. (7.13)

HereTi is defined as the time intervalti - ti-1. This integration is considered a stochas

integration becauseU(s) is a stochastic process (Cox and Miller, 1965). As reported

Doob (1942)Y has a Gaussian distribution with

U t( ) V t( ) V–=

t∂
∂

p u t,( )
u∂

∂ βup( ) σ2

2
------

u2

2

∂
∂p

+=

p u t, u0 s,( )

E U t( )( ) u0exp kt–( )=

Var U t( )( ) σ2

2β
------ 1 exp 2βt–( )–[ ]=

Y Ti( ) X ti( ) X ti 1–( )– U s( )ds

ti 1–

ti

∫= =
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(7.14)

. (7.15)

Interestingly, the mean and variance are the same as those of the telegrapher’s e.

Also,

. (7.16)

Thus the joint distribution of Yi and Yi+1 is a bivariate normal with mean and variance giv

in equations (7.14) and (7.15) and with correlation coefficient

. (7.17)

An important feature of this equation is that as the time scale gets larger, the corre

decays. Also, the correlation coefficient depends only onβ and not onσ, and Figure 7.1

shows that there is an inverse relationship betweenβ and .  In addition, as

 (with σ/β a constant), the variance approaches a linear relationship with time

the covariance goes to 0. The process then becomes indistinguishable from the 

process.

If the time increments are equal, the data can be analyzed with standard time

analysis. If the data have unequal time increments, as with many radio-tracking studi

analysis is not as simple. The equations describing the Wiener drift process and th

E Y( ) 0=

Var Y( ) 2σ2

β2
--------- βT 1– e βT–+[ ]=

Cov Yi Yi 1+,( ) σ2

β2
------ 1 e βTi–– e βTi 1+–– e β Ti Ti 1++( )–+[ ]=

ρ Yi Yi 1+,( )
Cov Yi Yi 1+,( )

Var Yi( )Var Yi 1+( )
------------------------------------------------=

1 e βTi–– e βTi 1+–– e β Ti Ti 1++( )–+[ ]
2 βT 1– e βTi–+[ ]1 2/ βT 1– e βTi 1+–+[ ]1 2/
-----------------------------------------------------------------------------------------------------=

ρ Yi Yi 1+,( )

β ∞→
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displacement process do not require equal time increments, though, and thus can fo

basis of the analysis of unequal time increment data.

7.3. Statistical analysis

The data are a series of observations of an individual with the positionX(ti) noted at

time ti, i = 0,1,2,...,n. The data are converted to a two dimensional vector (yi, Ti), where

 is the ith displacement and  is the time duration of t

displacement.

The first question I address is do theyi’s agree with property (2) of the Wiener proces

In other words, do theyi’s have the distribution . To test this, I use Liliefor

Figure 7.1 The relationship between the parametersρ andβ based on equation (7.17). The time
increment isTi = Ti+1  = 1.0.
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test for normality (Conover, 1980). This is a Kolmogorov-Smirnoff type of test specifi

a population of normal variables with unknown mean and variance. The first step

estimate the parametersr andσ, which are then used to determine mean and variance. 

maximum likelihood to estimate the parameters. The likelihood function is

. (7.18)

The maximum likelihood estimator (mle) forr is:

, (7.19)

which is just the average downstream velocity of the individual. To estimateσ, I plug  into

the likelihood function and maximize log(L) with respect toσ numerically, using a

downhill simplex method (Press, et al. 1988).

The statistic of Liliefor’s test measures the deviation of the observations fro

cumulative normal distribution. This statistic is compared to a lookup table to determin

approximate probability. Normality is rejected for smallp-values.

The third property of the Wiener process is independent increments. If normal

rejected, then the increments can be transformed to standard normal variables as fo

. (7.20)

The property of independence of successive increments can be tested for by deter

whether theZi’s are uncorrelated. (In general, showing that two random variables

uncorrelated does not demonstrate independence; in the case of normal random v

however, it does). The correlation between successive movements can be determ

L r σ Y;,( ) f W yi Ti r σ,;,( )
i 1=

n

∏=

r̂
yi∑
Ti∑

------------=

r̂

Zi

Yi r̂ Ti–( )

σ̂ Ti

------------------------=
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computing the correlation coefficient

, (7.21)

wheren is the number of movement increments observed. To test the null hypothesis

(or negative) correlation among successiveZi’s versus the alternative hypothesis of positi

correlation, the test statistic

(7.22)

is compared to at distribution withn-2 degrees of freedom (Sokal and Rohlf, 1981). T

null hypothesis is rejected for smallp-values.

To estimate the parameters for the O-U based model, I follow a similar procedure.

subtract off the average (time scaled) displacement from the observations. This is id

to the first step above and can be expressed as

. (7.23)

The transformed variableY' has mean displacement of 0. The likelihood function is

, (7.24)

wherefOU is a bivariate normal distribution with parameters defined in equations (7

(7.15), and (7.16). Again, the parametersσ andβ are estimated by maximizing the log o

(7.24) numerically with respect to the parameters.

The importance of the parameterβ, which determines correlation in the O-U bas

model, can be assessed by computing the log likelihood ratios and BIC values. I rep

difference between the BIC values for the O-U based model and Wiener drift mode

ρ Zi Zi 1+,( ) 1
n 1–
------------ Zi Zi 1+⋅

i 1=

n 1–

∑=

tρ ρ n 2–
1 ρ2–
--------------=

Y'i Yi r̂ t–=

L σ β Y';,( ) f OU Y'i Y'i 1+ σ β,;,( )
i 1=

n 1–

∏=
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null model (Wiener drift model) is rejected for positive BIC values.

7.4. Application to radio-tracking data

data

The study site is the John Day reservoir on the Columbia River in front of the John

Dam (Giorgi, et al. 1986). At this site, the river is relatively straight and is approximat

kilometer wide. The study was conducted during the Summer of 1983. Individual fish

collected at the John Day Dam, radio tagged, and released 6.3 kilometers upstrea

the dam. Two boats followed the individuals with the fish’s position being noted by 

held receivers at approximately 20 minute intervals. The individuals were followed fo

to eight hours with radio tracks up to six kilometers long. 17 chinook and 8 steelhead

released and followed. Many of the individuals had tracks that were too short for ade

analysis. I chose to analyze the tracks of the three chinook and two steelhead that

least 19 “fixes” and track durations of at least six hours. Since the primary interest in

data is the downstream movement of the individuals, I ignored the horizontal move

of the fish and converted the data to downstream displacements. Figure 7.2 contain

of downstream displacement versus time for the five individuals.

results

 The results of the data analysis are contained in Table 7.1. For two out of three

chinook and one out of two steelhead, normality is not rejected based on Liliefor’s tes

both of these chinook, though, zero or negative correlation is rejected at theα = 0.05 level.

For the steelhead (steelhead 170), zero or negative correlation is not rejected, and t

two properties of the Wiener process are not rejected for this individual.

For the three chinook, the O-U displacement model is supported over the Wiene

model based on BIC values. For the two steelhead, the opposite is true, and the 
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Figure 7.2  Plots of downstream displacement versus time for the radio tagged,
individual chinook and steelhead. The slope of the straight line represents the average
downstream displacement rate.
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T ucted for the individuals where normality
is not sed on the BIC value, the null
mode e text.

likelihoods

Ind ratio BIC

chin 080 4.847 1.78

chin 64 7.630 4.80

chin 058 5.794 2.85

stee .06 0.000 -3.09

stee 57 0.650 -2.24
able 7.1Results from the radio tracking data analysis. The test on the correlation coefficient is only cond
 rejected based on Liliefor’s test. For Liliefor’s test, normality is rejected for lowp-values (typicallyp < .05). Ba
l (the Wiener drift model) is rejected for positive values. Other details of the analysis are contained in th

track information Wiener process
O-U based

model

ividual
# of
fixes

length
(min.)

parameters Liliefor’s correlation

T p

ook 627 24 445 9.59 68.07 0.145b 0.40 0.032 19.37 0.

ook 633 19 487 7.57 35.00 0.208e 0.61 7.64 0.0

ook 876 21 399 13.58 58.91 0.175c 0.60 0.003 15.94 0.

lhead 170 24 453 9.87 34.55 0.136a -0.026 0.547 266.74 119

lhead 667 20 529 7.52 57.19 0.281f 0.34 18.20 0.1

σ̂ β̂
r̂ σ̂ ρ̂
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Wiener drift model is supported.

With only 5 fish analyzed, it is not possible to determine whether either of the m

is “appropriate”. For the chinook, the Wiener drift model appears to be inadequate, w

results of the correlation test and the likelihood ratio comparisons indicating that som

of correlation structure is required to accurately model the data. More analysis is re

to determine if the O-U displacement model is consistent with the chinook’s beha

though. For the steelhead, one of the fish’s behavior is consistent with the Wiener pr

as the normality and independence properties are not rejected. Again, more fish wi

to be analyzed to make conclusive statements.

It should be emphasized that the results are dependent on time scale. In this ca

average time increment is approximately 20 minutes. At a shorter time scale, corre

may be important for the steelhead, and at a longer time scale, the correlation may c

be important for the chinook.

discussion

Although I have not encountered any studies that have applied the O-U process

movements of individuals, it appears to have promise. The conditional distribution o

displacement of an individual given the last time period’s displacement is e

formulated. Also, the theory can accommodate unequal time intervals.

There are two features of the O-U process that are consistent with the behav

migrating juvenile salmon. The first feature of the O-U process is that if a particle is m

with a certain velocity, there is a tendency to remain at that velocity in the short run

feature is very appropriate for dispersing organisms. Another feature of the O-U proc

that there is a tendency to bring particles back to their mean velocity – the furt

particle’s velocity is from the mean velocity, the greater the tendency. This is a
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desirable property. Migrating juvenile salmon appear to undergo a relatively pa

migration process (Smith, 1982), expending little energy as they are carried downs

with the current. There are reasons, however, for individuals to move out of this 

energy” state (e.g, predator avoidance, feeding behavior) and actively move in eith

upstream or downstream direction. Because of the swimming energetics of juv

salmon, the fish cannot maintain this energy expenditure for an extended period o

before they must return to the “low energy” state and replenish their oxygen debt (

1965). This is reminiscent of the O-U process.

While it is improbable that migrating salmon are strict adherents to the O-U pro

there does seem to be some value in applying the model. On the time scale of da

kilometers, the Wiener process with drift is a useful model of migrating juveniles a

being used to predict their arrival times at dams (chapter 4). Looking at migratory pr

on the time scale of hours and meters is a valuable exercise because it can lend va

the migration model at the longer time scales.
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8. Vertical distribution models

8.1. Introduction

Modeling the distribution of organisms in heterogeneous environments is a dif

problem that has received considerable attention (see Levin (1976) and Okubo (19

reviews). The difficulty lies in formulating a model, measuring the proper environme

conditions, and determining the organism’s response to the environment. In n

populations, the problem is even more difficult because the environment is often patc

observed distributions of animals are usually the result of a variety of behaviors, so

which are independent of environmental conditions.

Several types of models have been formulated to describe distributions of popul

in response to environmental stimuli. Clark and Levy (1988) use dynamic programm

model the vertical distribution of sockeye salmon in Lake Babine, British Columbia

their model the vertical position of an individual is determined by a trade-off betw

feeding and predator avoidance. Another approach is to model dispersal as a di

process with the diffusion parameter a function of some environmental stimulus (Ske

1973; Okubo, 1986). Dobzhansky, et al. (1979) used this approach to model the dis

of fruit flies in a heterogeneous habitat. The chemotaxis model originally develope

Keller and Segel (1971) has received many applications to cellular systems. In this m

a component of organism movement is based on random dispersal, and a compo

based on movements dictated by some environmental gradient. There have be

applications of this model to “higher” organisms, possibly because of the difficult

modeling the organism’s response to the gradient. Kareiva and Odell (1987) present

the few examples, with the distribution of predators (lady bugs) influenced by a gradi
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prey (aphids) density.

In this chapter, I apply a chemotaxis type model to the vertical distribution of juve

salmonids entering the forebay of a dam. The distribution of fish entering the foreba

direct consequences on their passage route through the dam. The main downstream

routes through dams are the spillway, the turbines, and the fish bypass system; each

routes has a different mortality rate. The vertical position of a fish is particularly impo

in determining whether it will pass through the bypass system (higher in the water co

or the turbines (lower in the water column); obviously the bypass system is a 

favorable route.

The vertical distribution of fish in the water column can be observed w

hydroacoustics (Dawson, et al., 1984a, 1984b). Figure 8.1 shows data for both daytim

nighttime distributions of juvenile salmonids entering the forebay of Lower Monume

Dam in April and May, 1985 (Johnson, et al., 1985). Each plot represents comp

distributions over a 5 day period. Some observations from these data are: 1)

differences exist between daytime and nighttime distributions, indicating 

environmental cues may be important; 2) there appears to be consistency 

distributions through time, indicating that there are potential trends to be modeled; a

the distributions have quite a bit of spread, indicating that a random dispersal eleme

be important. One drawback of this type of data is that different stocks or species can

distinguished. There appear to be two types of fish in the daytime data – one residing

in the water column and one residing higher in the column that becomes more pre

later in the season. The two main groups of juvenile salmonids passing Lower Monum

Dam during this time of year are steelhead and spring chinook. A study by Smith (19

the forebay of Lower Monumental Dam showed that during the daytime, steelhead t

be surface oriented, and chinook tend to migrate lower in the water column. In some
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Figure 8.1 Plots of the vertical distribution of juvenile salmonids in the forebay of Lower
Monumental Dam. The fish are lumped into two feet intervals. The top plots are for daytime
distributions, and the bottom plots are for nighttime distributions.
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it will be possible to compare hydroacoustic data to dam passage counts that disti

among species.

Two gradients that may be affecting the vertical distributions are light and pres

Both of these gradients are measurable and are somewhat smooth, making the 

amenable to modeling.

8.2. The model

The population dynamics of a group of organisms can be expressed as:

(8.1)

where n(x,t) is the population density and  is the flux. Note that the spa

component,x, can be multi-dimensional. If we consider simple diffusion along 

environmental gradient, the population flux can be expressed as

(8.2)

whereU(x) is the environmental potential function (Teramato and Seno, 1988). In the

dimensional case, equation (8.2) can be written as

. (8.3)

The first term on the right side is the diffusion term, withλ determining the magnitude o

the diffusion relative to the second term. The second term introduces an advection 

dictated by the gradient of the environmental potential function. Next assume that th

reach some stationary distribution during the daytime and nighttime periods. To fi

steady-state solution, set

, (8.4)

t∂
∂

n x t,( ) divJ x t,( )–=

J x t,( )

J x t,( ) λn x t,( ) n x t,( ) U x( )∇–∇–=

t∂
∂n λ

x2

2

∂
∂ n

x∂
∂

n
x∂

∂U
 
 +=

J x t,( ) 0=
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or equivalently,

. (8.5)

At the steady-state there is no longer time dependence, so we can rewrite equation 

terms of ordinary differential equations:

. (8.6)

Assuming thatU(x) is provided, we can solve forn:

(8.7)

where c is a constant of integration.

The problem comes in determiningU(x). First assume that there is some measura

environmental stimulusE(x),and thatU(x) is a function of this; that is:

. (8.8)

I also assume that there is a desirable level of the stimulus, , and the advective t

the chemotaxis equation is toward this desirable level:

. (8.9)

8.3. Example – light gradient

An equation for the decay of light in a water column is

, (8.10)

wherez is depth,I0 is the light intensity at the surface, andα is the decay coefficient. This

function is plotted in Figure 8.2. Now assume that there is a desirable light level,

λ
x∂

∂n
n

x∂
∂U

+ 0=

λ
xd

dn
n

xd
dU

+ 0=

n x( ) c e
1
λ
---U x( )–

⋅=

U x( ) f E x( )( )=

E∗

U x( ) f E∗ E x( )–( )=

I z( ) I 0e αz–=

I∗



170

arries

ot

 the
environmental potential function can then be expressed as:

. (8.11)

As stated above, the difficulty lies in finding the appropriate functionf. A plot of

versusz (Figure 8.2) reveals an abrupt change in the slope of the curve at . This c

through to modeled distribution of fish,n(z), and this abrupt change in distribution is n

observed in the data. A simple modification that produces a smooth curve is

. (8.12)
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Figure 8.2 Plots of the important components of equations (8.10) - (8.13). For these plots, I used
following values:I0 = 4.0;α = 0.05;I*  = 1.47;λ = 3.0;χ = 1.0.

U z( ) f I∗ I z( )–( )=

I∗ I z( )–

I∗

f I∗ I z( )–( ) χ I∗ I z( )–( )⋅ 2=



171

t. The

dient

is not

ed on

usly

 mean

ation

s of

uce a

istinct

ching
This is plotted in Figure 8.2. In this equation I introduce a constantχ that determines the

intensity of the chemotactic response and is often termed the chemotactic coefficien

steady state distribution of organisms along a light gradient is then

, (8.13)

which is also plotted in Figure 8.2.

The squared term in equation (8.12) might be justified because the light gra

experienced by the fish is not simple. As a fish looks upwards or downwards, it 

experiencing the local gradient but an integration of light levels above or below bas

its “line of sight” (Pitcher, 1986); this has the effect of intensifying the gradient. Obvio

direct studies would be necessary to justify this term (or some other form), but in the

time, it produces a tractable model that is consistent with the data.

8.4. Application to data

As an example, I apply the light gradient based vertical distribution model (equ

(8.13)) to the daytime distribution of the fish at Lower Monumental Dam (top plot

Figure 8.1). I assume that two distinct types of fish passed the dam, so I introd

weighting factor,w, to separate the two groups. Also, I assume that each group has d

values forλ, χ, andI*. The parameters describing light intensity,α andI0, are common to

the two groups. Thus, the equation describing the vertical distribution of fish approa

the dam is

. (8.14)

n z( ) c exp
χ
λ
---– I∗ I z( )–( )2

 
 ⋅=

n z( ) w c1 exp
χ1

λ1
----- I 1

∗ I z( )–( )2– 
 ⋅ ⋅=

1 w–( )+ c2 exp
χ2

λ2
----- I 2

∗ I z( )–( )2– 
 ⋅ ⋅
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The data are reported as the number of fish observed in 2 feet intervals (total dept

ft). To accommodate the discrete form of the data, equation (8.14) must be integrate

. (8.15)

N is the total number of fish observed, andni is the number of fish observed in theith

vertical interval. I evaluated this integral numerically using Romberg integration (Pre

al. 1988).

To fit the model to the data, I use the following procedure. First, since the pref

depth,z* (corresponding to the preferred light intensity,I*), is the mode of the distribution,

I selecte values ofz* for the two groups based on the two local maxima of fish frequen

from the data. Also, I do not have information about the light intensity, which would 

to be measured directly, or decay rate, which depends on factors such as turbidity

initial light intensity,I0, can be factored out from the inner term of the exponential, 

since the two parametersχ andλ occur as a ratio, I define a new parameter,ζ, which is

defined as

. (8.16)

This parameter is the ratio of chemotactic movement to diffusive movement scal

initial light intensity. Thus, I need to estimate 4 parameters:ζ1, ζ2, α, andw. I estimate these

parameters with the maximum likelihood method based on a multinomial distribution

Chapter 3). The maximum likelihood is determined numerically with the downhill sim

method (Press, et al., 1988).

I first apply the model to the composite data from the seven periods (April 22 - Ma

and estimated the parameters. I then use all these parameter estimates exceptw and apply

the model to the weekly data. To fit these data, I only varyw, the weighting function that

ni N n z( )dz
zi

zi 1+∫=

ζ I 0
2 χ

λ
---⋅=
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distinguishes between the groups of fish.

results

Table 8.1 contains values of the parameter estimates, and Figure 8.3. contains a

the model versus the data for the composite data. The correspondence between the 

the fitted model is excellent. Table 8.1 shows that the two groups have quite dif

preferred depths, 14 feet versus 40 feet, with approximately 15 per cent of the fish

first group. Also, there is a large difference between the estimates ofζ for the two groups.

This indicates that relative to each other, the second group undergoes a great de

random movement, and the first group’s position is more dictated by the light intensi

For the weekly data, the estimates ofw and likelihoods are contained in Table 8.2 a

plots of the model versus the data are in Figure 8.3. For all but the first week, the mod

data are quite consistent. The values ofw can be compared to observed passage timing

steelhead and yearling chinook on the Snake River (Fish Passage Center, 1987). St

passage was shifted 10-15 days later than yearling chinook passage, which is con

with an increasing portion of the higher swimming fish as the season progressed.

These results indicate that vertical distributions are quite constant through the s

Also, hydroacoustic data may be useful in distinguishing among species of salmonid

Table 8.1 Parameter estimates for equation (8.14) applied to daytime hydroacoustic
data from Lower Monumental Dam for the composite data.

z*1 z*2 ζ1 ζ2 α w lik.

13.0 39.0 118.30 18.46 0.022 0.146 3.940
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8.5. Discussion

This chapter contains a preliminary presentation of a vertical distribution model a

initial application to data. The model, with a few simple assumptions, is remark

consistent with data from Lower Monumental Dam. In order to apply the model, m

studies are required. Ideally, the reaction of juvenile salmonids to a light gradient w

better understood to strengthen the model. Also, it would be beneficial to co

controlled experiments where the physical features are characterized leaving ju

behavioral parameter to be estimated.

Table 8.2 Estimates of the
weekly proportion of the two groups
of salmonids at Lower Monumental
Dam and likelihoods based on
equation (8.14).

week # w lik.

1 0.99 3.959

2 0.93 3.961

3 0.76 3.824

4 0.92 3.869

5 0.73 3.822

6 0.66 3.886

7 0.70 3.981
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9. Summary

9.1. Overview

This thesis contains models that describe spatial and temporal distributions of mig

juvenile salmonids and applications of the models to data. In developing and applying

models, I had several objectives. The first objective was to present models that ma

practical use as management tools. Understanding population dynamics and deter

which behavioral factors are important in shaping these dynamics is crucial in the effo

restore salmonid populations in the Columbia River system. The second objective w

develop statistical methods to compare the models to data. These methods are req

estimate parameters, assess whether the models are consistent with observations

determine which features should be included or excluded. The third objective w

provide examples of the data analysis methods to illustrate the type of information th

be obtained. Also, this will initiate the assessment process for these models and p

parameter estimates for future applications.

9.2. Summary by chapter

The first chapter introduces some of the problems afflicting salmonid populations 

Columbia River system and discusses how modeling efforts can contribute to allev

some of the problems. It also presents an overview of salmonid life history and a

review of juvenile salmonid behavior.

Chapter 2 discusses models of dispersing animals. Models based on an adv

diffusion equation are applicable to migrating populations. The advection term deter

the directed movement of the population, and the diffusion term describes the sprea

the population. The diffusion term can be modified to reflect features such as s
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heterogeneity and density dependence. Waiting time models, which determine th

until an event, also capture certain features of dispersing populations such as survi

migrational delay.

The third chapter contains the statistical methods used in comparing models to

The primary parameter estimation method I use is maximum likelihood, which ca

employed analytically or numerically. Goodness-of-fit methods differ depending

whether the data are continuous or discrete and whether parameters are being esti

use goodness-of-fit tests based on the chi-square distribution and on the empirical 

function. It is often useful to discriminate among alternative models of varying comple

I present several methods to do this, all based on comparing likelihoods.

The fourth chapter develops a two parameter model of the travel time of fish thro

reservoir based on an advection-diffusion equation. One parameter determine

downstream migration rate and one determines the rate of population spread. The

accommodates discrete or continuous time data, and I apply it to several data sets 

types. The model successfully describes travel time distributions of run-of-the-river s

chinook, but describing steelhead and fall chinook is more problematic.

The fifth chapter expands the travel time model to incorporate more complex beh

Travel time dependent mortality is modelled with a constant hazard rate. This ty

mortality does not have much effect on the shape of the travel time distribution, and th

analysis bears this out. Next, a delay term based on a Poisson process is incorpora

the travel time model. Migrational delay can occur as fish hold up before passing a d

before migration is initiated. Several radio-tracking studies confirm that dam delay o

for chinook, but this delay is not detectable for Snake River run-of-the-river spring chi

travel time data. The delay term improves the model for Snake River steelhead (ba

likelihood ratios), but the results are inconsistent and probably not biologically rele



179

on of

hical

f fish

 average

ime

The

ta set.

als

or the

but it

tially

, and

ture

nts. I

ents and

among

rmined

ok but

axis-

dom

 light

m on
For mid-Columbia fall chinook, a delay term, interpreted as a delay before the initiati

migration, substantially improves the travel time model. Finally, I present a hierarc

sequence of models to describe the variation in migration rates for similar groups o

migrating in a river reach. These regression models are based on date of release and

river flow. A four parameter model, with linear flow relationship and a nonlinear t

relationship, worked best with several groups of run-of-the-river spring chinook. 

results from the regressions were used to predict travel times for an independent da

In chapter 6, I allow for population heterogeneity, with migration rates of individu

related to the factors fish length, date of release, river flow, and river temperature. F

run-of-the-river spring chinook and steelhead, fish length is not an important factor, 

is important for mid-Columbia fall chinook. When several factors are applied sequen

for Snake River fall chinook and mid-Columbia sockeye, date of release, fish length

average river flow are all important in determining migration rate, while river tempera

is not.

In chapter 7, downstream migration is considered in terms of individual moveme

examine two models, one based on the Wiener process that has independent increm

one based on the Ornstein-Uhlenbeck process that incorporates correlation 

movements. The models are compared to radio-tracking data, and correlation is dete

to be important at the observed time scale (approximately 20 minutes) for the chino

not for the steelhead.

The vertical distribution of fish in a water column is described in terms of a chemot

type model in chapter 8. In this model, an individual’s position is determined by ran

movement and reaction to an environmental gradient. I apply the model with a

intensity gradient to hydroacoustic data from the forebay of Lower Monumental Da

the Snake River. The correspondence between the model and data is excellent.
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9.3. Recommendations for salmon population management

The objective of this thesis is to present models of salmon populations that can b

for management purposes. To this effect, some of the models have been incorpora

the Columbia River Salmon Passage1 model (Anderson, et al., 1993), a system model t

describes the downstream migration of juvenile salmonids. In this section, I discus

results in this context and make some recommendations.

The two parameter travel time model (equations (4.7) and (4.8)) is particularly effe

for describing arrival distributions of run-of-the-river, yearling chinook, for wh

abundant data exists. The model accommodates both discrete and continuous dat

easily applied. In continuous form,g(t), the probability density function for the arriva

times of fish at the downstream collection site, is expressed as

, (9.1)

whereL is the length of the river reach. The parameters are intuitive and biologi

meaningful:r is the downstream migration rate, andσ describes the rate of spreading of th

population. The model, in its simplest form, does not work as well for steelhead an

chinook. Although the model captures the important features of steelhead arriva

distributions, more modeling efforts are needed to understand the departure of ob

steelhead travel time distributions from model-predicted distributions.

The travel time model is improved for fall chinook by incorporating a delay term, w

corresponds to a delay in the initiation of migration. In its simplest form, this is model

1. The Columbia River Salmon Passage model is being developed at the University of Washingto
at the Center for Quantitative Studies in Fisheries, Forestry, and Wildlife and the Fisheries Resear
Institute. Information about the model can be obtained from Dr. James J. Anderson, Fisheries
Research Institute.

g t( ) L

2πσ2t3
----------------------exp

L rt–( )2–

2σ2t
------------------------ 

 =
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an exponential waiting time process. More complexity can be added by relatin

instantaneous departure rate,α, to time (for example, the fish are more likely to initia

migration as the season progresses) and covariates,X, particularly fish length. The delay

model is then expressed as

. (9.2)

This equation is easy to evaluate if the form ofα(t, X) is not complex.

The delay in front of a dam before fish passage is an important compone

downstream migration. I developed three alternative models to describe this delay p

and applied the models to radio tag data, where exact times of arrival to the foreba

dam passage are observed. These data show that dam delay can be substantial; o

of chinook delayed for an average of 20 hours at Lower Granite Dam. The model that 

best to describe these data splits the fish in two groups: those that pass quickly with αf,

and those that pass slowly with rateαs. This model works substantially better than one w

daytime and nighttime passage rates. Unfortunately, dam delay is difficult to detec

travel time data and is difficult to observe directly. More work is necessary to determin

extent of dam delay and how it varies from dam to dam.

Utilizing the travel time model in a predictive manner involves selecting mo

parametersa priori. I related the observed variation in parameter estimates to the fa

date of release and average river flow in regression equations. I tested several alte

equations and determined that the following set worked the best to predict values ofr andσ:

(9.3)

and

d t( ) α t X,( )e
α τ X,( )dτ

0
t∫–

=

r̃ i β0 β2Fi
1

1 exp α t T0–( )–( )+
--------------------------------------------------+=
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In the first equation, migration rate is linearly related to flow,Fi, and the term in the bracket

represents a nonlinear relationship with date of release, where migration rate begi

lower rate early in the season and increases to an upper level as the season progres

second regression equation linearly relatesσ, the rate of population spread, to migratio

rate. These two regression equations were applied to four groups of run-of-the

chinook (composed primarily of yearling chinook of both wild and hatchery origins). 

regression equation forr had R2 values ranging from .855 to .945, and the regress

equation forσ hadR2 values ranging .589 to .845. These regression equations can be

to determine model parameters based on date of release and river flow. The trav

model can then be implemented to predict the downstream arrival distributions.

When information on the variability of individuals within a cohort was included in 

travel time model, fish length was determined to be an important factor for mid-Colu

subyearling chinook but not for Snake River yearling chinook and steelhead. Also

sequential releases of Snake River subyearling chinook and Columbia River sock

determined that fish length, date of release, and average river flow are important fac

the level of the individual, but river temperature is not. River temperature may be impo

though, in determining the timing of runs on a year to year basis. The importance o

length in the fall chinook may be partly due to its relation to the onset of migration

incorporating fish length into the delay term can account for this.

The vertical distribution model can benefit future modeling applications. The pos

of fish in the water column as they approach the dam is related to their passage

through the dam – spillway, fish bypass system, or turbines. Since each pathway

different associated mortality, utilizing a vertical distribution model to predict pas

routes will be useful in ascribing total passage mortality. The modeling demonstrate

σ̃i β0 β1r̃ i+=
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observed vertical distributions are predictable and that different species have dif

distributions. Future experimental work in this are will help to identify underly

mechanisms of the vertical distribution process.

Overall conclusions are as follows. First, simple models based on diffusion equa

are quite tractable mathematically and capture many of the features of the distributi

migrating juvenile salmonids. Statistical techniques, primarily based on likelih

functions, are readily applied to these models to estimate parameters, assess

goodness-of-fit, and to compare among alternative models. This combination of mo

and statistics is a powerful method in establishing models as predictive tool

management purposes.
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Appendix 1. PIT tag1 release groups

Table A1.1  PIT tag release group
information. The table includes releas
group information, release group
identification code, number of individual
observed at Lower Granite Dam (GRJ
and the cohort number assigned to t
group.

species: chinook run type: unkown
rearing type: unkown release site: Snake trap

Release Group
Release

Date
# obs’d
at GRJ

cohort
#

1989

EWB89083.SNK 03/24/89 48 1

EWB89086.SNK 03/27/89 61 2

EWB89087.SNK 03/28/89 57 3

EWB89088.SNK 03/29/89 55 4

EWB89089.SNK 03/30/89 45 5

EWB89090.SNK 03/31/89 57 6

EWB89091.SNK 04/01/89 54 7

EWB89092.SNK 04/02/89 57 8

EWB89093.SNK 04/03/89 47 9

EWB89094.SNK 04/04/89 52 10

EWB89095.SNK 04/05/89 45 11

EWB89096.SNK 04/06/89 33

EWB89097.SNK 04/07/89 43 12

EWB89098.SNK 04/08/89 34

EWB89099.SNK 04/09/89 54 13

EWB89100.SNK 04/10/89 43 14

EWB89101.SNK 04/11/89 55 15

EWB89102.SNK 04/12/89 48 16

EWB89103.SNK 04/13/89 53 17

EWB89104.SNK 04/14/89 66 18

EWB89105.SNK 04/15/89 51 19

EWB89106.SNK 04/16/89 68 20

EWB89107.SNK 04/17/89 64 21

EWB89108.SNK 04/18/89 66 22

EWB89109.SNK 04/19/89 63 23

EWB89110.SNK 04/20/89 59 24

EWB89111.SNK 04/21/89 62 25

EWB89112.SNK 04/22/89 60 26
e

s
),
he

1. These data were obtained from the Fish
Passage Center, Portland, Oregon.

EWB89113.SNK 04/23/89 69 27

EWB89114.SNK 04/24/89 61 28

EWB89115.SNK 04/25/89 70 29

EWB89116.SNK 04/26/89 66 30

EWB89117.SNK 04/27/89 66 31

EWB89118.SNK 04/28/89 37 32

EWB89119.SNK 04/29/89 34

EWB89120.SNK 04/30/89 15
33EWB89121.SNK 05/01/89 18

EWB89122.SNK 05/02/89 8

EWB89129.SNK 05/09/89 64 34

EWB89130.SNK 05/10/89 62 35

EWB89131.SNK 05/11/89 65 36

EWB89132.SNK 05/12/89 61 37

EWB89133.SNK 05/13/89 84 38

1990

EWB90099.SNK 04/09/90 37 1

EWB90100.SNK 04/10/90 22

EWB90107.PS 04/17/90 60 2

EWB90107.SNK 04/17/90 13 3

EWB90108.SNK 04/18/90 39

EWB90109.SNK 04/19/90 54 4

EWB90110.SNK 04/20/90 59 5

EWB90111.SNK 04/21/90 59 6

EWB90112.SNK 04/22/90 66 7

Table A1.1  (Continued) PIT tag release
group information. The table include
release group information, release grou
identification code, number of individual
observed at Lower Granite Dam (GRJ
and the cohort number assigned to t
group.

species: chinook run type: unkown
rearing type: unkown release site: Snake trap

Release Group
Release

Date
# obs’d
at GRJ

cohort
#
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EWB90113.SNK 04/23/90 62 8

EWB90114.SNK 04/24/90 70 9

EWB90115.SNK 04/25/90 36 10

EWB90116.SNK 04/26/90 44

EWB90117.SNK 04/27/90 16
11EWB90118.SNK 04/28/90 12

EWB90119.SNK 04/29/90 24

EWB90120.SNK 04/30/90 14
12EWB90121.SNK 05/01/90 22

EWB90122.SNK 05/02/90 5

EWB90127.SNK 05/07/90 14
13EWB90128.SNK 05/08/90 18

EWB90129.SNK 05/09/90 22

1991

EWB91098.PS 04/08/91 36 1

EWB91098.SNK 04/08/91 19

EWB91099.SNK 04/09/91 42 2

EWB91100.SNK 04/10/91 63 3

EWB91102.FSN 04/12/91 21
4EWB91102.PS 04/12/91 41

EWB91102.SNK 04/12/91 22

EWB91105.PS 04/15/91 69 5

EWB91107.PS 04/17/91 66 6

EWB91108.PS 04/18/91 47 7

EWB91109.PS 04/19/91 55 8

EWB91112.PS 04/22/91 65 9

EWB91113.PS 04/23/91 62 10

EWB91115.PS 04/25/91 54 11

EWB91115.SNK 04/25/91 36

EWB91116.SNK 04/26/91 63 12

EWB91117.SNK 04/27/91 81 13

EWB91119.PS 04/29/91 32 14

EWB91119.SNK 04/29/91 21

Table A1.1  (Continued) PIT tag release
group information. The table includes
release group information, release group
identification code, number of individuals
observed at Lower Granite Dam (GRJ),
and the cohort number assigned to the
group.

species: chinook run type: unkown
rearing type: unkown release site: Snake trap

Release Group
Release

Date
# obs’d
at GRJ

cohort
#

EWB91120.PS 04/30/91 39
15EWB91120.SNK 04/30/91 7

EWB91121.SNK 05/01/91 5

EWB91130.SNK 05/10/91 63 16

EWB91131.SNK 05/11/91 28
17EWB91132.SNK 05/12/91 11

EWB91133.SN0 05/12/91 14

1992

EWB92098.PS 04/07/92 26 1

EWB92099.PS 04/08/92 28 2

EWB92105.FSN 04/14/92 6 3

EWB92105.SNK 04/14/92 31

EWB92111.SNK 04/20/92 6
4EWB92112.SNK 04/21/92 17

EWB92113.SNK 04/22/92 15

EWB92114.SNK 04/23/92 16
5EWB92115.SNK 04/24/92 6

EWB92116.SNK 04/25/92 7

EWB92122.SNK 05/01/92 15 6

EWB92123.SNK 05/02/92 19

Table A1.1  (Continued) PIT tag release
group information. The table include
release group information, release grou
identification code, number of individual
observed at Lower Granite Dam (GRJ
and the cohort number assigned to t
group.

species: chinook run type: unkown
rearing type: unkown release site: Snake trap

Release Group
Release

Date
# obs’d
at GRJ

cohort
#
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Table A1.2  PIT tag release group
information. The table includes release
group information, release group
identification code, number of individuals
observed at Lower Granite Dam (GRJ),
and the cohort number assigned to the
group.

species: chinook run type: unkown
rearing type: wild release site: Snaketrap

Release Group
Release

Date
# obs’d
at GRJ

group
#

1993

EWB93099.SNK 04/09/93 3 1

EWB93100.SNK 04/10/93 26 2

EWB93101.SNK 04/11/93 11 3

EWB93102.SNK 04/12/93 14 4

EWB93103.SNK 04/13/93 12 5

EWB93104.SNK 04/14/93 4

EWB93105.SNK 04/15/93 8
6EWB93106.SNK 04/16/93 3

EWB93107.SNK 04/17/93 2

EWB93108.SNK 04/18/93 3
7EWB93109.SNK 04/19/93 3

EWB93110.SNK 04/20/93 6

EWB93111.SNK 04/21/93 4 8

EWB93112.SNK 04/22/93 8 9

EWB93113.SNK 04/23/93 5 10

EWB93114.SNK 04/24/93 4

EWB93115.SNK 04/25/93 6 11

EWB93116.SNK 04/26/93 4 12

EWB93117.SNK 04/27/93 19 13

EWB93118.SNK 04/28/93 6 14

EWB93119.SNK 04/29/93 13 15

EWB93120.SNK 04/30/93 10 16

EWB93121.SNK 05/01/93 7 17

EWB93122.SNK 05/02/93 9 18

EWB93123.SNK 05/03/93 11 19

EWB93124.SNK 05/04/93 29 20

EWB93125.SNK 05/05/93 33 21

EWB93126.SNK 05/06/93 30 22

EWB93127.SNK 05/07/93 30 23

EWB93128.SNK 05/08/93 28 24

EWB93129.SNK 05/09/93 12 25

EWB93130.SNK 05/10/93 23

EWB93131.SNK 05/11/93 15 26

EWB93132.SNK 05/12/93 16

EWB93133.SN2 05/13/93 1
27EWB93133.SNK 05/13/93 16

EWB93134.SNK 05/14/93 11

Table A1.3  PIT tag release group
information. The table includes releas
group information, release group
identification code, number of individual
observed at Lower Granite Dam (GRJ
and the cohort number assigned to t
group.

species: chinook run type: unk.
rearing type: hatchery release site: snake trap

Release Group
Release

Date
# obs’d
at GRJ

group
#

1992

EWB92098.PS 04/07/92 24 1

EWB92099.PS 04/08/92 29 2

EWB92105.FSN 04/14/92 14 3

EWB92105.SNK 04/14/92 33

EWB92111.SNK 04/20/92 4
4EWB92112.SNK 04/21/92 7

EWB92113.SNK 04/22/92 3

EWB92114.SNK 04/23/92 6
5EWB92115.SNK 04/24/92 4

EWB92116.SNK 04/25/92 6

Table A1.2  (Continued) PIT tag release
group information. The table include
release group information, release grou
identification code, number of individual
observed at Lower Granite Dam (GRJ
and the cohort number assigned to t
group.

species: chinook run type: unkown
rearing type: wild release site: Snaketrap

Release Group
Release

Date
# obs’d
at GRJ

group
#
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EWB92122.SNK 05/01/92 7 6

EWB92123.SNK 05/02/92 5

1993

EWB93099.SNK 04/09/93 44 1

EWB93100.SNK 04/10/93 45 2

EWB93101.SNK 04/11/93 49 3

EWB93102.SNK 04/12/93 45 4

EWB93103.SNK 04/13/93 19 5

EWB93104.SNK 04/14/93 9

EWB93105.SNK 04/15/93 16
6EWB93106.SNK 04/16/93 8

EWB93107.SNK 04/17/93 9

EWB93108.SNK 04/18/93 7
7EWB93109.SNK 04/19/93 17

EWB93110.SNK 04/20/93 23

EWB93111.SNK 04/21/93 39 8

EWB93112.SNK 04/22/93 39 9

EWB93113.SNK 04/23/93 30 10

EWB93114.SNK 04/24/93 43

EWB93115.SNK 04/25/93 41 11

EWB93116.SNK 04/26/93 47 12

EWB93117.SNK 04/27/93 45 13

EWB93118.SNK 04/28/93 37 14

EWB93119.SNK 04/29/93 45 15

EWB93120.SNK 04/30/93 50 16

EWB93121.SNK 05/01/93 46 17

EWB93122.SNK 05/02/93 48 18

EWB93123.SNK 05/03/93 45 19

EWB93124.SNK 05/04/93 69 20

EWB93125.SNK 05/05/93 36 21

EWB93126.SNK 05/06/93 42 22

EWB93127.SNK 05/07/93 49 23

EWB93128.SNK 05/08/93 39 24

Table A1.3  (Continued) PIT tag release
group information. The table includes
release group information, release group
identification code, number of individuals
observed at Lower Granite Dam (GRJ),
and the cohort number assigned to the
group.

species: chinook run type: unk.
rearing type: hatchery release site: snake trap

Release Group
Release

Date
# obs’d
at GRJ

group
#

EWB93129.SNK 05/09/93 27 25

EWB93130.SNK 05/10/93 34

EWB93131.SNK 05/11/93 21 26

EWB93132.SNK 05/12/93 32

EWB93133.SNK 05/13/93 30 27

EWB93134.SNK 05/14/93 16

Table A1.4  PIT tag release group
information. The table includes releas
group information, release group
identification code, number of individual
observed at Lower Granite Dam (GRJ
and the cohort number assigned to t
group.

species: chinook run type: unk.
rearing type: unk. release site:Clearw. trap

Release Group
Release

Date
# obs’d
at GRJ

group
#

1989

EWB89088.CLW 03/29/89 47 1

EWB89089.CLW 03/30/89 33

EWB89090.CLW 03/31/89 51 2

EWB89091.CLW 04/01/89 39 3

EWB89092.CLW 04/02/89 40

EWB89093.CLW 04/03/89 51 4

EWB89094.CLW 04/04/89 48 5

EWB89095.CLW 04/05/89 43

EWB89096.CLW 04/06/89 33 6

EWB89097.CLW 04/07/89 42

Table A1.3  (Continued) PIT tag release
group information. The table include
release group information, release grou
identification code, number of individual
observed at Lower Granite Dam (GRJ
and the cohort number assigned to t
group.

species: chinook run type: unk.
rearing type: hatchery release site: snake trap

Release Group
Release

Date
# obs’d
at GRJ

group
#
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EWB89102.CLW 04/12/89 23 7

EWB89103.CLW 04/13/89 37

EWB89105.CLW 04/15/89 28 8

EWB89106.CLW 04/16/89 35

EWB89143.CLW 05/23/89 10 9

EWB89144.CLW 05/24/89 39

EWB89145.CLW 05/25/89 51 10

EWB89150.CLW 05/30/89 62 11

1990

EWB90089.CLW 03/30/90 46 1

EWB90090.CLW 03/31/90 51 2

EWB90091.CLW 04/01/90 40 3

EWB90092.CLW 04/02/90 42

EWB90093.CLW 04/03/90 46 4

EWB90094.CLW 04/04/90 45

EWB90095.CLW 04/05/90 44 5

EWB90096.CLW 04/06/90 37

EWB90097.CLW 04/09/90 40 6

EWB90098.CLW 04/08/90 48

EWB90099.CLW 04/09/90 47 7

EWB90100.CLW 04/10/90 43

EWB90101.CLW 04/11/90 42 8

EWB90102.CLW 04/12/90 45

EWB90103.CLW 04/13/90 48 9

EWB90104.CLW 04/14/90 43

EWB90105.CLW 04/15/90 58 10

EWB90106.CLW 04/16/90 55 11

EWB90107.CLW 04/17/90 29 12

EWB90108.CLW 04/18/90 29

EWB90122.CLW 05/02/90 23 13

EWB90123.CLW 05/03/90 28

EWB90137.CLW 05/17/90 30 14

EWB90138.CLW 05/18/90 41

Table A1.4  (Continued) PIT tag release
group information. The table includes
release group information, release group
identification code, number of individuals
observed at Lower Granite Dam (GRJ),
and the cohort number assigned to the
group.

species: chinook run type: unk.
rearing type: unk. release site:Clearw. trap

Release Group
Release

Date
# obs’d
at GRJ

group
#

EWB90139.CLW 05/19/90 36 15

EWB90140.CLW 05/20/90 35

EWB90141.CLW 05/21/90 58 16

EWB90142.CLW 05/22/90 37 17

EWB90143.CLW 05/23/90 46

EWB90144.CLW 05/24/90 61 18

1991

EWB91093.CLW 04/03/91 39 1

EWB91094.CLW 04/04/91 43

EWB91095.CLW 04/05/91 52 2

EWB91096.CLW 04/06/91 54 3

EWB91097.CLW 04/07/91 58 4

EWB91098.CLW 04/08/91 64 5

EWB91099.CLW 04/09/91 50 6

EWB91100.CLW 04/10/91 57 7

EWB91101.CLW 04/11/91 62 8

EWB91101.FCL 04/11/91 15 9

EWB91102.CLW 04/12/91 47

EWB91102.FCL 04/12/91 14 10

EWB91103.CLW 04/13/91 46

EWB91104.CLW 04/14/91 30 11

EWB91105.CLW 04/15/91 30

EWB91106.CLW 04/16/91 58 12

EWB91107.CLW 04/17/91 51 13

EWB91108.CLW 04/18/91 50 14

EWB91109.CLW 04/19/91 60 15

EWB91110.CLW 04/20/91 47 16

EWB91111.CLW 04/21/91 51 17

EWB91112.CLW 04/22/91 56 18

EWB91113.CLW 04/23/91 47 19

EWB91114.CLW 04/24/91 57 20

EWB91115.CLW 04/25/91 59 21

EWB91116.CLW 04/26/91 64 22

Table A1.4  (Continued) PIT tag release
group information. The table include
release group information, release grou
identification code, number of individual
observed at Lower Granite Dam (GRJ
and the cohort number assigned to t
group.

species: chinook run type: unk.
rearing type: unk. release site:Clearw. trap

Release Group
Release

Date
# obs’d
at GRJ

group
#
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EWB91128.CLW 05/08/91 22 23

EWB91129.CLW 05/09/91 44

EWB91130.CLW 05/10/91 73 24

EWB91131.CLW 05/11/91 69 25

1992

EWB92082.CLW 03/22/92 3 1

EWB92083.CLW 03/23/92 3 2

EWB92084.CLW 03/24/92 3 3

EWB92085.CLW 03/25/92 6 4

EWB92086.CLW 03/26/92 8

EWB92087.CLW 03/27/92 7 5

EWB92088.CLW 03/28/92 5

EWB92089.CLW 03/29/92 7 6

EWB92090.CLW 03/30/92 7

EWB92091.CLW 03/31/92 8 7

EWB92092.CLW 04/01/92 12

EWB92093.CLW 04/02/92 14 8

EWB92094.CLW 04/03/92 19

EWB92095.CLW 04/04/92 25 9

EWB92096.CLW 04/05/92 22 10

EWB92097.CLW 04/06/92 16 11

EWB92098.CLW 04/07/92 17 12

EWB92099.CLW 04/08/92 8 13

EWB92100.CLW 04/09/92 23

EWB92101.CLW 04/10/92 11 14

EWB92102.CLW 04/11/92 3 15

EWB92103.CLW 04/12/92 3 16

EWB92104.CLW 04/13/92 2 17

EWB92104.UFW 04/13/92 1

EWB92105.CLW 04/14/92 1 18

EWB92105.FCL 04/14/92 1 19

EWB92106.CLW 04/15/92 5

EWB92107.CLW 04/16/92 40 20

EWB92108.CLW 04/17/92 5 21

Table A1.4  (Continued) PIT tag release
group information. The table includes
release group information, release group
identification code, number of individuals
observed at Lower Granite Dam (GRJ),
and the cohort number assigned to the
group.

species: chinook run type: unk.
rearing type: unk. release site:Clearw. trap

Release Group
Release

Date
# obs’d
at GRJ

group
#

EWB92109.CLW 04/18/92 14 22

EWB92110.CLW 04/19/92 10

EWB92111.CLW 04/20/92 5 23

EWB92112.CLW 04/21/92 2

EWB92113.CLW 04/22/92 8 24

EWB92114.CLW 04/23/92 26 25

EWB92115.CLW 04/24/92 15 26

EWB92116.CLW 04/25/92 10

EWB92118.CLW 04/27/92 4 27

EWB92119.CLW 04/28/92 1

EWB92120.CLW 04/29/92 2 28

EWB92121.CLW 04/30/92 7 29

EWB92127.CLW 05/06/92 15 30

EWB92139.CLW 05/18/92 6
31EWB92140.CLW 05/19/92 6

EWB92141.CLW 05/20/92 8

EWB92145.CLW 05/24/92 7 32

EWB92146.CLW 05/25/92 4

EWB92147.CLW 05/26/92 7 33

EWB92148.CLW 05/27/92 5

EWB92149.CLW 05/28/92 6 34

EWB92150.CLW 05/29/92 3

EWB92151.CLW 05/30/92 6 35

EWB92152.CLW 05/31/92 3

Table A1.4  (Continued) PIT tag release
group information. The table include
release group information, release grou
identification code, number of individual
observed at Lower Granite Dam (GRJ
and the cohort number assigned to t
group.

species: chinook run type: unk.
rearing type: unk. release site:Clearw. trap

Release Group
Release

Date
# obs’d
at GRJ

group
#
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Table A1.5  PIT tag release group
information. The table includes release
group information, release group
identification code, number of individuals
observed at Lower Granite Dam (GRJ),
and the cohort number assigned to the
group.

species: chinook run type: unknown
rearing type: wild release site: Clearw. trap

Release Group
Release

Date
# obsd
at GRJ

group
#

1993

EWB93100.CLW 04/10/93 13 1

EWB93101.CLW 04/11/93 4 2

EWB93102.CLW 04/12/93 3

EWB93106.CLW 04/16/93 6 3

EWB93110.CLW 04/20/93 14 4

EWB93111.CLW 04/21/93 3

EWB93112.CLW 04/22/93 6 5

EWB93113.CLW 04/23/93 1

EWB93114.CLW 04/24/93 1 6

EWB93115.CLW 04/25/93 7

EWB93116.CLW 04/26/93 12 7

EWB93117.CLW 04/27/93 4

EWB93120.CLW 04/30/93 4
8EWB93121.CLW 05/01/93 12

EWB93122.CLW 05/02/93 4

Table A1.6  PIT tag release group
information. The table includes releas
group information, release group
identification code, number of individual
observed at Lower Granite Dam (GRJ
and the cohort number assigned to t
group.

species: chinook run type: unknown
rearing type: hatchery release site: Clearw. trap

Release Group
Release

Date
# obs’d
at GRJ

group
#

1992

EWB92082.CLW 03/22/92 53 1

EWB92083.CLW 03/23/92 49 2

EWB92084.CLW 03/24/92 45 3

EWB92085.CLW 03/25/92 32 4

EWB92086.CLW 03/26/92 18

EWB92087.CLW 03/27/92 21 5

EWB92088.CLW 03/28/92 19

EWB92089.CLW 03/29/92 33 6

EWB92090.CLW 03/30/92 26

EWB92091.CLW 03/31/92 25 7

EWB92092.CLW 04/01/92 19

EWB92093.CLW 04/02/92 20 8

EWB92094.CLW 04/03/92 33

EWB92095.CLW 04/04/92 35 9

EWB92096.CLW 04/05/92 35 10

EWB92097.CLW 04/06/92 34 11

EWB92098.CLW 04/07/92 36 12

EWB92099.CLW 04/08/92 41 13

EWB92100.CLW 04/09/92 18

EWB92101.CLW 04/10/92 47 14

EWB92102.CLW 04/11/92 49 15

EWB92103.CLW 04/12/92 47 16

EWB92104.CLW 04/13/92 37 17

EWB92104.UFW 04/13/92 13

EWB92105.CLW 04/14/92 58 18

EWB92105.FCL 04/14/92 11 19

EWB92106.CLW 04/15/92 40

EWB92107.CLW 04/16/92 5 20

EWB92108.CLW 04/17/92 46 21

EWB92109.CLW 04/18/92 35 22

EWB92110.CLW 04/19/92 38
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EWB92111.CLW 04/20/92 41 23

EWB92112.CLW 04/21/92 41

EWB92113.CLW 04/22/92 48 24

EWB92114.CLW 04/23/92 30 25

EWB92115.CLW 04/24/92 25 26

EWB92116.CLW 04/25/92 9

EWB92118.CLW 04/27/92 5 27

EWB92119.CLW 04/28/92 46

EWB92120.CLW 04/29/92 40 28

EWB92121.CLW 04/30/92 49 29

EWB92127.CLW 05/06/92 35 30

EWB92139.CLW 05/18/92 7
31EWB92140.CLW 05/19/92 16

EWB92141.CLW 05/20/92 15

EWB92145.CLW 05/25/92 25 32

EWB92146.CLW 05/25/92 12

EWB92147.CLW 05/26/92 27 33

EWB92148.CLW 05/27/92 21

EWB92149.CLW 05/28/92 32 34

EWB92150.CLW 05/29/92 16

EWB92151.CLW 05/30/92 36 35

EWB92152.CLW 05/31/92 11

1993

EWB93100.CLW 04/10/93 43 1

EWB93101.CLW 04/11/93 35 2

EWB93102.CLW 04/12/93 25

EWB93106.CLW 04/16/93 44 3

EWB93110.CLW 04/20/93 36 4

EWB93111.CLW 04/21/93 33

EWB93112.CLW 04/22/93 29 5

EWB93113.CLW 04/23/93 31

EWB93114.CLW 04/24/93 34 6

EWB93115.CLW 04/25/93 20

Table A1.6  (Continued) PIT tag release
group information. The table includes
release group information, release group
identification code, number of individuals
observed at Lower Granite Dam (GRJ),
and the cohort number assigned to the
group.

species: chinook run type: unknown
rearing type: hatchery release site: Clearw. trap

Release Group
Release

Date
# obs’d
at GRJ

group
#

EWB93116.CLW 04/26/93 34 7

EWB93117.CLW 04/27/93 24

EWB93120.CLW 04/30/93 23
8EWB93121.CLW 05/01/93 18

EWB93122.CLW 05/02/93 10

Table A1.7  PIT tag release group
information. The table includes releas
group information, release group
identification code, number of individual
observed at McNary Dam (MCJ), and th
cohort number assigned to the group.

species: chinook run type: fall
rearing type: wild release site: Mid Colum.

Release Group
Release

Date
# obs’d
at MCJ

group
#

1991

LRB91157.CO2 06/07/91 154 1

LRB91158.CO1 06/07/91 97 2

1992

LRB92155.001 06/03/92 39 1

LRB92155.002 06/03/92 36

LRB92155.003 06/03/92 73 2

LRB92156.002 06/04/92 14 3

LRB92156.003 06/04/92 54

LRB92156.001 06/04/92 23 4

LRB92156.004 06/04/92 40

LRB92156.005 06/04/92 60 5

1993

LRB93158.001 06/07/93 61 1

Table A1.6  (Continued) PIT tag release
group information. The table include
release group information, release grou
identification code, number of individual
observed at Lower Granite Dam (GRJ
and the cohort number assigned to t
group.

species: chinook run type: unknown
rearing type: hatchery release site: Clearw. trap

Release Group
Release

Date
# obs’d
at GRJ

group
#
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LRB93159.001 06/08/93 81 2

LRB93159.002 06/08/93 115 3

LRB93160.001 06/09/93 75 4

LRB93160.002 06/09/93 118 5

LRB93160.003 06/15/93 120 6

Table A1.8  PIT tag release group
information. The table includes release
group information, release group
identification code, number of individuals
observed at Lower Granite Dam (GRJ),
and the cohort number assigned to the
group.

species: chinook run type: fall
rearing type: wild release site: Snake River

Release Group
Release

Date
# obs”d
at GRJ

1991

WPC91149.R17 05/29/91 1

WPC91150.G29 05/30/91 3

WPC91150.R16 05/30/91 1

WPC91150.R17 05/30/91 0

WPC91155.G35 06/04/91 2

WPC91155.G38 06/04/91 0

WPC91157.G29 06/06/91 1

WPC91157.G42 06/06/91 2

WPC91162.G29 06/11/91 1

WPC91162.G42 06/11/91 3

WPC91162.G50 06/11/91 1

WPC91163.G26 06/12/91 2

WPC91163.G35 06/12/91 1

Table A1.7  (Continued) PIT tag release
group information. The table includes
release group information, release group
identification code, number of individuals
observed at McNary Dam (MCJ), and the
cohort number assigned to the group.

species: chinook run type: fall
rearing type: wild release site: Mid Colum.

Release Group
Release

Date
# obs’d
at MCJ

group
#

WPC91164.G26 06/13/91 2

WPC91164.G29 06/13/91 0

WPC91169.G32 06/18/91 0

WPC91169.G42 06/18/91 2

WPC91170.G26 06/19/91 1

WPC91170.G29 06/19/91 0

WPC91175.G26 06/24/91 1

WPC91175.G42 06/24/91 2

WPC91176.G42 06/25/91 6

1992

WPC92113.G48 04/23/92 1

WPC92119.229 04/29/92 0

WPC92119.248 04/29/92 0

WPC92119.B51 04/29/92 1

WPC92120.G48 04/30/92 3

WPC92120.G62 04/30/92 1

WPC92134.232 05/14/92 0

WPC92134.254 05/13/92 1

WPC92134.262 05/13/92 1

WPC92135.274 05/14/92 0

WPC92135.280 05/14/92 0

WPC92135.282 05/14/92 2

WPC92140.280 05/19/92 0

WPC92140.282 05/19/92 2

WPC92141.229 05/20/92 1

WPC92141.248 05/20/92 2

WPC92141.A42 05/20/92 1

WPC92141.B42 05/20/92 1

WPC92142.B51 05/21/92 2

WPC92147.A51 05/26/92 2

WPC92148.282 05/27/92 3

WPC92148.290 05/27/92 0

WPC92148.G62 05/27/92 5

WPC92148.G74 05/27/92 0

Table A1.8  (Continued) PIT tag release
group information. The table include
release group information, release grou
identification code, number of individual
observed at Lower Granite Dam (GRJ
and the cohort number assigned to t
group.

species: chinook run type: fall
rearing type: wild release site: Snake River

Release Group
Release

Date
# obs”d
at GRJ
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WPC92148.G90 05/27/92 0

WPC92149.A42 05/28/92 1

WPC92149.B42 05/28/92 2

WPC92153.G62 06/01/92 3

WPC92154.232 06/02/92 0

WPC92154.B42 06/02/92 1

WPC92154.G50 06/02/92 3

WPC92156.A51 06/04/92 1

1993

WPC93138.G61 05/18/93 3

WPC93139.229 05/19/93 3

WPC93139.B42 05/19/93 2

WPC93139.G29 05/19/93 1

WPC93139.G47 05/19/93 3

WPC93139.G51 05/19/93 1

WPC93144.226 05/25/93 1

WPC93144.229 05/25/93 3

WPC93144.G29 05/25/93 5

WPC93144.G34 05/25/93 7

WPC93145.A51 05/25/93 1

WPC93145.B42 05/25/93 1

WPC93146.G58 05/26/93 1

WPC93146.G63 05/26/93 0

WPC93146.R11 05/26/93 2

WPC93147.G28 05/27/93 4

WPC93147.G29 05/27/93 2

WPC93147.G34 05/26/93 5

WPC93147.G37 05/27/93 1

WPC93147.G47 05/27/93 1

WPC93147.G53 05/27/93 2

WPC93152.G29 06/01/93 10

WPC93152.G34 06/01/93 4

WPC93153.226 06/02/93 4

WPC93153.229 06/02/93 0

Table A1.8  (Continued) PIT tag release
group information. The table includes
release group information, release group
identification code, number of individuals
observed at Lower Granite Dam (GRJ),
and the cohort number assigned to the
group.

species: chinook run type: fall
rearing type: wild release site: Snake River

Release Group
Release

Date
# obs”d
at GRJ

WPC93153.232 06/02/93 4

WPC93153.A51 06/02/93 1

WPC93153.B42 06/02/93 2

WPC93153.G33 06/02/93 1

WPC93153.G37 06/02/93 1

WPC93153.G41 06/02/93 1

WPC93153.R03 06/02/93 3

WPC93153.R14 06/02/93 2

WPC93154.254 06/03/93 1

WPC93154.R76 06/03/93 1

WPC93155.G27 06/04/93 1

WPC93155.G30 06/04/93 1

WPC93155.G31 06/04/93 1

WPC93155.R53 06/04/93 0

WPC93159.E34 06/08/93 1

WPC93159.E37 06/08/93 0

WPC93159.E41 06/08/93 1

WPC93159.E43 06/08/93 3

WPC93159.W34 06/08/93 6

WPC93159.W35 06/08/93 1

WPC93159.W37 06/08/93 1

WPC93159.W41 06/08/93 9

WPC93159.W42 06/08/93 10

WPC93159.W44 06/08/93 1

WPC93159.W47 06/08/93 2

WPC93159.W50 06/08/93 1

WPC93160.226 06/09/93 3

WPC93160.229 06/09/93 3

WPC93160.A51 06/09/93 3

WPC93160.B42 06/09/93 1

WPC93160.G32 06/09/93 1

WPC93160.R08 06/09/93 1

WPC93160.R13 06/09/93 1

WPC93160.R19 06/09/93 2

Table A1.8  (Continued) PIT tag release
group information. The table include
release group information, release grou
identification code, number of individual
observed at Lower Granite Dam (GRJ
and the cohort number assigned to t
group.

species: chinook run type: fall
rearing type: wild release site: Snake River

Release Group
Release

Date
# obs”d
at GRJ
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WPC93160.R92 06/09/93 2

WPC93161.G58 06/10/93 2

WPC93161.R63 06/10/93 0

WPC93162.E29 06/11/93 13

WPC93162.W24 06/11/93 4

WPC93166.E61 06/15/93 2

WPC93166.E62 06/15/93 1

WPC93166.E63 06/15/93 2

WPC93166.E64 06/15/93 1

WPC93166.E66 06/15/93 2

WPC93167.229 06/16/93 8

WPC93167.232 06/16/93 2

WPC93167.A51 06/16/93 3

WPC93167.R07 06/16/93 2

WPC93167.R09 06/16/93 1

WPC93167.R15 06/16/93 3

WPC93167.R18 06/16/93 1

WPC93168.E42 06/17/93 4

WPC93168.W34 06/16/93 0

WPC93168.W40 06/17/93 1

WPC93168.W47 06/17/93 2

WPC93169.E28 06/18/93 2

WPC93169.E29 06/18/93 6

WPC93169.W24 06/18/93 2

WPC93169.W32 06/18/93 1

WPC93169.W33 06/18/93 2

WPC93173.229 06/22/93 2

WPC93173.232 06/22/93 1

WPC93173.A51 06/22/93 2

WPC93174.254 06/23/93 3

WPC93174.R12 06/23/93 1

WPC93175.E36 06/24/93 4

WPC93175.E39 06/24/93 1

WPC93175.E50 06/24/93 4

Table A1.8  (Continued) PIT tag release
group information. The table includes
release group information, release group
identification code, number of individuals
observed at Lower Granite Dam (GRJ),
and the cohort number assigned to the
group.

species: chinook run type: fall
rearing type: wild release site: Snake River

Release Group
Release

Date
# obs”d
at GRJ

WPC93175.W34 06/24/93 3

WPC93175.W35 06/24/93 2

WPC93175.W53 06/24/93 1

WPC93175.W54 06/24/93 1

WPC93180.A42 06/29/93 1

WPC93180.A51 06/29/93 9

WPC93181.E48 06/30/93 1

WPC93181.E49 06/30/93 1

WPC93181.E50 06/30/93 1

WPC93181.E52 06/30/93 2

WPC93181.E54 06/30/93 1

WPC93188.226 07/07/93 1

WPC93195.226 07/14/93 2

Table A1.9  PIT tag release group
information. The table includes releas
group information, release group
identification code, number of individual
observed at Lower Granite Dam (GRJ
and the cohort number assigned to t
group.

species: steelhead rearing type: wild
release site: Snake Trap

Release Group
Release

Date
# obs’d
at GRJ

cohort
#

1989

EWB89106.SNK 04/16/89 16
1EWB89107.SNK 04/17/89 21

EWB89108.SNK 04/18/89 27

EWB89109.SNK 04/19/89 43 2

Table A1.8  (Continued) PIT tag release
group information. The table include
release group information, release grou
identification code, number of individual
observed at Lower Granite Dam (GRJ
and the cohort number assigned to t
group.

species: chinook run type: fall
rearing type: wild release site: Snake River

Release Group
Release

Date
# obs”d
at GRJ
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EWB89110.SNK 04/20/89 26 3

EWB89111.SNK 04/21/89 40

EWB89112.SNK 04/22/89 45 4

EWB89113.SNK 04/23/89 40 5

EWB89114.SNK 04/24/89 24

EWB89115.SNK 04/25/89 37 6

EWB89116.SNK 04/26/89 26

EWB89117.SNK 04/27/89 15
7EWB89118.SNK 04/28/89 17

EWB89119.SNK 04/29/89 17

EWB89120.SNK 04/30/89 18 8

EWB89121.SNK 05/01/89 30

EWB89122.SNK 05/02/89 29 9

EWB89123.SNK 05/03/89 34

EWB89124.SNK 05/04/89 40 10

EWB89125.SNK 05/05/89 39

EWB89126.SNK 05/06/89 79 11

EWB89127.SNK 05/07/89 117 12

EWB89128.SNK 05/08/89 8

EWB89129.SNK 05/09/89 80 13

EWB89130.SNK 05/10/89 87 14

EWB89131.SNK 05/11/89 25 15

EWB89132.SNK 05/12/89 37

EWB89133.SNK 05/13/89 20
16EWB89134.SNK 05/14/89 13

EWB89135.SNK 05/15/89 14

1990

EWB90107.PS 04/17/90 18
1EWB90107.SNK 04/17/90 7

EWB90108.SNK 04/18/90 36

EWB90109.SNK 04/19/90 51 2

EWB90111.SNK 04/21/90 69 3

EWB90112.SNK 04/22/90 72 4

EWB90113.SNK 04/23/90 52 5

Table A1.9  (Continued) PIT tag release
group information. The table includes
release group information, release group
identification code, number of individuals
observed at Lower Granite Dam (GRJ),
and the cohort number assigned to the
group.

species: steelhead rearing type: wild
release site: Snake Trap

Release Group
Release

Date
# obs’d
at GRJ

cohort
#

EWB90114.SNK 04/24/90 111 6

EWB90115.SNK 04/25/90 86 7

EWB90116.SNK 04/26/90 95 8

EWB90118.SNK 04/28/90 66 9

EWB90119.SNK 04/29/90 55 10

EWB90120.SNK 04/30/90 50 11

EWB90121.SNK 05/01/90 49 12

EWB90122.SNK 05/02/90 27

EWB90123.SNK 05/03/90 45 13

EWB90124.SNK 05/04/90 27

EWB90125.SNK 05/05/90 53 14

EWB90126.SNK 05/06/90 80 15

EWB90127.SNK 05/07/90 146 16

EWB90128.SNK 05/08/90 87 17

EWB90129.SNK 05/09/90 55 18

EWB90130.SNK 05/10/90 36 19

EWB90131.SNK 05/11/90 16

EWB90132.SNK 05/12/90 23 20

EWB90133.SNK 05/13/90 45

EWB90134.SNK 05/14/90 50 21

EWB90135.SNK 05/15/90 17 22

EWB90136.SNK 05/16/90 27

EWB90137.SNK 05/17/90 30
23EWB90138.SNK 05/18/90 11

EWB90139.SNK 05/19/90 20

EWB90145.SNK 05/25/90 32 24

EWB90146.SNK 05/26/90 28

EWB90148.SNK 05/28/90 41 25

EWB90149.SNK 05/29/90 16

EWB90150.SNK 05/30/90 62 26

EWB90152.SNK 06/01/90 36 27

EWB90153.SNK 06/02/90 22

1991

EWB91116.SNK 04/26/91 57 1

Table A1.9  (Continued) PIT tag release
group information. The table include
release group information, release grou
identification code, number of individual
observed at Lower Granite Dam (GRJ
and the cohort number assigned to t
group.

species: steelhead rearing type: wild
release site: Snake Trap

Release Group
Release

Date
# obs’d
at GRJ

cohort
#
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EWB91117.SNK 04/27/91 50 2

EWB91118.SNK 04/28/91 49 3

EWB91119.SNK 04/29/91 26

4
EWB91120.PS 04/30/91 2

EWB91120.SNK 04/30/91 18

EWB91121.SNK 05/01/91 14

EWB91125.SNK 05/05/91 5
5EWB91126.SNK 05/06/91 7

EWB91127.SNK 05/07/91 42

EWB91128.SNK 05/08/91 21 6

EWB91129.SNK 05/09/91 47

EWB91130.SNK 05/10/91 360 7

EWB91131.SNK 05/11/91 188 8

EWB91132.SNK 05/12/91 113 9

EWB91133.SN0 05/12/91 126 10

EWB91133.SNK 05/13/91 59 11

EWB91134.SNK 05/14/91 84 12

EWB91135.SNK 05/15/91 56 13

EWB91137.SNK 05/17/91 85 14

EWB91138.SNK 05/18/91 152 15

EWB91139.SNK 05/19/91 339 16

EWB91140.SNK 05/20/91 51 17

EWB91143.SNK 05/23/91 32 18

EWB91144.SNK 05/24/91 26

EWB91145.SNK 05/25/91 55 19

EWB91146.SNK 05/26/91 35 20

EWB91147.SNK 05/27/91 21

1992

EWB92109.SNK 04/18/92 24 1

EWB92110.SNK 04/19/92 37

EWB92112.SNK 04/21/92 58 2

EWB92113.SNK 04/22/92 38 3

EWB92114.SNK 04/23/92 26

EWB92116.SNK 04/25/92 67 4

Table A1.9  (Continued) PIT tag release
group information. The table includes
release group information, release group
identification code, number of individuals
observed at Lower Granite Dam (GRJ),
and the cohort number assigned to the
group.

species: steelhead rearing type: wild
release site: Snake Trap

Release Group
Release

Date
# obs’d
at GRJ

cohort
#

EWB92119.SNK 04/28/92 64 5

EWB92121.SNK 04/30/92 72 6

EWB92122.SNK 05/01/92 180 7

EWB92123.SNK 05/02/92 154 8

EWB92124.SNK 05/03/92 69 9

EWB92125.SNK 05/04/92 44 10

EWB92126.SNK 05/05/92 44 11

EWB92127.SNK 05/06/92 54 12

EWB92128.SNK 05/07/92 40 13

EWB92129.SNK 05/08/92 61 14

EWB92130.SNK 05/09/92 88 15

EWB92131.SNK 05/10/92 90 16

EWB92132.SNK 05/11/92 60 17

EWB92133.SNK 05/12/92 29 18

EWB92134.SNK 05/13/92 13

1993

EWB93110.SNK 04/20/93 12
1EWB93111.SNK 04/21/93 10

EWB93112.SNK 04/22/93 16

EWB93114.SNK 04/24/93 23 2

EWB93115.SNK 04/25/93 28

EWB93116.SNK 04/26/93 23 3

EWB93117.SNK 04/27/93 39

EWB93118.SNK 04/28/93 50 4

EWB93119.SNK 04/29/93 57 5

EWB93120.SNK 04/30/93 50 6

EWB93121.SNK 05/01/93 87 7

EWB93122.SNK 05/02/93 85 8

EWB93123.SNK 05/03/93 72 9

EWB93124.SNK 05/04/93 217 10

EWB93125.SN2 05/05/93 97 11

EWB93125.SNK 05/05/93 253 12

EWB93126.SNK 05/06/93 59 13

EWB93127.SNK 05/07/93 236 14

Table A1.9  (Continued) PIT tag release
group information. The table include
release group information, release grou
identification code, number of individual
observed at Lower Granite Dam (GRJ
and the cohort number assigned to t
group.

species: steelhead rearing type: wild
release site: Snake Trap

Release Group
Release

Date
# obs’d
at GRJ

cohort
#
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EWB93128.SNK 05/08/93 93 15

EWB93129.SNK 05/09/93 40 16

EWB93130.SNK 05/10/93 66 17

EWB93131.SNK 05/11/93 36 18

EWB93132.SNK 05/12/93 49

EWB93133.SN2 05/13/93 84 19

EWB93133.SNK 05/13/93 61 20

Table A1.9  (Continued) PIT tag release
group information. The table includes
release group information, release group
identification code, number of individuals
observed at Lower Granite Dam (GRJ),
and the cohort number assigned to the
group.

species: steelhead rearing type: wild
release site: Snake Trap

Release Group
Release

Date
# obs’d
at GRJ

cohort
#
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Appendix 2. Cohort covariates

Table A2.1  Data used in the regressions in
chapter 5, section 4. These cohorts are the Snake
River trap run-of-the-river spring chinook. The
cohort numbers correspond to the ones in Table
A1.1 through Table A1.3. The parameters are those
reported in Table 4.4. The last two columns are the
covariate values and are average values for the
cohort.

co
ho

rt parameters date
of

release

ave.
flow

(kcfs)r σ

1989

1 3.70 5.84 97.8 84.6

2 3.30 6.02 99.3 87.5

3 3.16 7.58 100.4 87.0

4 4.04 7.29 101.4 87.3

5 4.93 6.95 102.4 87.8

6 5.14 8.07 103.4 89.7

7 5.81 7.50 104.4 92.3

8 5.09 7.94 105.3 95.4

9 7.24 9.99 106.4 96.5

10 7.49 10.13 107.5 98.6

11 8.01 11.40 108.4 100.5

12 8.64 11.89 109.4 102.5

13 8.97 11.94 110.4 105.7

14 9.16 12.01 111.4 105.9

15 7.80 9.34 112.3 101.0

16 8.15 8.51 113.4 95.9

17 6.51 12.40 114.5 91.8

18 6.84 8.68 115.4 88.7

19 7.47 7.79 116.4 87.3

20 6.93 8.85 117.4 89.2

21 8.57 8.88 118.9 88.5

22 10.26 8.34 121.2 90.7

23 11.53 15.05 129.4 110.5

1990

1 5.30 7.55 99.7 51.3

2 8.50 7.61 107.4 65.0

3 8.13 9.11 108.1 65.6

4 8.85 8.14 109.3 67.3

5 6.34 11.55 110.4 68.1

6 6.27 9.83 111.4 68.4

7 6.21 10.51 112.3 68.2

8 5.55 9.72 113.3 66.7

9 5.16 9.78 114.4 65.4

10 4.54 8.88 115.9 63.6

11 6.29 6.03 118.6 63.2

12 5.75 7.06 121.3 65.9

13 10.34 9.47 128.5 83.3

1991

Table A2.1  (Continued) Data used in the
regressions in chapter 5, section 4. These coho
are the Snake River trap run-of-the-river sprin
chinook. The cohort numbers correspond to t
ones in Table A1.1 through Table A1.3. Th
parameters are those reported in Table 4.4. The 
two columns are the covariate values and a
average values for the cohort.

co
ho

rt parameters date
of

release

ave.
flow

(kcfs)r σ
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1 2.94 4.83 98.5 55.8

2 3.28 4.11 99.3 56.7

3 3.38 4.72 100.3 57.3

4 3.59 4.82 102.3 59.8

5 3.05 5.33 105.4 64.5

6 4.04 6.16 107.4 65.6

7 4.39 5.44 108.4 66.0

8 3.62 6.08 109.4 64.6

9 4.89 8.34 112.4 66.1

10 5.11 8.06 113.3 64.9

11 6.63 12.43 116.3 61.1

12 6.29 7.91 116.3 60.8

13 5.49 6.69 117.3 60.1

14 5.62 6.00 119.4 59.1

15 9.92 11.14 130.0 78.3

1992

1 3.94 5.61 98.6 37.3

2 3.73 6.53 99.6 39.0

3 3.95 6.57 105.6 46.8

4 4.59 7.35 112.6 51.8

5 5.45 6.21 115.2 55.1

6 5.36 9.96 122.7 72.5

1993

Table A2.1  (Continued) Data used in the
regressions in chapter 5, section 4. These cohorts
are the Snake River trap run-of-the-river spring
chinook. The cohort numbers correspond to the
ones in Table A1.1 through Table A1.3. The
parameters are those reported in Table 4.4. The last
two columns are the covariate values and are
average values for the cohort.

co
ho

rt parameters date
of

release

ave.
flow

(kcfs)r σ

1 3.65 6.57 99.5 64.6

2 3.76 5.14 100.4 64.0

3 3.57 5.22 101.3 64.1

4 3.48 5.31 102.3 64.0

5 3.61 4.20 103.7 64.0

6 4.38 4.91 106.1 64.0

7 5.59 6.75 109.8 65.2

8 5.48 6.40 111.4 66.4

9 6.27 7.25 112.6 66.4

10 7.14 6.52 114.1 67.5

11 7.47 7.10 115.1 69.2

12 8.37 6.84 116.4 71.2

13 8.09 7.07 117.4 73.8

14 8.29 7.42 118.4 76.3

15 9.71 8.16 119.4 78.2

16 10.34 8.67 120.4 82.5

17 10.83 5.91 121.6 88.0

18 11.41 7.41 122.4 90.8

19 13.55 7.94 123.4 95.4

20 12.97 12.31 124.5 100.9

21 11.08 10.02 125.4 102.6

22 10.65 10.10 126.4 102.5

23 9.16 10.54 127.3 105.9

Table A2.1  (Continued) Data used in the
regressions in chapter 5, section 4. These coho
are the Snake River trap run-of-the-river sprin
chinook. The cohort numbers correspond to t
ones in Table A1.1 through Table A1.3. Th
parameters are those reported in Table 4.4. The 
two columns are the covariate values and a
average values for the cohort.

co
ho

rt parameters date
of

release

ave.
flow

(kcfs)r σ
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24 9.20 8.36 128.4 107.6

25 9.67 7.24 130.0 117.0

Table A2.2  Data used in the regressions in
chapter 5, section 4. These cohorts are the
Clearwater trap run-of-the-river spring chinook.
The cohort numbers correspond to the ones in
Tables A1.4 through A1.6. The parameters
estimates were obtained using the methods
described in chapter 4. The last two columns are the
covariate values and are average values for the
cohort.

co
ho

rt parameters date
of

release

ave.
flow

(kcfs)r σ

1989

1 2.54 5.52 89.0 78.0

2 2.34 9.30 90.2 78.9

3 2.52 7.71 91.9 80.3

4 2.49 6.49 93.4 82.9

5 2.54 6.30 94.8 84.6

6 3.15 9.60 97.0 85.0

7 4.17 10.58 103.0 90.4

8 4.28 10.64 105.9 96.2

9 7.39 6.67 144.2 63.1

Table A2.1  (Continued) Data used in the
regressions in chapter 5, section 4. These cohorts
are the Snake River trap run-of-the-river spring
chinook. The cohort numbers correspond to the
ones in Table A1.1 through Table A1.3. The
parameters are those reported in Table 4.4. The last
two columns are the covariate values and are
average values for the cohort.

co
ho

rt parameters date
of

release

ave.
flow

(kcfs)r σ

10 7.50 7.39 145.3 63.2

11 9.51 7.92 150.5 69.3

1990

1 2.47 5.71 89.4 49.5

2 2.52 5.98 90.3 50.1

3 2.95 6.55 91.9 50.8

4 3.19 7.34 93.8 52.7

5 2.55 5.77 95.7 56.3

6 3.04 8.50 98.8 56.5

7 4.04 8.29 99.9 55.4

8 3.46 9.24 101.9 58.9

9 3.32 6.63 103.8 63.1

10 3.23 6.62 105.5 65.2

11 4.10 10.27 106.4 65.4

12 4.50 11.17 107.8 66.2

13 6.03 8.59 123.0 69.9

14 7.80 3.86 138.1 48.0

15 9.40 3.85 140.0 50.5

16 11.25 4.33 141.3 54.1

17 13.46 9.60 142.9 60.4

18 12.03 11.03 144.5 71.8

1991

Table A2.2  (Continued) Data used in the
regressions in chapter 5, section 4. These coho
are the Clearwater trap run-of-the-river sprin
chinook. The cohort numbers correspond to t
ones in Tables A1.4 through A1.6. The paramete
estimates were obtained using the metho
described in chapter 4. The last two columns are 
covariate values and are average values for 
cohort.

co
ho

rt parameters date
of

release

ave.
flow

(kcfs)r σ



215

rts
g
he
rs
ds
the
the
1 2.68 5.64 94.0 54.0

2 2.26 3.30 95.5 57.5

3 2.49 4.04 96.4 57.0

4 2.19 4.73 97.4 58.6

5 2.60 5.02 98.3 57.6

6 2.84 4.60 99.3 58.2

7 2.84 5.31 100.4 59.5

8 2.74 4.33 101.4 60.5

9 2.62 4.55 101.8 61.0

10 3.01 4.87 103.1 61.9

11 3.05 5.71 104.9 63.9

12 3.31 5.29 106.3 64.3

13 3.19 5.46 107.3 64.3

14 4.12 6.99 108.3 65.8

15 4.18 6.78 109.3 65.0

16 4.06 7.37 110.0 65.5

17 4.21 8.62 111.3 65.0

18 4.41 7.16 112.4 64.4

19 4.54 8.43 113.4 64.7

20 4.92 8.21 114.4 63.1

21 5.18 8.07 116.4 60.4

22 4.22 6.32 116.4 61.3

Table A2.2  (Continued) Data used in the
regressions in chapter 5, section 4. These cohorts
are the Clearwater trap run-of-the-river spring
chinook. The cohort numbers correspond to the
ones in Tables A1.4 through A1.6. The parameters
estimates were obtained using the methods
described in chapter 4. The last two columns are the
covariate values and are average values for the
cohort.

co
ho

rt parameters date
of

release

ave.
flow

(kcfs)r σ

23 8.21 10.13 129.0 78.4

24 7.34 7.27 130.4 82.4

25 6.74 8.52 131.5 84.4

1992

1 2.19 3.68 82.4 28.2

2 2.26 3.52 83.4 28.0

3 2.08 3.37 80.9 28.4

4 2.72 4.58 85.8 25.8

5 2.72 4.25 87.8 27.9

6 2.94 4.45 89.8 30.2

7 3.10 5.03 91.9 33.8

8 3.51 5.51 94.0 35.9

9 3.92 5.61 95.3 36.4

10 3.48 7.03 96.5 37.8

11 3.69 5.42 97.4 38.9

12 3.23 5.28 98.4 41.0

13 3.29 5.92 99.9 42.5

14 3.18 5.39 101.4 45.0

15 2.95 5.76 102.3 47.2

16 2.94 5.02 103.3 48.4

17 3.19 5.84 104.4 49.3

18 3.10 6.89 105.3 50.0

Table A2.2  (Continued) Data used in the
regressions in chapter 5, section 4. These coho
are the Clearwater trap run-of-the-river sprin
chinook. The cohort numbers correspond to t
ones in Tables A1.4 through A1.6. The paramete
estimates were obtained using the metho
described in chapter 4. The last two columns are 
covariate values and are average values for 
cohort.
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19 3.42 6.40 106.1 49.9

20 2.50 6.59 107.3 53.6

21 3.41 5.21 108.3 53.0

22 3.06 5.97 109.8 54.8

23 3.46 7.17 111.8 55.5

24 4.69 7.30 113.3 55.6

25 4.69 6.82 114.4 57.3

26 4.56 8.46 115.7 58.5

27 4.35 8.80 119.2 65.4

28 4.98 10.62 120.3 67.7

29 4.72 8.67 121.3 69.5

30 6.20 13.84 127.4 66.5

31 7.41 12.94 140.6 50.5

32 9.80 12.50 145.7 53.5

33 7.91 11.15 147.8 52.5

34 6.75 13.90 149.7 45.8

35 8.41 11.93 151.6 44.7

1993

1 2.99 5.75 100.5 66.9

2 2.57 5.31 101.9 70.9

3 3.94 5.56 106.3 66.6

4 4.86 6.69 110.8 69.2

Table A2.2  (Continued) Data used in the
regressions in chapter 5, section 4. These cohorts
are the Clearwater trap run-of-the-river spring
chinook. The cohort numbers correspond to the
ones in Tables A1.4 through A1.6. The parameters
estimates were obtained using the methods
described in chapter 4. The last two columns are the
covariate values and are average values for the
cohort.

co
ho

rt parameters date
of

release

ave.
flow

(kcfs)r σ

5 4.70 7.45 112.9 73.3

6 5.04 7.83 114.8 77.0

7 5.18 7.77 116.9 82.4

8 6.23 9.26 121.2 96.1

Table A2.2  (Continued) Data used in the
regressions in chapter 5, section 4. These coho
are the Clearwater trap run-of-the-river sprin
chinook. The cohort numbers correspond to t
ones in Tables A1.4 through A1.6. The paramete
estimates were obtained using the metho
described in chapter 4. The last two columns are 
covariate values and are average values for 
cohort.
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Appendix 3. Computer code

A3.1. Introduction

This appendix contains computer code for selective algorithms. All algorithms

written in the C programming language, “traditional” or Kernighan and Ritchie (19

version. I compiled the code with a Sun C compiler, but other compilers will als

compatible.

A3.2. Analysis of continuous travel time data

This first section contains the code to undertake the analysis of travel time

performed in chapter 4. The code is contained in 5 files, and a data file must be su

Before providing the code, I will briefly discuss the structure of the files and the rou

contained within. I will also provide a sample data file and the output generated fro

code with the sample data file.

main.c – contains the routine main() that controls the program by calling o

routines. This routine also reads in the data file.

mle.c – contains the routines r_mle() and sig_mle() that compute maxim

likelihood estimates ofr andσ.

conf_int.c – contains the routines r_mle() and sig_mle() that determ

 percent confident intervals for the parameters and prints t

out.

cumulative.c – contains the routine cumulative() that converts the travel time

to cumulative travel time based on the model and estimates parameters.

chi.c – contains the routine chi() that performs the goodness-of-fit test and 

out the results. This routine must be provided with a vector of cumula

travel times.

main.c

1 α–( ) 100⋅
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#include <stdio.h>

floatr_mle();
floatsig_mle();
void confidence_intervals();
floatcumulative();
void chi();

void main()
{
 floatlength;/* length of the reach */
 int num; /* number of individuals */
 charjunk[12];/* place to put header info from data file */
 float*tt_vec;/* vector to store travel time data */
 float*cum_tt_vec; /* vector for values from tt cdf */
 int i; /* increment for tt vector */
 floatr, sig;/* model parameters */
 floatalpha; /* 1 - alpha is width of conf. intervals */
 int pars; /* # of parameters used in the model */
 FILE*data; /* pointer to data file */

 data = fopen(“tt.data”, “r”);

 fscanf(data, “%s%s%f”, junk, junk, &length);
 fscanf(data, “%s%s%d”, junk, junk, &num);
 fscanf(data, “%s%s”, junk, junk);

 /* allocate memory for the travel times vectors */
 tt_vec = (float *) malloc(num*sizeof(float));
 cum_tt_vec = (float *) malloc(num*sizeof(float));

 /* read in travel times from data file */
 for(i = 0; i < num; ++i)

fscanf(data, “%f”, &tt_vec[i]);

 /* compute maximum likelihood estimates */
 r = r_mle(tt_vec, length, num);
 sig = sig_mle(tt_vec, length, num);
 printf(“mle r = %6.3f\n”, r);
 printf(“mle sig = %6.3f\n”, sig);

 /* 95% confidence interval */
 alpha = 0.05;
 confidence_intervals(r, sig, length, num, alpha);

 /* X-squared goodness-of-fit test */
 /* the test needs values from the cumulative dist. func. */
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 for(i = 0; i < num; ++i)
cum_tt_vec[i] = cumulative(r, sig, length, tt_vec[i]);

 pars = 2; /* number of parameters used by the model */
 chi(cum_tt_vec, pars, num);

 fclose(data);
}

mle.c

#include <math.h>

/* computes maximum likelihood estimate for the parameter r */
/* based on the travel time data */
float r_mle(tt_vec, pool_length, num)

float *tt_vec; /* vector of travel times for group */
float pool_length;
int num; /* number of individuals in group */

{
float tt_bar = 0; /* average travel time */
int i;

for (i = 0; i < num; ++i){
tt_bar += tt_vec[i];

 }

tt_bar = tt_bar/num;

return(pool_length/tt_bar);
}

/* computes maximum likelihood estimate for the parameter sigma */
/* based on the travel time data */
float sig_mle(tt_vec, pool_length, num)

float *tt_vec;
float pool_length;
int num;

{
float tt_bar = 0; /* arithmetic mean */
float tt_recip = 0;/* harmonic mean */
int  i;

for (i = 0; i < num; ++i){
tt_bar += tt_vec[i];
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tt_recip += 1.0/tt_vec[i];
}
tt_bar = tt_bar/num;
tt_recip = tt_recip/num;

return(pool_length * sqrt(tt_recip - (1.0/tt_bar)));
}

conf_int.c

#include <math.h>
#include <stdio.h>

/* This routine is passed the maximum likelihood estimates for r */
/* and sigma, reach length, number of fish and alpha. It prints */
/* 100*(1-alpha) percent confidence intervals for the parameters */
/* r and sigma. The appropriate quantiles of the Student’s t and */
/* chi-square are obtained from S-plus, which is provided with */
/* the degrees of freedom.  */

void confidence_intervals(r, s, L, num, alpha)
float r, s; /* mles of r and sigma */
float L; /* reach length */
int num; /* number of individuals */
float alpha; /* 1-alpha is length of C.I. */

{
float r_min, r_max; /* min and max of r C.I. */
float sig_min, sig_max; /* min and max of sigma C.I. */
float a, b; /* quantiles used in C.I. calc. */
char junk[10]; /* junk from input file */
FILE *iptr, *optr; /* input and output files */

/* provide degrees of freedom and alpha for S-plus routine */
optr = fopen(“.quant_info”, “w”);
fprintf(optr, “%d\t%f\n”, num - 1, alpha);
fclose(optr);

/* execute S-plus routine that prints quantiles to a file */
system(“S < quantile.s > /dev/null”);

/* open file and read in (1.0-alpha/2)th quantile of t dist. */
iptr = fopen(“.quantile”, “r”);
fscanf(iptr,”%s%f”, junk, &a);

/* compute max and min values of r C.I. */
r_min = r*(1.0 - a*sqrt((s*s)/(r*L*(num-1))));
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r_max = r*(1.0 + a*sqrt((s*s)/(r*L*(num-1))));

/* print r C.I. */
printf(“%4.1f percent confidence interval for r:\n”,

100*(1.0-alpha));
printf(“(%6.2f,%6.2f)\n”, r_min, r_max);

/* read (alpha/2)th and (1-alpha/2)th quantiles of chi-sq.
dist. */

fscanf(iptr,”%s%f”, junk, &a);
fscanf(iptr,”%s%f”, junk, &b);

/* compute max and min values of sig C.I. */
sig_min = s*sqrt((float)(num)/a);
sig_max = s*sqrt((float)(num)/b);

/* print sigma C.I. */
printf(“%4.1f percent confidence interval for sigma:\n”,

100*(1.0-alpha));
printf(“(%6.2f,%6.2f)\n”, sig_min, sig_max);

}

cumulative.c

#include <math.h>
#include “input.h”

#define pi3.1415

/* phi is the cumulative distribution for a standard normal */
float phi(x)
float x;
{

return(0.5 + erf(x/sqrt(2.0))/2);
}

/* this routine returns a value from the cumulative distribution */
/* of the basic travel time model. The routine must be passed */
/* the model parameters and the travel time. The procedure for */
/* generating the value is described in appendix 4.a */
float cumulative(r, sig, L, t)

float r, sig, L; /* model parameters */
float t; /* travel time */

{
float mu, lam; /* reparameterization */
float first, second;



 222
double y, z;
double z2, z4;
double fac1, fac2;
float d0 = 0.2316419;
float d1 = 0.319381530;
float d2 = -0.356563782;
float d3 = 1.781477937;
float d4 = -1.821255978;
float d5 = 1.330274429;
float qz, qz2, qz4;

mu = L/r;
lam = L/sig;

y = lam*(t-mu)/(mu*sqrt(t));
z = lam*(t+mu)/(mu*sqrt(t));

if (z<4){
qz = 1/(1+d0*z);
qz2 = qz*qz;
qz4 = qz2*qz2;

fac1 = (exp(-(y*y)/2))/(sqrt(2*pi));
fac2 = (d1*qz + d2*qz2 + d3*qz2*qz

+ d4*qz4 + d5*qz4*qz);
}
if (z>=4){

z2 = z*z;
z4 = z2*z2;

fac1 = (exp(-(y*y)/2))/(sqrt(2*pi))/z;
fac2 = 1 - 1/z2 + 3/z4 - 3*5/(z2*z4) + 3*5*7/(z4*z4)

- 3*5*7*9/(z4*z4*z2) + 3*5*7*9*11/(z4*z4*z4)
- 3*5*7*9*11*13/(z4*z4*z4*z2);

}
second = fac1*fac2;
first = phi(y);

return(first + second);
}

chi.c

#include <math.h>
#include <stdio.h>
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float gammp(); /* This routine is from Numerical Recipes in C */
/* Press, et al. 1988 */

void chi(cum_vec, params, num_fish)
float *cum_vec; /* vector cdf values of tt dist. */
int params; /* number of parameters estimated */
int num_fish; /* number of individuals */

{
int num_bins; /* number of bins */
float bin_width; /* width of each bin */
float expect; /* expected individuals per bin */
int *obs; /* vector of oberved individuals */
int i; /* counter */
float X = 0.0; /* chi square statistic */
float prob; /* chi square probability */
int df; /* degrees of freedom */

 /* num_bins is determined by Mann-Wald calculation */
num_bins = (int)(3.76*pow((float)(num_fish), 0.4) );

bin_width = 1.0/num_bins;
expect = bin_width*num_fish;

/* allocate memmory for vector of observed values and set */
/* each element to zero */
obs = (int *) malloc(num_bins*sizeof(int));
bzero((char *) obs, num_bins*sizeof(float));

/* determine which bin each individual falls into */
for ( i = 0; i < num_fish; ++i)

++obs[(int)(cum_vec[i]/bin_width)];

/* compute chi square statistic */
for (i = 0; i < num_bins; ++i)

X += ((expect-obs[i])*(expect-obs[i]))/expect;

df = num_bins - params - 1;

/* compute percentile of chi-square distribution */
prob = gammp((float)(df)/2.0, X/2.0);

printf(“\nX-squared goodness-of-fit test\n”);
printf(“X-squared = %7.3f\n”, X);
printf(“degrees of freedom = %3d\n”, df);
printf(“p = %7.3f\n”, 1.0 - prob);

}
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sample data file

reach length: 52.0
num fish: 57
travel times:
15.74 12.06 30.63 24.79 17.54
26.39 14.87 9.25 4.83 12.32
14.61 9.08 20.34 7.74 16.98
3.99  10.69 23.38 20.02 19.74
22.66 24.62 20.62 18.24 22.48
10.76 12.01 9.99 6.34 21.47
18.09 22.25 15.74 13.68 5.11
10.35 10.41 22.41 8.21 36.66
21.45 13.17 18.64 18.69 11.85
20.57 34.52 15.73 9.46 37.39
21.53 92.03 33.30 21.67 21.94
21.45 8.23

program output

mle r = 2.773
mle sig = 7.251

95.0 percent confidence interval for r:
( 2.33, 3.22)
95.0 percent confidence interval for sigma:
( 6.18, 8.97)

X-squared goodness-of-fit test
X-squared = 22.263
degrees of freedom = 15
p = 0.101

A3.3. inverse Gaussian random variate

The details of this procedure are contained in Chapter 4, appendix d.

Inverse gaussian random variate

#include <math.h>
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double drand48();
void srand48();

/* returns a random variate from the standard normal */
/* distribution. Taken from Numerical Recipes in C. */
double normal()
{

static int iset = 0;
static double gset;
double fac, r, v1, v2;

if (iset == 0){
do {

v1 = 2.0 * drand48() - 1.0;
v2 = 2.0 * drand48() - 1.0;
r = v1*v1 + v2*v2;

} while (r >= 1.0);
fac = sqrt(-2.0 * log((float)r)/(float)r);
gset = v1 * fac;
iset = 1;
return v2*fac;

} else {
iset = 0;
return gset;

}
}

/* returns a random variate from the Inverse Gaussian */
/* distribution. Details of the algorithm are contained in */
/* appendix 4.d. */
float travel(mu,lam)

float mu, lam; /* model parameters */
{

float n, v, w, c, x;
float p;

n = normal();
v = n*n;
w = mu*v;
c = mu/(2.0*lam);

x = mu + c*(w - sqrt(w*(4.0*lam + w)));
p = mu/(mu + x);

if (p > drand48()) return(x);
else return(mu*mu/x);

}
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